JP2008137129A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2008137129A
JP2008137129A JP2006327457A JP2006327457A JP2008137129A JP 2008137129 A JP2008137129 A JP 2008137129A JP 2006327457 A JP2006327457 A JP 2006327457A JP 2006327457 A JP2006327457 A JP 2006327457A JP 2008137129 A JP2008137129 A JP 2008137129A
Authority
JP
Japan
Prior art keywords
layer
vapor deposition
cutting tool
coated cutting
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006327457A
Other languages
Japanese (ja)
Inventor
Kazuhiro Kono
和弘 河野
Toru Hasegawa
亨 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006327457A priority Critical patent/JP2008137129A/en
Publication of JP2008137129A publication Critical patent/JP2008137129A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool, in which a hard coating layer can show excellent wear resistance in the high speed cutting of a difficult-to-cut material, such as stainless steel and nodular graphite cast iron. <P>SOLUTION: The surface coated cutting tool has a lower layer composed of a Ti compound layer and an upper layer composed of an Al<SB>2</SB>O<SB>3</SB>layer on the surface of the base body of the tool. An outermost layer provided on the Al<SB>2</SB>O<SB>3</SB>layer within the flank region of the tool is composed of a composite nitride layer of Ti, Al, (and M) formed by a PVD process so as to satisfy the following condition: (Ti<SB>1-X-Y</SB>Al<SB>X</SB>M<SB>Y</SB>)N, where 0.30≤X≤0.70, Y=0 or 0.01≤Y≤0.10, by atomic ratio, and M represents additional components of one or more elements selected from Si, Cr, V, Y, and B. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、例えば、ステンレス鋼、ダクタイル鋳鉄等の難削材の高速切削加工において、硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials such as stainless steel and ductile cast iron.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)を設け、
さらに、工具逃げ面の上記Al23層の表面に、被覆工具が、未使用であるか使用済みであるかを識別することを目的として、TiN等の易摩耗性材料からなる使用状態表示層を化学蒸着で形成しておくことが知られている。
Conventionally, in general, on the entire rake face and flank face including the cutting edge ridge line portion of the tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide,
As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) layer And a Ti compound layer comprising one or more of titanium carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition is provided.
In addition, on the surface of the Al 2 O 3 layer on the flank of the tool, a usage status display made of an easily wearable material such as TiN is used to identify whether the coated tool is unused or used. It is known to form the layer by chemical vapor deposition.

そして、上記被覆工具において、硬質被覆層の構成層は一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
また、上記の被覆工具の硬質被覆層を構成するα型Al23層(上部層)の表面を、切削性能を向上させる目的でウエットブラスト処理等により、平滑化することも知られている。
特開2002−144108号公報 特開平6−8010号公報
In the above-described coated tool, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer, which is the lower layer, is used for the purpose of improving the strength of the layer itself. It is also known that a vapor deposition apparatus uses a mixed gas containing organic carbonitrides as a reaction gas, and is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. to have a vertically grown crystal structure. ing.
It is also known that the surface of the α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above-mentioned coated tool is smoothed by wet blasting or the like for the purpose of improving cutting performance. .
JP 2002-144108 A Japanese Patent Laid-Open No. 6-8010

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆工具においては、これを鋼や鋳鉄などの通常の加工条件での切削に用いた場合には問題はないが、これをステンレス鋼、ダクタイル鋳鉄等の難削材の高速切削加工に用いた場合には、切削時に発生する高熱によって摩耗進行が促進され、上記従来被覆工具の如く、例え工具逃げ面にTiN等の使用状態表示層が化学蒸着で形成されていたとしても、使用状態表示層が易摩耗性材料から形成され、単に、使用状態識別用の層であるため、耐摩耗性の改善にはほとんど効果がなく、この結果、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting work, and along with this, cutting work tends to be further accelerated. For coated tools, there is no problem when this is used for cutting under normal processing conditions such as steel and cast iron, but when this is used for high-speed cutting of difficult-to-cut materials such as stainless steel and ductile cast iron. In this case, the progress of wear is promoted by high heat generated during cutting, and even if a usage state display layer such as TiN is formed on the flank of the tool by chemical vapor deposition as in the conventional coated tool, the usage state display layer Since it is formed from an easily wearable material and is merely a layer for identifying the use state, there is almost no effect in improving the wear resistance. As a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上記従来被覆工具の硬質被覆層の耐摩耗性向上を図るべく研究を行った結果、
(a)被覆工具逃げ面の硬質被覆層の上部層であるα型Al23層の表面に、上記の従来被覆工具における化学蒸着で形成された使用状態表示層にかえて、TiとAlの複合窒化物層あるいはTiとAlとM(但し、Mは、Si、Cr、V、Y、Bの1種または2種以上を示す)の複合窒化物層(以下、総称して、(Ti,Al,M)N層で示す)を物理蒸着で形成し、1〜10μmの最外層を形成すると、(Ti,Al,M)N層は硬質膜であると同時に潤滑性にもすぐれており、また、圧縮応力が残留する層でもあるため、高熱の発生を伴う難削材の高速切削加工においてもすぐれた耐摩耗性を発揮すること。
Therefore, the present inventors conducted research to improve the wear resistance of the hard coating layer of the conventional coated tool,
(A) In place of the use state display layer formed by chemical vapor deposition in the above-mentioned conventional coated tool on the surface of the α-type Al 2 O 3 layer that is the upper layer of the hard coating layer on the flank of the coated tool, Ti and Al Or a composite nitride layer of Ti, Al, and M (wherein M represents one or more of Si, Cr, V, Y, and B) (hereinafter collectively referred to as (Ti , Al, M) N layer) is formed by physical vapor deposition and the outermost layer of 1 to 10 μm is formed, the (Ti, Al, M) N layer is a hard film and has excellent lubricity. Also, because it is a layer in which compressive stress remains, it exhibits excellent wear resistance even in high-speed cutting of difficult-to-cut materials that generate high heat.

(b)被覆工具逃げ面領域の硬質被覆層の上部層を構成するα型Al層の表面に、最外層である上記(Ti,Al,M)N層を物理蒸着で形成するにあたり、α型Al層上に、0.2〜2μmの合計平均層厚のTi化合物層(Tiの炭化物層、窒化物層、炭窒化物層、酸化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上)を中間層として、予め化学蒸着しておくことにより、その表面に物理蒸着で容易に最外層を形成できるとともに、上部層−最外層間での接合強度が改善されること。
以上(a)、(b)に示される研究結果を得たのである。
(B) In forming the (Ti, Al, M) N layer as the outermost layer by physical vapor deposition on the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the coated tool flank region. On the α-type Al 2 O 3 layer, a Ti compound layer (Ti carbide layer, nitride layer, carbonitride layer, oxide layer, carbonate layer and carbonitride) having a total average layer thickness of 0.2 to 2 μm As an intermediate layer of one or more of the oxide layers), the outermost layer can be easily formed by physical vapor deposition on the surface, and between the upper layer and the outermost layer. Bond strength is improved.
The research results shown in (a) and (b) have been obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金で構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ化学蒸着により形成された3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)上記(a)の下部層上に設けられ、化学蒸着した状態でα型の結晶構造を有し、かつ化学蒸着により形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなる上部層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記表面被覆切削工具の逃げ面領域の上記酸化アルミニウム層からなる上部層上に、さらに、
(c)1〜10μmの平均層厚を有し、かつ、
組成式:(Ti1−XAl)N(ただし、原子比で、0.30≦X≦0.70)を満足する物理蒸着により形成されたTiとAlの複合窒化物層からなる最外層、を設けたことを特徴とする表面被覆切削工具。
(2)前記(1)の表面被覆切削工具において、
前記(c)の最外層が、
組成式:(Ti1−X−YAl)N(ただし、原子比で、0.30≦X≦0.70、0.01≦Y≦0.10であり、また、Mは、Si、Cr、V、Y、Bから選ばれた1種または2種以上の添加成分を示す)を満足する物理蒸着により形成されたTiとAlとMの複合窒化物層であること、
を特徴とする前記(1)記載の表面被覆切削工具。
(3)前記(1)、(2)記載の表面被覆切削工具において、
(d)Tiの炭化物層、窒化物層、炭窒化物層、酸化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ化学蒸着により形成された0.2〜2μmの全体平均層厚を有するTi化合物層からなる中間層、
を上部層と最外層の間に介在させたことを特徴とする前記(1)、(2)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of the tool base made of tungsten carbide base cemented carbide,
(A) The entire 3-20 μm formed by chemical vapor deposition, consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. A lower layer comprising a Ti compound layer having an average layer thickness,
(B) An aluminum oxide layer provided on the lower layer of (a) above, having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition. Upper layer,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
On the upper layer composed of the aluminum oxide layer in the flank region of the surface-coated cutting tool,
(C) having an average layer thickness of 1 to 10 μm, and
Outermost layer composed of a composite nitride layer of Ti and Al formed by physical vapor deposition satisfying the composition formula: (Ti 1-X Al X ) N (wherein the atomic ratio is 0.30 ≦ X ≦ 0.70) A surface-coated cutting tool characterized by comprising:
(2) In the surface-coated cutting tool of (1),
The outermost layer of (c) is
Formula: (Ti 1-X-Y Al X M Y) N ( provided that an atomic ratio is 0.30 ≦ X ≦ 0.70,0.01 ≦ Y ≦ 0.10, Further, M, A composite nitride layer of Ti, Al, and M formed by physical vapor deposition satisfying one or more additive components selected from Si, Cr, V, Y, and B);
The surface-coated cutting tool according to (1) above, wherein
(3) In the surface-coated cutting tool according to (1) and (2),
(D) 0 consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, oxide layer, carbonate layer and carbonitride layer, and formed by chemical vapor deposition An intermediate layer comprising a Ti compound layer having an overall average layer thickness of 2 to 2 μm;
The surface-coated cutting tool according to any one of (1) and (2), wherein is interposed between the upper layer and the outermost layer. "
It has the characteristics.

以下に、この発明の硬質被覆層(下部層、上部層、中間層、最外層)等について、詳細に説明する。
(1)下部層(Ti化合物層)
Ti化合物層は、α型Al層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、工具基体とα型Al層のいずれにも強固に密着し、よって硬質被覆層の工具基体に対する密着性向上に寄与する作用を有するが、その平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その平均層厚が20μmを越えると、高熱発生を伴う高速切削加工では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を3〜20μmと定めた。
Hereinafter, the hard coating layer (lower layer, upper layer, intermediate layer, outermost layer) of the present invention will be described in detail.
(1) Lower layer (Ti compound layer)
The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, contributes to improving the high-temperature strength of the hard coating layer by its excellent high-temperature strength, and includes the tool base and the α-type Al 2 O 3 layer. However, if the average layer thickness is less than 3 μm, the above-mentioned effect cannot be fully exerted, while the hard coating layer has an effect of improving the adhesion of the hard coating layer to the tool substrate. When the average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation in high-speed cutting with high heat generation, and this causes uneven wear. Therefore, the average layer thickness is set to 3 to 20 μm.

(2)上部層(α型Al層)
化学蒸着で形成したα型Al層からなる上部層は、すぐれた高温硬さと耐熱性を有し、被覆工具の耐摩耗性、耐チッピング性に寄与するが、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方、その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚は1〜15μmと定めた。
(2) Upper layer (α-type Al 2 O 3 layer)
The upper layer composed of α-type Al 2 O 3 formed by chemical vapor deposition has excellent high-temperature hardness and heat resistance and contributes to the wear resistance and chipping resistance of the coated tool, but its average layer thickness is 1 μm. If it is less than 1, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. Was determined to be 1 to 15 μm.

(3)中間層(Ti化合物層)
工具基体全面に化学蒸着で形成された上部層(α型Al23層)の表面に、通常の化学蒸着装置を用い、通常の条件(例えば、表2に示される条件)で、0.2〜2μmの全体平均層厚で中間層(Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、酸化物(TiO)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層のうちの1層または2層以上からなるTi化合物層)を蒸着形成し、上部層と最外層との間に上記中間層を介在させることにより、上部層と最外層間の密着性・接合強度の改善を図ることができる。
中間層の全体平均層厚が0.2μm未満では、上部層と最外層の密着性・接合強度改善効果を期待することはできず、また、その厚さが2μmを超えると、硬質被覆層の高温硬さが低下し、耐摩耗性が劣化するようになるので、その全体平均層厚は0.2〜2μmと定めた。
(3) Intermediate layer (Ti compound layer)
A normal chemical vapor deposition apparatus is used on the surface of the upper layer (α-type Al 2 O 3 layer) formed by chemical vapor deposition on the entire surface of the tool base, and the normal condition (for example, the conditions shown in Table 2) is 0. Intermediate layers (Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, oxide (TiO) layer, carbonate (TiCO) layer and carbon) with an overall average layer thickness of 2-2 μm Ti compound layer consisting of one or more of the nitride oxide (TiCNO) layers is formed by vapor deposition, and the intermediate layer is interposed between the upper layer and the outermost layer, so that the upper layer and the outermost layer are disposed. Interlayer adhesion and bonding strength can be improved.
If the total average layer thickness of the intermediate layer is less than 0.2 μm, it cannot be expected to improve the adhesion and bonding strength between the upper layer and the outermost layer, and if the thickness exceeds 2 μm, the hard coating layer Since the high-temperature hardness decreases and the wear resistance deteriorates, the overall average layer thickness is determined to be 0.2 to 2 μm.

(4)最外層((Ti,Al,M)N層)
(イ)被覆工具逃げ面領域の中間層上に、例えば、図1の概略説明図で示される物理蒸着装置により、表4、表5に示される目標組成、目標層厚の(Ti,Al,M)N層を、1〜10μmの平均層厚で物理蒸着により形成するが、該最外層を構成するTiとAl(とM)の複合窒化物層は、硬質かつ潤滑性にすぐれ、しかも、残留圧縮応力を有する層であるため、難削材の高速切削加工ですぐれた耐摩耗性を示す。すなわち、(Ti,Al,M)N層の構成成分であるAl成分には硬質被覆層における高温硬さと耐熱性を向上させ、また、同Ti成分には高温強度を向上させる作用があるから、最外層は、被覆工具逃げ面領域に形成された硬質被覆層の耐チッピング性、耐摩耗性を改善する。さらに、上記複合窒化物層に成分Mを含有させた場合、添加成分MとしてのSiは該層の耐熱性および耐熱塑性変形性向上に寄与し、Crは耐熱性および高温強度の向上に寄与し、Vは潤滑性向上に寄与し、Yは高温耐酸化性の向上に寄与し、さらに、Bは熱伝導性の向上に寄与し、いずれの添加成分も、最外層の特性を向上させる作用があることから、被覆工具逃げ面領域に必要とする所望特性に応じて、添加成分Mとして、Si、Cr、V、Y、Bの1種または2種以上を、最外層の構成成分として含有させる。
そして、Alの割合を示すX値がTiとMとの合量に占める割合(原子比、以下同じ)で0.30未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが耐摩耗性低下の原因となり、一方Alの割合を示すX値が同0.70を越えると、相対的にTiの割合が0.30未満となってしまい、高い発熱を伴う高速切削加工で必要とされる高温強度を確保することができず、チッピングの発生を防止することが困難になることから、X値を0.30〜0.70と定めた。
また、添加成分MとしてのSi、Cr、V、Y、Bは、各成分の合計含有割合が、TiとAlとの合量に占める割合で0.01未満では、各成分元素を含有させたことによる効果が期待できず、一方、各成分の合計含有割合が、TiとAlとの合量に占める割合で0.1を越えると、相対的に、TiとAlの含有割合が低下してしまい、高速切削で要求される上部層の高温硬さ、耐熱性、高温強度を維持できなくなるために、添加成分Mの合計含有割合を表すY値を0.01〜0.10と定めた。
そして、最外層は、その平均層厚が1μm未満では、自身のもつすぐれた特性(高温硬さ、高温強度、耐熱性等)を長期に亘って発揮するには不十分であり、一方、その平均層厚が10μmを越えると、高速切削加工時にチッピングが発生し易くなることから、上部層の平均層厚を1〜10μmと定めた。
(4) Outermost layer ((Ti, Al, M) N layer)
(A) On the intermediate layer in the coated tool flank region, for example, by the physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. 1, the target compositions and target layer thicknesses (Ti, Al, M) The N layer is formed by physical vapor deposition with an average layer thickness of 1 to 10 μm, and the composite nitride layer of Ti and Al (and M) constituting the outermost layer is hard and excellent in lubricity, Since it is a layer having residual compressive stress, it exhibits excellent wear resistance in high-speed cutting of difficult-to-cut materials. That is, the Al component that is a constituent component of the (Ti, Al, M) N layer improves the high temperature hardness and heat resistance of the hard coating layer, and the Ti component has the effect of improving the high temperature strength. The outermost layer improves the chipping resistance and wear resistance of the hard coating layer formed in the flank area of the coated tool. Further, when component M is contained in the composite nitride layer, Si as additive component M contributes to improvement of heat resistance and heat plastic deformation of the layer, and Cr contributes to improvement of heat resistance and high temperature strength. , V contributes to improvement of lubricity, Y contributes to improvement of high-temperature oxidation resistance, B further contributes to improvement of thermal conductivity, and any additive component has the effect of improving the characteristics of the outermost layer. Therefore, one or more of Si, Cr, V, Y, and B is added as a constituent component of the outermost layer as the additive component M according to desired characteristics required for the coated tool flank region. .
And if the X value indicating the proportion of Al is less than 0.30 in the proportion of the total amount of Ti and M (atomic ratio, the same shall apply hereinafter), the predetermined high temperature hardness and heat resistance cannot be ensured. This causes a decrease in wear resistance. On the other hand, when the X value indicating the Al ratio exceeds 0.70, the Ti ratio is relatively less than 0.30, and high-speed cutting with high heat generation is caused. Since the high-temperature strength required in the above cannot be ensured and it becomes difficult to prevent the occurrence of chipping, the X value is determined to be 0.30 to 0.70.
In addition, Si, Cr, V, Y, and B as the additive component M included each component element when the total content ratio of each component was less than 0.01 in the total amount of Ti and Al. On the other hand, if the total content ratio of each component exceeds 0.1 in the total content of Ti and Al, the content ratio of Ti and Al is relatively decreased. Therefore, in order to be unable to maintain the high-temperature hardness, heat resistance, and high-temperature strength of the upper layer required for high-speed cutting, the Y value representing the total content of the additive component M was determined to be 0.01 to 0.10.
And, when the average layer thickness is less than 1 μm, the outermost layer is insufficient to exhibit its excellent properties (high temperature hardness, high temperature strength, heat resistance, etc.) over a long period of time, When the average layer thickness exceeds 10 μm, chipping is likely to occur during high-speed cutting, so the average layer thickness of the upper layer is set to 1 to 10 μm.

(ロ)最外層が蒸着形成された工具基体のすくい面領域に、例えば、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を用いたウエットブラス等により、すくい面領域に設けられた中間層および最外層を除去することにより、すくい面のα型Al23層の表面平滑化を行うことができ、この場合、すくい面領域の硬質被覆層であるα型Al23層の面粗さはきわめて小さくなるとともに、α型Al23層の引張残留応力が低減され、その結果として、すくい面の耐チッピング性、耐摩耗性が向上する。 (B) A polishing liquid in which 15 to 60% by mass of Al 2 O 3 fine particles are blended in the rake face region of the tool base on which the outermost layer is vapor-deposited, for example, as a spraying abrasive in the total amount with water. The surface of the α-type Al 2 O 3 layer on the rake face can be smoothed by removing the intermediate layer and the outermost layer provided in the rake face region with a wet brass or the like. The surface roughness of the α-type Al 2 O 3 layer, which is a hard coating layer in the surface area, is extremely small, and the tensile residual stress of the α-type Al 2 O 3 layer is reduced, resulting in chipping resistance of the rake face. , Wear resistance is improved.

(ハ)なお、すくい面の表面平滑化は、最外層除去(中間層を含む)とともに行うばかりでなく、すくい面領域に最外層(中間層を含む)を形成させずに直接α型Al23層に対して行うことも勿論可能であり、処理をどの工程で行ったかによって、得られた被覆工具の耐チッピング性、耐摩耗性等には何らの影響も生じるものではなく、また、すくい面のα型Al23層に対する表面平滑化処理、引張残留応力低減処理は、砥石、ナイロン製等のブラシ、SiC、ZrO粒子等をメディアとして使用する乾式あるいは湿式ブラスト処理等によって行うこともでき、ウエットブラスト処理のみに限定されるものではない。 (C) In addition, the surface smoothening of the rake face is not only performed with the outermost layer removal (including the intermediate layer) but also directly with the α-type Al 2 without forming the outermost layer (including the intermediate layer) in the rake face region. Of course, it can be performed on the O 3 layer. Depending on which process is performed, there is no influence on the chipping resistance, wear resistance, etc. of the obtained coated tool. Surface smoothing and tensile residual stress reduction treatment for the α-type Al 2 O 3 layer on the rake face is performed by dry or wet blasting using a grindstone, nylon brush, SiC, ZrO 2 particles, etc. as media. It is also possible to use a wet blasting process.

この発明の被覆工具は、工具逃げ面領域の硬質被覆層の上部層を構成するα型Al23層の上に、必要に応じてTi化合物層からなる中間層を介して、(Ti,Al,M)N層からなる最外層が物理蒸着で形成されているため、耐チッピング性、耐摩耗性にすぐれ、さらに、工具すくい面領域の硬質被覆層の上部層を構成するα型Al23層は引張残留応力が低減されているとともにその表面が平滑化されているため、耐チッピング性にすぐれている。したがって、この発明の被覆工具は、ステンレス鋼、ダクタイル鋳鉄等の難削材の高速切削加工に用いた場合にも、硬質被覆層が全体としてすぐれた耐チッピング性、耐摩耗性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated tool of the present invention has an (Ti, Al) layer on the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the tool flank region, via an intermediate layer made of a Ti compound layer as necessary. Since the outermost layer composed of an Al, M) N layer is formed by physical vapor deposition, it has excellent chipping resistance and wear resistance. Furthermore, α-type Al 2 constituting the upper layer of the hard coating layer in the tool rake face region The O 3 layer is excellent in chipping resistance because its tensile residual stress is reduced and its surface is smoothed. Therefore, the coated tool of the present invention exhibits excellent chipping resistance and wear resistance as a whole even when used for high-speed cutting of difficult-to-cut materials such as stainless steel and ductile cast iron. This makes it possible to further extend the service life.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.03のホーニング加工することによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体A〜Dを製造し、また、同じく焼結後、切刃部に幅0.15mm、角度20度のチャンフォーホーニングにR:0.03mmの加工をすることによりISO・SEEN1203AFSN1に規定するスローアウエイチップ形状をもったWC基超硬合金製の工具基体C〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. Then, the green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge portion was R: 0.03 honed By processing, WC based cemented carbide tool bases A to D having a throwaway tip shape specified in ISO / CNMG120408 are manufactured, and after sintering, the width of the cutting edge portion is 0.15 Tool bases C to F made of WC-base cemented carbide having a throwaway tip shape defined in ISO / SEEN1203AFSN1 were manufactured by processing R: 0.03 mm on Chamfor Honing with an angle of 20 mm and an angle of 20 degrees. .

ついで、これらの工具基体A〜Fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表2(表2中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表3、表4に示される目標層厚のTi化合物層およびα型Al23層を硬質被覆層の下部層および上部層として蒸着形成し、
ついで、同じく表2に示される条件にて、同じく表3、表4に示される目標層厚のTi化合物層を、逃げ面領域およびすくい面領域の全域に中間層として蒸着形成し、
引き続いて、上記工具基体を、図1に概略示されるアークイオンプレーティング装置に装入し、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、工具基体に−100Vの直流バイアス電圧を印加し、かつカソード電極の最外層形成用Ti−Al−M合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の中間層の上に、表3、表4に示される目標組成、目標層厚の(Ti,Al,M)N層からなる最外層を1〜10μmの平均層厚で物理蒸着にて形成し、
引き続いて、工具基体のすくい面領域のみを、噴射研磨材として水との合量に占める割合で35質量%、粒径30〜60μmのAl23微粒を配合した研磨液を0.2MPaの圧力でウエットブラスト処理を行いRaで0.13μm程度の表面粗さに平滑化し、同時に、すくい面のα型Al23層の引張残留応力の低減を図ることにより、本発明被覆工具1〜24をそれぞれ製造した。
Then, each of these tool bases A to F is charged into a normal chemical vapor deposition apparatus,
First, Table 2 (l-TiCN in Table 2 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer and the α-type Al 2 O 3 layer having the target layer thicknesses shown in Table 3 and Table 4 are deposited as the lower layer and the upper layer of the hard coating layer under the conditions shown in FIG. Forming,
Then, under the conditions shown in Table 2, the Ti compound layer having the target layer thickness shown in Tables 3 and 4 is also vapor-deposited as an intermediate layer over the entire flank area and rake face area.
Subsequently, the tool base is inserted into the arc ion plating apparatus schematically shown in FIG. 1, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 4 Pa, and −100 V is applied to the tool base. A direct current bias voltage is applied, and an arc discharge is generated by flowing a current of 120 A between the Ti—Al—M alloy for forming the outermost layer of the cathode electrode and the anode electrode, and on the intermediate layer of the tool base, The outermost layer composed of (Ti, Al, M) N layers having the target composition and target layer thickness shown in Tables 3 and 4 is formed by physical vapor deposition with an average layer thickness of 1 to 10 μm.
Subsequently, only the rake face region of the tool base was mixed with 35% by mass of the Al 2 O 3 fine particles having a particle diameter of 30 to 60 μm as a spraying abrasive in the total amount with water, and 0.2 MPa. Wet blasting with pressure and smoothing to a surface roughness of about 0.13 μm with Ra, and simultaneously reducing the tensile residual stress of the α-type Al 2 O 3 layer of the rake face, 24 were produced respectively.

比較の目的で、表5に示される通り、逃げ面領域のα型Al23層の上にTiN層からなる使用状態表示層を化学蒸着で形成する以外は、本発明被覆工具と同一の条件で従来被覆工具1〜12をそれぞれ製造した。TiN層からなる使用状態表示層の形成は、表2に示される中間層TiNの形成条件と同一とした。
なお、TiN層からなる使用状態表示層を形成後、従来被覆工具1〜12のすくい面に対して、本発明被覆工具1〜24の場合と同様な条件でウエットブラスト処理を行い、表面平滑化と引張残留応力の低減を図った。
For the purpose of comparison, as shown in Table 5, it is the same as the coated tool of the present invention except that a use state display layer composed of a TiN layer is formed on the α-type Al 2 O 3 layer in the flank region by chemical vapor deposition. Conventionally, the conventional coated tools 1 to 12 were manufactured under the conditions. The formation of the usage state display layer made of the TiN layer was the same as the formation conditions of the intermediate layer TiN shown in Table 2.
In addition, after forming the use state indicating layer composed of the TiN layer, the rake face of the conventional coated tools 1 to 12 is subjected to wet blasting under the same conditions as in the case of the coated tools 1 to 24 of the present invention, thereby smoothing the surface. And to reduce the tensile residual stress.

上記本発明被覆工具1〜24および従来被覆工具1〜12の硬質被覆層の各層の組成を、それぞれ厚さ方向中央部をオージェ分光分析装置で測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに同各層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   When the composition of each layer of the hard coating layers of the present invention coated tools 1 to 24 and the conventional coated tools 1 to 12 was measured with an Auger spectroscopic analyzer in the thickness direction, each was substantially the same as the target composition. The composition was further measured, and the thickness of each layer was measured using a scanning electron microscope (longitudinal section measurement). The average layer thickness (average value of five-point measurement) was substantially the same as the target layer thickness. Indicated.

次に、上記の本発明被覆工具1〜24および従来被覆工具1〜12のうち、本発明被覆工具1〜8、13〜20および従来被覆工具1〜8については、切削条件A、Bにより旋削加工試験を実施し、本発明被覆工具5〜12、17〜24および従来被覆工具5〜12については、切削条件Cによりミーリング加工試験を実施した。
[切削条件A]
被削材:JIS・FCD450の丸棒、
切削速度: 450 m/min.、
切り込み: 2.0 mm、
送り: 0.25 mm/rev.、
切削時間: 10 分、
の条件でのダクタイル鋳鉄の連続湿式高速切削試験(通常の切削速度は、250m/min.)、
[切削条件B]
被削材:JIS・SUS316の丸棒、
切削速度: 400 m/min.、
切り込み: 1.5 mm、
送り: 0.3 mm/rev.、
切削時間: 8 分、
の条件でのステンレス鋼の連続乾式高速切削試験(通常の切削速度は、200m/min.)、
[切削条件C]
被削材:JIS・FCD700のブロック材、
切削速度: 300 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/rev.、
切削時間: 10 分、
の条件でのダクタイル鋳鉄の連続湿式高速切削試験(通常の切削速度は、200m/min)。
上記の各切削試験における切刃の逃げ面摩耗幅を測定し、この測定結果を表6、7に示した。
Next, of the present invention coated tools 1 to 24 and the conventional coated tools 1 to 12, the present coated tools 1 to 8, 13 to 20 and the conventional coated tools 1 to 8 are turned according to the cutting conditions A and B. A machining test was carried out, and the milling test was carried out under the cutting condition C for the inventive coated tools 5-12, 17-24 and the conventional coated tools 5-12.
[Cutting conditions A]
Work material: JIS / FCD450 round bar,
Cutting speed: 450 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Continuous wet high speed cutting test of ductile cast iron under the conditions of (normal cutting speed is 250 m / min.),
[Cutting conditions B]
Work material: JIS / SUS316 round bar,
Cutting speed: 400 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 8 minutes,
Continuous dry high-speed cutting test of stainless steel under the conditions of (normal cutting speed is 200 m / min.),
[Cutting conditions C]
Work material: Block material of JIS / FCD700,
Cutting speed: 300 m / min,
Cutting depth: 2.0 mm,
Single blade feed rate: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Continuous wet high-speed cutting test of ductile cast iron under the conditions (normal cutting speed is 200 m / min).
The flank wear width of the cutting edge in each of the above cutting tests was measured, and the measurement results are shown in Tables 6 and 7.

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

Figure 2008137129
Figure 2008137129

表3〜7に示される結果から、本発明被覆工具1〜24は、その逃げ面領域には、耐チッピング性、耐摩耗性にすぐれた最外層が設けられ、また、必要に応じて、Ti化合物層からなる中間層を介して最外層を設けることにより上部層と最外層の接合強度が高められ、さらに、必要に応じて、すくい面領域のα型Al23層を平滑化するとともに引張残留応力を低減することにより、ステンレス鋼、ダクタイル鋳鉄などの難削材の高い発熱を伴う高速切削加工において、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を示し、長期に亘ってきわめてすぐれた切削性能を発揮するのに対して、逃げ面領域の上部層(α型Al23層)上にTiN層等からなる使用状態表示層が化学蒸着で形成された従来被覆工具1〜12では、難削材の高速切削加工において、硬質被覆層の耐摩耗性が劣るため、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 3 to 7, the coated tools 1 to 24 of the present invention are provided with an outermost layer excellent in chipping resistance and wear resistance in the flank region, and, if necessary, Ti By providing the outermost layer through an intermediate layer made of a compound layer, the bonding strength between the upper layer and the outermost layer is increased, and if necessary, the α-type Al 2 O 3 layer in the rake face region is smoothed. By reducing the tensile residual stress, the hard coating layer has excellent chipping resistance and wear resistance in high-speed cutting with high heat generation of difficult-to-cut materials such as stainless steel and ductile cast iron. While exhibiting excellent cutting performance, a conventional coated tool 1 in which a use state indicating layer composed of a TiN layer or the like is formed by chemical vapor deposition on the upper layer (α-type Al 2 O 3 layer) in the flank region. 12, high speed of difficult-to-cut materials In cutting machining, since wear resistance of the hard coating layer is poor, it is clear that lead to a relatively short time service life.

上述のように、この発明の被覆工具は、各種の鋼、ステンレス鋼および鋳鉄などの通常の条件での切削加工は勿論のこと、特に、高熱発生を伴うステンレス鋼、ダクタイル鋳鉄等の難削材の高速切削条件でも、すぐれた耐チッピング性、耐摩耗性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化ならびに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is not only for cutting under normal conditions such as various types of steel, stainless steel and cast iron, but particularly difficult-to-cut materials such as stainless steel and ductile cast iron with high heat generation. Even under high-speed cutting conditions, it exhibits excellent chipping resistance and wear resistance, and exhibits excellent cutting performance over a long period of time. Furthermore, it can cope with cost reduction sufficiently satisfactorily.

アークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of an arc ion plating apparatus.

Claims (3)

炭化タングステン基超硬合金で構成された工具基体の表面に、
(a)Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ化学蒸着により形成された3〜20μmの全体平均層厚を有するTi化合物層からなる下部層、
(b)上記(a)の下部層上に設けられ、化学蒸着した状態でα型の結晶構造を有し、かつ化学蒸着により形成された1〜15μmの平均層厚を有する酸化アルミニウム層からなる上部層、
上記(a)、(b)からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
上記表面被覆切削工具の逃げ面領域の上記酸化アルミニウム層からなる上部層上に、さらに、
(c)1〜10μmの平均層厚を有し、かつ、
組成式:(Ti1−XAl)N(ただし、原子比で、0.30≦X≦0.70)を満足する物理蒸着により形成されたTiとAlの複合窒化物層からなる最外層、を設けたことを特徴とする表面被覆切削工具。
On the surface of the tool base made of tungsten carbide base cemented carbide,
(A) The entire 3-20 μm formed by chemical vapor deposition, consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. A lower layer comprising a Ti compound layer having an average layer thickness,
(B) An aluminum oxide layer provided on the lower layer of (a) above, having an α-type crystal structure in a chemical vapor deposited state and having an average layer thickness of 1 to 15 μm formed by chemical vapor deposition. Upper layer,
In the surface-coated cutting tool in which the hard coating layer composed of the above (a) and (b) is formed by vapor deposition,
On the upper layer composed of the aluminum oxide layer in the flank region of the surface-coated cutting tool,
(C) having an average layer thickness of 1 to 10 μm, and
Outermost layer composed of a composite nitride layer of Ti and Al formed by physical vapor deposition satisfying the composition formula: (Ti 1-X Al X ) N (wherein the atomic ratio is 0.30 ≦ X ≦ 0.70) A surface-coated cutting tool characterized by comprising:
請求項1記載の表面被覆切削工具において、
前記(c)の最外層が、
組成式:(Ti1−X−YAl)N(ただし、原子比で、0.30≦X≦0.70、0.01≦Y≦0.10であり、また、Mは、Si、Cr、V、Y、Bから選ばれた1種または2種以上の添加成分を示す)を満足する物理蒸着により形成されたTiとAlとMの複合窒化物層であること、
を特徴とする請求項1記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
The outermost layer of (c) is
Formula: (Ti 1-X-Y Al X M Y) N ( provided that an atomic ratio is 0.30 ≦ X ≦ 0.70,0.01 ≦ Y ≦ 0.10, Further, M, A composite nitride layer of Ti, Al, and M formed by physical vapor deposition satisfying one or more additive components selected from Si, Cr, V, Y, and B);
The surface-coated cutting tool according to claim 1.
請求項1、2記載の表面被覆切削工具において、
(d)Tiの炭化物層、窒化物層、炭窒化物層、酸化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなり、かつ化学蒸着により形成された0.2〜2μmの全体平均層厚を有するTi化合物層からなる中間層、
を上部層と最外層の間に介在させたことを特徴とする請求項1又は2のいずれか1項に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1 or 2,
(D) 0 consisting of one or more of Ti carbide layer, nitride layer, carbonitride layer, oxide layer, carbonate layer and carbonitride layer, and formed by chemical vapor deposition An intermediate layer comprising a Ti compound layer having an overall average layer thickness of 2 to 2 μm;
The surface-coated cutting tool according to claim 1, wherein is interposed between the upper layer and the outermost layer.
JP2006327457A 2006-12-04 2006-12-04 Surface coated cutting tool Pending JP2008137129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006327457A JP2008137129A (en) 2006-12-04 2006-12-04 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006327457A JP2008137129A (en) 2006-12-04 2006-12-04 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2008137129A true JP2008137129A (en) 2008-06-19

Family

ID=39599123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006327457A Pending JP2008137129A (en) 2006-12-04 2006-12-04 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2008137129A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010115764A (en) * 2008-11-14 2010-05-27 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool
JP2011513594A (en) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド Objects covered with hard materials
KR102172454B1 (en) * 2020-08-24 2020-10-30 주식회사 와이지-원 Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same
KR102244795B1 (en) * 2021-03-11 2021-04-27 주식회사 와이지-원 Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0852603A (en) * 1994-07-20 1996-02-27 Sandvik Ab Cutting tool insert and manufacture thereof
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JPH08318410A (en) * 1990-09-17 1996-12-03 Kennametal Inc Cutting tool
JP2002263910A (en) * 2001-03-09 2002-09-17 Mitsubishi Materials Corp Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08318410A (en) * 1990-09-17 1996-12-03 Kennametal Inc Cutting tool
JPH0852603A (en) * 1994-07-20 1996-02-27 Sandvik Ab Cutting tool insert and manufacture thereof
JPH08209336A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002263910A (en) * 2001-03-09 2002-09-17 Mitsubishi Materials Corp Surface-coated cemented carbide cutter having hard cover layer exhibiting excellent wear resistance in high- speed cutting operation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011513594A (en) * 2008-03-12 2011-04-28 ケンナメタル インコーポレイテッド Objects covered with hard materials
JP2010115764A (en) * 2008-11-14 2010-05-27 Mitsubishi Materials Corp Surface-coated cemented carbide cutting tool
KR102172454B1 (en) * 2020-08-24 2020-10-30 주식회사 와이지-원 Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same
KR102244795B1 (en) * 2021-03-11 2021-04-27 주식회사 와이지-원 Multi-layer coated cutting tool material, method of manufacturing the same, and cutting tool insert for mechanical work having the same

Similar Documents

Publication Publication Date Title
JP5023654B2 (en) Surface-coated cermet cutting tool with excellent crystal grain interface strength, modified α-type Al2O3 layer of hard coating layer
JP5041222B2 (en) Surface coated cutting tool
JP2008137129A (en) Surface coated cutting tool
JP2008149390A (en) Surface coated cutting tool
JP2008137130A (en) Surface coated cutting tool
JP5077647B2 (en) Surface coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance and wear resistance in high-speed cutting of difficult-to-cut materials
JP5088477B2 (en) Surface coated cutting tool
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP5099495B2 (en) Surface coated cutting tool
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP2008188737A (en) Surface coated cutting tool having hard coating layer showing excellent chipping resistance in heavy cutting of difficult-to-cut material
JP4900652B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4857711B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2008149391A (en) Surface coated cutting tool
JP2007245269A (en) Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4853621B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4857752B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4936212B2 (en) Surface-coated cutting tool whose hard coating layer exhibits excellent wear resistance in high-speed cutting
JP4793629B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP2007160424A (en) Pore-free surface coated cermet cutting throw-away tip having hard coating layer exhibiting chipping resistance in high speed cutting
JP2007111814A (en) Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work
JP2011173174A (en) Surface coated cutting tool superior in heat resistance and deposition resistance
JP2007083374A (en) Cutting throw away tip made of surface coated cermet having hard coating layer exhibiting excellent chipping resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090331

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111024

A02 Decision of refusal

Effective date: 20120403

Free format text: JAPANESE INTERMEDIATE CODE: A02