JP4888689B2 - Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting - Google Patents

Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting Download PDF

Info

Publication number
JP4888689B2
JP4888689B2 JP2005321178A JP2005321178A JP4888689B2 JP 4888689 B2 JP4888689 B2 JP 4888689B2 JP 2005321178 A JP2005321178 A JP 2005321178A JP 2005321178 A JP2005321178 A JP 2005321178A JP 4888689 B2 JP4888689 B2 JP 4888689B2
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
coating layer
abrasive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005321178A
Other languages
Japanese (ja)
Other versions
JP2007125662A (en
Inventor
哲彦 本間
央 原
西田  真
斉 功刀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005321178A priority Critical patent/JP4888689B2/en
Publication of JP2007125662A publication Critical patent/JP2007125662A/en
Application granted granted Critical
Publication of JP4888689B2 publication Critical patent/JP4888689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)の表面研磨方法に関するものである。 The present invention is a cutting throwaway tip made of a surface-coated cermet without a hole (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various steels and cast irons. ) Surface polishing method .

従来、一般に、図4に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、α型Al23層で示す)、
上記下部層および上部層で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが知られている。
また、上記の被覆切削チップが、図5に概略斜視図で示される通り、工具本体、例えばシャンク部の先端部にシートを介して載置され、チップ上面にクランク駒の先端部を当接させ、前記クランク駒後部に設けたクランプねじの締め込みにより交換自在に挟み締め固定した状態で、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることも良く知られている。
Conventionally, in general, as shown in a schematic perspective view in FIG. 4, a substrate composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet (hereinafter referred to as these). On the entire surface of the rake face and flank including the cutting edge ridge line portion of the chip base)
As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as TiCO) layer And a Ti compound layer comprising one or more of titanium carbonitride oxide (hereinafter referred to as TiCNO) layers and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, an aluminum oxide layer (hereinafter referred to as an α-type Al 2 O 3 layer) having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
A coated cutting tip formed by vapor-depositing a hard coating layer composed of the lower layer and the upper layer is known, and this coated cutting tip is known.
Further, as shown in the schematic perspective view in FIG. 5, the above-mentioned coated cutting tip is placed through a sheet on the tip of the tool body, for example, the shank, and the tip of the crank piece is brought into contact with the upper surface of the tip. It is also well known that, for example, it is used for continuous cutting and intermittent cutting of various steels, cast irons, etc. in a state where the clamp screw provided at the rear of the crank piece is clamped and fixed in a replaceable manner.

また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、上記の被覆切削チップの硬質被覆層を構成するα型Al23層(上部層)の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
特開平6−31503号公報 特開平6−8010号公報 特開平8−276305号公報
In the above-mentioned coated cutting tip, the constituent layer of the hard coating layer generally has a granular crystal structure, and the TiCN layer constituting the Ti compound layer as the lower layer is intended to improve the strength of the layer itself. In a normal chemical vapor deposition apparatus, a gas mixture containing organic carbonitrides is used as a reaction gas, and it is formed by chemical vapor deposition at an intermediate temperature range of 700 to 950 ° C. so that it has a vertically grown crystal structure. It is also known to do.
Furthermore, it is also known that the surface of the α-type Al 2 O 3 layer (upper layer) constituting the hard coating layer of the above-described coated cutting tip is smoothed by wet blasting for the purpose of improving cutting performance. Yes.
Japanese Unexamined Patent Publication No. 6-31503 Japanese Patent Laid-Open No. 6-8010 JP-A-8-276305

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成するα型Al23層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When it is used for cutting at a high speed exceeding 1, the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), and as a result, in a relatively short time. At present, the service life is reached.

そこで、本発明者等は、上述のような観点から、上記のα型Al23層が硬質被覆層の上部層を構成する被覆切削チップに着目し、特に前記α型Al23層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム(以下、Al23で示す)微粒を配合した研磨液を噴射して、研磨すると、前記α型Al23層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記α型Al23層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
The present inventors have, from the viewpoint as described above, focuses on coated cutting tip α type the Al 2 O 3 layer described above constituting the upper layer of the hard coating layer, in particular the α-type the Al 2 O 3 layer As a result of research to improve chipping resistance of
(A) On the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting chip, the ratio of the wet blasting material to the total amount of water as a spraying abrasive is 15 When the polishing liquid containing -60 mass% aluminum oxide (hereinafter referred to as Al 2 O 3 ) fine particles is sprayed and polished, the α-type Al 2 O 3 layer is based on the compliant standard JIS B0601-1994. (The following surface roughness indicates all measured values based on the standard), and Ra: 0.3-0.6 μm surface roughness is obtained. Even when a coated cutting tip having a surface roughness of Ra: 0.3 to 0.6 μm smoothed by wet blasting on the surface of the 2 O 3 layer was used, the cutting speed was 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.

(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面の全面に、通常の化学蒸着装置を用い、通常の条件、例えば表3に示される条件で、かつ、0.5〜5μmの平均層厚で、窒化チタン(以下、TiNで示す)層を化学蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射すると、上記TiN層は、前記Al23微粒によって粉砕微粒化し、TiN微粒となって前記Al23微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al23層の表面を研磨することになり、この結果研磨後の前記α型Al23層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるα型Al23層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face and clearance including the cutting edge ridge line portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip described above. A titanium nitride (hereinafter referred to as TiN) layer is formed on the entire surface using a normal chemical vapor deposition apparatus under normal conditions, for example, the conditions shown in Table 3 and an average layer thickness of 0.5 to 5 μm. With chemical vapor deposition formed,
As in the case of (a) above, when a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles is injected as a spray abrasive in the ratio of the total amount with water as a spray abrasive, the TiN layer is The α 2 Al 3 O 3 layer constituting the upper layer of the hard coating layer acts as an abrasive in the coexistence of the Al 2 O 3 fine particles by being pulverized and atomized by the Al 2 O 3 fine particles. As a result, the surface of the α-type Al 2 O 3 layer after polishing is smoothed to a surface roughness of Ra: 0.2 μm or less, and this is the upper layer. When high-speed cutting was performed using a coated cutting tip in which the surface of the α-type Al 2 O 3 layer was smoothed to a surface roughness of Ra: 0.2 μm or less, 350 m / min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.

(c)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い挟み締め力で取り付けが行なわれることになり、この結果被覆切削チップのクランプ駒当接部の硬質被覆層に対する圧縮応力はきわめて高いものとなるばかりでなく、これに対応して、切削加工時にクランプ駒当接部における機械的震動はきわめて強力なものとなるので、特に上部層を構成するα型Al23層は、ビッカース硬さ(Hv)で約3000の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、クランプ駒当接部周辺部を研磨せず、この部分のTiN層を残した状態にしておくと、上記の研磨材層を構成するTiN層(以下、TiN研磨材層という)は、前記α型Al23層に比して、相対的にきわめて低いHv:約1950の硬さをもつほか、高強度を具備するものであるため、図3に概略斜視図で示される通り、工具本体へのクランプ駒による被覆切削チップの取り付けに際して、高い挟み締め力の緩衝層として作用し、この結果前記α型Al23層に対する圧縮応力を著しく緩和し、さらに、切削加工時に発生する強力な機械的震動の前記クランプ駒への伝達を吸収し、緩和する防震層としても作用し、これによって前記α型Al23層に対する前記クランプ駒による震動攻撃が緩和されることから、前記α型Al23層における剥離やチッピング発生の原因となる割れ発生が防止されるようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) As described above, the cutting speed is 350 m / min. In high-speed cutting that exceeds 1, the load applied to the cutting edge of the coated cutting tip becomes extremely high. Especially in the case of milling, when attaching the coated cutting tip to the tool body, the clamping force is extremely high. As a result, not only the compressive stress on the hard coating layer of the clamp piece abutting portion of the coated cutting tip is extremely high, but also the clamp piece abutting portion during cutting is correspondingly applied. In particular, the α-type Al 2 O 3 layer constituting the upper layer has a high hardness of about 3000 in terms of Vickers hardness (Hv). Cracks are likely to occur, and this causes peeling and chipping of the hard coating layer. As shown in the schematic perspective view of FIG. At this time, if the peripheral portion of the clamp piece abutting portion is not polished and the TiN layer of this portion is left, the TiN layer constituting the abrasive layer (hereinafter referred to as the TiN abrasive layer) Compared with the α-type Al 2 O 3 layer, the tool has a relatively very low Hv: about 1950 hardness and high strength. As shown in the schematic perspective view of FIG. When mounting the coated cutting tip with the clamp piece to the main body, it acts as a buffer layer with a high clamping force. As a result, the compressive stress on the α-type Al 2 O 3 layer is remarkably relieved, and the strength generated during cutting It acts as an anti-seismic layer that absorbs and mitigates the transmission of mechanical vibrations to the clamp piece, thereby mitigating the vibration attack by the clamp piece against the α-type Al 2 O 3 layer. Type Al 2 The generation of cracks that cause peeling and chipping in the O 3 layer should be prevented.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成されチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有するα型Al23層、
上記下部層および上部層で構成された硬質被覆層を化学蒸着形成してなり、かつ、工具本体にクランプ駒による挟み締めにより交換自在に取り付けられる穴なし被覆切削チップの表面研磨方法にして
上記硬質被覆層の上部層であるα型Al23層の全面に、0.5〜5μmの平均層厚で、TiN研磨材層を化学蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl23微粒を配合した研磨液を噴射し、
上記のTiN研磨材層が噴射研磨材であるAl 2 3 微粒の噴射により粉砕微粒化してなる粉砕化TiN微粒と、噴射研磨材としてのAl23微粒の共存下で、上記クランプ駒当接部周辺部のTiN研磨材層を残して、上記硬質被覆層の上部層を構成するα型Al23層の表面を研磨して、前記α型Al 2 3 層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップの表面研磨方法に特徴を有するものである。
The present invention was made based on the above research results, and is composed of a WC-based cemented carbide or TiCN-based cermet, and includes the cutting edge ridge line portion of the chip base and the entire flank and flank.
As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm,
As an upper layer, an α-type Al 2 O 3 layer having an average layer thickness of 1 to 15 μm,
The surface coating method of the hole-less coated cutting tip , which is formed by chemical vapor deposition of the hard coating layer composed of the lower layer and the upper layer, and can be attached to the tool body in a replaceable manner by clamping with a clamp piece,
In a state where a TiN abrasive layer is formed by chemical vapor deposition on the entire surface of the α-type Al 2 O 3 layer that is the upper layer of the hard coating layer, with an average layer thickness of 0.5 to 5 μm
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed,
And Al 2 O 3 milled TiN fine made by grinding atomized by atomization of injection is TiN abrasive layer is injection abrasive described above, in the presence of Al 2 O 3 fine as injection abrasive, the clamp Komato Grinding the surface of the α-type Al 2 O 3 layer that constitutes the upper layer of the hard coating layer, leaving the TiN abrasive layer around the contact portion , and cutting edge ridges of the α-type Al 2 O 3 layer The surface roughness of the rake face and the flank face including JIS B0601-1994 is measured by Ra: 0.2 μm or less, and the hard coating layer exhibits excellent chipping resistance in high-speed cutting. It has a feature in the surface polishing method of the coated cutting tip.

以下に、この発明の被覆切削チップの表面研磨方法において、硬質被覆層およびTiN研磨材層、さらにウエットブラストで用いられる研磨液のAl23微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、α型Al23層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、チップ基体とα型Al23層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
Hereinafter, in the surface polishing method of the coated cutting tip of the present invention, the reason why the hard coating layer, the TiN abrasive layer, and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described. To do.
(A) Hard coating layer (a-1) Ti compound layer of lower layer The Ti compound layer exists as a lower layer of the α-type Al 2 O 3 layer, and the high temperature strength of the hard coating layer is high due to its excellent high-temperature strength. In addition to contributing to strength improvement, it has a function of firmly adhering to both the chip base and the α-type Al 2 O 3 layer, thereby improving the adhesion of the hard coating layer to the chip base, but the overall average layer thickness is If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation particularly in high-speed cutting accompanied by generation of high heat. Since it becomes a cause, the whole average layer thickness was set to 3-20 micrometers.

(a−2)上部層のα型Al23
上記のα型Al23層は、すぐれた高温硬さと耐熱性を有し、被覆切削チップの切削性能向上に寄与するが、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) α-type Al 2 O 3 layer of the upper layer The α-type Al 2 O 3 layer has excellent high-temperature hardness and heat resistance, and contributes to improving the cutting performance of the coated cutting tip. If the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping tends to occur. The average layer thickness was set to 1 to 15 μm.

(b)TiN研磨材層
上記の通り、TiN研磨材層は、ウエットブラスト時に、研磨液に噴射研磨材として配合したAl23微粒によって粉砕微粒化し、TiN微粒となって前記Al23微粒との共存下で研磨材として作用し、硬質被覆層の上部層を構成するα型Al23層の表面を研磨するが、この場合、その平均層厚が0.5μm未満では、ウエットブラスト時における粉砕化TiN微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚が5μmを越えると、研磨液に噴射研磨材として配合したAl23微粒とのバランスがくずれて、相対的に多くなり過ぎ、この場合も研磨機能が急激に低下するようになり、いずれの場合もα型Al23層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由で、その平均層厚を0.5〜5μmと定めた。
さらに、その平均層厚を0.5μm以上としたのは、0.5μm未満の平均層厚ではクランプ駒当接部周辺部TiN研磨材層による挟み締め力緩衝効果および防震効果を十分に発揮することができないという理由にもよるものである。
(B) TiN abrasive layer As described above, TiN abrasive layer during wet blasting, the Al 2 O 3 fine formulated as injection abrasive in the polishing liquid milled micronized, the Al 2 O 3 becomes TiN fine Acts as an abrasive in the presence of fine particles, and polishes the surface of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer. In this case, if the average layer thickness is less than 0.5 μm, the wet When the ratio of the pulverized TiN fine particles at the time of blasting is too small, the polishing function cannot be sufficiently exerted. On the other hand, when the average layer thickness exceeds 5 μm, Al 2 O blended in the polishing liquid as a jetting abrasive is used. 3 The balance with the fine particles is lost and the amount is relatively too large. In this case as well, the polishing function suddenly decreases. In either case, the surface of the α-type Al 2 O 3 layer is Ra: 0.2 μm or less. Polish to a surface roughness of Therefore, the average layer thickness was set to 0.5 to 5 μm.
Furthermore, the average layer thickness of 0.5 μm or more is sufficient when the average layer thickness is less than 0.5 μm, and the clamping force buffering effect and the anti-seismic effect of the TiN abrasive layer around the clamp piece abutting part are fully demonstrated. It's also because you can't.

(c)研磨液のAl23微粒の割合
研磨液のAl23微粒には、ウエットブラスト時にTiN研磨材層の粉砕化TiN微粒と共存した状態で、α型Al23層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing solution of (c) polishing liquid, in a state where at the time of wet blast coexists with pulverized TiN fine of TiN abrasive layer, the α type the Al 2 O 3 layer There is an action to polish the surface, but even if the ratio is less than 15% by mass or more than 60% by mass with respect to the total amount with water, the polishing function will rapidly decrease, so that ratio Was determined to be 15 to 60% by mass.

この発明の方法で表面研磨された被覆切削チップは、硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらにクランプ駒当接部周辺部に存在するTiN研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い挟み締め力の緩衝層として作用するほか、切削加工時に発生する強力な機械的震動の防震層としても作用することから、前記α型Al23層に対する圧縮応力が著しく緩和され、かつ、前記クランプ駒による震動攻撃がきわめて小さなものとなり、この結果前記α型Al23層における剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 In the coated cutting tip surface-polished by the method of the present invention, the rake face and flank face including the cutting edge ridge portion of the α-type Al 2 O 3 layer constituting the upper layer of the hard coating layer have a Ra: 0.2 μm or less. The TiN abrasive layer, which is polished to the surface roughness of the clamp piece and is present in the periphery of the clamp piece contact portion, serves as a buffer layer with high clamping force that is indispensable for high-speed cutting when attaching the coated cutting tip to the tool body. In addition to acting, it also acts as an anti-vibration layer for strong mechanical vibrations that occur during cutting, so the compressive stress on the α-type Al 2 O 3 layer is remarkably relieved, and vibration attacks by the clamp pieces are extremely becomes small, I result the α-type Al 2 O 3 cooperation with and be like crack is prevented to cause peeling and chipping in layers, cutting pressure of various kinds of steel and cast iron The cutting speed is 350m / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.

つぎに、この発明の被覆切削チップの表面研磨方法を実施例により具体的に説明する。 Next, the method for polishing the surface of the coated cutting tip according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.

ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)に示される条件にて、表5に示される目標層厚のTi化合物層およびα型Al23層を硬質被覆層の下部層および上部層として蒸着形成し(図4参照)、
ついで、同じく表3に示されるTiN層形成条件でTiN研磨材層を、同じく表5に示される目標層厚で蒸着形成し(図2参照)、
引き続いて、上記のTiN研磨材層形成の被覆切削チップに、表4に示されるブラスト条件で、かつ表5に示される組み合わせでウエットブラストを施して、クランプ駒当接部周辺部TiN研磨材層を存在させた状態で、前記α型Al23層(上部層)の切刃稜線部を含むすくい面および逃げ面を、同じく表5に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. The Ti compound layer and the α-type Al 2 O 3 layer having the target layer thicknesses shown in Table 5 are vapor-deposited as the lower layer and the upper layer of the hard coating layer under the conditions shown in FIG. (See Fig. 4)
Next, a TiN abrasive material layer was formed by vapor deposition with the target layer thickness also shown in Table 5 under the TiN layer formation conditions shown in Table 3 (see FIG. 2).
Subsequently, the coated cutting tip for forming the TiN abrasive layer is subjected to wet blasting under the blast conditions shown in Table 4 and in the combinations shown in Table 5, and the TiN abrasive around the periphery of the clamp piece abutting portion In the state where the layer exists, the rake face and the flank face including the cutting edge ridge line portion of the α-type Al 2 O 3 layer (upper layer) are polished to the surface roughness shown in Table 5 as well. Coated cutting tips 1 to 13 were produced (see FIG. 1).

また、比較の目的で、表6に示される通り、上記TiN研磨材層の形成を行なわないで、ウエットブラストを硬質被覆層のα型Al23層の表面に直接施す以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成するα型Al23層のウエットブラスト後の表面粗さを表6に示した。
For comparison purposes, as shown in Table 6, the same conditions except that the TiN abrasive layer is not formed and wet blasting is directly applied to the surface of the α-type Al 2 O 3 layer of the hard coating layer. Conventionally, the coated cutting chips 1 to 13 were manufactured.
Table 6 shows the surface roughness after wet blasting of the α-type Al 2 O 3 layer constituting the hard coating layer of the conventional coated cutting chips 1 to 13 obtained as a result.

また、上記本発明被覆切削チップ1〜13の硬質被覆層およびTiN研磨材層の組成、さらに従来被覆切削チップ1〜13の硬質被覆層の組成を、それぞれ厚さ方向中央部をオージェ分光分析装置で測定したところ、いずれも目標組成と実質的に同じ組成を示し、さらに同構成層の厚さを、走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, the composition of the hard coating layer and the TiN abrasive layer of the present invention coated cutting tips 1 to 13 and the composition of the hard coating layer of the conventional coated cutting chips 1 to 13 are respectively set at the center in the thickness direction by an Auger spectrometer. As a result of measurement, all showed substantially the same composition as the target composition, and when the thickness of the same constituent layer was measured using a scanning electron microscope (longitudinal section measurement), both were substantially the same as the target layer thickness. The same average layer thickness (average value of 5-point measurement) was shown.

つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、それぞれ図3,5に示される通り、いずれも工具鋼製バイト(工具本体)のシャンク先端部にクランプ駒のクランプねじによる挟み締めにより取り付けた状態で、
被削材:JIS・SCM420の長さ方向等間隔4本縦溝入り丸棒、
切削速度:450m/min、
切り込み:2mm、
送り:0.2mm/rev、
切削時間:6分、
の条件(切削条件Aという)での合金鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、
被削材:JIS・S50Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:430m/min、
切り込み:2mm、
送り:0.3mm/rev、
切削時間:9分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・FC350の丸棒、
切削速度:550m/min、
切り込み:2mm、
送り:0.35mm/rev、
切削時間:12分、
の条件(切削条件Cという)での普通鋳鉄の乾式連続高速切削試験(通常の切削速度は250m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, as for the various coated cutting tips of the present invention coated cutting tips 1 to 13 and the conventional coated cutting tips 1 to 13, respectively, as shown in FIGS. In a state where it is attached to the tip of the shank by clamping with the clamp screw of the clamp piece,
Work material: JIS · SCM420 lengthwise equal four round grooved round bars,
Cutting speed: 450 m / min,
Cutting depth: 2mm,
Feed: 0.2mm / rev,
Cutting time: 6 minutes
Dry interrupted high-speed cutting test of alloy steel under the above conditions (referred to as cutting condition A) (normal cutting speed is 200 m / min),
Work material: JIS / S50C lengthwise equal 4 round grooved round bars,
Cutting speed: 430 m / min,
Cutting depth: 2mm,
Feed: 0.3mm / rev,
Cutting time: 9 minutes
Dry intermittent high speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting conditions B),
Work material: JIS / FC350 round bar,
Cutting speed: 550 m / min,
Cutting depth: 2mm,
Feed: 0.35mm / rev,
Cutting time: 12 minutes,
A dry continuous high-speed cutting test (normal cutting speed is 250 m / min) of normal cast iron under the above conditions (referred to as cutting condition C), and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 7.

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

Figure 0004888689
Figure 0004888689

表5〜7に示される結果から、この発明の方法によって表面研磨された本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するα型Al23層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらにクランプ駒当接部周辺部に存在するTiN研磨材層が、工具本体への被覆切削チップの取り付けに際しては、350m/minを越える高速切削加工では不可欠の高い挟み締め力の緩衝層として作用し、さらに切削加工時に発生する強力な機械的震動の防震層としても作用することから、前記α型Al23層に対する圧縮応力が著しく緩和され、かつ、前記クランプ駒による震動攻撃がきわめて小さなものとなり、この結果前記α型Al23層における剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するα型Al23層の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い挟み締め力を必要とすることと相俟って、前記α型Al23層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 5 to 7, the coated cutting tips 1 to 13 of the present invention, which were surface-polished by the method of the present invention, all have an α-type Al 2 O 3 layer cutting edge constituting the upper layer of the hard coating layer. The rake face and flank face including the ridge line part are polished to a surface roughness of Ra: 0.2 μm or less, and the TiN abrasive layer existing in the periphery of the clamp piece abutting part is used to apply the coated cutting tip to the tool body. When mounting, it acts as a buffer layer of high clamping force, which is indispensable for high-speed cutting processing exceeding 350 m / min, and also acts as a vibration-proof layer for strong mechanical vibration generated during cutting processing. compressive stress to the Al 2 O 3 layer is remarkably relaxed, and vibration attack by the clamp piece becomes extremely small, peeling or chipping occurred in a result the α type the Al 2 O 3 layer The upper layer of the hard coating layer is configured to prevent the occurrence of cracking, which shows excellent chipping resistance during high-speed cutting of steel and cast iron, and excellent cutting performance over a long period of time. In the conventional coated cutting tips 1 to 13 in which the surface roughness of the α-type Al 2 O 3 layer is Ra: 0.3 to 0.6 μm, all of them are used for tool attachment in high-speed cutting processing exceeding 350 m / min. It is clear that chipping occurs in the α-type Al 2 O 3 layer in combination with the need for a high clamping force, leading to a service life in a relatively short time.

上述のように、この発明の方法によって表面研磨された本発明被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip of the present invention, which has been surface-polished by the method of the present invention, has a cutting speed of 350 m / min, in addition to continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. It exhibits excellent chipping resistance even when performed at high speeds exceeding it, and exhibits excellent cutting performance over a long period of time. It can cope with cost reduction sufficiently.

この発明の方法によって表面研磨された本発明被覆切削チップの硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of hard coating layer of this invention coated cutting chip surface-polished by the method of this invention . この発明の方法におけるTiN研磨材層蒸着形成後の被覆切削チップTiN研磨材層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of TiN abrasive | polishing material layer of the covering cutting chip after TiN abrasive | polishing material vapor deposition formation in the method of this invention . この発明の方法によって表面研磨された本発明被覆切削チップの工具本体への取りつけ態様を示す概略斜視図である。It is a schematic perspective view which shows the attachment aspect to the tool main body of this invention cutting chip | tip surface-polished by the method of this invention . 従来被覆切削チップの硬質被覆層の一部を切り欠いて示した概略斜視図である。It is the schematic perspective view which notched and showed a part of hard coating layer of the conventional coated cutting chip . 従来被覆切削チップの工具本体への取りつけ態様を示す概略斜視図である。It is a schematic perspective view which shows the attachment aspect to the tool main body of the conventional coated cutting tip.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成されたチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層、
上記下部層および上部層で構成された硬質被覆層を化学蒸着形成してなり、かつ、工具本体にクランプ駒による挟み締めにより交換自在に取り付けられる穴なし表面被覆サーメット製切削スローアウエイチップの表面研磨方法にして
上記硬質被覆層の上部層である酸化アルミニウム層の全面に、0.5〜5μmの平均層厚を有する窒化チタン層で構成された研磨材層を化学蒸着形成した状態で、
ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層が噴射研磨材である酸化アルミニウム微粒の噴射により粉砕微粒化してなる粉砕化窒化チタン微粒と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記クランプ駒当接部周辺部の上記研磨材層を残して、上記硬質被覆層の上部層を構成する酸化アルミニウム層の表面を研磨して、前記酸化アルミニウム層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する穴なし表面被覆サーメット製切削スローアウエイチップの表面研磨方法
On the entire rake face and flank face including the cutting edge ridge line portion of the chip base composed of tungsten carbide base cemented carbide or titanium carbonitride base cermet,
The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has an overall average layer thickness of 3 to 20 μm. Having a Ti compound layer,
As an upper layer, an aluminum oxide layer having an average layer thickness of 1 to 15 μm and having an α-type crystal structure in a state of chemical vapor deposition,
Surface polishing of a cutting throwaway tip made of surface-covered cermet without holes, which is formed by chemical vapor deposition of the hard coating layer composed of the lower layer and the upper layer, and can be attached to the tool body by clamping with a clamp piece. In the way
In a state where an abrasive layer composed of a titanium nitride layer having an average layer thickness of 0.5 to 5 μm is formed by chemical vapor deposition on the entire surface of the aluminum oxide layer which is the upper layer of the hard coating layer,
In wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed,
In the presence of the pulverized titanium nitride fine particles formed by pulverizing and atomizing the aluminum oxide fine particles, which are spray abrasive materials, and the aluminum oxide fine particles as the spray abrasive material, the periphery of the clamp piece contact portion The surface of the aluminum oxide layer that constitutes the upper layer of the hard coating layer is polished, leaving the abrasive layer, and the surface roughness of the rake face and flank surface including the cutting edge ridge portion of the aluminum oxide layer is increased. The measurement based on JIS / B0601-1994, Ra: 0.2 μm or less, the hard coating layer is made of surface-coated cermet without hole that exhibits excellent chipping resistance in high-speed cutting. Surface polishing method for throwaway tip.
JP2005321178A 2005-11-04 2005-11-04 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting Active JP4888689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005321178A JP4888689B2 (en) 2005-11-04 2005-11-04 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005321178A JP4888689B2 (en) 2005-11-04 2005-11-04 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Publications (2)

Publication Number Publication Date
JP2007125662A JP2007125662A (en) 2007-05-24
JP4888689B2 true JP4888689B2 (en) 2012-02-29

Family

ID=38148753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005321178A Active JP4888689B2 (en) 2005-11-04 2005-11-04 Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP4888689B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112975299B (en) * 2021-03-22 2023-03-24 张俊杰 Precision machining process for preparing high-precision pure titanium spherical part

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54136489A (en) * 1978-04-14 1979-10-23 Ngk Spark Plug Co Ltd Keeper
JP2825693B2 (en) * 1991-08-29 1998-11-18 京セラ株式会社 Coating tool and method of manufacturing the same
SE509201C2 (en) * 1994-07-20 1998-12-14 Sandvik Ab Aluminum oxide coated tool
JP2003170311A (en) * 2001-11-30 2003-06-17 Sumitomo Electric Ind Ltd Rotary cutting tool and its accessory
SE526526C3 (en) * 2003-04-01 2005-10-26 Sandvik Intellectual Property Ways of coating cutting with A1203 and a cutting tool with A1203
JP4360620B2 (en) * 2004-01-29 2009-11-11 京セラ株式会社 Cutting tool holder and cutting tool using the same

Also Published As

Publication number Publication date
JP2007125662A (en) 2007-05-24

Similar Documents

Publication Publication Date Title
JP4888689B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4883389B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853822B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4900653B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4857711B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4853820B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4857751B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4873289B2 (en) Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4853612B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP4888762B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888759B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4900652B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4857705B2 (en) Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting
JP2007125661A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP2007118157A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2007118108A (en) Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP4857752B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007111814A (en) Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work
JP2007125663A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP4853613B2 (en) Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting
JP2007125659A (en) Non-perforated surface coated cermet-made cutting throw-away chip having hard coated layer exhibiting excellent chipping resistance in high-speed cutting
JP4853621B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2007118103A (en) Surface coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110404

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110517

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111130

R150 Certificate of patent or registration of utility model

Ref document number: 4888689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3