JP2007090457A - Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting - Google Patents
Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting Download PDFInfo
- Publication number
- JP2007090457A JP2007090457A JP2005280246A JP2005280246A JP2007090457A JP 2007090457 A JP2007090457 A JP 2007090457A JP 2005280246 A JP2005280246 A JP 2005280246A JP 2005280246 A JP2005280246 A JP 2005280246A JP 2007090457 A JP2007090457 A JP 2007090457A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- hard coating
- abrasive
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)に関するものである。 The present invention relates to a surface-coated cermet cutting throwaway tip (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various types of steel and cast iron. Is.
従来、一般に、図3に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取りつけ孔を有する基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al2O3層で示す)、
で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally, as shown in a schematic perspective view in FIG. 3, it is composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, and a tool at the center. On the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the base body (hereinafter collectively referred to as a chip base body) having mounting holes,
As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) layer And a Ti compound layer comprising one or more of titanium carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
It is well known that a coated cutting tip formed by vapor-depositing a hard coating layer composed of is used for continuous cutting and intermittent cutting of, for example, various types of steel and cast iron. Yes.
また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆切削チップの硬質被覆層を構成するα型Al2O3層(上部層)の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
Furthermore, it is also known that the surface of the α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above-described coated cutting tip is smoothed by wet blasting for the purpose of improving cutting performance. Yes.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成するα型Al2O3層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When it is used for cutting at a high speed exceeding 1, the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), and as a result, in a relatively short time. At present, the service life is reached.
そこで、本発明者等は、上述のような観点から、上記のα型Al2O3層が硬質被覆層の上部層を構成する被覆切削チップに着目し、特に前記α型Al2O3層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al2O3層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で20〜80質量%の炭化珪素(以下、SiCで示す)微粒を配合した研磨液を噴射して、研磨すると、前記α型Al2O3層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記α型Al2O3層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
The present inventors have, from the viewpoint as described above, focuses on coated cutting tip α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of research to improve chipping resistance of
(A) On the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting chip, 20% as a proportion of the total amount with water as a sprayed abrasive by wet blasting When a polishing liquid containing -80 mass% silicon carbide (hereinafter, referred to as SiC) fine particles is sprayed and polished, the α-type Al 2 O 3 layer is measured based on the compliant standard JIS B0601-1994 ( The following surface roughness is a measured value based on such a compliant standard), and Ra: 0.3-0.6 μm surface roughness is exhibited. As a result, the α-type Al 2 O 3 Even when a coated cutting tip whose surface was smoothed to a surface roughness of Ra: 0.3 to 0.6 μm by wet blasting was used, the cutting speed was 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.
(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al2O3層の切刃稜線部を含むすくい面および逃げ面の全面に、
反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2:0.1〜10%、
Ar:5〜60%、
H2:残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.5〜5μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.2〜1.8、すなわち、
組成式:TiOX 、
で表わした場合、
X:原子比で1.2〜1.8、
を満足する酸化チタン層を蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で20〜80質量%のSiC微粒を配合した研磨液を噴射すると、研磨材層を構成する上記酸化チタン層は、前記SiC微粒によって粉砕微粒化し、酸化チタン微粒となって前記SiC微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al2O3層の表面を研磨することになり、この結果研磨後の前記α型Al2O3層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるα型Al2O3層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face and clearance including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip described above. On the entire surface,
Reactive gas composition in volume%
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.5 to 5 μm and an oxygen ratio of 1.2 to 1.8 as measured by an Auger spectrometer,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.8 in atomic ratio
In a state where a titanium oxide layer satisfying
As in the case of (a) above, when a polishing liquid containing 20 to 80% by mass of SiC fine particles is injected as a spray abrasive in the ratio of the total amount with water, the abrasive layer is formed as described above. The surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer, wherein the titanium oxide layer is pulverized and atomized by the SiC fine particles, becomes titanium oxide fine particles and acts as an abrasive in the presence of the SiC fine particles As a result, the surface of the α-type Al 2 O 3 layer after polishing is smoothed to a surface roughness of Ra: 0.2 μm or less. When high-speed cutting was performed using a coated cutting tip in which the surface of the Al 2 O 3 layer was smoothed to a surface roughness of Ra: 0.2 μm or less, 350 m / min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.
(c)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い締め付け力で取り付けが行なわれることになり、この結果被覆切削チップの工具取り付け孔周辺部の硬質被覆層に対する圧縮応力はきわめて高いものとなるので、特に上部層を構成するα型Al2O3層は、ビッカース硬さ(Hv)で約3000の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、工具取り付け孔周辺部を研磨せず、この部分の研磨材層を残した状態にしておくと、上記の研磨材層を構成する酸化チタン層は前記α型Al2O3層に比して、相対的にきわめて低いHv:約1500の硬さをもつものであるため、工具本体への被覆切削チップの取り付けに際して、高い締め付け力の緩衝層として作用し、この結果前記α型Al2O3層に対する圧縮応力が著しく小さなものとなるなることから、剥離やチッピング発生の原因となる割れ発生が防止されるようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) As described above, the cutting speed is 350 m / min. In high-speed cutting processing exceeding 1, the load applied to the cutting edge of the coated cutting tip is extremely high. Therefore, especially in the case of milling, the coated cutting tip is attached to the tool body with a very high clamping force. As a result, the compressive stress on the hard coating layer around the tool mounting hole of the coated cutting tip becomes extremely high. In particular, the α-type Al 2 O 3 layer constituting the upper layer has a Vickers hardness. In combination with having a high hardness of about 3000 at the height (Hv), cracks are likely to occur in this, and this causes peeling and chipping in the hard coating layer. As shown in the perspective view, when the wet blasting is performed, the peripheral portion of the tool mounting hole is not polished and the abrasive layer of this portion is left. The titanium oxide layer constituting the layer has a relatively very low Hv: about 1500 in comparison with the α-type Al 2 O 3 layer, so that the coated cutting tip is attached to the tool body. Since it acts as a buffer layer with a high clamping force, and as a result, the compressive stress on the α-type Al 2 O 3 layer becomes extremely small, it is possible to prevent the occurrence of cracks that cause peeling and chipping. To become a.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成され、かつ中心部に工具取り付け孔を有するチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有するα型Al2O3層、
で構成された硬質被覆層を蒸着形成してなる被覆切削チップにおいて、
上記硬質被覆層の上部層であるα型Al2O3層の全面に、
0.5〜5μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.8、
を満足する酸化チタン層、
で構成された研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で20〜80質量%のSiC微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化酸化チタン微粒と、噴射研磨材としてのSiC微粒の共存下で、上記工具取り付け孔周辺部の研磨材層を残して、上記硬質被覆層の上部層を構成するα型Al2O3層の表面を研磨して、切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップに特徴を有するものである。
The present invention has been made on the basis of the above research results, and includes a cutting edge ridge portion of a chip base made of a WC-based cemented carbide or TiCN-based cermet and having a tool mounting hole in the center. On the entire surface and flank,
As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm,
In a coated cutting chip formed by vapor-depositing a hard coating layer composed of
On the entire surface of the α-type Al 2 O 3 layer that is the upper layer of the hard coating layer,
Having an average layer thickness of 0.5 to 5 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.8 in atomic ratio
Satisfying titanium oxide layer,
In a state where the abrasive layer composed of
In wet blasting, as a spraying abrasive, a polishing liquid containing 20 to 80% by mass of SiC fine particles in a proportion of the total amount with water is sprayed,
The upper layer of the hard coating layer is formed in the presence of the abrasive layer around the tool mounting hole in the presence of the finely ground titanium oxide particles by wet blasting of the abrasive layer and the SiC fine particles as the spray abrasive. The surface of the constituting α-type Al 2 O 3 layer is polished, and the surface roughness of the rake face and flank face including the cutting edge ridge line portion is measured based on the compliant standard JIS B0601-1994. Ra: 0.2 μm The hard coating layer as described below is characterized by a coated cutting tip that exhibits excellent chipping resistance in high-speed cutting.
以下に、この発明の被覆切削チップの硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のSiC微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、α型Al2O3層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度向上に寄与するほか、チップ基体とα型Al2O3層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
The reason why the hard coating layer and the abrasive layer of the coated cutting chip of the present invention and the SiC fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described below.
(A) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and the hard coating layer has a high temperature due to its excellent high temperature strength. In addition to contributing to strength improvement, it has a function of firmly adhering to both the chip base and the α-type Al 2 O 3 layer, thereby improving the adhesion of the hard coating layer to the chip base, but the overall average layer thickness is If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by generation of high heat. Since it becomes a cause, the whole average layer thickness was set to 3-20 micrometers.
(a−2)上部層のα型Al2O3層
上記のα型Al2O3層は、すぐれた高温硬さと耐熱性を有し、被覆切削チップの切削性能向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) α-type Al 2 O 3 layer of the upper layer The α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the cutting performance of the coated cutting tip. If the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was set to 1 to 15 μm.
(b)研磨材層
上記の通り、研磨材層を構成する酸化チタン層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したSiC微粒によって粉砕微粒化し、酸化チタン微粒となって前記SiC微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al2O3層の表面を研磨するが、この場合Tiに対する酸素の割合(原子比)を示すX値が、1.2未満では研磨材に要求される硬さを具備せしめることができないばかりでなく、ウエットブラスト時の粉砕化が過度に行なわれ過ぎて微粉末化し、研磨作用を満足に発揮することができなくなり、一方、同X値が1.8を越えると、硬さが高くなり過ぎて、層の粉砕微粒化が十分に行なわれず、相対的に粗い微粒となり、この場合も十分な研磨効果を発揮することができなくなることから、X値を1.2〜1.8と定めた。
また、その平均層厚を、0.5〜5μmとしたのは、その平均層厚が0.5μm未満では、ウエットブラスト時における粉砕化酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚が5μmを越えると、研磨液に噴射研磨材として配合したSiC微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もα型Al2O3層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive Material Layer As described above, the titanium oxide layer constituting the abrasive material layer is pulverized and atomized by SiC fine particles blended in the polishing liquid as a spray abrasive during wet blasting to form titanium oxide fine particles. In this case, the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is polished, and in this case, the X value indicating the ratio (atomic ratio) of oxygen to Ti If it is less than 1.2, not only the hardness required for the abrasive can not be provided, but it is excessively pulverized at the time of wet blasting and is finely pulverized to satisfactorily exhibit the polishing action. On the other hand, if the X value exceeds 1.8, the hardness becomes too high, and the layer is not sufficiently pulverized and pulverized, resulting in relatively coarse particles. In this case also, a sufficient polishing effect is obtained. To demonstrate From the fact that no longer can, defining the X value and 1.2 to 1.8.
Moreover, the average layer thickness was set to 0.5 to 5 μm. If the average layer thickness was less than 0.5 μm, the ratio of pulverized titanium oxide fine particles during wet blasting was too small, and the polishing function was sufficient. On the other hand, when the average layer thickness exceeds 5 μm, the balance with the SiC fine particles blended in the polishing liquid as a jet abrasive is lost, and the amount is relatively too large. This is based on the reason that the surface of the α-type Al 2 O 3 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less in any case.
(c)研磨液のSiC微粒の割合
研磨液のSiC微粒には、ウエットブラスト時に研磨材層を構成する粉砕化酸化チタン微粒と共存した状態で、α型Al2O3層の表面を研磨する作用があるが、その割合が水との合量に占める割合で20質量%未満でも、また80質量%を越えても研磨機能が急激に低下するようになることから、その割合を20〜80質量%と定めた。
(C) Ratio of SiC fine particles of polishing liquid The surface of the α-type Al 2 O 3 layer is polished on the SiC fine particles of the polishing liquid in the state of coexisting with the pulverized titanium oxide fine particles constituting the abrasive layer during wet blasting. Even if the ratio is less than 20% by mass or more than 80% by mass with respect to the total amount with water, the polishing function will be abruptly reduced. The mass% was determined.
この発明の被覆切削チップは、硬質被覆層の上部層を構成するα型Al2O3層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、前記α型Al2O3層に対する圧縮応力が著しく小さなものとなり、この結果剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip of the present invention, the rake face and flank face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer are polished to a surface roughness of Ra: 0.2 μm or less. In addition, since the abrasive layer existing around the tool mounting hole acts as a buffer layer having a high clamping force, which is indispensable in high-speed cutting when the coated cutting tip is attached to the tool body, the α-type Al 2 Combined with the fact that the compressive stress on the O 3 layer is extremely small and, as a result, the generation of cracks that cause peeling and chipping is prevented, cutting of various steels and cast iron, etc. The speed is 350 m / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.
つぎに、この発明の被覆切削チップを実施例により具体的に説明する。 Next, the coated cutting tip of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.
ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表6に示される目標層厚のTi化合物層およびα型Al2O3層を硬質被覆層の下部層および上部層として蒸着形成し(図3参照)、
ついで、表4に示される条件で研磨材層である酸化チタン層(TiOX層)を、同じく表6に示される組み合わせおよび目標層厚で蒸着形成し(図2参照)、
引き続いて、上記の研磨材層形成の被覆切削チップに、表5に示されるブラスト条件で、かつ表6に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記α型Al2O3層(上部層)の切刃稜線部を含むすくい面および逃げ面を、同じく表6に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer and α-type Al 2 O 3 layer having the target layer thicknesses shown in Table 6 are vapor-deposited as the lower layer and the upper layer of the hard coating layer under the conditions shown in FIG. (See Fig. 3)
Next, a titanium oxide layer (TiO X layer) which is an abrasive layer under the conditions shown in Table 4 is formed by vapor deposition with the combinations and target layer thicknesses shown in Table 6 (see FIG. 2).
Subsequently, the coated cutting tip for forming the abrasive layer was wet-blasted under the blast conditions shown in Table 5 and in the combinations shown in Table 6, so that the abrasive layer was present around the tool mounting hole. In this state, the rake face and flank face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer (upper layer) are polished to the surface roughness shown in Table 6 to obtain the coated cutting tip 1 of the present invention. To 13 were produced (see FIG. 1).
また、比較の目的で、表7に示される通り、酸化チタン層(TiOX層)からなる研磨材層の形成を行なわないで、ウエットブラストを施す以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成するα型Al2O3層のウエットブラスト後の表面粗さを表7に示した。
For comparison purposes, as shown in Table 7, a conventional coated cutting tip 1 to 3 under the same conditions except that wet blasting is performed without forming an abrasive layer composed of a titanium oxide layer (TiO X layer). 13 were produced respectively.
Table 7 shows the surface roughness after wet blasting of the α-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cutting chips 1 to 13 obtained as a result.
また、上記本発明被覆切削チップ1〜13の硬質被覆層および研磨材層の組成、さらに従来被覆切削チップ1〜13の硬質被覆層の組成を、それぞれ厚さ方向中央部をオージェ分光分析装置で測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに同構成層の厚さを、それぞれ走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 In addition, the composition of the hard coating layer and the abrasive layer of the above-described coated cutting chips 1 to 13 of the present invention, and the composition of the hard coating layer of the conventional coated cutting chips 1 to 13 are each measured with an Auger spectroscopic analyzer at the center in the thickness direction. When measured, all showed substantially the same composition as the target composition, and the thickness of the same constituent layer was measured using a scanning electron microscope (longitudinal section measurement). The same average layer thickness (average value of 5-point measurement) was shown.
つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCr440Hの丸棒、
切削速度:480m/min、
切り込み:3mm、
送り:0.15mm/rev、
切削時間:8分、
の条件(切削条件Aという)での合金鋼の湿式連続高速切削試験(通常の切削速度は200m/min)、
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:430m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:5分、
の条件(切削条件Bという)でのダクタイル鋳鉄の湿式断続高速切削試験(通常の切削速度は250m/min)、さらに、
被削材:JIS・SNCM420の丸棒、
切削速度:450m/min、
切り込み:3mm、
送り:0.25mm/rev、
切削時間:6分、
の条件(切削条件Cという)での合金鋼の湿式連続高速切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表8に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCr440H round bar,
Cutting speed: 480 m / min,
Incision: 3mm,
Feed: 0.15mm / rev,
Cutting time: 8 minutes
Wet continuous high-speed cutting test (normal cutting speed is 200 m / min) of alloy steel under the conditions (referred to as cutting condition A),
Work material: JIS / FCD450 lengthwise equidistant 4 round bars with flutes,
Cutting speed: 430 m / min,
Cutting depth: 2mm,
Feed: 0.3mm / rev,
Cutting time: 5 minutes
Wet intermittent high-speed cutting test (normal cutting speed is 250 m / min) of ductile cast iron under the above conditions (referred to as cutting conditions B),
Work material: JIS / SNCM420 round bar,
Cutting speed: 450 m / min,
Incision: 3mm,
Feed: 0.25mm / rev,
Cutting time: 6 minutes
Wet continuous high-speed cutting test (normal cutting speed is 200 m / min) of alloy steel under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 8.
表6〜8に示される結果から、本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するα型Al2O3層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、350m/minを越える高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するα型Al2O3層の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い締め付け力を必要とすることと相俟って、前記α型Al2O3層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 6 to 8, the coated cutting tips 1 to 13 of the present invention each have a rake face and a flank face including the cutting edge ridge portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. However, when Ra is polished to a surface roughness of 0.2 μm or less, and the abrasive layer existing around the tool mounting hole has a high cutting speed exceeding 350 m / min when the coated cutting tip is attached to the tool body, Acts as an indispensable buffer layer with high clamping force, preventing the occurrence of cracks that can cause peeling and chipping, and exhibits excellent chipping resistance in high-speed cutting of steel and cast iron, and is excellent over a long period of time. In contrast, the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer has a surface roughness Ra: 0.3 to 0.6 μm. In 13 Both the high-speed cutting of over 350 meters / min, I coupled with the fact that require high clamping force to the tool mounting, chipping occurs in the α-type the Al 2 O 3 layer, a relatively short time using life It is clear that
上述のように、この発明の被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip of the present invention can be used not only for continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron, but also when cutting is performed at a high speed exceeding 350 m / min. Because it shows excellent chipping resistance and exhibits excellent cutting performance over a long period of time, it can sufficiently satisfy the high performance of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction. Is.
Claims (1)
下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
で構成された硬質被覆層を蒸着形成してなる、表面被覆サーメット製切削スローアウエイチップにおいて、
上記硬質被覆層の上部層である酸化アルミニウム層の全面に、
0.5〜5μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.8、
を満足する酸化チタン層、
で構成された研磨材層を蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で20〜80質量%の炭化珪素微粒を配合した研磨液を噴射し、
上記の研磨材層のウエットブラストによる粉砕化酸化チタン微粒と、噴射研磨材としての炭化珪素微粒の共存下で、上記工具取り付け孔周辺部の研磨材層を残して、上記硬質被覆層の上部層を構成する酸化アルミニウム層の表面を研磨して、切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ。 It is composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet, and the entire rake face and flank face including the cutting edge ridge line part of the chip base having a tool attachment hole in the center part,
The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has an overall average layer thickness of 3 to 20 μm. Having a Ti compound layer,
As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
In the cutting throwaway tip made of surface-covered cermet formed by vapor-depositing a hard coating layer composed of
On the entire surface of the aluminum oxide layer that is the upper layer of the hard coating layer,
Having an average layer thickness of 0.5 to 5 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2-1.8,
Satisfying titanium oxide layer,
In a state where the abrasive layer composed of
In wet blasting, as a spraying abrasive, a polishing liquid containing 20 to 80% by mass of silicon carbide fine particles in a proportion of the total amount with water is sprayed,
The upper layer of the hard coating layer in the presence of the abrasive layer around the tool mounting hole in the coexistence of the ground titanium oxide fine particles by wet blasting of the abrasive layer and the silicon carbide fine particles as the spray abrasive The surface roughness of the rake face and the flank face including the cutting edge ridge line portion was polished, and the surface roughness Ra was set to 0.2 μm or less in accordance with JIS / B0601-1994. A surface-coated cermet cutting throwaway tip with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005280246A JP2007090457A (en) | 2005-09-27 | 2005-09-27 | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005280246A JP2007090457A (en) | 2005-09-27 | 2005-09-27 | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007090457A true JP2007090457A (en) | 2007-04-12 |
Family
ID=37976724
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005280246A Withdrawn JP2007090457A (en) | 2005-09-27 | 2005-09-27 | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007090457A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575682A (en) * | 2020-05-21 | 2020-08-25 | 江西江钨硬质合金有限公司 | Numerical control coating blade treated by surface double-color modification method and treatment method thereof |
-
2005
- 2005-09-27 JP JP2005280246A patent/JP2007090457A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111575682A (en) * | 2020-05-21 | 2020-08-25 | 江西江钨硬质合金有限公司 | Numerical control coating blade treated by surface double-color modification method and treatment method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPWO2012063515A1 (en) | Surface coated cutting tool | |
JP4853612B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP2007118155A (en) | Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007090457A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP4900652B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4853822B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4883389B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4857711B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4853613B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP4900653B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2007118157A (en) | Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007111814A (en) | Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work | |
JP4888688B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4888759B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857752B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857751B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4888689B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4888762B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4873289B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4853621B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857705B2 (en) | Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting | |
JP2007090471A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high | |
JP2007090470A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high | |
JP2007118108A (en) | Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007090455A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20081202 |