JP2005297141A - Surface-coated throwaway tip - Google Patents

Surface-coated throwaway tip Download PDF

Info

Publication number
JP2005297141A
JP2005297141A JP2004118340A JP2004118340A JP2005297141A JP 2005297141 A JP2005297141 A JP 2005297141A JP 2004118340 A JP2004118340 A JP 2004118340A JP 2004118340 A JP2004118340 A JP 2004118340A JP 2005297141 A JP2005297141 A JP 2005297141A
Authority
JP
Japan
Prior art keywords
layer
outermost layer
coated
film
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004118340A
Other languages
Japanese (ja)
Inventor
Yoshio Okada
吉生 岡田
Naoya Omori
直也 大森
Haruyo Fukui
治世 福井
Junya Okita
淳也 沖田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Hardmetal Corp
Original Assignee
Sumitomo Electric Hardmetal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Hardmetal Corp filed Critical Sumitomo Electric Hardmetal Corp
Priority to JP2004118340A priority Critical patent/JP2005297141A/en
Priority to PCT/JP2005/007180 priority patent/WO2005099945A1/en
Priority to CN2005800110513A priority patent/CN1942274B/en
Priority to EP05730480.0A priority patent/EP1736262B1/en
Priority to KR1020067020972A priority patent/KR101225803B1/en
Priority to US10/599,086 priority patent/US7785700B2/en
Publication of JP2005297141A publication Critical patent/JP2005297141A/en
Priority to IL177909A priority patent/IL177909A0/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated throwaway tip having a prolonged service lifetime and excellent lubricity and abrasion resistance even under an operating environment to expose the cutting edge to a high-temperature state in high-speed/high-efficiency working. <P>SOLUTION: The surface-coated throwaway tip has a coated layer composed of an outermost layer and an inner layer on the surface of a base material. The inner layer has a titanium-containing layer comprising TiCN having a columnar tissue with an aspect ratio of at least 3 in which any one of respective orientation property indexes TC (220), TC (311), and TC (422) of crystal planes (220), (311), and (422) takes the maximum value of the orientation property index. The outermost layer is composed of aluminum nitride or aluminum carbonitride and contains over 0 and up to 0.5 atom% of chlorine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、基材表面に被覆層を具えるスローアウェイチップに関するものである。特に、優れた潤滑性と耐摩耗性とを具え、鋼材などの切削に好適な表面被覆スローアウェイチップに関するものである。   The present invention relates to a throw-away tip having a coating layer on a substrate surface. In particular, the present invention relates to a surface-coated throw-away tip that has excellent lubricity and wear resistance and is suitable for cutting steel and the like.

近年、切削加工の高能率化、高精度化の要求を満たすために、新しい切削工具材料が次々と開発されている。このような材料開発の流れの中で、工具基材の表面にセラミックスからなる被覆層を施すセラミックスコーティング技術は、切削工具に欠かせない技術となっている。   In recent years, new cutting tool materials have been developed one after another in order to meet the demands for higher efficiency and higher precision in cutting. In such a material development flow, a ceramic coating technique for applying a ceramic coating layer on the surface of a tool base has become an indispensable technique for cutting tools.

高速、高送りといった高速高能率加工に利用される切削工具の被覆層として、炭化チタン(TiC)、窒化チタン(TiN)、炭窒化チタン(Ti(C,N))といったチタン系セラミックスや、アルミナ(Al2O3)、ジルコニア(ZrO2)などの酸化物系セラミックスが広く用いられている。例えば、特許文献1では、X線回折の配向性指数を規定した被覆層を具える切削工具が開示されている。 As a coating layer for cutting tools used for high-speed and high-efficiency machining such as high-speed and high-feed, titanium-based ceramics such as titanium carbide (TiC), titanium nitride (TiN), and titanium carbonitride (Ti (C, N)), and alumina Oxide ceramics such as (Al 2 O 3 ) and zirconia (ZrO 2 ) are widely used. For example, Patent Document 1 discloses a cutting tool including a coating layer that defines an orientation index of X-ray diffraction.

上記高速高能率加工に加え、最近は、地球環境保護のために切削油を極端に減らしたミスト加工法、或いは切削油を使用しないドライ加工法が注目されている。これらの加工法に対応するべく、耐溶着性に優れる被覆層や切粉すべり機能を有する被覆層を具える切削工具が提案されている(特許文献2、3参照)。その他、放熱性などの特性を向上するべく、窒化アルミニウムからなる被覆層を具える切削工具が提案されている(特許文献4〜8参照)。   In addition to the high-speed and high-efficiency machining, recently, a mist machining method in which cutting oil is extremely reduced to protect the global environment, or a dry machining method that does not use cutting oil has attracted attention. In order to cope with these processing methods, cutting tools having a coating layer having excellent welding resistance and a coating layer having a chip sliding function have been proposed (see Patent Documents 2 and 3). In addition, in order to improve characteristics such as heat dissipation, cutting tools including a coating layer made of aluminum nitride have been proposed (see Patent Documents 4 to 8).

特開平11-124672号公報Japanese Patent Laid-Open No. 11-124672 特開平10-158861号公報Japanese Patent Laid-Open No. 10-158861 特開2003-225808号公報JP 2003-225808 A 特公昭59-27302号公報Japanese Patent Publication No.59-27302 特許第2861113号公報Japanese Patent No. 2861113 特開2002-273607号公報JP 2002-273607 A 特開2003-19604号公報Japanese Patent Laid-Open No. 2003-19604 特開2003-25112号公報JP 2003-25112 A

しかしながら、上記従来の切削工具ではいずれも、切削油を用いないドライ加工において潤滑機能が不十分であるため、工具寿命が短くなっており、潤滑性を向上させて、工具寿命をより長くすることが望まれている。   However, all of the above-mentioned conventional cutting tools have insufficient lubrication function in dry machining that does not use cutting oil, so the tool life is shortened, improving lubricity and extending the tool life. Is desired.

そこで、本発明の主目的は、潤滑性を改善して工具寿命がより長い表面被覆スローアウェイチップを提供することにある。   Accordingly, a main object of the present invention is to provide a surface-coated throw-away tip with improved lubricity and longer tool life.

本発明は、切削時、被削材と最初に接触する最外層に潤滑性を付与するべく、最外層の組成を規定して特定の元素を含有させると共に、内層に耐摩耗性を付与するべく、組成、結晶構造、配向性を規定することで上記目的を達成する。   In order to provide lubricity to the outermost layer that first contacts the work material during cutting, the present invention specifies the composition of the outermost layer to contain a specific element and to provide wear resistance to the inner layer. The above object is achieved by defining the composition, crystal structure and orientation.

即ち、本発明は、基材表面に被覆層を具える表面被覆スローアウェイチップであって、前記被覆層は、基材上に形成される内層と、この内層上に形成される最外層とからなり、最外層及び内層は、以下を満たすものとする。
<内層>
以下のチタン含有層を具える。
以下の条件(1)及び(2)を満たすTiCNからなる層
(1)アスペクト比3以上の柱状組織を有する
(2)結晶の(220)面、(311)面、(422)面の各配向性指数TC(220)、TC(311)、TC(422)のいずれかが配向性指数の最大値をとる
<最外層>
窒化アルミニウム又は炭窒化アルミニウムからなり、最外層中に塩素を0超0.5原子%以下含有する
That is, the present invention is a surface-coated throwaway chip having a coating layer on a substrate surface, the coating layer comprising an inner layer formed on the substrate and an outermost layer formed on the inner layer. The outermost layer and the inner layer satisfy the following.
<Inner layer>
The following titanium-containing layers are provided.
A layer made of TiCN that satisfies the following conditions (1) and (2)
(1) Has a columnar structure with an aspect ratio of 3 or more
(2) Any of the orientation indices TC (220), TC (311), and TC (422) on the (220), (311), and (422) planes of the crystal has the maximum value of the orientation index. <Outermost layer>
It consists of aluminum nitride or aluminum carbonitride, and contains chlorine in the outermost layer more than 0 and 0.5 atomic% or less

本発明者らは、切削油を使用しないドライ加工であっても、工具寿命をより長くすることができるように、被覆層の特性を改善すると共に、被覆層の相互の関連性について鋭意検討した。その結果、潤滑性に優れる被覆膜を最外層とすると共に、耐摩耗性に優れる被覆膜を内層に具えることが工具寿命の延命に効果的であるとの知見を得た。具体的には、上記のように特定量の塩素を含む窒化系アルミニウムからなる膜を最外層とすることで、ドライ加工であっても、潤滑性を持たせることができ、結果的に耐溶着性を向上させて、被覆層の剥離を防止することができる。また、潤滑性に優れることで、工具に加えられる切削抵抗を低下させることができ、耐チッピング性、耐欠損性をも向上することができる。更に、特定の組織と配向性とを有する炭窒化チタン(TiCN)からなる膜を内層に具えることで、耐摩耗性の更なる向上を図ることができる。加えて、潤滑性に優れる膜を具えることで、切削加工後の被削材表面において工具が接触したことによる表面のむしれが少なく、高品位で高精度な被削材製品を得ることができるとの知見も得た。これらの知見に基づき、本発明を規定する。   The inventors of the present invention have made extensive studies on the relationship between the coating layers as well as improving the properties of the coating layers so that the tool life can be further extended even in dry machining that does not use cutting oil. . As a result, it has been found that it is effective to extend the tool life by providing a coating film having excellent lubricity as the outermost layer and providing a coating film having excellent wear resistance in the inner layer. Specifically, as described above, a film made of nitrided aluminum containing a specific amount of chlorine is used as the outermost layer, so that lubricity can be imparted even in dry processing, resulting in resistance to welding. Property can be improved and peeling of the coating layer can be prevented. Moreover, by being excellent in lubricity, the cutting resistance applied to a tool can be reduced, and chipping resistance and chipping resistance can also be improved. Furthermore, by providing the inner layer with a film made of titanium carbonitride (TiCN) having a specific structure and orientation, the wear resistance can be further improved. In addition, by providing a film with excellent lubricity, it is possible to obtain a high-quality and high-accuracy work material product with less surface peeling due to the contact of the tool on the work material surface after cutting. The knowledge that it was possible was also obtained. Based on these findings, the present invention is defined.

上記のように工具寿命を向上できた理由は、現段階において以下のように考えられる。窒化系アルミニウムからなる膜は、そもそも熱的安定性と潤滑性とを有している。また、このような膜に特定量の塩素を含有させると、ドライ加工や高速高送り加工などの刃先の温度が高温になり易い加工において、切削加工に伴い刃先が900℃程度の高温の状況下となった際、工具表面に保護被膜を形成し易くなる。この保護被膜により、潤滑性を高めることが可能となり、工具の耐溶着性を向上させることができたと考えられる。また、内層を構成する特定のTiCNからなる膜は、高硬度であるため、耐摩耗性に優れると考えられる。以下、本発明をより詳しく説明する。   The reason why the tool life can be improved as described above is considered as follows at the present stage. In the first place, a film made of nitride-based aluminum has thermal stability and lubricity. In addition, when a certain amount of chlorine is included in such a film, the cutting edge temperature is about 900 ° C due to the cutting process when the cutting edge temperature tends to be high, such as dry machining and high-speed high-feed machining. When it becomes, it becomes easy to form a protective film on the tool surface. It is considered that this protective coating can improve lubricity and improve the welding resistance of the tool. A film made of specific TiCN constituting the inner layer is considered to be excellent in wear resistance because of its high hardness. Hereinafter, the present invention will be described in more detail.

(被覆層)
<最外層>
本発明において、切削時、被削材に最初に接触する最外層は、窒化アルミニウム又は炭窒化アルミニウムといったアルミニウム化合物からなるものとする。そして、本発明では、この窒化系アルミニウムからなる膜に塩素を含有させる。具体的には、最外層中に0超0.5原子%以下の塩素を含有させる。最外層に0.5原子%以下の塩素を含有することで、高温での切削環境下において保護被膜を形成することができ、潤滑性の向上を図ることができる。0.5原子%を超えて塩素を含むと、被覆層の強度が極端に落ち、最外層を形成する膜が容易に剥離してしまう。また、塩素を全く含有させないと、上記のように保護被膜の形成がなされない。特に好ましい塩素含有量は、0.07原子%以上0.3原子%以下である。最外層に0超0.5原子%以下の塩素を含ませる方法としては、上記窒化系アルミニウムからなる膜の形成に熱CVD法、プラズマCVD法といった化学的蒸着法(CVD法)を利用する場合、反応ガスに塩素含有ガス、例えば、塩化水素(HCl)を用いることが挙げられる。このとき、塩化水素の含有量は、反応ガス全体を100容量%として、0超5.0容量%未満、特に、1.0容量%以下とすることが挙げられる。また、窒化系アルミニウムからなる膜の形成にアーク式イオンプレーティング法、マグネトロンスパッタ法といった物理的蒸着法(PVD法)を利用する場合、膜形成後、イオン注入法により塩素イオンを注入することが挙げられる。このとき、注入量を適宜調整することで、最外層中の塩素の含有量を調整するとよい。
(Coating layer)
<Outermost layer>
In the present invention, the outermost layer that first contacts the work material during cutting is made of an aluminum compound such as aluminum nitride or aluminum carbonitride. In the present invention, chlorine is contained in the nitride aluminum film. Specifically, more than 0 and 0.5 atomic% or less of chlorine is contained in the outermost layer. By containing 0.5 atomic% or less of chlorine in the outermost layer, a protective coating can be formed in a cutting environment at a high temperature, and lubricity can be improved. When chlorine is contained exceeding 0.5 atomic%, the strength of the coating layer is extremely lowered, and the film forming the outermost layer is easily peeled off. Further, if no chlorine is contained, no protective film is formed as described above. A particularly preferable chlorine content is 0.07 atomic% or more and 0.3 atomic% or less. As a method of adding chlorine exceeding 0 to 0.5 atomic% or less in the outermost layer, when using a chemical vapor deposition method (CVD method) such as a thermal CVD method or a plasma CVD method for forming a film made of nitrided aluminum, a reaction As the gas, a chlorine-containing gas such as hydrogen chloride (HCl) can be used. At this time, the content of hydrogen chloride may be more than 0 and less than 5.0% by volume, particularly 1.0% by volume or less, with the entire reaction gas being 100% by volume. In addition, when using a physical vapor deposition method (PVD method) such as an arc ion plating method or a magnetron sputtering method to form a film made of nitride-based aluminum, chlorine ions may be implanted by ion implantation after the film formation. Can be mentioned. At this time, the content of chlorine in the outermost layer may be adjusted by appropriately adjusting the injection amount.

上記最外層は、更に酸素を含有していてもよい。即ち、最外層は、窒化アルミニウム、炭窒化アルミニウムだけでなく、窒酸化アルミニウム、炭窒酸化アルミニウムから形成してもよい。酸素を含有させることで、保護被膜をより形成し易くなる。   The outermost layer may further contain oxygen. That is, the outermost layer may be formed not only from aluminum nitride and aluminum carbonitride, but also from aluminum oxynitride and aluminum oxycarbonitride. By containing oxygen, it becomes easier to form a protective film.

このような最外層は、その膜厚を後述する内層の合計膜厚の1/2以下とすることが好ましい。このとき、被覆層は、保護被膜の形成機能(潤滑機能)と耐摩耗性とをバランスよく具えることができる。1/2超とすると、最外層が厚くなることで、潤滑性に優れるものの摩耗し易くなるため、工具寿命を短くする恐れがある。特に、最外層の膜厚は、0.03μm以上10μm以下が好ましい。0.03μm未満では、十分な潤滑機能が得られにくく、10μm超では、上記と同様に内層よりも最外層の方が厚くなって、耐摩耗性を低下させ易い。膜厚の測定は、例えば、被覆層を具えるスローアウェイチップを切断し、その断面をSEM(走査型電子顕微鏡)を用いて観察して求めることが挙げられる。   Such an outermost layer preferably has a film thickness of ½ or less of the total film thickness of inner layers described later. At this time, the coating layer can have a good balance between the protective film forming function (lubricating function) and the wear resistance. If it exceeds 1/2, the outermost layer becomes thick, and although it is excellent in lubricity, it tends to be worn out, so there is a risk of shortening the tool life. In particular, the thickness of the outermost layer is preferably 0.03 μm or more and 10 μm or less. If it is less than 0.03 μm, it is difficult to obtain a sufficient lubricating function, and if it exceeds 10 μm, the outermost layer is thicker than the inner layer as described above, and the wear resistance tends to be lowered. The measurement of the film thickness includes, for example, obtaining by cutting a throw-away tip having a coating layer and observing the cross section using an SEM (scanning electron microscope).

この最外層において、刃先稜線部分近傍で被削材と接触する箇所の面粗さは、切削工具断面から観察する方法で測定される5μmに対してRmaxで1.3μm以下であることが好ましい。本発明者らが調べたところ、最外層において上記接触する箇所の表面粗さが1.3μmより粗くなると、被削材の溶着が発生し易くなり、潤滑効果が発揮しにくくなることが判った。この面粗さは、最外層成膜後、基材を切断してその断面をラッピングし、金属顕微鏡や電子顕微鏡などで膜表面の凹凸状況を基準長さ5μmの範囲で観察した際の最大面粗さ(Rmax)とし、巨視的なうねりなどは排除する。また、この面粗さは、成膜条件によってある程度制御することができる。例えば、成膜温度を高温にするほど、結晶組織が粗くなるため、引いては膜表面の面粗度が粗くなる。そこで、成膜温度を低めにすることが挙げられる。このように特に成膜後、特別な処理を施すことなく成膜完了状態においてRmaxで1.3μm以下とすることができるが、成膜後に、例えば、バフ、ブラシ、バレルや弾性砥石などによる研磨を施したり、マイクロブラスト、ショットピーニング、イオンビーム照射による表面改質を行うことによって、面粗さを変化させることも可能である。   In this outermost layer, the surface roughness of the portion in contact with the work material in the vicinity of the edge portion of the cutting edge is preferably 1.3 μm or less in Rmax with respect to 5 μm measured by a method of observing from the cutting tool cross section. As a result of investigations by the present inventors, it has been found that when the surface roughness of the contacted portion in the outermost layer becomes rougher than 1.3 μm, welding of the work material is likely to occur, and the lubricating effect is hardly exhibited. This surface roughness is the maximum surface when the outermost layer is formed, the substrate is cut and its cross-section is wrapped, and the uneven state of the film surface is observed within a standard length of 5 μm with a metal microscope or electron microscope. Roughness (Rmax) is assumed, and macroscopic swells are excluded. Further, the surface roughness can be controlled to some extent by the film forming conditions. For example, the higher the film formation temperature, the rougher the crystal structure, so that the surface roughness of the film surface becomes rougher. Therefore, lowering the film formation temperature can be mentioned. Thus, after film formation, Rmax can be 1.3 μm or less in the film formation completion state without performing special treatment, but after film formation, for example, polishing with a buff, brush, barrel, elastic grindstone, etc. It is also possible to change the surface roughness by applying or performing surface modification by microblasting, shot peening, or ion beam irradiation.

<内層>
《チタン含有層》
本発明では、基材上に設ける内層として、TiCNからなる膜を具える。特に、このTiCNからなる膜は、アスペクト比3以上の柱状組織を有するものとする。アスペクト比が3未満であると、高温切削条件下において、耐摩耗性が低下し、粒状組織では、目的とする耐摩耗性の向上が図られないからである。
<Inner layer>
<Titanium-containing layer>
In this invention, the film | membrane which consists of TiCN is provided as an inner layer provided on a base material. In particular, the film made of TiCN has a columnar structure with an aspect ratio of 3 or more. This is because if the aspect ratio is less than 3, the wear resistance decreases under high-temperature cutting conditions, and the intended wear resistance cannot be improved in a granular structure.

柱状組織とするには、柱状構造が得られ易いCH3CNなどの有機炭窒化物を原料ガスに用い、反応雰囲気温度(800℃以上950℃以下)及び圧力(4.0kPa以上80kPa以下)に制御することで得ることができる。また、有機炭窒化物以外のガス種を使用する場合などは、膜の成膜速度を上げる、膜の成膜温度を高くする、原料ガスの濃度を濃くするなどの方法が挙げられる。アスペクト比を3以上とするには、例えば、結晶の平均粒径を小さくする(好ましくは0.05μm以上1.5μm以下)と共に、柱状構造の膜組織を成長させることが挙げられる。その方法として、チタン含有層の成膜条件(成膜温度、成膜圧力、ガス組成、ガスの流速、ガスの流量など)を適宜変更させる方法が挙げられる。また、チタン含有層の直下又は下方にある基材の表面状態、又はチタン含有層の直下又は下層にある被覆膜の表面状態を適宜変化させる方法も挙げられる。具体的には、例えば、基材の表面を表面粗さZmaxで0.05μm以上1.5μm以下に制御させた状態でこの基材上に、成膜条件を適宜変更させてチタン含有層を成膜してもよい。或いは、ある膜の表面粗さや粒子の化学的状態、粒子径(特に0.01μm以上1.0μm以下)などを制御させた状態でこの膜の上に、成膜条件を適宜変更させてチタン含有層を成膜してもよい。 In order to obtain a columnar structure, organic carbonitride such as CH 3 CN, which can easily obtain a columnar structure, is used as the raw material gas, and the reaction atmosphere temperature (800 ° C to 950 ° C) and pressure (4.0 kPa to 80 kPa) are controlled. You can get it. In addition, when using a gas species other than organic carbonitrides, there are methods such as increasing the film formation rate, increasing the film formation temperature, and increasing the concentration of the source gas. In order to set the aspect ratio to 3 or more, for example, the average grain size of crystals is reduced (preferably 0.05 μm or more and 1.5 μm or less), and a film structure of a columnar structure is grown. Examples of the method include a method of appropriately changing the film formation conditions (film formation temperature, film formation pressure, gas composition, gas flow rate, gas flow rate, etc.) of the titanium-containing layer. Moreover, the method of changing suitably the surface state of the base material directly under or below a titanium containing layer, or the surface state of the coating film directly under or under a titanium containing layer is also mentioned. Specifically, for example, a titanium-containing layer is formed on the base material by appropriately changing the film formation conditions in a state where the surface roughness Zmax is controlled to be 0.05 μm or more and 1.5 μm or less. May be. Alternatively, a titanium-containing layer may be formed by appropriately changing the film formation conditions on the film in a state in which the surface roughness of the film, the chemical state of the particles, the particle diameter (especially 0.01 μm or more and 1.0 μm or less) are controlled A film may be formed.

上記アスペクト比の測定は、例えば、以下のように求めるとよい。即ち、被覆層の断面を鏡面加工して、柱状構造を有するTiCNからなる膜の組織の粒界をエッチングする。そして、TiCNからなる膜の膜厚の1/2にあたる箇所で、基材と水平方向にある各結晶の幅を粒径とし、各結晶の粒径を測定して平均値を求める(平均値は平均粒径となる)。膜厚を得られた平均粒径で割って、膜厚に対する平均粒径の割合を算出し、この算出値をアスペクト比とするとよい。   The aspect ratio may be measured as follows, for example. That is, the cross section of the coating layer is mirror-finished to etch the grain boundaries of the film structure of TiCN having a columnar structure. Then, at a place corresponding to 1/2 of the thickness of the film made of TiCN, the width of each crystal in the horizontal direction with the base material is defined as the particle size, and the average value is obtained by measuring the particle size of each crystal (the average value is Average particle size). The film thickness is divided by the obtained average particle diameter to calculate the ratio of the average particle diameter to the film thickness, and this calculated value may be used as the aspect ratio.

上記TiCNからなる膜は、更に、結晶面が特定の結晶配向を有するものとする。このように特定の膜組織とすると共に特定の結晶配向を有することで、刃先が高温となるような厳しい切削環境下においても、耐摩耗性の向上、引いては工具寿命の延命化を図ることができる。具体的には、結晶の(220)面、(311)面、(422)面の各配向性指数(配向性強度係数)TC(220)、TC(311)、TC(422)のいずれかが配向性指数の最大値をとるものとする。配向性指数TCは、以下のように定義される。   The film made of TiCN further has a crystal plane having a specific crystal orientation. By having a specific film structure and a specific crystal orientation in this way, it is possible to improve wear resistance and extend the tool life even in severe cutting environments where the cutting edge becomes hot. Can do. Specifically, each orientation index (orientation strength coefficient) TC (220), TC (311), or TC (422) on the (220) plane, (311) plane, or (422) plane of the crystal is one of The maximum value of the orientation index is assumed. The orientation index TC is defined as follows.

Figure 2005297141
Figure 2005297141

配向性指数(配向性強度係数)TC(220)、TC(311)、TC(422)のいずれかが最大値となるには、チタン含有層の成膜条件(成膜温度、成膜圧力、ガス組成、ガスの流速、ガスの流量など)を適宜変更させる方法が挙げられる。また、チタン含有層の直下又は下方にある基材の表面状態、又はチタン含有層の直下又は下層にある被覆膜の表面状態を適宜変化させる方法も挙げられる。具体的には、例えば、基材の表面を表面粗さZmaxで0.05μm以上1.5μm以下に制御させた状態でこの基材上に、成膜条件を適宜変更させてチタン含有層を成膜してもよい。或いは、ある膜の表面粗さや粒子の化学的状態、粒子径などを制御させた状態でこの膜の上に、成膜条件を適宜変更させてチタン含有層を成膜してもよい。   In order for the orientation index (orientation strength coefficient) TC (220), TC (311), or TC (422) to reach the maximum value, the deposition conditions for the titanium-containing layer (deposition temperature, deposition pressure, gas composition) , Gas flow rate, gas flow rate, and the like). Moreover, the method of changing suitably the surface state of the base material directly under or below a titanium containing layer, or the surface state of the coating film directly under or under a titanium containing layer is also mentioned. Specifically, for example, a titanium-containing layer is formed on the base material by appropriately changing the film formation conditions in a state where the surface roughness Zmax is controlled to be 0.05 μm or more and 1.5 μm or less. May be. Alternatively, a titanium-containing layer may be formed on this film by appropriately changing the film formation conditions in a state in which the surface roughness of the film, the chemical state of the particles, the particle diameter, and the like are controlled.

回折強度は、基材の断面において、基材の凹凸により反射などが生じないように基材がフラットな部分(平滑な部分)で測定することが好ましい。なお、周期律表IVa、Va、VIa族金属の炭窒化物において、X線の回折強度の同定は、JCPDSファイル(Powder Diffraction File Published by JCPDS International Center for Diffraction Data)に記載がない。そのため、当該炭窒化物であるTiCNからなるチタン含有層の回折強度の同定は、当該金属であるチタン(Ti)の炭化物の回折データ、同窒化物の回折データ、及び実測したTiCNの炭窒化物の回折データを比較して、それぞれの面指数を推定し、その面指数の回折強度を測定することで得るとよい。   The diffraction intensity is preferably measured in a flat portion (smooth portion) of the base material so that reflection or the like is not caused by unevenness of the base material in the cross section of the base material. The identification of the X-ray diffraction intensity in the periodic table IVa, Va, VIa group metal carbonitride is not described in the JCPDS file (Powder Diffraction File Published by JCPDS International Center for Diffraction Data). Therefore, the identification of the diffraction intensity of the titanium-containing layer made of TiCN as the carbonitride is the diffraction data of the titanium (Ti) carbide as the metal, the diffraction data of the nitride, and the measured TiCN carbonitride It is preferable to obtain the surface index by comparing the diffraction data of the surface area, estimating each plane index, and measuring the diffraction intensity of the plane index.

《化合物層》
内層を複数の膜にて形成する場合、少なくとも一つの膜を上記チタン含有層とし、その他の膜としては、周期律表IVa、Va、VIa族金属、Al、Si、Bから選ばれる1種以上の第一元素と、B、C、N、Oから選ばれる1種以上の第二元素とからなる化合物層とすることが好ましい(但し、第一元素がBのみの場合、第二元素は、B以外とする)。即ち、内層を複数膜にて形成する場合、上記チタン含有層と、上記化合物層にて構成することが好ましい。この化合物層は、上記チタン含有層と異なるものとする。即ち、チタン含有層と組成が異なる膜としてもよいし、化合物層をTiCN膜とする場合、組織又は配向性を異ならせればよい。
<Compound layer>
When the inner layer is formed of a plurality of films, at least one film is the titanium-containing layer, and the other films are one or more selected from periodic table IVa, Va, VIa group metals, Al, Si, B It is preferable to be a compound layer composed of the first element and one or more second elements selected from B, C, N, O (However, when the first element is only B, the second element is Other than B). That is, when the inner layer is formed of a plurality of films, it is preferable that the inner layer is composed of the titanium-containing layer and the compound layer. This compound layer is different from the titanium-containing layer. That is, a film having a composition different from that of the titanium-containing layer may be used, and when the compound layer is a TiCN film, the structure or orientation may be changed.

上記化合物層はそれぞれ、単一の膜としてもよいし、複数の膜にて構成してもよい。チタン含有層を複数の膜にて構成する場合、配向性が異なる膜とすることが挙げられる。化合物層を複数の膜にて構成する場合、各膜の組成や組織などを異ならせるとよい。また、化合物層を具える場合、チタン含有層、化合物層のいずれを基材側にしてもよい。即ち、基材側から順に、チタン含有層、化合物層、最外層としてもよいし、基材側から順に、化合物層、チタン含有層、最外層としてもよい。化合物層を最内層とする場合、基材との密着性が高い窒化チタン(TiN)からなる膜とすることが好ましい。これらチタン含有層、化合物層は、熱CVD法、プラズマCVD法などのCVD法、アーク式イオンプレーティング法、マグネトロンスパッタ法などのPVD法のいずれで形成してもよい。公知の条件にて形成してもよい。   Each of the compound layers may be a single film or a plurality of films. In the case where the titanium-containing layer is composed of a plurality of films, it may be a film having different orientation. In the case where the compound layer is composed of a plurality of films, the composition and structure of each film may be different. Moreover, when providing a compound layer, you may make any of a titanium content layer and a compound layer into the base-material side. That is, it is good also as a titanium content layer, a compound layer, and an outermost layer in order from a base material side, and it is good also as a compound layer, a titanium content layer, and an outermost layer in order from a base material side. When the compound layer is the innermost layer, it is preferably a film made of titanium nitride (TiN) having high adhesion to the substrate. These titanium-containing layer and compound layer may be formed by any of CVD methods such as thermal CVD method and plasma CVD method, PVD methods such as arc ion plating method and magnetron sputtering method. You may form on well-known conditions.

上記最外層及び内層からなる被覆層全体の膜厚は、0.1μm以上30.0μm以下とすることが好ましい。被覆層全体の膜厚が0.1μm未満の場合、耐摩耗性の向上効果が得られにくい。30.0μm超の場合、被覆層が厚くなることで耐摩耗性の向上は実現できるが、高硬度となるために欠損が生じ易く、欠けによる寿命が多発して安定した加工が困難になり易い。なお、基材の表面に上記最外層及び内層からなる被覆層を成膜後、従来と同様に切れ刃稜線部に研磨処理やレーザー処理などの表面処理を施してももちろんよい。本発明スローアウェイチップは、このような表面処理によって被覆層の特性を著しく損なうことはない。   The film thickness of the entire coating layer composed of the outermost layer and the inner layer is preferably 0.1 μm or more and 30.0 μm or less. When the film thickness of the entire coating layer is less than 0.1 μm, it is difficult to obtain an effect of improving wear resistance. When the thickness exceeds 30.0 μm, the wear resistance can be improved by increasing the thickness of the coating layer. However, since the hardness becomes high, the chip tends to be damaged, and the life due to the chip tends to be increased, so that stable processing is likely to be difficult. In addition, after forming the coating layer which consists of the said outermost layer and inner layer on the surface of a base material, of course, surface treatments, such as a grinding | polishing process and a laser process, may be given to a cutting edge ridgeline part similarly to the past. The throw-away tip of the present invention does not significantly impair the properties of the coating layer by such surface treatment.

(基材)
本発明において基材は、WC基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化硼素焼結体、及び窒化ケイ素焼結体のいずれかから構成されるものを利用することが好ましい。また、WC基超硬合金、サーメットからなる基材を利用する場合、WC以外の硬質相が消失したいわゆる脱β相、硬質相が消失して結合相に富むバインダー富化層、結合相を低減させた表面硬化層といった表面改質層が基材表面に存在しても本発明の効果は認められる。
(Base material)
In the present invention, it is preferable to use a substrate composed of any one of WC-based cemented carbide, cermet, high speed steel, ceramics, cubic boron nitride sintered body, and silicon nitride sintered body. . In addition, when using a base material made of WC-based cemented carbide or cermet, the so-called de-β phase where the hard phase other than WC has disappeared, the binder-rich layer rich in the binder phase with the hard phase disappearing, and the binder phase reduced. The effect of the present invention is recognized even when a surface modification layer such as a cured surface layer is present on the surface of the substrate.

以上説明したように本発明表面被覆スローアウェイチップによれば、潤滑性と耐摩耗性の双方に優れた被覆層を具えることで、ドライ加工や高速・高能率加工といった刃先が高温状態にさらされる使用環境下であっても、優れた切削性能を有し、工具寿命をより延命化することができる。   As described above, according to the surface-coated throw-away tip of the present invention, by providing a coating layer excellent in both lubricity and wear resistance, the cutting edge such as dry processing and high speed / high efficiency processing is exposed to a high temperature state. Even under the usage environment, it has excellent cutting performance and can prolong the tool life.

以下、本発明の実施の形態を説明する。   Embodiments of the present invention will be described below.

(試験例1)
組成がWC:86質量%、Co:8.0質量%、TiC:2.0質量%、NbC:2.0質量%、ZrC:2.0質量%である材料粉末を配合し、ボールミルで72時間湿式混合して乾燥した後、ブレーカ形状が施された圧紛体にプレス成型した。この圧粉体を焼結炉にて、真空雰囲気中で1420℃、1時間の条件で焼結を行い、焼結体を得た。得られた焼結体の刃先稜線部にSiCブラシホーニング処理を施して面取り加工を行い、ISO・SNMG120408のWC基超硬合金からなるスローアウェイチップの基材を得た。
(Test Example 1)
After blending material powders with a composition of WC: 86% by mass, Co: 8.0% by mass, TiC: 2.0% by mass, NbC: 2.0% by mass, ZrC: 2.0% by mass, wet-mixed for 72 hours in a ball mill and dried Then, it was press-molded into a compacted body with a breaker shape. The green compact was sintered in a sintering furnace in a vacuum atmosphere at 1420 ° C. for 1 hour to obtain a sintered body. The edge of the edge of the sintered body was subjected to SiC brush honing treatment and chamfered to obtain a throw-away tip base material made of WC-based cemented carbide of ISO · SNMG120408.

この基材表面に化学的蒸着法である熱CVD法を用いて被覆層を形成した。本試験では、基材側から順に、内層として、TiN(0.5)、柱状組織TiCN(6)、TiBN(0.5)、κ-Al2O3(2)を形成し、最外層としてAlN(3)を形成した(括弧内の数値は膜厚である(単位μm))。表1に各膜の成膜条件、具体的には反応ガスの組成(容量%)、成膜時の圧力(kPa)、成膜温度(℃)を示す。膜厚は、成膜時間により調整した。また、本試験においてTiCN膜は、アスペクト比が4.2の柱状組織を有し、配向性指数TCのうち(311)面が最大値となるように成膜させた(チタン含有層に該当)。具体的には、反応ガスにCH3CNを用い、温度:900℃、圧力:8kPaとすると共に、TiCN膜の下層に形成したTiN膜の表面粗さがZmaxで0.1μm程度となるようにTiN膜の成膜条件(ガス組成、圧力、温度)を定めた。そして、最外層を形成するAlN膜は、表1に示すように成膜条件を変化させることで、塩素含有量が異なる試料を作製した。表2に最外層の塩素含有量を示す。具体的には、最外層中に0超0.5原子%以下の塩素を含有するもの、同0.5原子%超の塩素を含有するもの、同塩素を含有しないものを作製した。塩素の含有量は、表1に示すように反応ガスのうち塩化水素(HCl)の比率を変化させることで変化させた。また、塩化水素の量により、適宜成膜時の圧力、成膜温度を変化させた。更に、最外層中に0超0.5原子%以下の塩素を含有する試料において、最外層の刃先稜線部分近傍で被削材と接触する箇所の面粗さを調べたところ、いずれも工具断面から観察する方法によって測定される基準長さ5μmに対してRmaxで1.3μm以下であった。具体的には、例えば、試料1-2では0.6μmであった。塩素の含有量は、XPS(X-ray Photoelectron Spectroscopy)にて測定したが、組成の確認は、透過電子顕微鏡に併設の微小領域EDX(Energy Dispersive X-ray Spectroscopy)分析や、SIMS(Secondary Ion Mass Spectrometry)によってもできる。 A coating layer was formed on the surface of the substrate using a thermal CVD method which is a chemical vapor deposition method. In this test, TiN (0.5), columnar structure TiCN (6), TiBN (0.5), and κ-Al 2 O 3 (2) are formed as the inner layer in order from the substrate side, and AlN (3) is formed as the outermost layer. (The numerical value in parentheses is the film thickness (unit: μm)). Table 1 shows the film formation conditions of each film, specifically, the composition (volume%) of the reaction gas, the pressure (kPa) during film formation, and the film formation temperature (° C.). The film thickness was adjusted by the film formation time. In this test, the TiCN film was formed so as to have a columnar structure with an aspect ratio of 4.2 and the (311) plane of the orientation index TC had the maximum value (corresponding to a titanium-containing layer). Specifically, the reaction gas is CH 3 CN, the temperature is set to 900 ° C., the pressure is set to 8 kPa, and the surface roughness of the TiN film formed in the lower layer of the TiCN film is set to about 0.1 μm at Zmax. The film formation conditions (gas composition, pressure, temperature) were determined. As the AlN film forming the outermost layer, samples having different chlorine contents were prepared by changing the film forming conditions as shown in Table 1. Table 2 shows the chlorine content of the outermost layer. Specifically, the outermost layer containing more than 0 and 0.5 atomic percent or less of chlorine, the one containing more than 0.5 atomic percent of chlorine and the one not containing the same chlorine were prepared. As shown in Table 1, the chlorine content was changed by changing the ratio of hydrogen chloride (HCl) in the reaction gas. Further, the pressure during film formation and the film formation temperature were appropriately changed depending on the amount of hydrogen chloride. Furthermore, when the outermost layer contained chlorine of more than 0 and 0.5 atomic percent or less, the surface roughness of the portion that contacted the work material in the vicinity of the edge of the edge of the outermost layer was examined. The Rmax was 1.3 μm or less with respect to the reference length of 5 μm measured by the above method. Specifically, for example, Sample 1-2 was 0.6 μm. The chlorine content was measured by XPS (X-ray Photoelectron Spectroscopy). It can also be done by Spectrometry).

Figure 2005297141
Figure 2005297141

Figure 2005297141
Figure 2005297141

表2に示す最外層を有する表面被覆スローアウェイチップを用いて、表3に示す切削条件にて連続切削加工を行い、工具寿命となるまでの加工時間を測定した。耐剥離性試験では、繰り返し切削加工を行い、膜剥離に起因した逃げ面摩耗量が0.3mm以上となった時点を工具寿命とした。耐摩耗性試験では、逃げ面摩耗量が0.3mm以上となったときを工具寿命とした。試験の結果を表4に示す。   Using the surface-coated throwaway tip having the outermost layer shown in Table 2, continuous cutting was performed under the cutting conditions shown in Table 3, and the processing time until the tool life was reached was measured. In the peel resistance test, cutting was repeatedly performed, and the tool life was determined when the flank wear amount due to film peeling reached 0.3 mm or more. In the wear resistance test, the tool life was determined when the flank wear amount was 0.3 mm or more. The test results are shown in Table 4.

Figure 2005297141
Figure 2005297141

Figure 2005297141
Figure 2005297141

その結果、表4に示すように最外層として、0超0.5原子%以下の塩素を含む窒化アルミニウム膜を具える試料1-1〜1-3は、ドライ加工であっても、優れた潤滑性を発揮して、耐溶着性を向上すると共に、切削抵抗を下げることで耐剥離性に優れることがわかる。また、特定の内層を具えることで、これらの試料1-1〜1-3は、耐摩耗性にも優れることがわかる。更に、これらの試料1-1〜1-3は、チッピングなども生じておらず、耐チッピング性、耐欠損性にも優れていた。これらのことから、試料1-1〜1-3は、加工時間が長く、工具寿命の延命化を実現していることがわかる。   As a result, as shown in Table 4, samples 1-1 to 1-3 having an aluminum nitride film containing chlorine of more than 0 and 0.5 atomic% or less as the outermost layer have excellent lubricity even in dry processing It can be seen that the anti-peeling property is improved by improving the welding resistance and lowering the cutting resistance. Further, it can be seen that these samples 1-1 to 1-3 are excellent in wear resistance by providing a specific inner layer. Furthermore, these samples 1-1 to 1-3 did not cause chipping, and were excellent in chipping resistance and chipping resistance. From these facts, it can be seen that Samples 1-1 to 1-3 have a long machining time and an extended tool life.

(試験例2)
試験例1で用いた超硬合金基材と同様のものを用意し、得られた基材表面に熱CVD法を用いて表1に示す成膜条件(ガス組成、圧力、温度)で被覆層を形成した。本試験では、基材側から順に、TiN(0.5)、柱状組織TiCN(4)又は粒状組織TiCN(4)、TiBN(0.5)、Al2O3-ZrO2(2)とし、最外層としてAlN※1(表2において試料1-3)を形成した(括弧内の数値は膜厚である(単位μm))。膜厚は、成膜時間により調整した。また、本試験において柱状組織TiCN膜は、表1に示すように成膜時の圧力と成膜温度とを変化させると共に、TiCN膜の下層に形成したTiN膜の表面粗さやガス条件を変化させることで、アスペクト比、配向性指数の最大値をとる面を変化させた。具体的には、反応ガスにCH3CNを用い、例えば、ガス温度920℃、圧力6kPaとし、反応ガスであるCH3CNを徐々に導入することで、TiCN膜のアスペクト比を3以上とした。また、基材の表面粗さをZmaxで0.09μmに制御すると共に、この基材の外側(基材から離れる側)にアスペクト比の制御を行いながらTiCN膜を成膜することで、TiCN膜の配向性指数の最大値TC(422)とした。更に、最外層の刃先稜線部分近傍で被削材と接触する箇所の面粗さが工具断面から観察する方法によって測定される基準長さ5μmに対してRmaxで0.4μmとなるように、全ての試料において、最外層を形成後、最外層の表面に研磨処理を施した。表5にTiCN膜の組織形態、アスペクト比、配向性指数TCが最大値を示す面を示す。
(Test Example 2)
Prepare the same cemented carbide base material used in Test Example 1, and apply the coating layer on the surface of the obtained base material using the thermal CVD method under the film formation conditions (gas composition, pressure, temperature) shown in Table 1 Formed. In this test, TiN (0.5), columnar structure TiCN (4) or granular structure TiCN (4), TiBN (0.5), Al 2 O 3 -ZrO 2 (2) in order from the substrate side, and AlN as the outermost layer * 1 (Sample 1-3 in Table 2) was formed (the value in parentheses is the film thickness (unit: μm)). The film thickness was adjusted by the film formation time. In this test, the columnar structure TiCN film changes the pressure and temperature during film formation as shown in Table 1, and also changes the surface roughness and gas conditions of the TiN film formed under the TiCN film. Thus, the surface having the maximum aspect ratio and orientation index was changed. Specifically, CH 3 CN is used as the reaction gas, for example, the gas temperature is 920 ° C., the pressure is 6 kPa, and the CH 3 CN as the reaction gas is gradually introduced so that the aspect ratio of the TiCN film is 3 or more. . In addition, the surface roughness of the base material is controlled to 0.09 μm in Zmax, and the TiCN film is formed while controlling the aspect ratio on the outside (the side away from the base material) of this base material. The maximum value of the orientation index was TC (422). In addition, all the surface roughness of the part that contacts the work material near the edge of the edge of the outermost layer is 0.4 μm in Rmax with respect to the reference length of 5 μm measured by the method of observing from the tool cross section. In the sample, after forming the outermost layer, the surface of the outermost layer was polished. Table 5 shows the surface of the TiCN film having the maximum morphology, aspect ratio, and orientation index TC.

Figure 2005297141
Figure 2005297141

表5に示すTiCN膜を内層に有する表面被覆スローアウェイチップを用いて、以下に示す切削条件にて連続切削加工を行い、工具寿命となるまでの加工時間を測定した。工具寿命は、逃げ面摩耗量が0.3mm以上となったときとした。試験の結果も表5に示す。   Using a surface-coated throwaway tip having a TiCN film shown in Table 5 as an inner layer, continuous cutting was performed under the following cutting conditions, and the processing time until the tool life was reached was measured. The tool life was determined when the flank wear amount was 0.3 mm or more. The test results are also shown in Table 5.

被削材:SUS材 丸棒による耐摩耗性試験
速 度:V=200m/min
送 り:f=0.2mm/rev.
切込み:d=1.5mm
切削油:なし
Work material: SUS material Abrasion resistance test with a round bar Speed: V = 200m / min
Feed: f = 0.2mm / rev.
Cutting depth: d = 1.5mm
Cutting oil: None

その結果、表5に示すように内層にアスペクト比3以上、配向性指数TC(311)、TC(220)、TC(422)のいずれかが最大値をとる柱状組織のTiCN膜を具える試料2-1〜2-3は、ドライ加工であっても、耐摩耗性に優れており、工具寿命が長くなっていることがわかる。このように工具寿命が長くなったのは、潤滑性に優れる最外層と耐摩耗性に優れる内層とを具えているためであると考えられる。   As a result, as shown in Table 5, the sample has a columnar structure TiCN film in which the inner layer has an aspect ratio of 3 or more and the orientation index TC (311), TC (220), or TC (422) has the maximum value. Nos. 2-1 to 2-3 are excellent in wear resistance even in dry processing, and the tool life is extended. The long tool life is considered to be due to the outermost layer having excellent lubricity and the inner layer having excellent wear resistance.

(試験例3)
試験例1で用いた超硬合金基材と同様のものを用意し、得られた基材表面に熱CVD法を用いて表1に示す成膜条件(ガス組成、圧力、温度)で被覆層を形成した。本試験において、柱状組織TiCN膜は、アスペクト比が3以上、配向性指数TC(311)、TC(220)、TC(422)のいずれかが最大値をとるように成膜条件を制御した(チタン含有層に該当)。表6に被覆層の組成、膜厚、被覆層全体の膜厚(全膜厚)を示す。なお、表6において、基材に近い方から順に、第一膜、第二膜…としている。
(Test Example 3)
Prepare the same cemented carbide base material used in Test Example 1, and apply the coating layer on the surface of the obtained base material using the thermal CVD method under the film formation conditions (gas composition, pressure, temperature) shown in Table 1 Formed. In this test, the columnar structure TiCN film was controlled in film formation conditions so that the aspect ratio was 3 or more and the orientation index TC (311), TC (220), or TC (422) had the maximum value ( Applicable to titanium-containing layer). Table 6 shows the composition, film thickness, and film thickness of the entire coating layer (total film thickness). In Table 6, the first film, the second film,...

Figure 2005297141
Figure 2005297141

表6に示す被覆層を有する表面被覆スローアウェイチップを用いて、以下に示す切削条件にて連続切削加工を行い、工具寿命となるまでの加工時間を測定した。工具寿命は、逃げ面摩耗量が0.3mm以上となったときとした。試験の結果も表6に示す。   Using a surface-coated throw-away tip having a coating layer shown in Table 6, continuous cutting was performed under the following cutting conditions, and the processing time until the tool life was reached was measured. The tool life was determined when the flank wear amount was 0.3 mm or more. The test results are also shown in Table 6.

被削材:SCM435 丸棒による15秒繰返し耐摩耗性試験
速 度:V=180m/min
送 り:f=0.2mm/rev.
切込み:d=1.5mm
切削油:なし
Work material: SCM435 15-second repeated wear resistance test with a round bar Speed: V = 180 m / min
Feed: f = 0.2mm / rev.
Cutting depth: d = 1.5mm
Cutting oil: None

その結果、表6に示すように特定量の塩素を含有する窒化系アルミニウム膜を最外層とし、アスペクト比3以上、配向性指数TC(311)、TC(220)、TC(422)のいずれかが最大値をとる柱状組織のTiCN膜を内層に具える試料3-1〜3-12、3-16〜3-19、3-21は、潤滑性に優れると共に、優れた耐摩耗性を有することがわかる。   As a result, as shown in Table 6, a nitride-based aluminum film containing a specific amount of chlorine is used as the outermost layer, and an aspect ratio of 3 or more, orientation index TC (311), TC (220), TC (422) Samples 3-1 to 3-12, 3-16 to 3-19, and 3-21, which have a TiCN film with a columnar structure with the maximum value in the inner layer, have excellent lubricity and excellent wear resistance. I understand that.

また、表6に示す結果から、最外層は、0.03μm以上、全体膜厚は0.1μm以上30μm以下が好ましいことがわかる。更に、最外層は、内層の合計厚みの1/2以下が好ましいことがわかる。   Further, the results shown in Table 6 indicate that the outermost layer is preferably 0.03 μm or more and the total film thickness is preferably 0.1 μm or more and 30 μm or less. Further, it is understood that the outermost layer is preferably 1/2 or less of the total thickness of the inner layer.

上記試料3-1〜3-21の全てのチップを切断し、最外層において、刃先稜線部近傍で被削材と接触する箇所の面粗さを基準長さ5μmで測定した結果、試料3-21を除くすべてのチップがRmaxで1.3μm以下となっていたが、試料3-21はRmaxで1.7μmであった。そこで、試料3-21の最外層において刃先稜線部近傍で被削材と接触する箇所を#1500のダイヤモンドペーストで研磨して、同様の方法で研磨後の面粗さを測定したところ、Rmaxで0.52μmとなっていた。この研磨したチップを用いて同じ切削条件で切削試験を行った結果、工具寿命は24minとなった。これは、刃先稜線部近傍において被削材と接触する箇所の凹凸が減り、切削抵抗が下がったためであると考えられる。また、試料3-3において同様に面粗さを測定したところ、Rmaxで0.76μmであったが、上記と同様の方法で刃先を研磨し、再度切削すると工具寿命は48minとなり、大幅に改善された。   As a result of cutting all the chips of Samples 3-1 to 3-21 and measuring the surface roughness of the outermost layer in contact with the work material in the vicinity of the edge of the cutting edge at a reference length of 5 μm, Sample 3- All the chips except 21 had a Rmax of 1.3 μm or less, but Sample 3-21 had a Rmax of 1.7 μm. Therefore, when polishing the surface roughness of the outermost layer of sample 3-21 with the # 1500 diamond paste in the vicinity of the edge of the edge of the cutting edge, the surface roughness after polishing was measured by the same method. It was 0.52 μm. As a result of a cutting test using the polished tip under the same cutting conditions, the tool life was 24 min. This is considered to be because the unevenness of the portion in contact with the work material in the vicinity of the edge of the edge of the cutting edge is reduced and the cutting resistance is lowered. In addition, when the surface roughness was measured in the same manner for Sample 3-3, the Rmax was 0.76 μm, but when the edge was polished and cut again in the same manner as described above, the tool life was 48 min, which was greatly improved. It was.

(試験例4)
基材を下記に変えて、表6の試料3-2と同様の組成の被覆層を公知のPVD法にて形成した後、イオン注入法を用いて塩素を最外層に含有させた表面被覆チップを作製し、試験例3と同様の切削条件で切削試験を実施した。いずれも最外層の塩素の含有量は、0.18原子%とした。
1 JIS規格:P20サーメット製の切削チップ(住友電工ハードメタル(株)製 T1200A)
2 セラミック製の切削チップ(住友電工ハードメタル(株)製 W80)
3 窒化珪素製の切削チップ(住友電工ハードメタル(株)製 NS260)
4 立方晶型窒化硼素切削チップ(住友電工ハードメタル(株)製 BN250)
その結果、いずれの被覆チップも潤滑性に優れると共に、耐摩耗性に優れることが確認できた。このことから、上記と同様に工具寿命の向上を実現できることがわかる。
(Test Example 4)
A surface-coated chip in which the base material is changed to the following, and a coating layer having the same composition as sample 3-2 in Table 6 is formed by a known PVD method, and then chlorine is contained in the outermost layer using an ion implantation method. A cutting test was performed under the same cutting conditions as in Test Example 3. In any case, the chlorine content in the outermost layer was 0.18 atomic%.
1 JIS standard: P20 cermet cutting tip (T1200A manufactured by Sumitomo Electric Hardmetal Corporation)
2 Ceramic cutting tips (Sumitomo Electric Hardmetal Co., Ltd. W80)
3 Cutting tip made of silicon nitride (NS260 manufactured by Sumitomo Electric Hard Metal Co., Ltd.)
4 Cubic boron nitride cutting tip (BN250 manufactured by Sumitomo Electric Hard Metal Co., Ltd.)
As a result, it was confirmed that all the coated chips were excellent in lubricity and excellent in wear resistance. From this, it can be seen that the tool life can be improved as described above.

本発明表面被覆スローアウェイチップは、特に、ドライ加工、高速、高送り加工などといった刃先温度が高温となるような切削条件での切削加工に適する。   The surface-coated throw-away tip of the present invention is particularly suitable for cutting under a cutting condition in which the cutting edge temperature is high, such as dry machining, high speed, and high feed machining.

Claims (7)

基材表面に被覆層を具える表面被覆スローアウェイチップにおいて、
前記被覆層は、基材上に形成される内層と、この内層上に形成される最外層とからなり、
前記内層は、
アスペクト比3以上の柱状組織を有し、結晶の(220)面、(311)面、(422)面の各配向性指数TC(220)、TC(311)、TC(422)のいずれかが配向性指数の最大値をとるTiCNからなるチタン含有層を具え、
前記最外層は、
窒化アルミニウム又は炭窒化アルミニウムからなり、最外層中に塩素を0超0.5原子%以下含有することを特徴とする表面被覆スローアウェイチップ。
In the surface-coated throw-away tip having a coating layer on the substrate surface,
The coating layer is composed of an inner layer formed on the substrate and an outermost layer formed on the inner layer,
The inner layer is
It has a columnar structure with an aspect ratio of 3 or more, and any one of the orientation indices TC (220), TC (311), and TC (422) of the (220) plane, (311) plane, and (422) plane of the crystal is It has a titanium-containing layer made of TiCN that takes the maximum value of the orientation index,
The outermost layer is
A surface-coated throw-away tip comprising aluminum nitride or aluminum carbonitride and containing chlorine in an outermost layer of more than 0 and 0.5 atomic% or less.
最外層は、更に酸素を含有することを特徴とする請求項1に記載の表面被覆スローアウェイチップ。   2. The surface-coated throwaway tip according to claim 1, wherein the outermost layer further contains oxygen. 更に、内層には、周期律表IVa、Va、VIa族金属、Al、Si、Bから選ばれる1種以上の第一元素と、B、C、N、Oから選ばれる1種以上の第二元素とからなる化合物層を具えることを特徴とする請求項1又は2に記載の表面被覆スローアウェイチップ。
但し、化合物層は、チタン含有層と異なる層とする。また、第一元素がBのみの場合、第二元素は、B以外とする。
Further, the inner layer includes one or more first elements selected from periodic table IVa, Va, VIa group metals, Al, Si, and B, and one or more second elements selected from B, C, N, and O. 3. The surface-coated throw-away tip according to claim 1, further comprising a compound layer made of an element.
However, the compound layer is a layer different from the titanium-containing layer. When the first element is only B, the second element is other than B.
最外層の膜厚は、内層の合計膜厚の1/2以下であることを特徴とする請求項1〜3のいずれかに記載の表面被覆スローアウェイチップ。   4. The surface-coated throw-away tip according to claim 1, wherein the thickness of the outermost layer is 1/2 or less of the total thickness of the inner layers. 最外層の膜厚は、0.03μm以上10μm以下、被覆層全体の膜厚は、0.1μm以上30μm以下であることを特徴とする請求項1〜4のいずれかに記載の表面被覆スローアウェイチップ。   The surface-coated throwaway tip according to any one of claims 1 to 4, wherein the outermost layer has a thickness of 0.03 µm to 10 µm, and the entire coating layer has a thickness of 0.1 µm to 30 µm. 最外層において、刃先稜線部分近傍で被削材と接触する箇所の面粗さが、切削工具断面から観察する方法で測定される5μmに対してRmaxで1.3μm以下であることを特徴とする請求項1〜5のいずれかに記載の表面被覆スローアウェイチップ。   In the outermost layer, the surface roughness of the portion in contact with the work material in the vicinity of the edge portion of the cutting edge is 1.3 μm or less in Rmax with respect to 5 μm measured by a method of observing from the cutting tool cross section. Item 6. The surface-coated throwaway tip according to any one of Items 1 to 5. 基材は、WC基超硬合金、サーメット、高速度鋼、セラミックス、立方晶型窒化硼素焼結体、及び窒化ケイ素焼結体のいずれかから構成されることを特徴とする請求項1〜6のいずれかに記載の表面被覆スローアウェイチップ。   The base material is composed of any one of WC-based cemented carbide, cermet, high-speed steel, ceramics, cubic boron nitride sintered body, and silicon nitride sintered body. The surface-coated throw-away tip according to any one of the above.
JP2004118340A 2004-04-13 2004-04-13 Surface-coated throwaway tip Pending JP2005297141A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2004118340A JP2005297141A (en) 2004-04-13 2004-04-13 Surface-coated throwaway tip
PCT/JP2005/007180 WO2005099945A1 (en) 2004-04-13 2005-04-13 Surface-coated cutting tool
CN2005800110513A CN1942274B (en) 2004-04-13 2005-04-13 Surface-coated cutting tool
EP05730480.0A EP1736262B1 (en) 2004-04-13 2005-04-13 Surface-coated cutting tool
KR1020067020972A KR101225803B1 (en) 2004-04-13 2005-04-13 Surface-coated cutting tool
US10/599,086 US7785700B2 (en) 2004-04-13 2005-04-13 Surface-coated cutting tool
IL177909A IL177909A0 (en) 2004-04-13 2006-09-06 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004118340A JP2005297141A (en) 2004-04-13 2004-04-13 Surface-coated throwaway tip

Publications (1)

Publication Number Publication Date
JP2005297141A true JP2005297141A (en) 2005-10-27

Family

ID=35329305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004118340A Pending JP2005297141A (en) 2004-04-13 2004-04-13 Surface-coated throwaway tip

Country Status (2)

Country Link
JP (1) JP2005297141A (en)
CN (1) CN1942274B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063979A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent deposition resistance and abnormal damage resistance
WO2021192327A1 (en) * 2020-03-25 2021-09-30 三菱マテリアル株式会社 Surface-coated cutting tool

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009084315A1 (en) * 2007-12-28 2009-07-09 Kyocera Corporation Insert for drill
JP4753144B2 (en) 2009-12-21 2011-08-24 住友電工ハードメタル株式会社 Surface coated cutting tool
CN102371379B (en) * 2010-07-09 2016-01-27 三菱综合材料株式会社 The surface coated drill of mar proof and chip discharge excellence
US8647025B2 (en) * 2011-01-17 2014-02-11 Kennametal Inc. Monolithic ceramic end mill
JP5742042B2 (en) 2013-10-31 2015-07-01 住友電工ハードメタル株式会社 Surface coated boron nitride sintered body tool
WO2016158717A1 (en) * 2015-03-27 2016-10-06 株式会社タンガロイ Coated cutting tool
WO2018092369A1 (en) * 2016-11-17 2018-05-24 住友電工ハードメタル株式会社 Sintered body and cutting tool containing same
CN108262495A (en) * 2016-12-31 2018-07-10 上海名古屋精密工具股份有限公司 For the blank and its manufacturing method of ultra-hard cutting tool manufacture
US11292066B2 (en) 2017-01-16 2022-04-05 Osg Corporation Tool having a boron doped diamond coating
CN109837542A (en) * 2019-03-04 2019-06-04 长沙而道新能源科技有限公司 A kind of coated cutting tool and preparation method thereof
CN116162918B (en) * 2023-04-26 2023-07-14 赣州澳克泰工具技术有限公司 High-hardness high-toughness cutter coating and preparation method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0786536B1 (en) * 1996-01-24 2003-05-07 Mitsubishi Materials Corporation Coated cutting tool
CN1319689C (en) * 2002-01-18 2007-06-06 住友电气工业株式会社 Surface-coated cutting tool

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019063979A (en) * 2017-09-29 2019-04-25 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent deposition resistance and abnormal damage resistance
JP7256978B2 (en) 2017-09-29 2023-04-13 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent adhesion resistance and abnormal damage resistance.
WO2021192327A1 (en) * 2020-03-25 2021-09-30 三菱マテリアル株式会社 Surface-coated cutting tool
JP7473883B2 (en) 2020-03-25 2024-04-24 三菱マテリアル株式会社 Surface-coated cutting tools

Also Published As

Publication number Publication date
CN1942274B (en) 2010-05-05
CN1942274A (en) 2007-04-04

Similar Documents

Publication Publication Date Title
JP5866650B2 (en) Surface coated cutting tool
WO2006011396A1 (en) Surface coated cutting tool
JPWO2006064724A1 (en) Surface coated cutting tool
CN109500414B (en) Coated cutting tool
JP4942326B2 (en) Surface covering member and cutting tool using surface covering member
JP6955707B2 (en) Cover cutting tool
JP4022865B2 (en) Coated cutting tool
JP2005297141A (en) Surface-coated throwaway tip
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
JP5729777B2 (en) Surface coated cutting tool
JP4340579B2 (en) Surface coated cutting tool
CN109952169B (en) Coated cutting tool
WO2014153469A1 (en) Coatings for cutting tools
JP5534765B2 (en) Surface covering member
JP2005271133A (en) Coated cutting tool
JP2005297145A (en) Surface-coated end mill and surface-coated drill
JP2006082209A (en) Surface coated cutting tool
JP3859658B2 (en) Surface-coated throw-away tip
JP2011093003A (en) Surface-coated member
JP2008137129A (en) Surface coated cutting tool
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP4575009B2 (en) Coated cutting tool
EP3530387B1 (en) Coated cutting tool
JP3984030B2 (en) Coated cemented carbide tool
JP7373110B2 (en) Surface-coated cutting tools with hard coating layer that exhibits excellent wear resistance

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Effective date: 20050720

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060317