JP2007245269A - Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting - Google Patents

Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting Download PDF

Info

Publication number
JP2007245269A
JP2007245269A JP2006070235A JP2006070235A JP2007245269A JP 2007245269 A JP2007245269 A JP 2007245269A JP 2006070235 A JP2006070235 A JP 2006070235A JP 2006070235 A JP2006070235 A JP 2006070235A JP 2007245269 A JP2007245269 A JP 2007245269A
Authority
JP
Japan
Prior art keywords
layer
hard coating
coating layer
cutting
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2006070235A
Other languages
Japanese (ja)
Inventor
Tetsuhiko Honma
哲彦 本間
Hiroshi Hara
央 原
Makoto Nishida
西田  真
Hitoshi Kunugi
斉 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2006070235A priority Critical patent/JP2007245269A/en
Publication of JP2007245269A publication Critical patent/JP2007245269A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated cutting tip whose hard coating layer exerts excellent anti-chipping performance in high-speed cutting. <P>SOLUTION: The coated cutting tip is structured so that the hard coating layer consisting of a Ti compound layer as lower layer and an α-type Al<SB>2</SB>O<SB>3</SB>layer as upper layer is formed by means of evaporation on the surface of the base of the tip, wherein the surface of the α-type Al<SB>2</SB>O<SB>3</SB>layer as the upper layer is polished by jetting a polishing liquid containing Al<SB>2</SB>O<SB>3</SB>particulates as a jet polishing material by means of wet blasting in the condition that the polishing material layer structured so that two or more TiN layers and TiCN layers having a mean thickness of 0.1-2.5 μm are laminated alternately and having an overall mean thickness of 0.4-5 μm is formed by evaporation on the whole surface of the Al<SB>2</SB>O<SB>3</SB>layer as the upper layer, wherein the surface roughness Ra should be no more than 0.2 μm, and a pattern where the hard coating layer residual stress is reduced is formed on the surface to be polished by means of irradiation with laser beam. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)に関するものである。   The present invention relates to a surface-coated cermet cutting throwaway tip (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various types of steel and cast iron. Is.

従来、一般に、例えば図10に概略斜視図に例示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取り付け用ボルト貫通孔(取り付けがクランプ駒による挟み締めで行われる形式の場合には、前記ボルト貫通孔が存在しない形状となる)を有するサーメット基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally, for example, as illustrated in a schematic perspective view in FIG. 10, a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, and a central portion A cermet base (hereinafter referred to collectively as a chip base) having a tool mounting bolt through hole (in the case where the mounting is performed by clamping with a clamp piece, the bolt through hole does not exist). ) On the entire rake face and flank face including the cutting edge ridge
(1) As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO). A Ti compound layer consisting of one or two or more of the layers shown below and a titanium carbonitride oxide (hereinafter referred to as TiCNO) layer and having an overall average layer thickness of 3 to 20 μm,
(2) As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
A coated cutting tip formed by vapor-depositing the hard coating layer constituted by the above (1) and (2) is known, and this coated cutting tip is used for continuous cutting and intermittent cutting of various steels and cast irons, for example. It is well known to be used.

また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆切削チップの硬質被覆層を構成するα型Al23層(上部層)の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
特開平6−31503号公報 特開平6−8010号公報 特開平8−276305号公報
In the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Furthermore, it is also known that the surface of the α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above-described coated cutting tip is smoothed by wet blasting for the purpose of improving cutting performance. Yes.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010 JP-A-8-276305

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が400m/min.以上の高速で切削加工を行なうのに用いた場合には、硬質被覆層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and along with this, cutting has been on the trend of higher speed. The coated cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 400 m / min. When used for cutting at the above high speed, chipping (small chipping) is likely to occur in the hard coating layer, and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、上記の従来被覆切削チップに着目し、特に硬質被覆層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の蒸着表面の平滑性は十分満足するものでなく、また、前記蒸着表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al23微粒で示す)を配合した研磨液を噴射して、研磨すると、前記α型Al23層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の表面粗さがRa:0.3〜0.6μmの前記α型Al23層を硬質被覆層の上部層とした被覆切削チップを用いても、切削速度が400m/min.以上の高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
Therefore, the present inventors, from the above viewpoint, paying attention to the above-mentioned conventional coated cutting tip, and as a result of conducting research to improve the chipping resistance of the hard coating layer in particular,
(A) The smoothness of the deposition surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting tip is not sufficiently satisfactory, and the deposition surface is not wet blasted. Then, as a jetting abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) in a proportion of the total amount with water is jetted and polished, The α-type Al 2 O 3 layer is a measurement based on the compliant standard JIS B0601-1994 (the following surface roughness is all measured based on the compliant standard), and Ra: 0.3 to 0.6 μm The coated cutting tip having the α-type Al 2 O 3 layer with the surface roughness Ra: 0.3 to 0.6 μm as the upper layer of the hard coating layer is used. However, the cutting speed is 400 m / min. The above high-speed cutting cannot satisfactorily suppress chipping at the cutting edge.

(b)一方、図8に概略斜視図で例示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面の全面に、通常の化学蒸着装置を用い、通常の条件、例えば表3に示される条件で、いずれも0.1〜2.5μmの平均層厚を有する窒化チタン(以下、TiNで示す)層と炭窒化チタン(以下、TiCNで示す)層の2層以上の交互積層を、0.4〜5μmの全体平均層厚で蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、上記TiN層とTiCN層の2層以上の交互積層(以下、個々にTiN研磨材層およびTiCN研磨材層と言い、これら全体をTiN/TiCN研磨材層で示す)は、前記Al23微粒によって粉砕微粒化し、TiN微粒およびTiCN微粒となって前記Al23微粒の共存下で研磨材として作用し、図9に概略斜視図で例示される通り、硬質被覆層の上部層を構成するα型Al23層の表面を研磨することになり、この上部層であるα型Al23層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.前後の切削速度になっても切刃部におけるチッピングの発生が著しく抑制されるようになるが、さらに切削速度が400m/min.以上の一段の高速加工になると、必ずしも満足な耐チッピング性を示さないこと。
(B) On the other hand, as illustrated in a schematic perspective view in FIG. 8, a rake face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip and On the entire surface of the flank, an ordinary chemical vapor deposition apparatus is used, and titanium nitride (hereinafter referred to as TiN hereinafter) having an average layer thickness of 0.1 to 2.5 μm under normal conditions, for example, conditions shown in Table 3. ) Layer and a titanium carbonitride (hereinafter referred to as TiCN) layer of two or more layers alternately deposited in an overall average layer thickness of 0.4 to 5 μm,
As in the above (a), when a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spray abrasive is mixed with water as a spray abrasive, the TiN layer and Two or more alternating layers of TiCN layers (hereinafter referred to individually as a TiN abrasive layer and a TiCN abrasive layer, and these are shown as TiN / TiCN abrasive layers) are pulverized and atomized by the Al 2 O 3 granules. , TiN fine particles and TiCN fine particles that act as an abrasive in the presence of the Al 2 O 3 fine particles, and as illustrated in a schematic perspective view in FIG. 9, α-type Al 2 constituting the upper layer of the hard coating layer The surface of the O 3 layer is polished, and high-speed cutting is performed using a coated cutting tip in which the surface of the α-type Al 2 O 3 layer, which is the upper layer, is smoothed to a surface roughness of Ra: 0.2 μm or less. 350m when processed / Min. Although the occurrence of chipping at the cutting edge portion is remarkably suppressed even at the front and rear cutting speeds, the cutting speed is further 400 m / min. When the above-mentioned one-stage high-speed machining is performed, the chipping resistance is not necessarily exhibited.

(c)一方、上記の従来被覆切削チップにおける硬質被覆層は、化学蒸着装置で、約1000℃前後の反応温度でチップ基体表面に蒸着され、常温に冷却されることにより形成されるが、常温への冷却過程で、前記チップ基体の熱膨張係数に比して前記硬質被覆層の熱膨張係数の方が相対的に大きいので、前記硬質被覆層には引張の応力が残留するようになり、この硬質被覆層中の残留引張応力が切削速度が400m/min.以上の高速切削加工ではチッピング発生を促進するように作用すること。 (C) On the other hand, the hard coating layer in the above-mentioned conventional coated cutting chip is formed by being deposited on the surface of the chip substrate at a reaction temperature of about 1000 ° C. and cooled to room temperature by a chemical vapor deposition apparatus. In the cooling process, since the thermal expansion coefficient of the hard coating layer is relatively larger than the thermal expansion coefficient of the chip base, tensile stress remains in the hard coating layer, The residual tensile stress in the hard coating layer is such that the cutting speed is 400 m / min. In the above high-speed cutting, it acts to promote chipping.

(d)これに対して、単一基本形状マーク、例えば円形や三角形および四角形、さらにこれらの類似形などの単一基本形状マークを、前記チップ基体のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービームを用いて、例えば図1〜7に前記単一基本形状マークを円形とした場合の実施例で示される通り、前記単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布し(この場合、図1〜3に例示のものは硬質被覆層の層厚が相対的に薄く、図4,5および図6,7に例示されるに従って層厚が厚くなる場合の分布態様を示す)、かつ前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした条件(この場合の前記単一基本形状マークの露出面の掘下げ深さは前記硬質被覆層の層厚に対応して個々に調整されるが、残留応力の効率的低減を図るには層厚の5〜20%に相当する深さが目安とされる)でレーザービーム照射模様を形成すると、前記硬質被覆層の残留応力が著しく低減するようになり、この硬質被覆層残留応力低減模様の形成によって、高速切削加工に際しての硬質被覆層中の残留応力が原因のチッピング発生が著しく抑制され、上部層であるα型Al23層の表面がRa:0.2μm以下の表面粗さに平滑化されたことと相俟って、400m/min.以上の高速切削加工でのチッピング発生が防止されるようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) On the other hand, a single basic shape mark, for example, a single basic shape mark such as a circle, a triangle, and a quadrangle, or a similar shape thereof, is used for either the rake face or the flank face of the chip base, or these The single basic shape mark and the single basic shape, as shown in the embodiment in which the single basic shape mark is circular, for example, in FIGS. One or both of the mark set marks are distributed and distributed (in this case, the layers shown in FIGS. 1 to 3 have a relatively thin hard coating layer, and are shown in FIGS. 4, 5 and 6 and 7). The distribution form in the case where the layer thickness becomes thicker is shown) and the single basic shape mark is a dug surface where any one of the constituent layers of the hard coating layer is exposed (in this case) Said single group of The digging depth of the exposed surface of the shape mark is individually adjusted according to the layer thickness of the hard coating layer, but in order to reduce the residual stress efficiently, the depth corresponding to 5 to 20% of the layer thickness When the laser beam irradiation pattern is formed, the residual stress of the hard coating layer is remarkably reduced. By forming this hard coating layer residual stress reduction pattern, the hard coating layer during high-speed cutting is formed. In combination with the fact that the occurrence of chipping due to residual stress in the inside is remarkably suppressed and the surface of the α-type Al 2 O 3 layer as the upper layer is smoothed to a surface roughness of Ra: 0.2 μm or less, 400 m / min. The occurrence of chipping in the above high-speed cutting processing is to be prevented.
The research results shown in (a) to (d) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚を有するα型Al23層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる被覆切削チップにおいて、
(a) 上記硬質被覆層の上部層であるα型Al23層の全面に、いずれも0.1〜2.5μmの平均層厚を有するTiN研磨材層とTiCN研磨材層の2層以上の交互積層で構成され、かつ、0.4〜5μmの全体平均層厚を有するTiN/TiCN研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
上記のTiN/TiCN研磨材層のウエットブラストによる粉砕化TiN微粒および粉砕化TiCN微粒と、噴射研磨材としてのAl23微粒の共存下で、上記硬質被覆層の上部層を構成するα型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さをRa:0.2μm以下とし、
(b)さらに、上記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成してなる、
硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップに特徴を有するものである。
The present invention has been made based on the above research results, and the entire rake face and flank face including the cutting edge ridge line portion of the chip base composed of the WC-based cemented carbide or TiCN-based cermet,
(1) A Ti compound layer consisting of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer as a lower layer, and having an overall average layer thickness of 3 to 20 μm,
(2) As an upper layer, an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm,
In the coated cutting tip formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A) Two layers of a TiN abrasive layer and a TiCN abrasive layer each having an average layer thickness of 0.1 to 2.5 μm on the entire surface of the α-type Al 2 O 3 layer which is the upper layer of the hard coating layer In a state where the TiN / TiCN abrasive material layer formed by the above alternate lamination and having an overall average layer thickness of 0.4 to 5 μm is formed by vapor deposition,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,
Α-type constituting the upper layer of the hard coating layer in the presence of pulverized TiN fine particles and pulverized TiCN fine particles by wet blasting of the TiN / TiCN abrasive layer and Al 2 O 3 fine particles as a spray abrasive Grind the rake face portion and the flank face portion including at least the cutting edge ridge line portion of the Al 2 O 3 layer, and set the surface roughness of these polished surfaces to Ra: 0.2 μm or less,
(B) Furthermore, either or both of the rake face and the flank face of the polishing surface, or the single basic shape mark and the collective mark of the single basic shape mark are distributed over both surfaces. A hard coating layer residual stress reduction pattern is formed by irradiating a laser beam with the single basic shape mark as a dug surface where any one of the constituent layers of the hard coating layer is exposed. ,
The hard coating layer is characterized by a coated cutting tip that exhibits excellent chipping resistance in high-speed cutting.

以下に、この発明の被覆切削チップの硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度向上に寄与するほか、チップ基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
The reason why the hard coating layer and the abrasive layer of the coated cutting chip of the present invention and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are limited numerically as described above will be described below.
(A) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and the hard coating layer has a high temperature due to its excellent high temperature strength. In addition to contributing to strength improvement, it has a function of firmly adhering to both the chip base and the α-type Al 2 O 3 layer, thereby improving the adhesion of the hard coating layer to the chip base, but the overall average layer thickness is If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by generation of high heat. Since it becomes a cause, the whole average layer thickness was set to 3-20 micrometers.

(a−2)上部層のα型Al23
上記のα型Al23層は、すぐれた高温硬さと耐熱性を有し、被覆切削チップの切削性能向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) α-type Al 2 O 3 layer of the upper layer The α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the cutting performance of the coated cutting tip. If the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was set to 1 to 15 μm.

(b)TiN/TiCN研磨材層
上記の通り、TiN/TiCN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl23微粒によって粉砕微粒化し、TiN微粒およびTiCN微粒となって前記Al23微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al23層の表面を研磨するが、この場合、個々の研磨材層の平均層厚が0.1μm未満であったり、TiN/TiCN研磨材層の全体平均層厚が0.4μm未満であったりすると、ウエットブラスト時における粉砕化TiN微粒および粉砕化TiCN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、個々の研磨材層の平均層厚が2.5μmを越えたり、TiN/TiCN研磨材層の全体平均層厚が5μmを越えたりすると、研磨液に噴射研磨材として配合したAl23微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もα型Al23層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、個々の研磨材層の平均層厚を0.1〜2.5μm、その全体平均層厚を0.4〜5μmと定めた。
(B) TiN / TiCN abrasive material layer As described above, the TiN / TiCN abrasive material layer is pulverized and atomized by Al 2 O 3 fine particles blended as an abrasive material into the polishing liquid during wet blasting, and TiN fine particles and TiCN fine particles It acts as an abrasive in the coexistence with the Al 2 O 3 fine particles, and polishes the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. If the average layer thickness is less than 0.1 μm, or the overall average layer thickness of the TiN / TiCN abrasive layer is less than 0.4 μm, the ratio of pulverized TiN particles and pulverized TiCN particles during wet blasting Too little, the polishing function cannot be fully exerted. On the other hand, the average layer thickness of each abrasive layer exceeds 2.5 μm, or the total average layer thickness of the TiN / TiCN abrasive layer is 5 μm. When Etari, in unbalanced and Al 2 O 3 fine formulated as injection abrasive in the polishing liquid, too many relatively, again become the polishing function is rapidly reduced, in any case Because the surface of the α-type Al 2 O 3 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less, the average thickness of each abrasive layer is 0.1 to 2.5 μm, The overall average layer thickness was determined to be 0.4-5 μm.

(c)研磨液のAl23微粒の割合
研磨液のAl23微粒には、ウエットブラスト時にTiN/TiCN研磨材層の粉砕化TiN微粒および粉砕化TiCN微粒と共存した状態で、α型Al23層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
The Al 2 O 3 fine fraction polishing liquid Al 2 O 3 fine of (c) polishing liquid, in a state where at the time of wet blast coexists with pulverized TiN atomization and pulverization TiCN fine of TiN / TiCN abrasive layer, alpha The surface of the type Al 2 O 3 layer has an action of polishing, but even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount with water, the polishing function seems to be drastically reduced. Therefore, the ratio was determined to be 15 to 60% by mass.

この発明の被覆切削チップは、硬質被覆層の上部層を構成するα型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨されると共に、前記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、レーザービーム照射形成された硬質被覆層残留応力低減模様によって、硬質被覆層の耐チッピング性が著しく向上し、各種の鋼や鋳鉄などの切削加工を、切削速度が400m/min.以上の高速で行うのに用いた場合にも、硬質被覆層にチッピングが発生することなく、長期に亘ってすぐれた切削性能を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip of the present invention, the rake face portion and the flank portion including at least the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer have a surface roughness of Ra: 0.2 μm or less. Chipping of the hard coating layer by the hard coating layer residual stress reduction pattern formed by laser beam irradiation over one of the rake surface and the flank surface of the polished surface or the entire surface of both surfaces. And the cutting speed of various steels and cast irons is 400 m / min. Even when used for the above high speed, chipping does not occur in the hard coating layer, it exhibits excellent cutting performance over a long period of time, and it is possible to further extend the service life. .

つぎに、この発明の被覆切削チップを実施例により具体的に説明する。   Next, the coated cutting tip of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.

ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
(a)まず、表3(表3中のl−TiCN層は特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される目標層厚のTi化合物層およびα型Al23層を硬質被覆層の下部層および上部層として蒸着形成し、
(b)ついで、表6に示される通り、同じく表3に示されるTiN研磨材層およびTiCN研磨材層形成条件でTiN/TiCN研磨材層を、同じく表6に示される積層数および目標層厚で蒸着形成し(図8参照)、
(c)引き続いて、上記のTiN/TiCN研磨材層形成の被覆切削チップに、表4に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部にTiN/TiCN研磨材層を存在させた状態で、前記α型Al23層(上部層)の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表6に示される表面粗さに研磨し(図9参照)、
(c)さらに、レーザービーム照射装置を用い、上記硬質被覆層に、
レーザービーム出力:10W、
単一基本形状マークの形状:直径が0.5mmの円形、
硬質被覆層残留応力低減模様:図1〜7に示される実施模様のうちのいずれかを表6に示される組み合わせで適用、
単一基本形状マークの露出面の掘下げ深さ:表6に全目標層厚に対する割合で示される深さ、
の条件で硬質被覆層残留応力低減模様を形成することにより本発明被覆切削チップ1〜13をそれぞれ製造した。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
(A) First, Table 3 (the 1-TiCN layer in Table 3 shows the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A-6-8010; In the conditions shown in Table 5), the Ti compound layer and the α-type Al 2 O 3 layer having the target layer thicknesses shown in Table 5 are used as the lower and upper layers of the hard coating layer. Vapor deposition,
(B) Next, as shown in Table 6, the TiN / TiCN abrasive layer was formed under the same conditions as shown in Table 3 for forming the TiN abrasive layer and TiCN abrasive layer. (See FIG. 8)
(C) Subsequently, the coated cutting tip for forming the TiN / TiCN abrasive layer is subjected to wet blasting under the blasting conditions shown in Table 4 and in the combinations shown in Table 6, and the peripheral part of the tool mounting hole is formed. In the state where the TiN / TiCN abrasive layer is present, the rake face portion and the flank portion including the cutting edge ridge line portion of the α-type Al 2 O 3 layer (upper layer) are also shown in Table 6 below. (See FIG. 9)
(C) Furthermore, using a laser beam irradiation device, the hard coating layer,
Laser beam output: 10W
The shape of a single basic shape mark: a circle with a diameter of 0.5 mm,
Hard coating layer residual stress reduction pattern: any one of the implementation patterns shown in FIGS. 1 to 7 is applied in the combination shown in Table 6.
Depth of exposed surface of single basic shape mark: Depth shown as a percentage of total target layer thickness in Table 6,
The coated cutting chips 1 to 13 of the present invention were manufactured by forming a hard coating layer residual stress reduction pattern under the conditions described above.

(a)また、比較の目的で、同じく表7に示される通り、上記の本発明被覆切削チップ1〜13のそれぞれと同じ条件で、Ti化合物層およびα型Al23層を硬質被覆層の下部層および上部層として蒸着形成し(図10参照)、
(b)引き続いて、表4に示されるブラスト条件で、かつ表7に示される組み合わせでウエットブラストを施して、前記α型Al23層(上部層)の切刃稜線部を含むすくい面部分および逃げ面部分を、同じく表7に示される表面粗さに研磨することにより従来被覆切削チップ1〜13をそれぞれ製造した。
(A) Also, for the purpose of comparison, as shown in Table 7, the Ti compound layer and the α-type Al 2 O 3 layer are hard coating layers under the same conditions as the above-described cutting chips 1 to 13 of the present invention. As a lower layer and an upper layer, vapor deposition is formed (see FIG. 10).
(B) Subsequently, a rake face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer (upper layer) by performing wet blasting under the blasting conditions shown in Table 4 and in the combination shown in Table 7 Conventionally, the coated cutting chips 1 to 13 were manufactured by polishing the portion and the flank portion to the surface roughness similarly shown in Table 7.

また、上記本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。   Moreover, when the thickness of the structural layer of the hard coating layer of the said invention cutting chip 1-13 of this invention and the conventional coating cutting chip 1-13 was measured using the scanning electron microscope (longitudinal section measurement), all were target. The average layer thickness (average value of 5-point measurement) substantially the same as the layer thickness was shown.

つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM430の長さ方向等間隔4本縦溝入り丸棒、
切削速度:410m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
の条件(切削条件Aという)での合金鋼の湿式断続高速切削試験(通常の切削速度は200m/min)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:420m/min、
切り込み:2mm、
送り:0.25mm/rev、
の条件(切削条件Bという)での炭素鋼の湿式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・FC250の丸棒、
切削速度:450m/min、
切り込み:1.5mm、
送り:0.2mm/rev、
の条件(切削条件Cという)での鋳鉄の乾式連続高速切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅が、一般に切削工具の使用寿命の目安とされている0.3mmに至るまでの切削時間を測定した。この測定結果を表7に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS · SCM430 lengthwise equidistant 4 round bars with vertical grooves,
Cutting speed: 410 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
Wet intermittent high-speed cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (referred to as cutting condition A),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 420 m / min,
Cutting depth: 2mm,
Feed: 0.25mm / rev,
Wet intermittent high-speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the conditions (referred to as cutting conditions B),
Work material: JIS / FC250 round bar,
Cutting speed: 450 m / min,
Incision: 1.5mm,
Feed: 0.2mm / rev,
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min) of cast iron under the above conditions (referred to as cutting condition C). The cutting time until reaching 0.3 mm, which is regarded as a standard for the measurement, was measured. The measurement results are shown in Table 7.

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

Figure 2007245269
Figure 2007245269

表5〜8に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するα型Al23層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分が、Ra:0.2μm以下の表面粗さに研磨され、さらに前記研磨面全体に亘ってレーザービーム照射形成された硬質被覆層残留応力低減模様によって、前記硬質被覆層における残留引張応力が著しく低減されることから、鋼および鋳鉄の高速切削加工を切削速度が400m/min.以上の高速で行なっても、チッピングの発生なく、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するα型Al23層の表面粗さが、Ra:0.3〜0.6μmを示し、かつ、硬質被覆層残留応力低減模様の形成がない従来被覆切削チップ1〜13においては、いずれも400m/min.以上の高速切削加工では、前記硬質被覆層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 8, each of the present coated cutting chips 1 to 13 includes a rake face portion including at least the cutting edge ridge portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer, and The flank portion is polished to a surface roughness of Ra: 0.2 μm or less, and further, the residual tensile stress in the hard coating layer is formed by the hard coating layer residual stress reduction pattern formed by laser beam irradiation over the entire polished surface. Is remarkably reduced, high-speed cutting of steel and cast iron is performed at a cutting speed of 400 m / min. Even when performed at the above high speed, chipping does not occur and excellent cutting performance is demonstrated over a long period of time, whereas the surface roughness of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is Ra: 0.3 to 0.6 μm, and the conventional coated cutting tips 1 to 13 having no hard coating layer residual stress reduction pattern are all 400 m / min. In the above high-speed cutting, it is clear that chipping occurs in the hard coating layer and the service life is reached in a relatively short time.

上述のように、この発明の被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を400m/min.以上の高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cutting tip of the present invention has a cutting speed of 400 m / min. As well as continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. It exhibits excellent chipping resistance even when performed at high speeds as described above, and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently.

実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。It is a schematic perspective view of this invention coating cutting tip which formed the hard coating layer residual stress reduction pattern as an Example by laser beam irradiation formation. 図1以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 2 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIG. 1 is formed by laser beam irradiation. 図1,2以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 3 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 図1〜3以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 4 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図1〜4以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 5 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 図1〜5以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 6 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reduction pattern as an embodiment other than FIGS. 図1〜6以外の実施例としての硬質被覆層残留応力低減模様をレーザービーム照射形成した本発明被覆切削チップの概略斜視図である。FIG. 7 is a schematic perspective view of a coated cutting tip of the present invention in which a hard coating layer residual stress reducing pattern as an embodiment other than FIGS. 1 to 6 is formed by laser beam irradiation. 従来被覆切削チップの全面に研磨材層を形成した状態を示す概略斜視図である。It is a schematic perspective view which shows the state which formed the abrasive material layer in the whole surface of the conventional coated cutting chip. 研磨材層を形成した状態でウエットブラストを施した後の状態を示す概略斜視図である。It is a schematic perspective view which shows the state after giving wet blast in the state which formed the abrasive material layer. 従来被覆切削チップの概略斜視図である。It is a schematic perspective view of the conventional coated cutting tip.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたサーメット基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(1)下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(2)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
以上(1)および(2)で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削スローアウエイチップにおいて、
(a−1)上記硬質被覆層の上部層である酸化アルミニウム層の全面に、いずれも0.1〜2.5μmの平均層厚を有する窒化チタン層と炭窒化チタン層の2層以上の交互積層で構成され、かつ、0.4〜5μmの全体平均層厚を有する研磨材層を蒸着形成した状態で、
(a−2)ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化窒化チタン微粒および粉砕化炭窒化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記硬質被覆層の上部層を構成する酸化アルミニウム層の少なくとも切刃稜線部を含むすくい面部分および逃げ面部分を研磨して、これら研磨面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下とし、
(b)さらに、上記研磨面のすくい面および逃げ面のいずれか、またはこれら両面の全面に亘って、単一基本形状マークおよび前記単一基本形状マークの集合マークのいずれか、または両方が分散分布してなると共に、前記単一基本形状マークを、上記硬質被覆層の構成層のうちのいずれかの層が露出した掘下げ面とした硬質被覆層残留応力低減模様をレーザービーム照射形成したこと、
を特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ。
On the entire rake face and flank face including the cutting edge ridge line portion of the cermet base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
(1) As a lower layer, it is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a carbonated titanium layer, and a titanium carbonitride oxide layer, and has an overall average of 3 to 20 μm. A Ti compound layer having a layer thickness,
(2) As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
In the cutting throwaway tip made of surface-covered cermet formed by vapor-depositing the hard coating layer composed of (1) and (2) above,
(A-1) Alternation of two or more layers of titanium nitride layer and titanium carbonitride layer each having an average layer thickness of 0.1 to 2.5 μm on the entire surface of the aluminum oxide layer which is the upper layer of the hard coating layer In a state in which an abrasive layer having a total average layer thickness of 0.4 to 5 μm is formed by vapor deposition,
(A-2) In wet blasting, as a spray abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a ratio to the total amount with water is sprayed.
In the coexistence of the ground titanium nitride fine particles and the ground titanium carbonitride fine particles by wet blasting of the abrasive layer and the aluminum oxide fine particles as the spray abrasive, the aluminum oxide layer constituting the upper layer of the hard coating layer Polishing at least the rake face portion and the flank portion including the cutting edge ridge line portion, and measuring the surface roughness of these polished surfaces based on compliant standard JIS B0601-1994, Ra: 0.2 μm or less,
(B) Furthermore, either or both of the rake face and the flank face of the polishing surface, or the single basic shape mark and the collective mark of the single basic shape mark are distributed over both surfaces. A hard coating layer residual stress reducing pattern formed by irradiating with a laser beam by forming the single basic shape mark as a dug surface in which any one of the constituent layers of the hard coating layer is exposed,
A surface-coated cermet cutting throwaway tip with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting.
JP2006070235A 2006-03-15 2006-03-15 Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting Withdrawn JP2007245269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006070235A JP2007245269A (en) 2006-03-15 2006-03-15 Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006070235A JP2007245269A (en) 2006-03-15 2006-03-15 Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting

Publications (1)

Publication Number Publication Date
JP2007245269A true JP2007245269A (en) 2007-09-27

Family

ID=38590089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006070235A Withdrawn JP2007245269A (en) 2006-03-15 2006-03-15 Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP2007245269A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144574A1 (en) * 2011-04-20 2012-10-26 株式会社タンガロイ Coated cutting tool
CN109822631A (en) * 2019-04-04 2019-05-31 深圳市瑞沃德生命科技有限公司 Microtome knife and its processing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012144574A1 (en) * 2011-04-20 2012-10-26 株式会社タンガロイ Coated cutting tool
EP2700460A1 (en) * 2011-04-20 2014-02-26 Tungaloy Corporation Coated cutting tool
JPWO2012144574A1 (en) * 2011-04-20 2014-07-28 株式会社タンガロイ Coated cutting tool
EP2700460A4 (en) * 2011-04-20 2014-11-19 Tungaloy Corp Coated cutting tool
JP5679048B2 (en) * 2011-04-20 2015-03-04 株式会社タンガロイ Coated cutting tool
US9199311B2 (en) 2011-04-20 2015-12-01 Tungaloy Corporation Coated cutting tool
CN109822631A (en) * 2019-04-04 2019-05-31 深圳市瑞沃德生命科技有限公司 Microtome knife and its processing method
CN109822631B (en) * 2019-04-04 2023-11-03 深圳市瑞沃德生命科技有限公司 Slicer blade and processing method thereof

Similar Documents

Publication Publication Date Title
JP4863053B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP4984513B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2007160497A (en) SURFACE COATED CUTTING TOOL MADE OF CERMET HAVING PROPERTY-MODIFIED ALPHA TYPE Al2O3 LAYER OF HARD COATING LAYER HAVING EXCELLENT CRYSTAL GRAIN INTERFACE STRENGTH
JP2008137129A (en) Surface coated cutting tool
JP2007245269A (en) Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting
JP2008149390A (en) Surface coated cutting tool
JP2007245268A (en) Coated cermet throwaway cutting tip having hard coating layer exerting excellent anti-chipping performance in high-speed cutting
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2008137130A (en) Surface coated cutting tool
JP2008000881A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance and abrasion resistance in high-speed cutting of material hard to cut
JP2005205547A (en) Surface-coated cermet cutting tool having hard coating layer exhibiting superior chipping resistance in high speed continuous cutting
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888759B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888762B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007237381A (en) Surface coated cermet cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high-speed cutting
JP4788891B2 (en) Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials
JP2007118157A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4853820B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007196352A (en) Surface coated cermet cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting difficult-to-cut material
JP2007168027A (en) Surface coated cemented carbide-made cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed cutting material hard to cut
JP4857705B2 (en) Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting
JP4857752B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007111814A (en) Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work
JP2007125662A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP2007090457A (en) Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20090602