JP4853621B2 - Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting - Google Patents
Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting Download PDFInfo
- Publication number
- JP4853621B2 JP4853621B2 JP2005357083A JP2005357083A JP4853621B2 JP 4853621 B2 JP4853621 B2 JP 4853621B2 JP 2005357083 A JP2005357083 A JP 2005357083A JP 2005357083 A JP2005357083 A JP 2005357083A JP 4853621 B2 JP4853621 B2 JP 4853621B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting
- titanium
- oxide
- hard coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Description
この発明は、特に各種の鋼や鋳鉄などの高速切削加工に用いた場合に、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップ(以下、被覆切削チップという)の表面研磨方法に関するものである。 The present invention is a surface-coated cermet cutting throwaway tip (hereinafter referred to as a coated cutting tip) that exhibits excellent chipping resistance with a hard coating layer, particularly when used for high-speed cutting of various steels and cast irons . The present invention relates to a surface polishing method .
従来、一般に、図3に概略斜視図で示される通り、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成され、かつ中心部に工具取りつけ孔を有する基体(以下、これらを総称してチップ基体という)の切刃稜線部を含むすくい面および逃げ面の全面に、
(a−1)下部層として、炭化チタン(以下、TiCで示す)層、窒化チタン(以下、同じくTiNで示す)層、炭窒化チタン(以下、TiCNで示す)層、炭酸化チタン(以下、TiCOで示す)層、および炭窒酸化チタン(以下、TiCNOで示す)層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有し、かつ化学蒸着した状態で酸化アルミニウム(以下、Al 2 O 3 で示す)と酸化ジルコニウム(以下、ZrO 2 で示す)の2相混合酸化物組織を有する2相混合酸化物層(以下、Al2O3−ZrO2層で示す)、
以上(a−1)および(a−2)で構成された硬質被覆層を蒸着形成してなる被覆切削チップが知られており、この被覆切削チップが、例えば各種の鋼や鋳鉄などの連続切削や断続切削に用いられることは良く知られている。
Conventionally, generally, as shown in a schematic perspective view in FIG. 3, it is composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet, and a tool at the center. On the entire surface of the rake face and the flank face including the cutting edge ridge line portion of the base body (hereinafter collectively referred to as a chip base body) having mounting holes,
(A-1) As a lower layer, a titanium carbide (hereinafter referred to as TiC) layer, a titanium nitride (hereinafter also referred to as TiN) layer, a titanium carbonitride (hereinafter referred to as TiCN) layer, a titanium carbonate (hereinafter referred to as "TiN"). A Ti compound layer composed of one or more of a layer represented by TiCO) and a titanium carbonitride oxide (hereinafter represented by TiCNO) layer and having an overall average layer thickness of 3 to 20 μm,
As (a-2) an upper layer has an average layer thickness of 1 to 15 m, and chemical in vapor state aluminum oxide (hereinafter, Al 2 O indicated by 3) and zirconium oxide (hereinafter indicated by ZrO 2) of A two-phase mixed oxide layer having a two-phase mixed oxide structure (hereinafter referred to as an Al 2 O 3 —ZrO 2 layer),
A coated cutting tip formed by vapor-depositing the hard coating layer constituted by the above (a-1) and (a-2) is known, and this coated cutting tip is, for example, continuous cutting of various types of steel and cast iron. It is well known that it is used for intermittent cutting.
そして、上記Al2O3−ZrO2層は、次のような条件で化学蒸着することにより形成されることが知られている。
(イ)反応ガス組成(体積%)
AlCl3: 1〜10 %、
ZrCl4: 0.01〜10 %、
CO2 : 1〜30 %、
HCl: 1〜30 %、
H2S: 0.01〜1 %、
H2:残り、
(ロ)反応雰囲気温度 : 900〜1050 ℃、
(ハ)反応雰囲気圧力 : 4〜70 kPa(30〜525 torr)。
The Al 2 O 3 —ZrO 2 layer is known to be formed by chemical vapor deposition under the following conditions.
(B) Reaction gas composition (volume%)
AlCl 3 : 1 to 10%,
ZrCl 4: 0.01~10%,
CO 2: 1~30%,
HCl: 1-30%,
H 2 S: 0.01~1%,
H 2 : Remaining
(B) Reaction atmosphere temperature: 900 to 1050 ° C.
(C) Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr).
また、上記の被覆切削チップにおいて、これの硬質被覆層の構成層は、一般に粒状結晶組織を有し、さらに、下部層であるTi化合物層を構成するTiCN層を、層自身の強度向上を目的として、通常の化学蒸着装置にて、反応ガスとして有機炭窒化物を含む混合ガスを使用し、700〜950℃の中温温度域で化学蒸着することにより形成して縦長成長結晶組織をもつようにすることも知られている。
さらに、被覆切削チップの硬質被覆層を構成する上部層の表面を、切削性能を向上させる目的でウエットブラスト処理して、平滑化することも知られている。
Furthermore, it is also known to smooth the surface of the upper layer constituting the hard coating layer of the coated cutting tip by wet blasting for the purpose of improving the cutting performance.
近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆切削チップにおいては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特に切削速度が350m/min.を越える高速で切削加工を行なうのに用いた場合には、硬質被覆層の上部層を構成する2相混合酸化物層にチッピング(微少欠け)が発生し易く、この結果比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and along with this, cutting tends to be faster. The cutting tip has no problem when it is used for continuous cutting or intermittent cutting under normal conditions such as steel or cast iron, but the cutting speed is 350 m / min. When used for cutting at a high speed exceeding 1, the two-phase mixed oxide layer constituting the upper layer of the hard coating layer is likely to chip (small chipping), and as a result, used in a relatively short time. The current situation is that it reaches the end of its life.
そこで、本発明者等は、上述のような観点から、上記Al2O3−ZrO2層が硬質被覆層の上部層を構成する被覆切削チップに着目し、特にAl2O3−ZrO2層の耐チッピング性向上を図るべく研究を行った結果、
(a)上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面に、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒(以下、Al2O3微粒で示す)を配合した研磨液を噴射して、研磨すると、前記Al2O3−ZrO2層は、準拠規格JIS・B0601−1994に基いた測定(以下の表面粗さは全てかかる準拠規格に基いた測定値を示す)で、Ra:0.3〜0.6μmの表面粗さを示すようになるが、この結果の前記Al2O3−ZrO2層の表面を、ウエットブラストにてRa:0.3〜0.6μmの表面粗さに平滑化した被覆切削チップを用いても、切削速度が350m/min.を越えた高速切削加工では切刃部におけるチッピング発生を満足に抑制することはできないこと。
The present inventors have, from the viewpoint as described above, focuses on coated cutting tip the Al 2 O 3 -ZrO 2 layers constituting the upper layer of the hard coating layer, in particular Al 2 O 3 -ZrO 2 layers As a result of research to improve chipping resistance of
(A) On the surface of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the above-mentioned conventional coated cutting tip, the ratio of the wet blast to the total amount of water as the spray abrasive When a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles (hereinafter referred to as Al 2 O 3 fine particles) is sprayed and polished, the Al 2 O 3 —ZrO 2 layer is compliant with JIS B0601- In the measurement based on 1994 (the following surface roughness shows the measured value based on all such standards), the surface roughness of Ra: 0.3 to 0.6 μm is shown. Even when a coated cutting tip in which the surface of the Al 2 O 3 —ZrO 2 layer was smoothed to a surface roughness of Ra: 0.3 to 0.6 μm by wet blasting, the cutting speed was 350 m / min. High-speed cutting that exceeds the limit cannot effectively suppress chipping at the cutting edge.
(b)一方、図2に概略斜視図で示される通り、上記の従来被覆切削チップにおける硬質被覆層の上部層を構成するAl2O3−ZrO2層の切刃稜線部を含むすくい面および逃げ面の全面に、
(b−1)まず、下側層として、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
CO2 :0.1〜10%、
Ar :5〜60%、
H2 :残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜70kPa(30〜525torr)、
とした条件で、0.1〜3μmの平均層厚を有し、かつ、オージェ分光分析装置で測定して、Tiに対する酸素の割合が原子比で1.25〜1.90、即ち、
組成式:TiOW 、
で表わした場合、
W:原子比で1.25〜1.90、
を満足する酸化チタン層を形成し、
(b−2)ついで、上記酸化チタン層(下側層)の上に、上側層として、通常の条件、即ち、反応ガス組成を、体積%で、
TiCl4:0.2〜10%、
N2 :4〜60%、
H2 :残り、
とし、かつ、
反応雰囲気温度:800〜1100℃、
反応雰囲気圧力:4〜90kPa(30〜675torr)、
とした条件で、0.05〜2μmの平均層厚を有するTiN層を形成すると、
(b−3)上記TiN層(上側層)形成時に、上記下側層を構成する酸化チタン層の酸素が拡散してきて前記上側層(TiN層)が、窒酸化チタン層で構成されるようになるが、この場合上記上側層(前記窒酸化チタン層)形成後の上記下側層である酸化チタン層は、厚さ方向中央部をオージェ分光分析装置で測定して、酸素の割合がTiに対する原子比で1.2〜1.7、即ち、
組成式:TiOX 、
で表わした場合、
X:原子比で1.2〜1.7、
を満足する酸化チタン層となり、
(b−4)また、上記窒酸化チタン層で構成された上側層は、同じく厚さ方向中央部をオージェ分光分析装置で測定して、拡散酸素の割合が窒素(N)に対する原子比で0.01〜0.4、即ち、
組成式:TiN1−Y(O)Y、
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層となること。
(B) On the other hand, as shown in the schematic perspective view of FIG. 2, the rake face including the cutting edge ridge portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer in the conventional coated cutting tip and On the entire flank,
(B-1) First, as the lower layer, the reaction gas composition is in volume%,
TiCl 4 : 0.2 to 10%,
CO 2 : 0.1 to 10%,
Ar: 5 to 60%
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 70 kPa (30 to 525 torr),
And having an average layer thickness of 0.1 to 3 μm and a ratio of oxygen to Ti of 1.25 to 1.90 as measured by an Auger spectrometer,
Composition formula: TiO W ,
In the case of
W: 1.25 to 1.90 in atomic ratio,
Forming a titanium oxide layer that satisfies
(B-2) Next, on the titanium oxide layer (lower layer), as an upper layer, the normal conditions, that is, the reaction gas composition in volume%,
TiCl 4 : 0.2 to 10%,
N 2 : 4-60%,
H 2 : Remaining
And
Reaction atmosphere temperature: 800-1100 ° C.
Reaction atmosphere pressure: 4 to 90 kPa (30 to 675 torr),
When a TiN layer having an average layer thickness of 0.05 to 2 μm is formed under the conditions described above,
(B-3) When forming the TiN layer (upper layer), oxygen in the titanium oxide layer constituting the lower layer is diffused so that the upper layer (TiN layer) is composed of a titanium nitride oxide layer. In this case, the titanium oxide layer, which is the lower layer after the formation of the upper layer (the titanium oxynitride layer), is measured by an Auger spectroscopic analyzer at the center in the thickness direction. 1.2 to 1.7 in atomic ratio,
Composition formula: TiO x ,
In the case of
X: 1.2 to 1.7 in atomic ratio,
Titanium oxide layer that satisfies
(B-4) Further, the upper layer composed of the above titanium oxynitride layer was also measured at the center in the thickness direction with an Auger spectroscopic analyzer, and the proportion of diffused oxygen was 0 in terms of atomic ratio with respect to nitrogen (N). .01-0.4, i.e.
Composition formula: TiN 1-Y (O) Y ,
(Where, (O) represents diffused oxygen from the titanium oxide layer as the lower layer when the upper layer is deposited ),
Y: 0.01 to 0.4 in atomic ratio
Titanium nitride oxide layer that satisfies
(c)上記窒酸化チタン層(上側層)および酸化チタン層(下側層)を蒸着形成した状態で、
上記(a)におけると同じくウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射すると、前記窒酸化チタン層および酸化チタン層は、前記Al2O3微粒によって粉砕微粒化し、窒酸化チタン微粒および酸化チタン微粒となって前記Al2O3微粒の共存下で研磨材として作用し、硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面を研磨することになり、この結果研磨後の前記Al2O3−ZrO2層の表面は、Ra:0.2μm以下の表面粗さにまで平滑化されるようになり、この上部層であるAl2O3−ZrO2層の表面がRa:0.2μm以下の表面粗さに平滑化した被覆切削チップを用いて、高速切削加工を行った場合、350m/min.を越える切削速度でも切刃部におけるチッピング発生が防止され、前記硬質被覆層は長期に亘ってすぐれた耐摩耗性を発揮するようになること。
(C) In a state where the titanium nitride oxide layer (upper layer) and the titanium oxide layer (lower layer) are formed by vapor deposition,
When a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles as a spraying abrasive in a ratio to the total amount of water is sprayed by wet blasting as in (a) above, the titanium nitride oxide The layer and the titanium oxide layer are pulverized and pulverized by the Al 2 O 3 fine particles, become titanium oxynitride fine particles and titanium oxide fine particles, and act as an abrasive in the presence of the Al 2 O 3 fine particles. will be polishing the surface of the Al 2 O 3 -ZrO 2 layer constituting the layer, the surface of the Al 2 O 3 -ZrO 2 layer after the results polishing, Ra: a surface roughness of not more than 0.2μm Using the coated cutting tip in which the surface of the upper layer Al 2 O 3 —ZrO 2 layer is smoothed to a surface roughness of Ra: 0.2 μm or less, high-speed cutting is performed. If done, 350m / Min. Chipping at the cutting edge is prevented even at a cutting speed exceeding 1, and the hard coating layer exhibits excellent wear resistance over a long period of time.
(d)上記の通り、切削速度が350m/min.を越えた高速切削加工では、被覆切削チップの切刃部に懸かる負荷はきわめて高いものになるため、特にフライス切削の場合、工具本体への被覆切削チップの取り付けに際しては、きわめて高い締め付け力で取り付けが行なわれることになり、この結果被覆切削チップの工具取り付け孔周辺部の硬質被覆層に対する圧縮応力はきわめて高いものとなるので、特に上部層を構成するAl2O3−ZrO2層は、ビッカース硬さ(Hv)で約2400の高硬度を有することと相俟って、これに割れが発生し易くなり、これが原因で硬質被覆層に剥離やチッピングが発生するようになるが、図1に概略斜視図で示される通り、前記ウエットブラストに際して、工具取り付け孔周辺部を研磨せず、この部分の研磨材層を残した状態にしておくと、上記の研磨材層を構成する窒酸化チタン層(上側層)および酸化チタン層(下側層)はいずれも前記Al2O3−ZrO2層に比して、相対的にきわめて低いHv:約2000の硬さをもつものであるため、工具本体への被覆切削チップの取り付けに際して、高い締め付け力の緩衝層として作用し、この結果前記Al2O3−ZrO2層に対する圧縮応力が著しく小さなものとなることから、剥離やチッピング発生の原因となる割れ発生が防止されるようになること。
以上(a)〜(d)に示される研究結果を得たのである。
(D) As described above, the cutting speed is 350 m / min. In high-speed cutting processing exceeding 1, the load applied to the cutting edge of the coated cutting tip is extremely high. Therefore, especially in the case of milling, the coated cutting tip is attached to the tool body with a very high clamping force. As a result, the compressive stress on the hard coating layer around the tool mounting hole of the coated cutting tip becomes extremely high, and in particular, the Al 2 O 3 —ZrO 2 layer constituting the upper layer is made of Vickers. Combined with having a high hardness (Hv) of about 2400, it is easy for cracks to occur, which causes peeling and chipping on the hard coating layer. As shown in the schematic perspective view, during the wet blasting, the peripheral part of the tool attachment hole is not polished, and the abrasive layer of this part is left, Both oxynitride titanium layer constituting the serial abrasive layer (upper layer) and a titanium oxide layer (lower layer) is compared to the Al 2 O 3 -ZrO 2 layer, a relatively very low Hv: about Since it has a hardness of 2000, it acts as a buffer layer with a high clamping force when the coated cutting tip is attached to the tool body, and as a result, the compressive stress on the Al 2 O 3 —ZrO 2 layer is extremely small Therefore, the generation of cracks that cause peeling and chipping is prevented.
The research results shown in (a) to (d) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、WC基超硬合金またはTiCN基サーメットで構成され、かつ中心部に工具取り付け孔を有するチップ基体の切刃稜線部を含むすくい面および逃げ面の全面に、
(a−1)下部層として、TiC層、TiN層、TiCN層、TiCO層、およびTiCNO層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有し、化学蒸着した状態でAl 2 O 3 とZrO 2 の2相混合酸化物組織を有し、かつ、前記ZrO 2 は、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で0.01〜0.20であるAl2O3−ZrO2層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成してなる被覆切削チップの表面研磨方法にして、
(1)上記硬質被覆層の上部層であるAl2O3−ZrO2層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、
X:原子比で1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)Y、
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:原子比で0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成し、
(2)ついで、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%のAl2O3微粒を配合した研磨液を噴射し、
上記の研磨材層が噴射研磨材であるAl 2 O 3 微粒の噴射により粉砕微粒化してなる粉砕化酸化チタン微粒(下側層)および粉砕化窒酸化チタン微粒(上側層)と、噴射研磨材としてのAl2O3微粒の共存下で、上記工具取り付け孔周辺部の研磨材層を残して、上記硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面を研磨して、前記Al 2 O 3 −ZrO 2 層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としてなる、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する被覆切削チップの表面研磨方法に特徴を有するものである。
The present invention has been made on the basis of the above research results, and includes a cutting edge ridge portion of a chip base made of a WC-based cemented carbide or TiCN-based cermet and having a tool mounting hole in the center. On the entire surface and flank,
(A-1) As a lower layer, a Ti compound layer composed of one or more of a TiC layer, a TiN layer, a TiCN layer, a TiCO layer, and a TiCNO layer and having an overall average layer thickness of 3 to 20 μm ,
(A-2) As an upper layer, it has an average layer thickness of 1 to 15 μm, has a two-phase mixed oxide structure of Al 2 O 3 and ZrO 2 in a chemical vapor deposited state, and the ZrO 2 is Converted to the content ratio of Zr, an Al 2 O 3 —ZrO 2 layer having a ratio (atomic ratio) in the total amount of Al and Zr contained in the layer of 0.01 to 0.20,
In the surface polishing method of the coated cutting tip formed by chemical vapor deposition of the hard coating layer composed of (a-1) and (a-2) above,
( 1 ) On the entire surface of the Al 2 O 3 —ZrO 2 layer, which is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, Measure the central part in the thickness direction with an Auger spectrometer,
X: 1.2 to 1.7 in atomic ratio,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the titanium oxide layer, which is the lower layer when the upper layer is formed by vapor deposition ). Similarly, the central portion in the thickness direction is measured with an Auger spectrometer. , Also in atomic ratio,
Y: 0.01 to 0.4 in atomic ratio
Satisfying titanium oxynitride layer,
Abrasive material layer composed of (b-1) and (b-2) above is formed by chemical vapor deposition,
( 2 ) Next , in wet blasting, as a spraying abrasive, a polishing liquid containing 15 to 60% by mass of Al 2 O 3 fine particles in a proportion of the total amount with water is sprayed.
Abrasive titanium oxide fine particles (lower layer) and pulverized titanium oxynitride fine particles (upper layer) formed by pulverizing and atomizing the above-mentioned abrasive layer by spraying Al 2 O 3 fine particles, which are spray abrasives, and jet abrasives The surface of the Al 2 O 3 —ZrO 2 layer that constitutes the upper layer of the hard coating layer is polished in the presence of Al 2 O 3 fine particles, leaving the abrasive layer around the tool mounting hole. The surface roughness of the rake face and the flank face including the cutting edge ridge line portion of the Al 2 O 3 —ZrO 2 layer is measured based on JIS / B0601-1994, and Ra is 0.2 μm or less. The coating layer has a feature in the surface polishing method of a coated cutting tip that exhibits excellent chipping resistance in high-speed cutting.
以下に、この発明の被覆切削チップの表面研磨方法において、硬質被覆層および研磨材層、さらにウエットブラストで用いられる研磨液のAl2O3微粒に関して、上記の通りに数値限定した理由を説明する。
(a)硬質被覆層
(a−1)下部層のTi化合物層
Ti化合物層は、Al 2 O 3 −ZrO 2 層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層の高温強度向上に寄与するほか、チップ基体とAl 2 O 3 −ZrO 2 層のいずれにも強固に密着し、よって硬質被覆層のチップ基体に対する密着性を向上させる作用を有するが、その全体平均層厚が3μm未満では、前記作用を十分に発揮させることができず、一方その全体平均層厚が20μmを越えると、特に高熱発生を伴なう高速切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その全体平均層厚を3〜20μmと定めた。
Hereinafter, in the surface polishing method of the coated cutting tip of the present invention, the reason why the hard coating layer, the abrasive layer, and the Al 2 O 3 fine particles of the polishing liquid used in wet blasting are numerically limited as described above will be described. .
(A) hard coating layer (a-1) Ti compound layer Ti compound layer of the lower layer is present as a lower layer of Al 2 O 3 -ZrO 2 layer, the hard coating layer by excellent high temperature strength which includes its own In addition to contributing to the improvement of high-temperature strength, it has a function of firmly adhering to both the chip base and the Al 2 O 3 —ZrO 2 layer , thereby improving the adhesion of the hard coating layer to the chip base. If the thickness is less than 3 μm, the above-mentioned effect cannot be sufficiently exerted. On the other hand, if the total average layer thickness exceeds 20 μm, thermoplastic deformation tends to occur particularly in high-speed cutting accompanied by high heat generation. Since it causes wear, the overall average layer thickness is determined to be 3 to 20 μm.
(a−2)上部層のAl2O3−ZrO2層
Al2O3−ZrO2層からなる上部層は、そのAl成分によって、すぐれた高温硬さと耐熱性を、また、そのZr成分によって、すぐれた高温強度を備え、被覆切削チップの切削性能(耐チッピング性、耐摩耗性)向上に寄与するが、Al2O3−ZrO2層におけるZrO 2 の含有割合は、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(=Zr/(Al+Zr))で、0.01〜0.20但し、原子比)の範囲内のものとする。Al2O3−ZrO2層におけるZrO 2 の含有割合を示すこの値が0.01未満であると、上部層の高温強度の向上の効果が少なく、一方、この値が0.20を超えると、上部層におけるAl 2 O 3 量の相対的な減少により高温硬さ、耐熱性の低下が生じ、その結果として耐摩耗性劣化の傾向がみられるので、Al2O3−ZrO2層におけるZrO 2 の含有割合(原子比で換算したZr/(Al+Zr)の値)を、上記のとおり、0.01〜0.20の範囲内の値とする。
また、その平均層厚が1μm未満では、所望のすぐれた切削性能を長期に亘って発揮させることができず、一方その平均層厚が15μmを越えて厚くなりすぎると、チッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
(A-2) an upper layer made of Al 2 O 3 -ZrO 2-layer Al 2 O 3 -ZrO 2 layers of upper layer by its Al component, an excellent high-temperature hardness and heat resistance and, by that Zr component Although it has excellent high-temperature strength and contributes to improving the cutting performance (chipping resistance, wear resistance) of the coated cutting tip, the content ratio of ZrO 2 in the Al 2 O 3 —ZrO 2 layer is equal to the content ratio of Zr. In terms of conversion, the ratio (= Zr / (Al + Zr)) in the total amount of Al and Zr contained in the layer is within the range of 0.01 to 0.20 (atomic ratio). When this value indicating the content ratio of ZrO 2 in the Al 2 O 3 —ZrO 2 layer is less than 0.01, the effect of improving the high-temperature strength of the upper layer is small, whereas when this value exceeds 0.20 Since the relative decrease in the amount of Al 2 O 3 in the upper layer causes a decrease in high-temperature hardness and heat resistance, and as a result, there is a tendency for wear resistance degradation, ZrO in the Al 2 O 3 —ZrO 2 layer The content ratio of 2 (value of Zr / (Al + Zr) converted by atomic ratio) is set to a value within the range of 0.01 to 0.20 as described above.
Further, if the average layer thickness is less than 1 μm, the desired excellent cutting performance cannot be exhibited over a long period of time. On the other hand, if the average layer thickness exceeds 15 μm, chipping is likely to occur. Therefore, the average layer thickness was determined to be 1 to 15 μm.
(b)研磨材層
上側層を構成する窒酸化チタン層は、上記の通り、まず、酸素の割合をNに対する原子比で1.25〜1.90(W値)とした酸化チタン層を形成し、ついで、前記酸化チタン層の上に通常の条件でTiN層を蒸着することにより形成されるものであり、したがって前記TiN層形成時における前記酸化チタン層からの酸素の拡散が不可欠となるが、前記酸化チタン層のW値が1.25未満であると、前記TiN層への酸素の拡散反応が急激に低下し、上側層における拡散酸素の割合(Y値)を原子比で0.01以上にすることができず、一方同W値が1.90を越えると、前記上側層における拡散酸素の割合(Y値)が原子比で0.40を越えて多くなってしまうことから、W値を1.25〜1.90と定めたものであり、この場合上側層形成後の下側層(酸化チタン層)における酸素の割合(X値)は原子比で1.2〜1.7の範囲内の値をとるようになる、言い換えれば上側層形成後の下側層のX値が1.2〜1.7を満足する場合に、前記上側層のY値は0.01〜0.40を満足するものとなる。
また、この場合、下側層のX値および上側層のY値をそれぞれ1.2〜1.7および0.01〜0.40と定めたのは、前記X値およびY値が前記の値をとった場合に、これら研磨材層のウエットブラスト時における粉砕微粒化が好適な状態で行なわれ、すぐれた研磨機能を十分に発揮することが多くの試験結果から得られ、これらの試験結果に基いて定めたものである。したがって、前記X値およびY値がそれぞれ1.2〜1.7および0.01〜0.40の範囲から外れると、前記研磨材層のウエットブラスト時における粉砕微粒化が満足に行なわれず、すぐれた研磨機能を期待することができない。
さらに、上側層および下側層の平均層厚を、それぞれ0.05〜2μmおよび0.1〜3μmとしたのは、その平均層厚が0.05μm未満および0.1μm未満では、ウエットブラスト時における下側層の粉砕化酸化チタン微粒、上側層の粉砕化窒酸化チタン微粒の割合が少な過ぎて、研磨機能を十分に発揮することができず、一方、その平均層厚がそれぞれ2μmおよび3μmを越えても、研磨機能が急激に低下するようになり、いずれの場合もAl2O3−ZrO2層の表面をRa:0.2μm以下の表面粗さに研磨することができなくなるという理由にもとづくものである。
(B) Abrasive material layer As described above, the titanium oxynitride layer constituting the upper layer first forms a titanium oxide layer in which the oxygen ratio is 1.25 to 1.90 (W value) in terms of the atomic ratio to N. Then, it is formed by depositing a TiN layer on the titanium oxide layer under normal conditions. Therefore, diffusion of oxygen from the titanium oxide layer during the formation of the TiN layer is indispensable. When the W value of the titanium oxide layer is less than 1.25, the diffusion reaction of oxygen into the TiN layer is drastically reduced, and the ratio of diffused oxygen (Y value) in the upper layer is 0.01 by atomic ratio. On the other hand, if the same W value exceeds 1.90, the ratio of diffused oxygen (Y value) in the upper layer will increase beyond 0.40 in terms of atomic ratio. The value is defined as 1.25 to 1.90, In this case, the oxygen ratio (X value) in the lower layer (titanium oxide layer) after the upper layer formation takes an atomic ratio in the range of 1.2 to 1.7, in other words, the upper layer formation. When the X value of the later lower layer satisfies 1.2 to 1.7, the Y value of the upper layer satisfies 0.01 to 0.40.
In this case, the X value of the lower layer and the Y value of the upper layer are set to 1.2 to 1.7 and 0.01 to 0.40, respectively. It is obtained from many test results that these abrasive layers are pulverized and atomized in a suitable state at the time of wet blasting, and exhibit an excellent polishing function sufficiently. Based on this. Therefore, if the X value and Y value are out of the range of 1.2 to 1.7 and 0.01 to 0.40, respectively, the pulverization and atomization at the time of wet blasting of the abrasive layer is not satisfactorily performed, which is excellent. The polishing function cannot be expected.
Further, the average layer thicknesses of the upper layer and the lower layer were set to 0.05 to 2 μm and 0.1 to 3 μm, respectively, when the average layer thickness was less than 0.05 μm and less than 0.1 μm. The ratio of the pulverized titanium oxide fine particles in the lower layer and the fine pulverized titanium oxynitride fine particles in the upper layer is too small to perform the polishing function sufficiently, while the average layer thickness is 2 μm and 3 μm, respectively. The reason is that the polishing function is suddenly lowered even if the thickness exceeds 1, and in any case, the surface of the Al 2 O 3 —ZrO 2 layer cannot be polished to a surface roughness of Ra: 0.2 μm or less. It is based on.
(c)研磨液のAl2O3微粒の割合
研磨液のAl2O3微粒には、ウエットブラスト時に研磨材層を構成する下側層の粉砕化酸化チタン微粒および上側層の粉砕化窒酸化チタン微粒と共存した状態で、Al2O3−ZrO2層の表面を研磨する作用があるが、その割合が水との合量に占める割合で15質量%未満でも、また60質量%を越えても研磨機能が急激に低下するようになることから、その割合を15〜60質量%と定めた。
(C) The Al 2 O 3 fine of Al 2 O 3 fine fraction polishing liquid of the polishing liquid, pulverization oxynitride of pulverized titanium oxide fine and the upper layer of the lower layer of the abrasive layer during wet blasting Although it acts to polish the surface of the Al 2 O 3 —ZrO 2 layer in the presence of titanium fine particles, the proportion of the total amount with water is less than 15% by mass or more than 60% by mass. However, since the polishing function is abruptly lowered, the ratio is determined to be 15 to 60% by mass.
この発明の方法で表面研磨された被覆切削チップは、硬質被覆層の上部層を構成するAl 2 O 3 −ZrO 2 層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、前記Al 2 O 3 −ZrO 2 層に対する圧縮応力が著しく小さなものとなり、この結果剥離やチッピング発生の原因となる割れ発生が防止されるようになることと相俟って、各種の鋼や鋳鉄などの切削加工を、切削速度が350m/min.を越える高速で行うのに用いた場合にも、すぐれた耐チッピング性を発揮し、使用寿命の一層の延命化を可能とするものである。 The coated cutting tip surface-polished by the method of the present invention has a rake face and a flank face including the cutting edge ridge line portion of the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer, with Ra: 0.2 μm. The abrasive layer that is ground to the following surface roughness and that exists in the periphery of the tool mounting hole acts as a buffer layer with high clamping force, which is indispensable for high-speed cutting when attaching the coated cutting tip to the tool body. From the fact that the compressive stress on the Al 2 O 3 —ZrO 2 layer is remarkably small, and as a result, cracks that cause peeling and chipping are prevented, various steels and For cutting of cast iron and the like, the cutting speed is 350 m / min. Even when used for high-speed operation exceeding the above, excellent chipping resistance is exhibited, and the service life can be further extended.
つぎに、この発明の被覆切削チップの表面研磨方法を実施例により具体的に説明する。 Next, the method for polishing the surface of the coated cutting tip according to the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3C2粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO・CNMG120408に規定するスローアウエイチップ形状をもったWC基超硬合金製のチップ基体A〜Fをそれぞれ製造した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders were blended into the composition shown in Table 1, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, and pressed into a green compact with a predetermined shape at a pressure of 98 MPa. The green compact was vacuum sintered at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour in a vacuum of 5 Pa. After sintering, the cutting edge portion was R: 0.07 mm honing By processing, chip bases A to F made of a WC-based cemented carbide having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.
また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.07mmのホーニング加工を施すことによりISO規格・CNMG120412のチップ形状をもったTiCN基サーメット製のチップ基体a〜fを形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after the sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm. TiCN base cermet chip bases a to f having a standard / CNMG12041 chip shape were formed.
ついで、これらのチップ基体A〜Fおよびチップ基体a〜fのそれぞれを、通常の化学蒸着装置に装入し、
まず、表3(表3中のl−TiCNは特開平6−8010号公報に記載される縦長成長結晶組織をもつTiCN層の形成条件を示すものであり、これ以外は通常の粒状結晶組織の形成条件を示すものである)、および表4に示される条件にて、表7に示される目標層厚のTi化合物層およびAl2O3−ZrO2層を硬質被覆層の下部層および上部層として蒸着形成し(図3参照)、
ついで、研磨材層の下側層形成用酸化チタン層[TiOW(1)〜(6)のいずれか]を表5に示される条件で形成した後、上側層形成用窒化チタン層(TiN層)を同じく表3に示される条件で、表7に示される目標層厚で蒸着形成して、表7に示される組成、すなわち厚さ方向中央部をオージェ分光分析装置で測定して、それぞれ表7に示されるX値およびY値の下側層および上側層からなる研磨材層を形成し(図2参照)、
引き続いて、上記の下側層および上側層からなる研磨材層形成の被覆切削チップに、表6に示されるブラスト条件で、かつ表7に示される組み合わせでウエットブラストを施して、工具取り付け孔周辺部に研磨材層を存在させた状態で、前記Al2O3−ZrO2層からなる上部層の切刃稜線部を含むすくい面および逃げ面を、同じく表7に示される表面粗さに研磨することにより本発明被覆切削チップ1〜13をそれぞれ製造した(図1参照)。
Next, each of these chip bases A to F and chip bases a to f is charged into a normal chemical vapor deposition apparatus,
First, Table 3 (l-TiCN in Table 3 indicates the conditions for forming a TiCN layer having a vertically grown crystal structure described in JP-A No. 6-8010, and other than that, a normal granular crystal structure is shown. And the Ti compound layer and the Al 2 O 3 —ZrO 2 layer having the target layer thicknesses shown in Table 7 under the conditions shown in Table 4 and the lower and upper layers of the hard coating layer. As a vapor deposition (see FIG. 3),
Next, after forming the lower layer forming titanium oxide layer [any of TiO W (1) to (6)] under the conditions shown in Table 5, the upper layer forming titanium nitride layer (TiN layer) ) Under the same conditions as shown in Table 3, and with the target layer thickness shown in Table 7, the composition shown in Table 7, that is, the central portion in the thickness direction was measured with an Auger spectroscopic analyzer. Forming an abrasive layer composed of a lower layer and an upper layer of the X and Y values shown in FIG. 7 (see FIG. 2);
Subsequently, the coated cutting tip for forming the abrasive layer composed of the lower layer and the upper layer was subjected to wet blasting under the blasting conditions shown in Table 6 and in the combinations shown in Table 7, and the periphery of the tool mounting hole The rake face and flank face including the cutting edge ridge line part of the upper layer made of the Al 2 O 3 —ZrO 2 layer are polished to the surface roughness shown in Table 7 in the state where the abrasive layer is present in the part. By doing this, this invention coated cutting tip 1-13 was manufactured, respectively (refer FIG. 1).
また、比較の目的で、表8に示される通り、下側層および上側層からなる研磨材層の形成を行なわない以外は同一の条件で従来被覆切削チップ1〜13をそれぞれ製造した。
この結果得られた従来被覆切削チップ1〜13の硬質被覆層を構成するAl2O3−ZrO2層のウエットブラスト後の表面粗さを表8に示した。
For comparison purposes, as shown in Table 8, conventionally coated cutting chips 1 to 13 were produced under the same conditions except that the abrasive layer composed of the lower layer and the upper layer was not formed.
Table 8 shows the surface roughness after wet blasting of the Al 2 O 3 —ZrO 2 layer constituting the hard coating layers of the conventional coated cutting chips 1 to 13 obtained as a result.
また、上記本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の硬質被覆層の構成層の厚さを走査型電子顕微鏡を用いて測定(縦断面測定)したところ、いずれも目標層厚と実質的に同じ平均層厚(5点測定の平均値)を示した。 Further, when the thicknesses of the constituent layers of the hard coating layer of the present invention-coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 were measured using a scanning electron microscope (longitudinal section measurement), both were target layers. The average layer thickness (average value of 5-point measurement) substantially the same as the thickness was shown.
つぎに、上記の本発明被覆切削チップ1〜13および従来被覆切削チップ1〜13の各種の被覆切削チップについて、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・FC250の丸棒、
切削速度: 600 m/min、
切り込み: 2.0 mm、
送り: 0.3 mm/rev、
切削時間: 13 分、
の条件(切削条件Aという)での普通鋳鉄の乾式連続高速切削試験(通常の切削速度は250m/min)、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度: 500 m/min、
切り込み: 2.0 mm、
送り: 0.25 mm/rev、
切削時間: 9 分、
の条件(切削条件Bという)での炭素鋼の乾式断続高速切削試験(通常の切削速度は200m/min)、さらに、
被削材:JIS・SCM415の丸棒、
切削速度: 530 m/min、
切り込み: 1.5 mm、
送り: 0.3 mm/rev、
切削時間: 10 分、
の条件(切削条件Cという)での合金鋼の乾式連続高速切削試験(通常の切削速度は200m/min)を行い、いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表9に示した。
Next, for the various coated cutting chips of the present invention coated cutting chips 1 to 13 and the conventional coated cutting chips 1 to 13 described above, all of them are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / FC250 round bar,
Cutting speed: 600 m / min,
Cutting depth: 2.0 mm,
Feed: 0.3 mm / rev,
Cutting time: 13 minutes,
Dry continuous high-speed cutting test (normal cutting speed is 250 m / min) of normal cast iron under the following conditions (referred to as cutting condition A),
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 500 m / min,
Cutting depth: 2.0 mm,
Feed: 0.25 mm / rev,
Cutting time: 9 minutes,
Dry intermittent high speed cutting test (normal cutting speed is 200 m / min) of carbon steel under the above conditions (referred to as cutting conditions B),
Work material: JIS / SCM415 round bar,
Cutting speed: 530 m / min,
Cutting depth: 1.5 mm,
Feed: 0.3 mm / rev,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed is 200 m / min) of the alloy steel under the above conditions (referred to as cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 9.
表7〜9に示される結果から、この発明の方法によって表面研磨された本発明被覆切削チップ1〜13は、いずれも硬質被覆層の上部層を構成するAl2O3−ZrO2層の切刃稜線部を含むすくい面および逃げ面が、Ra:0.2μm以下の表面粗さに研磨され、さらに工具取り付け孔周辺部に存在する研磨材層が、工具本体への被覆切削チップの取り付けに際して、350m/minを越える高速切削加工では不可欠の高い締め付け力の緩衝層として作用することから、剥離やチッピング発生の原因となる割れ発生が防止され、鋼および鋳鉄の高速切削加工で、すぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するのに対して、硬質被覆層の上部層を構成するAl2O3−ZrO2層の表面粗さが、Ra:0.3〜0.6μmを示す従来被覆切削チップ1〜13においては、いずれも350m/minを越える高速切削加工では、工具取り付けに高い締め付け力を必要とすることと相俟って、前記Al2O3−ZrO2層にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。 From the results shown in Tables 7 to 9, the coated cutting chips 1 to 13 of the present invention, which were surface-polished by the method of the present invention, all cut the Al 2 O 3 —ZrO 2 layer constituting the upper layer of the hard coating layer. The rake face and flank face including the edge line are polished to a surface roughness of Ra: 0.2 μm or less, and the abrasive layer existing around the tool attachment hole is used to attach the coated cutting tip to the tool body. , It acts as a buffer layer with a high clamping force, which is indispensable for high-speed cutting exceeding 350 m / min. This prevents cracks that cause peeling and chipping, and provides excellent resistance to high-speed cutting of steel and cast iron. shows the chipping resistance, whereas exhibit excellent cutting performance over a long period of time, the surface roughness of the Al 2 O 3 -ZrO 2 layer constituting the upper layer of the hard coating layer, Ra: 0 In the conventional coated cutting chips 1-13 showing the 3~0.6Myuemu, in both high-speed cutting of over 350 meters / min, coupled with the fact that require high clamping force to the tool mounting, the Al 2 O It is clear that chipping occurs in the 3- ZrO 2 layer and the service life is reached in a relatively short time.
上述のように、この発明の方法によって表面研磨された被覆切削チップは、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、特に切削加工を350m/minを越えた高速で行う場合にもすぐれた耐チッピング性を示し、長期に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the coated cutting tip surface-polished by the method of the present invention exceeds 350 m / min in particular, in addition to continuous cutting and intermittent cutting under normal conditions such as various steels and cast iron. Excellent chipping resistance even when performed at high speeds, and excellent cutting performance over a long period of time. Higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction It is possible to cope with the above sufficiently.
Claims (1)
(a−1)下部層として、炭化チタン層、窒化チタン層、炭窒化チタン層、炭酸化チタン層、および炭窒酸化チタン層のうちの1層または2層以上からなり、かつ3〜20μmの全体平均層厚を有するTi化合物層、
(a−2)上部層として、1〜15μmの平均層厚を有し、化学蒸着した状態で酸化アルミニウムと酸化ジルコニウムの2相混合酸化物組織を有し、かつ、前記酸化ジルコニウムは、Zrの含有割合に換算して、層中に含有するAlとZrの合量に占める割合(原子比)で0.01〜0.20である、酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層、
以上(a−1)および(a−2)で構成された硬質被覆層を化学蒸着形成してなる、表面被覆サーメット製切削スローアウエイチップの表面研磨方法にして、
(1)上記硬質被覆層の上部層である酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層の全面に、
(b−1)下側層として、0.1〜3μmの平均層厚を有し、かつ、
組成式:TiOX 、
で表わした場合、厚さ方向中央部をオージェ分光分析装置で測定して、原子比で、
X:1.2〜1.7、
を満足する酸化チタン層、
(b−2)上側層として、0.05〜2μmの平均層厚を有し、かつ、
組成式:TiN1−Y(O)Y、
で表わした場合(ただし、(O)は上側層の蒸着形成時における上記下側層である酸化チタン層からの拡散酸素を示す)、同じく厚さ方向中央部をオージェ分光分析装置で測定して、同じく原子比で、
Y:0.01〜0.4、
を満足する窒酸化チタン層、
以上(b−1)および(b−2)で構成された研磨材層を化学蒸着形成し、
(2)ついで、ウエットブラストにて、噴射研磨材として、水との合量に占める割合で15〜60質量%の酸化アルミニウム微粒を配合した研磨液を噴射し、
上記の研磨材層が噴射研磨材である酸化アルミニウム微粒の噴射により粉砕微粒化してなる粉砕化酸化チタン微粒(下側層)および粉砕化窒酸化チタン微粒(上側層)と、噴射研磨材としての酸化アルミニウム微粒の共存下で、上記工具取り付け孔周辺部の研磨材層を残して、上記硬質被覆層の上部層を構成する酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層の表面を研磨して、前記酸化アルミニウムと酸化ジルコニウムの2相混合酸化物層の切刃稜線部を含むすくい面および逃げ面の表面粗さを準拠規格JIS・B0601−1994に基いた測定で、Ra:0.2μm以下としたことを特徴とする、硬質被覆層が高速切削加工ですぐれた耐チッピング性を発揮する表面被覆サーメット製切削スローアウエイチップの表面研磨方法。 It is composed of a tungsten carbide base cemented carbide or a titanium carbonitride base cermet, and the entire rake face and flank face including the cutting edge ridge line part of the chip base having a tool attachment hole in the center part,
(A-1) The lower layer is composed of one or more of a titanium carbide layer, a titanium nitride layer, a titanium carbonitride layer, a titanium carbonate layer, and a titanium carbonitride oxide layer, and has a thickness of 3 to 20 μm. A Ti compound layer having an overall average layer thickness,
(A-2) As an upper layer, it has an average layer thickness of 1 to 15 μm, has a two-phase mixed oxide structure of aluminum oxide and zirconium oxide in a chemical vapor deposited state, and the zirconium oxide is made of Zr A two-phase mixed oxide layer of aluminum oxide and zirconium oxide that is 0.01 to 0.20 in terms of the ratio (atomic ratio) to the total amount of Al and Zr contained in the layer, in terms of content ratio,
In the surface polishing method of the cutting throwaway tip made of surface-coated cermet, formed by chemical vapor deposition of the hard coating layer composed of (a-1) and (a-2) above,
( 1 ) On the entire surface of the two-phase mixed oxide layer of aluminum oxide and zirconium oxide that is the upper layer of the hard coating layer,
(B-1) The lower layer has an average layer thickness of 0.1 to 3 μm, and
Composition formula: TiO x ,
, The central part in the thickness direction is measured with an Auger spectrometer, and the atomic ratio is
X: 1.2 to 1.7,
Satisfying titanium oxide layer,
(B-2) The upper layer has an average layer thickness of 0.05 to 2 μm, and
Composition formula: TiN 1-Y (O) Y ,
(However, (O) indicates the diffused oxygen from the titanium oxide layer, which is the lower layer when the upper layer is formed by vapor deposition ). Similarly, the central portion in the thickness direction is measured with an Auger spectrometer. , Also in atomic ratio,
Y: 0.01 to 0.4
Satisfying titanium oxynitride layer,
Abrasive material layer composed of (b-1) and (b-2) above is formed by chemical vapor deposition,
( 2 ) Next , with wet blasting, as a spray abrasive, a polishing liquid containing 15 to 60% by mass of aluminum oxide fine particles in a proportion of the total amount with water is sprayed.
The above-mentioned abrasive material layer is pulverized titanium oxide fine particles (lower layer) and pulverized titanium oxynitride fine particles (upper layer) formed by pulverization and atomization by injection of aluminum oxide fine particles, which are spray abrasives . In the presence of aluminum oxide fine particles, the surface of the two-phase mixed oxide layer of aluminum oxide and zirconium oxide constituting the upper layer of the hard coating layer is polished, leaving the abrasive layer around the tool mounting hole. The surface roughness of the rake face and flank face including the cutting edge ridge line portion of the two-phase mixed oxide layer of aluminum oxide and zirconium oxide was measured based on JIS / B0601-1994, and Ra: 0.2 μm or less It characterized in that the the surface polished side of the surface-coated cermet cutting throw-away tip hard coating layer exhibits excellent chipping resistance in high-speed cutting .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357083A JP4853621B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005357083A JP4853621B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007160423A JP2007160423A (en) | 2007-06-28 |
JP4853621B2 true JP4853621B2 (en) | 2012-01-11 |
Family
ID=38243903
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005357083A Expired - Fee Related JP4853621B2 (en) | 2005-12-12 | 2005-12-12 | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4853621B2 (en) |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54136489A (en) * | 1978-04-14 | 1979-10-23 | Ngk Spark Plug Co Ltd | Keeper |
SE509201C2 (en) * | 1994-07-20 | 1998-12-14 | Sandvik Ab | Aluminum oxide coated tool |
JP3989664B2 (en) * | 1999-04-13 | 2007-10-10 | 三菱マテリアル株式会社 | Slow-away tip made of surface-coated cemented carbide with excellent chipping resistance |
JP3893804B2 (en) * | 1999-07-16 | 2007-03-14 | 三菱マテリアル株式会社 | Surface coated cemented carbide cutting tools with excellent chipping resistance |
JP4432097B2 (en) * | 1999-08-12 | 2010-03-17 | 三菱マテリアル株式会社 | Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent surface lubricity against chips during high-speed cutting of highly viscous difficult-to-cut materials |
KR100688923B1 (en) * | 2000-07-12 | 2007-03-09 | 스미토모덴키고교가부시키가이샤 | Coated cutting tool |
JP4019246B2 (en) * | 2000-09-04 | 2007-12-12 | 三菱マテリアル株式会社 | Surface coated cemented carbide cutting tools with excellent chipping resistance |
JP2003170311A (en) * | 2001-11-30 | 2003-06-17 | Sumitomo Electric Ind Ltd | Rotary cutting tool and its accessory |
JP4360620B2 (en) * | 2004-01-29 | 2009-11-11 | 京セラ株式会社 | Cutting tool holder and cutting tool using the same |
JP2005297145A (en) * | 2004-04-13 | 2005-10-27 | Sumitomo Electric Hardmetal Corp | Surface-coated end mill and surface-coated drill |
-
2005
- 2005-12-12 JP JP2005357083A patent/JP4853621B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007160423A (en) | 2007-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008137129A (en) | Surface coated cutting tool | |
JP4853612B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP4900652B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857751B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4853621B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857711B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4849376B2 (en) | Manufacturing method of surface-coated cermet cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4853822B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4900653B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP2008149390A (en) | Surface coated cutting tool | |
JP2007118155A (en) | Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP4857752B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4853613B2 (en) | Manufacturing method of cutting throwaway tip made of surface coated cermet whose hard coating layer exhibits excellent chipping resistance in high speed cutting | |
JP4883389B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4888688B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4888759B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP4857759B2 (en) | Method for manufacturing a surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials | |
JP4888689B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4888762B2 (en) | Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting | |
JP2008137130A (en) | Surface coated cutting tool | |
JP2007118108A (en) | Non-hole surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP2007090457A (en) | Surface coated cermet-made cutting throw-away tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting | |
JP4873289B2 (en) | Surface polishing method for throated surface-coated cermet with a hard coating layer that exhibits excellent chipping resistance in high-speed cutting | |
JP4857705B2 (en) | Surface polishing method for surface-coated cermet cutting throwaway tips with hard coating layer providing excellent chipping resistance in high-speed cutting | |
JP2007111814A (en) | Throwaway cutting tip of surface-coated cermet with hard coating layer achieving excellent anti-chipping performance in high-speed cutting work |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20080321 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20110425 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110615 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110928 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20111011 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20141104 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 4853621 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |