JPH0587646A - Measuring method for residual stress of ceramic member - Google Patents

Measuring method for residual stress of ceramic member

Info

Publication number
JPH0587646A
JPH0587646A JP3246124A JP24612491A JPH0587646A JP H0587646 A JPH0587646 A JP H0587646A JP 3246124 A JP3246124 A JP 3246124A JP 24612491 A JP24612491 A JP 24612491A JP H0587646 A JPH0587646 A JP H0587646A
Authority
JP
Japan
Prior art keywords
residual stress
ceramic member
stress
ray
rays
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3246124A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3246124A priority Critical patent/JPH0587646A/en
Publication of JPH0587646A publication Critical patent/JPH0587646A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To accurately measure the residual stress distribution of the fine part in the vicinity of the surface layer of a ceramic member in the depth direction thereof in a non-destructive manner. CONSTITUTION:A ceramic member 8 having a flat surface or a curved surface is irradiated with two or more kinds of X-rays different in penetration depth and a sin 2psi method is adapted to calculate the residual stress of the ceramic member from the obtained diffracted X-rays 9. From the calculated residual stress value and the respective penetration depths of X-rays, the residual stress gradient in the depth direction in the vicinity of the surface of the ceramics member 8 is calculated and the residual stress distribution of the ceramic member 8 in the depth direction is evaluated.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、セラミックス部材の残
留応力測定方法に係り、特に表面近傍部における深さ方
向の残留応力分布の測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for measuring residual stress in a ceramic member, and more particularly to a method for measuring residual stress distribution in the depth direction in the vicinity of the surface.

【0002】[0002]

【従来の技術】近年、セラミックス部材は、電気・電子
部品材料や構造部品材料等を初めとして、各種の部品材
料に使用されている。このようなセラミックス部材の信
頼性を評価するための一手段として、残留応力を測定す
ることが行われている。
2. Description of the Related Art In recent years, ceramic members have been used for various component materials including electric / electronic component materials and structural component materials. Residual stress is measured as one means for evaluating the reliability of such a ceramic member.

【0003】すなわち、セラミックス部材は金属部材と
接合して、複合部材として利用することがよく行われて
いる。しかし、セラミックス部材と金属部材との熱膨張
係数の差が大きいと、セラミックス部材の接合界面近傍
に残留応力が発生する。この残留応力は、セラミックス
部材に亀裂を生じさせ接合体が破壊に至る原因となった
り、また破壊に至らなくとも接合強度を低下させるとい
うような悪影響を及ぼす。このようなことから、セラミ
ックス−金属接合体の品質管理を行う上で、表層および
内部の残留応力を評価することが重要となる。また、セ
ラミックス−金属接合体のみに限らず、セラミックス部
材の形状や焼結工程、加工工程等の製造過程によって生
じる残留応力を評価することによって、各種形状のセラ
ミックス部材の品質管理を行うことができる。
That is, a ceramic member is often joined to a metal member and used as a composite member. However, if the difference in the coefficient of thermal expansion between the ceramic member and the metal member is large, residual stress occurs near the bonding interface between the ceramic members. This residual stress causes a crack in the ceramic member to cause the bonded body to break, or has a bad influence such that the bonding strength is reduced even if the bonded body is not broken. Therefore, it is important to evaluate the residual stress in the surface layer and the inside in order to control the quality of the ceramic-metal bonded body. In addition to the ceramic-metal bonded body, the quality control of the ceramic member of various shapes can be performed by evaluating the shape of the ceramic member and the residual stress caused by the manufacturing process such as the sintering process and the processing process. ..

【0004】従来、セラミックス部材の残留応力の評価
方法としては、有限要素法(FEM) や境界要素法(BEM) に
よる数値解析法が主として用いられてきた。これらの手
法によると、セラミックス部材の表層から内部にかけて
の応力分布を詳細に推定することができる。しかし、実
際のセラミックス部材やセラミックス−金属接合体にお
いては、解析モデルとは相違する場合も多く、残留応力
分布を実際に測定する必要があった。
Conventionally, numerical analysis methods such as the finite element method (FEM) and the boundary element method (BEM) have been mainly used as a method for evaluating the residual stress of a ceramic member. According to these methods, the stress distribution from the surface layer to the inside of the ceramic member can be estimated in detail. However, in actual ceramic members and ceramics-metal bonded bodies, it is often different from the analytical model, and it was necessary to actually measure the residual stress distribution.

【0005】セラミックス部材の残留応力を実測する手
法としては、残留応力の大きさに比例して変化する結晶
の格子面間隔をX線回折によって測定する sin2 ψ法等
が知られている。このX線回折を利用した方法は、非破
壊で残留応力が測定できると共に、X線束を微細化すれ
ば微小部分の残留応力が詳細に測定できるため、局所領
域での応力評価や品質管理手法として注目されている。
この手法は、微小X線法として最近開発された手法であ
り、セラミックス平板接合体等の測定例が報告されてい
る(日本金属学会会報,29(1990)924等参照)。
As a method of actually measuring the residual stress of the ceramic member, there is known a sin 2 ψ method or the like in which the lattice plane spacing of the crystal which changes in proportion to the magnitude of the residual stress is measured by X-ray diffraction. This method using X-ray diffraction can measure residual stress non-destructively and can measure residual stress in a minute portion in detail if the X-ray flux is miniaturized. Therefore, it can be used as a stress evaluation or quality control method in a local region. Attention has been paid.
This method has been recently developed as a micro X-ray method, and measurement examples of ceramics flat plate bonded bodies and the like have been reported (see Bulletin of the Japan Institute of Metals, 29 (1990) 924, etc.).

【0006】[0006]

【発明が解決しようとする課題】上述した微小X線法に
代表されるX線残留応力測定方法は、微小部分の残留応
力を正確に測定することが可能である等の利点を有する
半面、X線の侵入する深さまでのセラミックス部材の表
面近傍に測定域が限定されると共に、X線の侵入深さま
での平均値としてしか残留応力値を測定することができ
ないという問題を有していた。
The X-ray residual stress measuring method represented by the minute X-ray method described above has the advantage that the residual stress in the minute portion can be accurately measured. There is a problem that the measurement area is limited to the vicinity of the surface of the ceramic member up to the penetration depth of the line and the residual stress value can be measured only as an average value up to the penetration depth of the X-ray.

【0007】セラミックス部材内部の残留応力測定方法
としては、透過能の大きい中性子線を用いた手法が開発
されてはいるが、線源が限定されるだけではなく、得ら
れる残留応力値が表層から内部までの平均値であった
り、ある面方位のみの値が求まる場合がある等、信頼性
に欠けるという問題を有しており、実用化にはまだ時間
を要すると考えられている。また、研削や切断により内
部であった面を露出させ、その面の残留応力をX線法等
によって測定することも行われてはいるが、加工による
応力再配置が起こり、本来の正確な値を得ることは困難
であった。また、X線法においても、積分法による三軸
応力解析法が提案されてはいるが、計算が煩雑であると
言う欠点があった。
As a residual stress measuring method inside the ceramic member, a method using a neutron beam having a high penetrating ability has been developed, but not only the radiation source is limited, but also the obtained residual stress value is measured from the surface layer. It has a problem of lack of reliability such as an average value up to the inside or a value of only a certain plane orientation may be obtained, and it is considered that it will take some time for practical use. It has also been practiced to expose the inner surface by grinding or cutting and measure the residual stress on that surface by the X-ray method, etc. Was hard to get. Also, in the X-ray method, a triaxial stress analysis method based on the integration method has been proposed, but it has a drawback that the calculation is complicated.

【0008】ところで、前述した数値解析法により推定
された残留応力分布によると、セラミックス部材の表層
付近に大きな応力勾配が生ずる場合が多く、また引張り
応力に弱いセラミックス部材では、大きな引張り応力勾
配が存在することが、部材の寿命や信頼性を低下させる
原因となっていた。こうした応力勾配は、セラミックス
/金属の接合界面近傍等に大きくあらわれるため、最大
主応力と共に低減させる努力がはらわれている。同時
に、セラミックス部材の表層付近に発生する深さ方向へ
の応力勾配を評価する手法の出現が期待されていた。
By the way, according to the residual stress distribution estimated by the above-mentioned numerical analysis method, a large stress gradient is often generated in the vicinity of the surface layer of the ceramic member, and a large tensile stress gradient exists in the ceramic member weak against tensile stress. This has been a cause of reducing the life and reliability of the member. Since such a stress gradient appears largely in the vicinity of the ceramic / metal bonding interface, efforts have been made to reduce the maximum principal stress. At the same time, the emergence of a method for evaluating the stress gradient in the depth direction that occurs near the surface of the ceramic member was expected.

【0009】また、セラミックス−金属接合体において
は、接合界面からの距離や接合界面方向の位置によって
発生応力が異なることや、接合界面近傍の接合体外周部
付近に残留応力の最大主応力が作用すること等が知られ
ていることから、各応力発生位置に対応した微小部分の
残留応力を測定することが、信頼性の確認や設計および
製造工程への反映のために重要となる。このようなこと
からも、非破壊でセラミックス部材の微小部分における
深さ方向の残留応力を正確に求め得る手法の開発が強く
求められていた。
Further, in the ceramic-metal bonded body, the generated stress differs depending on the distance from the bonded interface and the position in the bonded interface direction, and the maximum principal stress of residual stress acts in the vicinity of the bonded body periphery near the bonded interface. Since it is known to do so, it is important to measure the residual stress of a minute portion corresponding to each stress generation position in order to confirm the reliability and reflect it in the design and manufacturing process. Therefore, there has been a strong demand for the development of a non-destructive method capable of accurately obtaining the residual stress in the depth direction in the minute portion of the ceramic member.

【0010】本発明は、このような課題に対処するため
になされたもので、セラミックス部材の表層付近の微小
部分における深さ方向の残留応力分布を、非破壊でかつ
正確に測定することを可能にしたセラミックス部材の残
留応力測定方法を提供することを目的としている。
The present invention has been made to cope with such a problem, and it is possible to accurately and nondestructively measure the residual stress distribution in the depth direction in a minute portion near the surface layer of a ceramic member. An object of the present invention is to provide a method for measuring residual stress of a ceramic member as described above.

【0011】[0011]

【課題を解決するための手段】すなわち、本発明のセラ
ミックス部材の残留応力測定方法は、平面または曲面状
の表面を有するセラミックス部材に、侵入深さが異なる
2種以上のX線を個々に照射し、得られた回折X線から
sin2 ψ法を適用してそれぞれ残留応力を求め、求めた
残留応力値と前記X線の侵入深さから、前記表面近傍の
深さ方向への残留応力勾配を求め、前記セラミックス部
材の残留応力の深さ方向分布を評価することを特徴とし
ている。
That is, in the residual stress measuring method for a ceramic member according to the present invention, the penetration depth is different in a ceramic member having a flat or curved surface.
From the diffracted X-rays obtained by irradiating two or more X-rays individually
The residual stress is obtained by applying the sin 2 ψ method, and the residual stress gradient in the depth direction near the surface is obtained from the obtained residual stress value and the penetration depth of the X-rays. It is characterized by evaluating the depth direction distribution of.

【0012】[0012]

【作用】セラミックス部材に対するX線の侵入深さは、
その波長とセラミックス材質とによって決定される。よ
って、波長の異なる 2種以上のX線を用いて、個々にsi
n2 ψ法を適用して残留応力を求めれば、測定深さが異
なる残留応力値が得られる。これら残留応力値は、用い
たX線の侵入深さまでの平均残留応力値として求まる。
このため、測定箇所に深さ方向への応力分布が存在して
いれば、得られる平均残留応力値に差が生じる。よっ
て、この平均残留応力値の差とX線の侵入深さから、深
さ方向への残留応力勾配を求めることができる。
[Function] The penetration depth of X-rays into the ceramic member is
It is determined by the wavelength and the ceramic material. Therefore, using two or more types of X-rays with different wavelengths, si
If the residual stress is obtained by applying the n 2 ψ method, residual stress values with different measurement depths can be obtained. These residual stress values are obtained as average residual stress values up to the penetration depth of the X-ray used.
Therefore, if there is a stress distribution in the depth direction at the measurement location, there will be a difference in the obtained average residual stress values. Therefore, the residual stress gradient in the depth direction can be obtained from the difference between the average residual stress values and the penetration depth of X-rays.

【0013】[0013]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0014】まず、この実施例で使用した残留応力測定
装置について説明する。図1は、本発明の残留応力測定
方法を適用した測定装置の一例を示す構成図である。
First, the residual stress measuring device used in this embodiment will be described. FIG. 1 is a configuration diagram showing an example of a measuring apparatus to which the residual stress measuring method of the present invention is applied.

【0015】同図において、1は回折用のX線源となる
X線管球である。このX線管球1から照射されたX線2
は、フィルタ3を通過して単波長のX線4として取り出
される。このフィルタ3を通過した単波長X線4は、例
えば二重ピンホ―ルを有するコリメ―タ5によって、所
定の微小径スポットにコリメ―トされ、この微小X線6
がゴニオメ―タ7の中心位置に配置された、被測定物で
あるセラミックス部材8に照射される。上記したゴニオ
メ―タ7の外周部には、被測定物であるセラミックス部
材8の測定面8aによって回折された回折X線9の強度
および回折角等の測定を行うX線検出器、例えば位置敏
感比例検出器(PSPC)10が配置されている。なお、フィ
ルタ3は、位置敏感比例検出器10の直前に設置しても
よい。
In the figure, 1 is an X-ray tube which serves as an X-ray source for diffraction. X-rays 2 emitted from this X-ray tube 1.
Passes through the filter 3 and is extracted as a single wavelength X-ray 4. The single-wavelength X-rays 4 which have passed through the filter 3 are collimated into a predetermined spot having a small diameter by a collimator 5 having a double pinhole, and the small X-rays 6
Is irradiated on the ceramic member 8 as the object to be measured, which is arranged at the central position of the goniometer 7. An X-ray detector for measuring the intensity and diffraction angle of the diffracted X-rays 9 diffracted by the measurement surface 8a of the ceramic member 8 to be measured, such as a position-sensitive device, is provided on the outer peripheral portion of the above-mentioned goniometer 7. A proportional detector (PSPC) 10 is arranged. The filter 3 may be installed immediately before the position-sensitive proportional detector 10.

【0016】上記したX線管球1のターゲット材質とし
ては、回折ピークが孤立ピークで高角度(2θ)側に存在
し、かつ回折強度が大きくなるように、測定するセラミ
ックス部材に応じて適宜選択する。対象となるターゲッ
ト材質の一例とそれらのK系列波長の値を表1に示す。
The target material of the X-ray tube 1 is appropriately selected according to the ceramic member to be measured so that the diffraction peak is an isolated peak on the high angle (2θ) side and the diffraction intensity is large. To do. Table 1 shows an example of target materials of interest and their K-series wavelength values.

【0017】[0017]

【表1】 [Table 1]

【0018】表1に示したターゲットによる特性X線の
波長は、約0.07nm〜 0.3nmの範囲にあり、これらによっ
てX線の侵入深さを種々変化させることができる。本発
明においては、表1に示したような長波長側すなわち浅
侵入波から短波長側すなわち深侵入波に並べた特性X線
の中から、 2種以上の特性X線を選択して用いることに
より、セラミックス部材に対するX線の侵入深さを異な
らせるものとする。
The wavelength of the characteristic X-ray by the target shown in Table 1 is in the range of about 0.07 nm to 0.3 nm, and the penetration depth of the X-ray can be variously changed by these. In the present invention, two or more types of characteristic X-rays are selected from the characteristic X-rays arranged from the long wavelength side, that is, the shallow intrusion wave to the short wavelength side, that is, the deep intrusion wave, as shown in Table 1. Therefore, the penetration depth of X-rays into the ceramic member is made different.

【0019】残留応力測定に適した上記条件を満足する
特性X線と、測定セラミックスの回折ピークを例示する
と、次のようになる。被検体がβ- Si3N 4 焼結体の場
合には、V-Kα1 線による (411)面の回折ピーク(2θ=1
52.67deg) 、 Cr-Kα1 線による (212)面の回折ピーク
(2θ=131.47deg)、 Cu-Kα1 線による (323)面の回折
ピーク(2θ=141.45deg)等が、α- Al2 O 3 焼結体の場
合には、 Cr-Kα1 線による(1,0,10)面の回折ピーク(2
θ=135.03deg)、 Cu-Kα1 線による (416)面の回折ピ
ーク(2θ=136.11deg)等が、 ZrO2 焼結体(Y-TZP)の場
合には、 Cr-Kα1 線による (133)面の回折ピーク(2θ
=152.09deg)、 Cu-Kα1 線による(026)面の回折ピー
ク(2θ=140.22deg)等が、 SiC焼結体(6H)の場合には、
Cr-Kα1 線による (116)面の回折ピーク(2θ=121.69d
eg)、 Cu-Kα1 線による(306)面の回折ピーク(2θ= 1
34.09deg)等が、 AlN焼結体の場合には Cu-Kα1 線に
よる (205)面の回折ピーク(2θ=148.26deg) 等が好まし
く用いられる。
The characteristic X-rays satisfying the above conditions suitable for residual stress measurement and the diffraction peaks of the measured ceramics are exemplified as follows. When the specimen is a β-Si 3 N 4 sintered body, the diffraction peak of the (411) plane by the V-Kα 1 ray (2θ = 1
52.67deg), Cr-Kα 1 ray diffraction peak of (212) plane
(2θ = 131.47deg), diffraction peak of (323) plane due to Cu-Kα 1 ray (2θ = 141.45deg) is due to Cr-Kα 1 ray in the case of α-Al 2 O 3 sintered body ( Diffraction peak of (1,0,10) plane (2
θ = 135.03deg), the diffraction peak (2θ = 136.11deg) of the (416) plane due to the Cu-Kα 1 ray is due to the Cr-Kα 1 ray in the case of the ZrO 2 sintered body (Y-TZP). 133) diffraction peak (2θ
= 152.09deg), the diffraction peak (2θ = 140.22deg) of the (026) plane due to the Cu-Kα 1 line is the case of the SiC sintered body (6H),
Diffraction peak of (116) plane by Cr-Kα 1 line (2θ = 121.69d
eg), Cu-Kα 1 ray diffraction peak of (306) plane (2θ = 1
34.09 deg) and the like are preferably used in the case of AlN sintered body, such as the diffraction peak (2θ = 148.26 deg) of the (205) plane by the Cu-Kα 1 line.

【0020】残留応力の深さ方向分布を測定するのに適
した 2種以上の特性X線の組合せとしては、例えば表2
に示すように、V-Kα1 線、 Cr-Kα1 線および Cu-K
α1 線等の組合せが例示される。これらは、それぞれ波
長が0.250348nm、0.228964nm、0.154050nmであり、侵入
深さがセラミックス材質によって異なる。ここで、X線
の侵入深さtは、次式によって計算される。
As a combination of two or more kinds of characteristic X-rays suitable for measuring the distribution of residual stress in the depth direction, for example, Table 2
As shown in, V-Kα 1 line, Cr-Kα 1 line and Cu-K line
An example is a combination of α 1 rays and the like. These have wavelengths of 0.250348 nm, 0.228964 nm and 0.154050 nm, respectively, and the penetration depth differs depending on the ceramic material. Here, the penetration depth t of the X-ray is calculated by the following equation.

【0021】[0021]

【数1】 [Equation 1]

【0022】(2)式により計算したX線有効侵入深さを
セラミックス材質ごとに表2に示す。表2には各々の回
折面および 2θ0 の値も示した。例えば、Si3 N 4 焼結
体では Cr-Kα1 線の侵入深さは10.2μm であり、 Cu-
Kα1 線の侵入深さは35.1μm となる。得られる残留応
力値は、これらの深さまでの平均残留応力値として測定
される。なお、侵入深さは、X線の入射角ψに依存性を
示し、例えばSi3 N4 焼結体の場合には図2のように変
化する。表2にはψ=0度のときの最大侵入深さを記し
た。
Table 2 shows the effective X-ray penetration depth calculated by the equation (2) for each ceramic material. Table 2 also shows each diffraction surface and the value of 2θ 0 . For example, in the Si 3 N 4 sintered body, the penetration depth of the Cr-Kα 1 ray is 10.2 μm, and Cu-
The penetration depth of the Kα 1 line is 35.1 μm. The residual stress values obtained are measured as the average residual stress values up to these depths. The penetration depth depends on the incident angle ψ of the X-ray and changes as shown in FIG. 2 in the case of, for example, a Si 3 N 4 sintered body. Table 2 shows the maximum penetration depth when ψ = 0 degree.

【0023】[0023]

【表2】 [Table 2]

【0024】また、微小X線6の照射領域の面積は、 s
in2 ψ法ではX線照射域内の結晶粒の数が1000個以上と
なるように設定する必要があり、さらにX線照射域内の
結晶粒は配向しない多結晶体であることが必要である。
微小X線6の照射面積は、上記条件を満足させた上で、
0.2mm2 以下に設定することが好ましい。さらに好まし
くは 0.1mm2 以下とすることである。このように、X線
を微小径スポットにコリメ―トすることによって、残留
応力分布をより詳細に測定することができる。また、被
測定面が曲面である場合にも、正確な測定が可能とな
る。
The area of the irradiation area of the minute X-rays 6 is s
In the in 2 ψ method, it is necessary to set the number of crystal grains in the X-ray irradiation region to be 1000 or more, and it is also necessary that the crystal grains in the X-ray irradiation region are polycrystals that are not oriented.
The irradiation area of the micro X-ray 6 satisfies the above conditions,
It is preferably set to 0.2 mm 2 or less. It is more preferably 0.1 mm 2 or less. In this way, the residual stress distribution can be measured in more detail by collimating the X-rays on the spot of a small diameter. In addition, accurate measurement is possible even when the surface to be measured is a curved surface.

【0025】さらに、被測定面が曲面の場合には、被測
定面上における微小X線の照射領域の径をdとし、被測
定面の曲率半径をr、この曲率半径rの 2倍の値をDと
したとき、これらの比d/Dが1/15以下となるように、
単波長X線をコリメートすることが好ましい。上記した
d/D比が1/15以下を満足するように、微小X線の照射
領域径dを設定することによって、被測定面の曲率の影
響をほぼ排除することが可能となり、正確な回折X線ピ
ークが得られ、被測定面の形状が曲面でも、残留応力の
正確な測定が可能となる。
Further, when the surface to be measured is a curved surface, the diameter of the irradiation area of the minute X-rays on the surface to be measured is d, the radius of curvature of the surface to be measured is r, and a value twice this radius of curvature r. Where D is D, so that the ratio d / D is 1/15 or less,
It is preferable to collimate single wavelength X-rays. By setting the irradiation area diameter d of the minute X-rays so that the above-mentioned d / D ratio satisfies 1/15 or less, the influence of the curvature of the measured surface can be almost eliminated, and accurate diffraction can be performed. An X-ray peak can be obtained, and the residual stress can be accurately measured even if the surface to be measured has a curved surface.

【0026】被測定物となるセラミックス部材8として
は、例えば平板状、球状、円柱状等のセラミックス部材
や、部分的に曲面を有する平板状のセラミックス部材
等、被測定面が平面状のものから曲面状のものまで、各
種のセラミックス部材を適用することが可能である。具
体的には、ベアリングボールのような球状セラミックス
部品、ロングリンクのような円柱状セラミックス部品等
の単体部品から、ターボロータ軸のような円柱状セラミ
ックス−金属接合部品等の複合部品まで、種々のセラミ
ックス部品に適用することができる。また、外部応力が
印加された場合のセラミックス部材に対しても適用可能
である。
The ceramic member 8 to be measured is, for example, a flat, spherical or cylindrical ceramic member, or a flat plate-shaped ceramic member having a partially curved surface and having a flat surface to be measured. It is possible to apply various ceramic members up to a curved surface. Specifically, from single parts such as spherical ceramic parts such as bearing balls, cylindrical ceramic parts such as long links, to composite parts such as cylindrical ceramic-metal joint parts such as turbo rotor shafts, It can be applied to ceramic parts. Further, it is also applicable to a ceramic member when an external stress is applied.

【0027】上記構成の残留応力測定装置では、以下の
ようにして残留応力が測定される。セラミックス部材内
に生じた残留応力は、この応力の大きさに比例して結晶
の格子面間隔(d値)を変化させる。生じた残留応力が
引張り応力の場合、応力と平行方向の面間隔d値は小さ
くなり、応力に直角方向の面間隔d値は大きくなる。ま
た圧縮応力の場合にはその逆になる。この性質を利用
し、図3(a)、(b)、(c)に示すように、被検体
測定面法線Nと格子面法線N′とのなす角度(X線入射
角)ψを変化させてX線を照射し、X線侵入深さ内での
ある特定の回折ピークの回折角度(2θ)の変化を調べる
ことにより、次式から残留応力σが求まる。
The residual stress measuring device having the above structure measures the residual stress as follows. The residual stress generated in the ceramic member changes the lattice plane spacing (d value) of the crystal in proportion to the magnitude of this stress. When the generated residual stress is a tensile stress, the surface distance d in the direction parallel to the stress becomes small, and the surface distance d in the direction perpendicular to the stress becomes large. In the case of compressive stress, the opposite is true. Utilizing this property, the angle (X-ray incident angle) ψ formed by the object measurement surface normal N and the lattice surface normal N ′ is calculated as shown in FIGS. 3 (a), (b), and (c). The residual stress σ is obtained from the following equation by changing the X-ray irradiation while changing the diffraction angle (2θ) of a specific diffraction peak within the X-ray penetration depth.

【0028】[0028]

【数2】 [Equation 2]

【0029】(式中、σは残留応力(kgf/mm2 )、Eは
ヤング率(kgf/mm2 )、νはポアソン比、θ0 は標準ブ
ラッグ角を示す。)Kは材料および測定波長によって決
まる応力定数であるため、測定値(ψと 2θ)から図4
に示すように、 2θと sin2 ψとのグラフを作成し、例
えば最小二乗法によって勾配を求め、それにKを乗ずれ
ば残留応力σは一義的に求まる。
(Where σ is residual stress (kgf / mm 2 ), E is Young's modulus (kgf / mm 2 ), ν is Poisson's ratio, θ 0 is standard Bragg angle.) K is material and measurement wavelength. Since the stress constant is determined by, the measured values (ψ and 2θ) are shown in Fig. 4.
As shown in FIG. 2, a residual stress σ can be uniquely obtained by creating a graph of 2θ and sin 2 ψ, obtaining a gradient by, for example, the least squares method, and multiplying it by K.

【0030】本発明においては、 2種以上の特性X線を
個々に用いて、上記した sin2 ψ法により同地点の残留
応力をそれぞれ測定する。ここで、侵入深さが異なる 2
種以上の特性X線を個々に用いているため、残留応力値
はそれぞれのX線の侵入深さまでの平均残留応力値とし
て求まる。したがって、深さ方向に応力勾配が存在して
いると、その応力勾配に応じて得られる残留応力値が異
なることとなる。よって、この残留応力値の差とX線の
侵入深さとから、深さ方向への応力勾配を定量的に求め
ることができる。
In the present invention, two or more types of characteristic X-rays are individually used to measure the residual stress at the same point by the above-mentioned sin 2 ψ method. Where the penetration depth is different 2
Since the characteristic X-rays of more than one kind are individually used, the residual stress value can be obtained as an average residual stress value up to the penetration depth of each X-ray. Therefore, if a stress gradient exists in the depth direction, the residual stress value obtained varies depending on the stress gradient. Therefore, the stress gradient in the depth direction can be quantitatively obtained from the difference between the residual stress values and the X-ray penetration depth.

【0031】次に、本発明の残留応力測定方法を用いた
具体的な測定例について述べる。
Next, a specific measurement example using the residual stress measuring method of the present invention will be described.

【0032】実施例1 まず、被測定物として円柱状のセラミックス−金属接合
体を以下の手順により作製した。図5に示すように、Si
3 N 4 焼結体からなる直径10mm×長さ10mmの円柱状のセ
ラミックス部材11と、同形状の鋼材(S45C)12との
間に、応力緩衝層となる直径10mm×厚さ 0.2mmの銅部材
13を介在させ、かつそれぞれの接合すべき面の間に厚
さ60μm の Ag-Cu箔と厚さ 3μm のTi箔とをろう材14
として挿入した。次いで、この積層物を真空中、約 830
℃、 6分間の条件で熱処理して、これらセラミックス部
材11、鋼材12および銅部材13を加熱接合し、円柱
状セラミックス−金属接合体15を作製した。
Example 1 First, a cylindrical ceramic-metal bonded body was manufactured as an object to be measured by the following procedure. As shown in FIG.
10 mm diameter x 0.2 mm thick copper to be a stress buffer layer between a cylindrical ceramic member 11 made of 3 N 4 sintered body and having a diameter of 10 mm and a length of 10 mm, and a steel material (S45C) 12 having the same shape. A brazing filler metal 14 with a member 13 interposed and a Ag-Cu foil with a thickness of 60 μm and a Ti foil with a thickness of 3 μm between the surfaces to be joined
Inserted as. The laminate is then placed under vacuum at about 830
The ceramic member 11, the steel material 12 and the copper member 13 were heat-bonded by heat treatment under the condition of 6 ° C. for 6 minutes to produce a columnar ceramic-metal bonded body 15.

【0033】このようにして得た円柱状セラミックス−
金属接合体15について、セラミックス部材11の残留
応力のうち、軸方向(図中、z方向)の垂直応力σz
よび円周方向(図中、θ方向)の垂直応力σθをそれぞ
れ測定した。測定条件は、以下の通りとした。
Cylindrical ceramics obtained in this way
Regarding the metal bonded body 15, of the residual stress of the ceramic member 11, the vertical stress σ z in the axial direction (z direction in the drawing) and the vertical stress σ θ in the circumferential direction (θ direction in the drawing) were measured. The measurement conditions were as follows.

【0034】特定X線として、50kV、 160mAの Cr-Kα
1 線(波長0.2289nm)と Cu-Kα1 線(波長0.154050n
m)とを用い、X線の照射径はψ=0度で0.15mmに設定し
た。X線入射角ψは、 5度、15度、20度、25度、30度お
よび35度(並傾法)とした。なお、X線入射角ψを35度
とした際のX線の照射領域径d(楕円の長径)は、0.32
mmであった。よって、d/D比は1/31である。また、ψ
=0度における照射面積内の表面におけるSi3 N 4 の結晶
粒の数は約2000個であり、 Cr-Kα1 線を照射した場合
の (1-1/e)の侵入深さ(10.2μm)までの全結晶粒数は約
7000個となり、いずれも sin2 ψ法を適用して残留応力
を測定するのに十分な個数であった。
As the specific X-ray, 50 kV, 160 mA of Cr-Kα
1 line (wavelength 0.2289nm) and Cu-Kα 1 line (wavelength 0.154050n)
m) and the irradiation diameter of X-ray was set to 0.15 mm at φ = 0 degree. The X-ray incident angle ψ was set to 5 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and 35 degrees (parallel tilt method). When the X-ray incidence angle ψ is 35 degrees, the X-ray irradiation area diameter d (ellipse major axis) is 0.32.
It was mm. Therefore, the d / D ratio is 1/31. Also, ψ
The number of Si 3 N 4 crystal grains on the surface within the irradiation area at = 0 degree is about 2000, and the penetration depth of (1-1 / e) (10.2 μm when irradiated with Cr-Kα 1 ray) The total number of crystal grains up to
The number was 7,000, which was sufficient to measure the residual stress by applying the sin 2 ψ method.

【0035】測定は、 Cr-Kα1 線では 2θ=131.47deg
の (212)面の回折ピークを、またCu-Kα1 線では 2θ=
141.45degの (323)面の回折ピークを用い、回折ピーク
のずれから 2θ-sin2 ψのグラフをそれぞれ作成した。
そして、これらのグラフの勾配と応力定数(Cr-Kα
1 線:K=-883MPa/deg、 Cu-Kα1 線:K=-688MPa/de
g)とを使用して、それぞれ残留応力を算出した。測定
位置は、それぞれ接合界面近傍から軸方向に所定の間隔
を開けて数箇所とした。
The measurement is 2θ = 131.47 deg for Cr-Kα 1 line
Of the (212) plane diffraction peak and 2θ = for the Cu-Kα 1 line
Using the diffraction peak of the (323) plane at 141.45 deg, a graph of 2θ-sin 2 ψ was created from the deviation of the diffraction peak.
Then, the gradient of these graphs and the stress constant (Cr-Kα
1 line: K = -883MPa / deg, Cu-Kα 1 line: K = -688MPa / de
g) and were used to calculate the residual stress, respectively. The measurement positions were set at several positions in the axial direction from the vicinity of the bonding interface at predetermined intervals.

【0036】図6に測定結果として、残留応力のうち軸
方向の垂直応力σzおよび円周方向の垂直応力σθの軸
方向分布を示す。軸方向の垂直応力σz は大きな引張り
応力で、円周方向の垂直応力σθは圧縮応力であり、σ
z は接合界面から離れるにしたがって単調に減少し、σ
θと共に試料端で零となる傾向を示している。しかし、
Cr-Kα1 、 Cu-Kα1 の両X線によって測定したσz
の値には、微妙な差があらわれ、 Cr-Kα1 線による値
が Cu-Kα1 線による値より大きくなっている。その差
は、接合界面に近い程大きく、接合界面から 0.1mm離れ
た箇所で2.2kg/mm2 の差を有していた。これは、接合界
面近傍に深さ方向の大きな応力勾配が存在するために、
侵入深さの大きい Cu-Kα線では平均化効果が働いたた
めと考えられる。両X線の侵入深さは、入射X線の強度
が (1-1/e)になる点で比較した表2によると、 Cr-Kα
1 線で10.2μm 、 Cu-Kα1 線で35.1μm である。よっ
て、この実施例によって求めた深さ方向の応力勾配は、
(1-1/e)への減衰地点で 1μm 当たり約 0.088 kg/mm2
となった。また、減衰の中央部付近(1-1/2e)で求める深
さ方向の応力勾配は、 1μm 当たり約0.127kg/mm2 とな
った。
As a measurement result, FIG. 6 shows the axial distribution of the vertical stress σ z in the axial direction and the vertical stress σ θ in the circumferential direction of the residual stress. The axial vertical stress σ z is a large tensile stress, and the circumferential vertical stress σ θ is a compressive stress.
z decreases monotonically with increasing distance from the bond interface, and σ
Along with θ , it tends to become zero at the sample end. But,
Σ z measured by both X-rays of Cr-Kα 1 and Cu-Kα 1
There is a subtle difference in the value of, and the value by the Cr-Kα 1 line is larger than the value by the Cu-Kα 1 line. The difference was larger as it was closer to the joint interface, and there was a difference of 2.2 kg / mm 2 at a location 0.1 mm away from the joint interface. This is because there is a large stress gradient in the depth direction near the joint interface.
It is considered that the averaging effect worked for Cu-Kα rays with a large penetration depth. The penetration depth of both X-rays is Cr-Kα according to Table 2 where the intensity of the incident X-ray becomes (1-1 / e).
10.2μm 1 line, which is 35.1μm in Cu-K [alpha 1 line. Therefore, the stress gradient in the depth direction obtained by this example is
Approximately 0.088 kg / mm 2 per μm at the point of attenuation to (1-1 / e)
Became. The stress gradient in the depth direction near the central part of damping (1-1 / 2e) was about 0.127 kg / mm 2 per 1 μm.

【0037】このように、侵入深さが異なる 2種以上の
X線を用い、個々に残留応力を測定することによって、
表面近傍部における深さ方向の残留応力勾配を求めるこ
とができる。
As described above, by using two or more kinds of X-rays having different penetration depths and measuring the residual stress individually,
The residual stress gradient in the depth direction in the vicinity of the surface can be obtained.

【0038】実施例2 図7に示すように、接合近傍部の断面直径が 6mmの 2つ
の鋼材(S45C)21の間に、Si3 N 4 焼結体からなる直
径 6mm×幅 5mmの円柱状のセラミックス部材22を介在
させ、さらにこれらの接合面間に応力緩衝層となる直径
6mm×厚さ 0.2mmの銅部材23をそれぞれ介在させた。
そして、それぞれの接合すべき面の間に実施例1と同様
のろう材(図示せず)を挿入し、実施例1と同一条件で
加熱接合して、円柱状セラミックス−金属接合体24
(引張試験片)を作製した。
Example 2 As shown in FIG. 7, between two steel materials (S45C) 21 having a cross-sectional diameter of 6 mm in the vicinity of the joint, a cylindrical column of 6 mm in diameter and 5 mm in width made of a Si 3 N 4 sintered body was used. Of the ceramic member 22 of which the diameter is a stress buffer layer between these joint surfaces.
A copper member 23 having a size of 6 mm and a thickness of 0.2 mm was interposed.
Then, a brazing filler metal (not shown) similar to that of Example 1 is inserted between the surfaces to be joined, and heat-bonded under the same conditions as in Example 1 to form a columnar ceramic-metal bonded body 24.
(Tensile test piece) was produced.

【0039】このようにして得た円柱状セラミックス−
金属接合体24について、セラミックス部材22の残留
応力のうち、軸方向(z方向)の垂直応力σz 、円周方
向(θ方向)の垂直応力σθ、およびθ−z面内のπ/4
方向の垂直応力σT を、Cr -Kα1 線および Cu-Kα1
線を用いてそれぞれ測定した。測定条件は、実施例1と
同様とした。
Cylindrical ceramics obtained in this way
For metal bonded body 24, of the residual stress of the ceramic member 22, the axial normal stress sigma z of (z-direction), the vertical stress sigma theta, and theta-z in plane [pi / 4 in the circumferential direction (theta direction)
Direction of the normal stress σ T, Cr -Kα 1 line and Cu-K [alpha 1
Each was measured using a line. The measurement conditions were the same as in Example 1.

【0040】垂直応力σz 、σθ、σT の軸方向分布を
図8に示す。この実施例で用いた接合試料は、実施例1
の接合体を 2体合せた配置になるため、応力分布はセラ
ミックス部材22の中心線で左右対称となっている。す
なわち、接合界面近傍でσz およびσT は最大の引張り
応力を示し、σθは最大の圧縮応力となり、中心部でい
ずれも最小となる。
FIG. 8 shows the axial distribution of the normal stresses σ z , σ θ and σ T. The bonded sample used in this example is the same as in Example 1.
Since the two bonded bodies are combined, the stress distribution is bilaterally symmetrical with respect to the center line of the ceramic member 22. That is, σ z and σ T show the maximum tensile stress in the vicinity of the bonding interface, σ θ shows the maximum compressive stress, and both show the minimum at the central portion.

【0041】図8から明らかなように、この実施例にお
いても、X線による応力値に明確な差異が見られた。 C
r-Kα1 線での残留応力測定値が Cu-Kα1 線によるそ
れより大きな引張り応力値および圧縮応力値を示してお
り、その差は応力値が大きい程大きいという傾向を示し
ている。この差は、深さ方向の応力勾配が存在する部位
で、X線の侵入深さの差による平均化効果が現れたため
と解釈できる。
As is clear from FIG. 8, a clear difference was observed in the stress value by X-ray also in this example. C
The residual stress measurement values for the r-Kα 1 line show larger tensile stress values and compressive stress values than those for the Cu-Kα 1 line, and the difference tends to increase as the stress value increases. This difference can be interpreted as the averaging effect due to the difference in the penetration depth of X-rays at the site where the stress gradient in the depth direction exists.

【0042】接合界面から 0.1mm離れた箇所における垂
直応力σz のX線による差は、最大4.2kg/mm2 であっ
た。これから実施例1と同様に深さ方向の応力勾配を求
めると、X線の (1-1/e)減衰地点での比較で 1μm 当た
り約0.169kg/mm2 、(1-1/2e)減衰地点で 1μm 当たり約
0.243kg/mm2 となった。
The maximum difference in normal stress σ z at a location 0.1 mm from the joint interface due to X-ray was 4.2 kg / mm 2 . From this, when the stress gradient in the depth direction is obtained in the same manner as in Example 1, it is about 0.169 kg / mm 2 per 1 μm, (1-1 / 2e) attenuation in comparison with the X-ray (1-1 / e) attenuation point. About 1 μm per point
It was 0.243 kg / mm 2 .

【0043】実施例3 図9に示すような、 3mm× 4mm×40mmの 2種類の板状接
合試験片31を用いて、残留応力の深さ方向分布を測定
した。接合体31は、セラミックス部材32と厚さ 5mm
の鋼板(S45C)33を厚さ 0.3mmの銅板34を介して、実
施例1と同様にTi-Cu-Ag系ろう材を用いた活性金属法に
より接合したものである。そして、セラミックス部材3
2として、Si3 N 4 焼結体とAl2 O3 焼結体をそれぞれ
用いて、2種類の接合体31を用意した。
Example 3 The distribution of residual stress in the depth direction was measured by using two types of plate-shaped joining test pieces 31 of 3 mm × 4 mm × 40 mm as shown in FIG. The bonded body 31 is 5 mm thick with the ceramic member 32.
Steel plate (S45C) 33 of No. 3 is joined by a 0.3 mm thick copper plate 34 by the active metal method using a Ti—Cu—Ag type brazing material as in Example 1. And the ceramic member 3
As the No. 2, two kinds of bonded bodies 31 were prepared by using the Si 3 N 4 sintered body and the Al 2 O 3 sintered body, respectively.

【0044】接合体試験片31の接合端近傍(図中、A
点)における残留応力を、 Cr-Kα1 線および Cu-Kα
1 線を用いてそれぞれ測定した。A点は試験片の辺およ
び接合界面から各々 0.1mmずつ離れた部位である。な
お、Al2 O 3 焼結体による試験片の測定に用いた回折面
は、表2に示したように、 Cr-Kα線1 では(1,0,10)面
の回折ピーク(2θ=135.03deg)、 Cu-Kα線1 では (41
6)面の回折ピーク(2θ=136.11deg)である。Al2 O 3
結体の場合は、 Cr-Kα1 線と Cu-Kα1 線とで、 (1-
1/e)侵入深さに26.1μm の差が生じる。
Near the joint end of the joint test piece 31 (A in the figure)
Residual stress on the Cr-Kα 1 line and Cu-Kα
Each was measured using one line. Point A is a site separated by 0.1 mm from each side of the test piece and the bonding interface. As shown in Table 2, the diffraction plane used for the measurement of the test piece made of the Al 2 O 3 sintered body is the diffraction peak (2θ = 135.03) of the (1,0,10) plane in the Cr-Kα line 1. deg), for Cu-Kα ray 1 (41
This is the diffraction peak of the 6) plane (2θ = 136.11 deg). In the case of an Al 2 O 3 sintered body, the Cr-Kα 1 line and the Cu-Kα 1 line are (1-
1 / e) There is a difference of 26.1 μm in penetration depth.

【0045】Si3 N 4 焼結体による試験片のA点での残
留応力は、 Cr-Kα1 線と Cu-Kα1 線とで、3.5kg/mm
2 の差が生じた。したがって、 (1-1/e)侵入深さで求め
た深さ方向の応力勾配は、 1μm 当たり約0.141kg/mm2
となった。また、Al2 O 3焼結体による試験片のA点で
の残留応力は2kg/mm2 の差が測定され、深さ方向分布は
(1-1/e)深さで 1μm 当たり約0.077kg/mm2 、(1-1/2e)
深さで 1μm 当たり約0.111kg/mm2 と求められた。
The residual stress at the point A of the test piece made of the Si 3 N 4 sintered body was 3.5 kg / mm for the Cr-Kα 1 line and the Cu-Kα 1 line.
There was a difference of 2 . Therefore, the stress gradient in the depth direction obtained by (1-1 / e) penetration depth is about 0.141 kg / mm 2 per 1 μm.
Became. In addition, the residual stress at the point A of the test piece made of the Al 2 O 3 sintered body was measured by the difference of 2 kg / mm 2 , and the distribution in the depth direction was
(1-1 / e) About 0.077 kg / mm 2 per 1 μm depth, (1-1 / 2e)
The depth was calculated to be about 0.111 kg / mm 2 per 1 μm.

【0046】[0046]

【発明の効果】以上説明したように、本発明のセラミッ
クス部材の残留応力測定方法によれば、表面近傍部にお
ける深さ方向への残留応力勾配を定量的に求めることが
可能となる。したがって、セラミックス部材の製造過程
等、様々な要因によって残留する応力をより詳細に測定
することが可能となり、確実な品質評価を行うことが可
能となる。
As described above, according to the residual stress measuring method for a ceramic member of the present invention, it is possible to quantitatively determine the residual stress gradient in the depth direction in the vicinity of the surface. Therefore, it becomes possible to measure the residual stress in more detail due to various factors such as the manufacturing process of the ceramic member, and it is possible to perform reliable quality evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の残留応力測定方法に使用した測定装置
の一例の構成を模式的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of an example of a measuring apparatus used in a residual stress measuring method of the present invention.

【図2】Si3 N 4 焼結体へのX線の侵入深さの差をψ角
度異存性にて示す図である。
FIG. 2 is a diagram showing a difference in penetration depth of X-rays into a Si 3 N 4 sintered body as ψ-angle existence.

【図3】X線による残留応力の測定原理を示す図であ
る。
FIG. 3 is a diagram showing a principle of measuring residual stress by X-ray.

【図4】X線による残留応力の算出方法を説明するため
の図である。
FIG. 4 is a diagram for explaining a method of calculating a residual stress by X-ray.

【図5】本発明の一実施例で残留応力の深さ方向分布の
測定に使用した円柱状セラミックス−金属接合体を示す
斜視図である。
FIG. 5 is a perspective view showing a cylindrical ceramics-metal bonded body used for measuring the distribution of residual stress in the depth direction in one example of the present invention.

【図6】図5に示す円柱状セラミックス−金属接合体の
2種類の特性X線を用いて個々に測定した残留応力分布
を示すグラフである。
6 is a cross-sectional view of the cylindrical ceramic-metal bonded body shown in FIG.
It is a graph which shows the residual stress distribution measured individually using two types of characteristic X-rays.

【図7】本発明の他の実施例で残留応力の深さ方向分布
の測定に使用した円柱状セラミックス−金属接合体を示
す斜視図である。
FIG. 7 is a perspective view showing a cylindrical ceramic-metal bonded body used for measuring the distribution of residual stress in the depth direction in another example of the present invention.

【図8】図7に示す円柱状セラミックス−金属接合体の
2種類の特性X線を用いて個々に測定した残留応力分布
を示すグラフである。
FIG. 8 is a view showing the cylindrical ceramic-metal bonded body shown in FIG.
It is a graph which shows the residual stress distribution measured individually using two types of characteristic X-rays.

【図9】本発明のさらに他の実施例で残留応力の深さ方
向分布の測定に使用した平板状セラミックス−金属接合
体を示す斜視図である。
FIG. 9 is a perspective view showing a flat plate-ceramic-metal bonded body used for measuring the distribution of residual stress in the depth direction in still another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1……X線管球 2……X線管球から照射されたX線 3……フィルタ 4……単波長X線 5……コリメ―タ 6……微小X線 7……ゴニオメ―タ 8……セラミックス部材 9……回折X線 10…位置敏感比例検出器 出願人 株式会社 東芝代理人 弁理士
須 山 佐 一(ほか1名)
1 ... X-ray tube 2 ... X-ray emitted from X-ray tube 3 ... Filter 4 ... Single wavelength X-ray 5 ... Collimator 6 ... Micro X-ray 7 ... Goniometer 8 …… Ceramics member 9 …… Diffraction X-ray 10 …… Position-sensitive proportional detector Applicant Toshiba Corporation Representative Attorney
Saichi Suyama (1 other person)

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 平面または曲面状の表面を有するセラミ
ックス部材に、侵入深さが異なる 2種以上のX線を個々
に照射し、得られた回折X線から sin2 ψ法を適用して
それぞれ残留応力を求め、求めた残留応力値と前記X線
の侵入深さから、前記表面近傍の深さ方向への残留応力
勾配を求め、前記セラミックス部材の残留応力の深さ方
向分布を評価することを特徴とするセラミックス部材の
残留応力測定方法。
1. A ceramic member having a flat or curved surface is individually irradiated with two or more types of X-rays having different penetration depths, and the sin 2 ψ method is applied to each of the obtained diffracted X-rays. Obtaining the residual stress, obtaining a residual stress gradient in the depth direction near the surface from the obtained residual stress value and the penetration depth of the X-ray, and evaluating the distribution of the residual stress in the ceramic member in the depth direction. A method for measuring residual stress in a ceramic member, comprising:
【請求項2】 請求項1記載のセラミックス部材の残留
応力測定方法において、 前記 2種以上のX線は、Sc、Ti、V 、Cr、Fe、Co、Ni、
CuおよびMoから選ばれた 2種以上のターゲットを個々に
用いてなることを特徴とするセラミックス部材の残留応
力測定方法。
2. The method for measuring residual stress of a ceramic member according to claim 1, wherein the two or more kinds of X-rays are Sc, Ti, V 2, Cr, Fe, Co, Ni,
A residual stress measuring method for a ceramic member, comprising using two or more kinds of targets selected from Cu and Mo individually.
JP3246124A 1991-09-25 1991-09-25 Measuring method for residual stress of ceramic member Withdrawn JPH0587646A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3246124A JPH0587646A (en) 1991-09-25 1991-09-25 Measuring method for residual stress of ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3246124A JPH0587646A (en) 1991-09-25 1991-09-25 Measuring method for residual stress of ceramic member

Publications (1)

Publication Number Publication Date
JPH0587646A true JPH0587646A (en) 1993-04-06

Family

ID=17143842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3246124A Withdrawn JPH0587646A (en) 1991-09-25 1991-09-25 Measuring method for residual stress of ceramic member

Country Status (1)

Country Link
JP (1) JPH0587646A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127817A (en) * 2003-10-23 2005-05-19 Rigaku Corp Micro-portion x-ray irradiation device and micro-portion x-ray irradiation method of x-ray diffraction device
JP2007005526A (en) * 2005-06-23 2007-01-11 Sumitomo Electric Ind Ltd Nitride crystal, nitride crystal substrate, nitride crystal substrate with epitaxial layer, semiconductor device, and its manufacturing method
JP2007127435A (en) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd Stress measuring method and device, and quality control method
JP2011005559A (en) * 2009-06-23 2011-01-13 Tungaloy Corp Coated tool
US8771552B2 (en) 2005-06-23 2014-07-08 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US9708735B2 (en) 2005-06-23 2017-07-18 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
CN111542750A (en) * 2018-01-12 2020-08-14 株式会社神户制钢所 Residual stress measuring method

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005127817A (en) * 2003-10-23 2005-05-19 Rigaku Corp Micro-portion x-ray irradiation device and micro-portion x-ray irradiation method of x-ray diffraction device
KR101172549B1 (en) * 2005-06-23 2012-08-08 스미토모덴키고교가부시키가이샤 Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
US7854804B2 (en) 2005-06-23 2010-12-21 Sumitomo Electric Industries, Ltd. Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
US8192543B2 (en) 2005-06-23 2012-06-05 Sumitomo Electric Industries, Ltd. Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
JP2007005526A (en) * 2005-06-23 2007-01-11 Sumitomo Electric Ind Ltd Nitride crystal, nitride crystal substrate, nitride crystal substrate with epitaxial layer, semiconductor device, and its manufacturing method
US8771552B2 (en) 2005-06-23 2014-07-08 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US8828140B2 (en) 2005-06-23 2014-09-09 Sumitomo Electric Industries, Ltd. Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
US9499925B2 (en) 2005-06-23 2016-11-22 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US9570540B2 (en) 2005-06-23 2017-02-14 Sumitomo Electric Industries, Ltd. Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
US9708735B2 (en) 2005-06-23 2017-07-18 Sumitomo Electric Industries, Ltd. Group III nitride crystal substrate, epilayer-containing group III nitride crystal substrate, semiconductor device and method of manufacturing the same
US10078059B2 (en) 2005-06-23 2018-09-18 Sumitomo Electric Industries, Ltd. Nitride crystal, nitride crystal substrate, epilayer-containing nitride crystal substrate, semiconductor device and method of manufacturing the same
JP2007127435A (en) * 2005-11-01 2007-05-24 Taiyo Yuden Co Ltd Stress measuring method and device, and quality control method
JP2011005559A (en) * 2009-06-23 2011-01-13 Tungaloy Corp Coated tool
CN111542750A (en) * 2018-01-12 2020-08-14 株式会社神户制钢所 Residual stress measuring method

Similar Documents

Publication Publication Date Title
Webster et al. Synchrotron X-ray residual strain scanning of a friction stir weld
JPH0587646A (en) Measuring method for residual stress of ceramic member
Chiang et al. A simple method for adhesion measurements
Pratihar et al. Measurement of the residual stress field in MIG-welded Al-2024 and Al-7150 aluminium alloy compact tension specimens
JPH0534214A (en) Method for measuring residual stress of ceramic member
Doig et al. The use of stretch zone width measurements in the determination of fracture toughness of low strength steels
Rosenberg et al. Elastic precursor decay in ceramics as determined with manganin stress gauges
Bauch et al. A comparison of the KOSSEL and the X‐ray Rotation‐Tilt Technique
JPH0579926A (en) Residual stress measuring method for aluminum nitride sintered body
Hauk Non-destructive methods of measurement of residual stresses
JPH01276052A (en) Measuring method for residual stress of ceramics member
CN104820020B (en) A kind of SiC Fiber Reinforced Tis based composites ring core ultrasound locating method
JPH04215024A (en) Ceramic member inspecting method
JPS59153152A (en) Double convergent roentgen-ray spectral crystal and roentgen-ray inspecting device with said crystal
Hall Plane-strain cyclic flaw growth in 2014-T62 aluminum and 6Al-4V (ELI) titanium
JPH0648851A (en) Ceramic-metal joined body
JPH0495834A (en) Manufacture of ceramics member
Liu et al. Structural degradation of impacted graphite/epoxy laminates
Hawkins et al. NDE of thick composites in the aerospace industry—an overview
Yajima et al. X-Ray Examination of Fracture Surfaces of Silicon Nitride Ceramics
Schäfers et al. Experimental investigations of residual stresses in thick high‐strength steel plates
Giare et al. Fracture toughness of unidirectional graphite fibre reinforced/epoxy composite in mode II (forward shear), using a thin tubular specimen
Van Patter et al. Proton probe analysis of an irghizite and a high-magnesium Java tektite
Doig et al. Non-destructive stress measurement using X-ray diffraction methods
Lambrineas et al. Neutron diffraction residual stress measurements on a thin steel plate

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981203