JPH0534214A - Method for measuring residual stress of ceramic member - Google Patents

Method for measuring residual stress of ceramic member

Info

Publication number
JPH0534214A
JPH0534214A JP18744591A JP18744591A JPH0534214A JP H0534214 A JPH0534214 A JP H0534214A JP 18744591 A JP18744591 A JP 18744591A JP 18744591 A JP18744591 A JP 18744591A JP H0534214 A JPH0534214 A JP H0534214A
Authority
JP
Japan
Prior art keywords
residual stress
ceramic member
ray
measured
curved surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP18744591A
Other languages
Japanese (ja)
Inventor
Shunichiro Tanaka
俊一郎 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP18744591A priority Critical patent/JPH0534214A/en
Publication of JPH0534214A publication Critical patent/JPH0534214A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an nondestructive residual-stress measuring method for a ceramic member which can accurately measure the residual stress at the minute part of the ceramic member whose surface to be measured is the curved surface. CONSTITUTION:X rays are cast on the curved surface to be measured of a ceramic member. The residual stress of the ceramic member is measured based on the obtained diffracted X rays. With respect to the X rays which are cast on the curved surface of the ceramic member, the ratio d/D between the diameter (d) of a the region, on which the X rays are cast, and D, which is the value twice the radius of curvature of the curved surface is 1/15 or less.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、曲面を有するセラミッ
クス部材の残留応力測定方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a residual stress measuring method for a ceramic member having a curved surface.

【0002】[0002]

【従来の技術】近年、セラミックス部材は、電気・電子
部品材料や構造部品材料等を初めとして、各種の部品材
料に使用されている。このようなセラミックス部材の信
頼性を評価するための一手段として、残留応力を測定す
ることが行われている。
2. Description of the Related Art In recent years, ceramic members have been used for various component materials including electric / electronic component materials and structural component materials. Residual stress is measured as one means for evaluating the reliability of such a ceramic member.

【0003】すなわち、セラミックス部材は金属部材と
接合して、複合部材として利用することがよく行われて
いる。しかし、セラミックス部材と金属部材との熱膨脹
係数の差が大きいと、セラミックス部材の接合界面近傍
部に残留応力が発生する。この残留応力は、セラミック
ス部材に亀裂を生じさせ、接合体破壊の原因となった
り、また破壊に至らなくとも接合強度を低下させるとい
うような悪影響を及ぼす。このようなことから、セラミ
ックス−金属接合体の信頼性の評価方法として、残留応
力の測定は重要な手法である。
That is, a ceramic member is often joined to a metal member and used as a composite member. However, if the difference in coefficient of thermal expansion between the ceramic member and the metal member is large, residual stress is generated in the vicinity of the bonding interface between the ceramic members. This residual stress causes a crack in the ceramic member and causes a destruction of the bonded body, or has a bad effect such that the bonding strength is lowered even if the bonded body is not broken. Therefore, measurement of residual stress is an important method for evaluating the reliability of the ceramic-metal bonded body.

【0004】このようなセラミックス部材の残留応力の
測定は、セラミックス−金属接合体への適用に限らず、
セラミックス部材の形状や焼結工程、加工工程等の製造
過程によって生じる残留応力の測定も、セラミックス部
材の評価方法として重要な手法である。
The measurement of the residual stress of such a ceramic member is not limited to the application to the ceramic-metal bonded body,
The measurement of the residual stress caused by the manufacturing process such as the shape of the ceramic member and the sintering process and the processing process is also an important method as an evaluation method of the ceramic member.

【0005】上述したようなセラミックス部材の残留応
力測定の一手法として、残留応力の大きさに比例して変
化する結晶の格子面間隔をX線回折によって測定する s
in2 ψ法等が知られている。このX線回折を利用した方
法は、非破壊で残留応力が測定できると共に、X線束を
微細化すれば微小部分の残留応力が測定できるため、信
頼性の評価方法として注目されている。
As a method of measuring the residual stress of the ceramic member as described above, the lattice plane spacing of the crystal which changes in proportion to the magnitude of the residual stress is measured by X-ray diffraction.
The in 2 ψ method and the like are known. This method using X-ray diffraction has been attracting attention as a reliability evaluation method because the residual stress can be measured nondestructively and the residual stress in a minute portion can be measured by making the X-ray flux fine.

【0006】[0006]

【発明が解決しようとする課題】ところで、上述したX
線回折による残留応力の測定方法は、被測定物であるセ
ラミックス部材の測定面が平面である場合には良好な結
果が得られているものの、例えば円柱状や球状のセラミ
ックス部材のように、被測定面が曲面の場合には、正確
に残留応力を測定することができないという問題を有し
ていた。
By the way, the above-mentioned X
The residual stress measurement method by line diffraction gives good results when the measurement surface of the ceramic member to be measured is a flat surface. When the measurement surface is a curved surface, there is a problem that the residual stress cannot be accurately measured.

【0007】すなわち、被測定面が曲面である場合、特
に曲率半径が小さい場合には、回折X線がブラッグの反
射の条件を十分に満たすことができなくなり、回折X線
ピークの強度が低下したり、あるいは干渉効果等によっ
て他の反射ピークが出現し、測定に利用する回折X線ピ
ークの特定が困難となるため、正確に残留応力値を求め
ることができなかった。そこで、照射X線量を増大する
等によって、回折X線ピークの強度を高めることが行わ
れているが、この方法では雑音となるピーク強度も高め
ることとなり、よってS/N比が低下するため、信頼性
の高い残留応力値を得るには至っていない。
That is, when the surface to be measured is a curved surface, especially when the radius of curvature is small, it becomes impossible for the diffracted X-rays to sufficiently satisfy the Bragg reflection condition, and the intensity of the diffracted X-ray peak decreases. Or, another reflection peak appears due to the interference effect or the like, and it becomes difficult to specify the diffracted X-ray peak used for the measurement, so that the residual stress value cannot be accurately determined. Therefore, the intensity of the diffracted X-ray peak has been increased by increasing the irradiation X-ray dose, etc., but this method also increases the peak intensity that becomes noise, and therefore the S / N ratio decreases, It has not been possible to obtain a reliable residual stress value.

【0008】一方、前述したセラミックス−金属接合体
の品質評価手段として、残留応力の測定を利用する場
合、セラミックス部材の接合界面からの距離や接合界面
方向の位置によって発生応力が異なることや、接合界面
近傍の接合体外周部付近に残留応力の最大主応力が作用
すること等が知られていることから、各応力発生位置に
対応した微小部分の残留応力を測定することが、信頼性
の確認や設計および製造工程への反映のために重要とな
る。このため、曲面を有するセラミックス部材において
も、非破壊で微小部分の残留応力を正確に求め得る方法
の開発が強く求められていた。
On the other hand, when residual stress measurement is used as a quality evaluation means for the above-mentioned ceramic-metal bonded body, the generated stress differs depending on the distance from the bonding interface of the ceramic member and the position in the bonding interface direction, and Since it is known that the maximum principal stress of residual stress acts near the outer periphery of the bonded body near the interface, it is possible to confirm the reliability by measuring the residual stress of the minute part corresponding to each stress generation position. It is also important for reflection in design and manufacturing processes. Therefore, even for a ceramic member having a curved surface, there has been a strong demand for the development of a method capable of accurately obtaining the residual stress of a minute portion in a nondestructive manner.

【0009】本発明は、このような課題に対処するため
になされたもので、被測定面が曲面であるセラミックス
部材の微小部分における残留応力を、非破壊的にかつ正
確に測定することを可能にしたセラミックス部材の残留
応力測定方法を提供することを目的としている。
The present invention has been made to address such a problem, and enables nondestructive and accurate measurement of residual stress in a minute portion of a ceramic member whose surface to be measured is a curved surface. An object of the present invention is to provide a method for measuring residual stress of a ceramic member as described above.

【0010】[0010]

【課題を解決するための手段】すなわち、本発明のセラ
ミックス部材の残留応力測定方法は、被測定面として曲
面を有するセラミックス部材の該曲面にX線を照射し、
得られる回折X線から前記セラミックス部材の残留応力
を測定する方法において、前記セラミックス部材の曲面
に照射するX線は、このX線の照射領域の径をd、前記
曲面の曲率半径の 2倍の値をDとしたとき、これらの比
d/Dが 1/15以下であることを特徴としている。
That is, the method for measuring residual stress of a ceramic member according to the present invention comprises irradiating the curved surface of a ceramic member having a curved surface as a surface to be measured with X-rays,
In the method of measuring the residual stress of the ceramic member from the obtained diffracted X-rays, the X-ray radiated on the curved surface of the ceramic member has a diameter d in the irradiation region of this X-ray and is twice the radius of curvature of the curved surface. When the value is D, these ratios d / D are characterized by being 1/15 or less.

【0011】[0011]

【作用】本発明の残留応力測定方法においては、セラミ
ックス部材の曲面状の被測定面に照射するX線の照射領
域径dと、曲面の曲率半径の 2倍の値Dとの比d/Dを
1/15以下としている。このように、曲面状の被測定面
の曲率に応じて、X線の照射領域径を規定することによ
り、回折X線ピークを正確に得ることが可能となる。す
なわち、被測定面の曲率が小さい場合には、X線の照射
領域径を小さくすることによって、被測定面の曲率の影
響をほぼ排除することが可能となり、正確な回折X線ピ
ークが得られる。これによって、被測定面が曲面である
セラミックス部材においても、照射面積に対応した微小
箇所の残留応力を正確に測定することが可能となる。
In the residual stress measuring method of the present invention, the ratio d / D of the irradiation area diameter d of the X-rays radiated to the curved surface to be measured of the ceramic member and the value D which is twice the radius of curvature of the curved surface. To
1/15 or less. As described above, by defining the X-ray irradiation area diameter according to the curvature of the curved surface to be measured, it is possible to accurately obtain the diffraction X-ray peak. That is, when the curvature of the surface to be measured is small, the influence of the curvature of the surface to be measured can be almost eliminated by reducing the diameter of the X-ray irradiation region, and an accurate diffraction X-ray peak can be obtained. .. As a result, it becomes possible to accurately measure the residual stress in a minute portion corresponding to the irradiation area even in the ceramic member whose measured surface is a curved surface.

【0012】[0012]

【実施例】次に、本発明の実施例について図面を参照し
て説明する。
Embodiments of the present invention will now be described with reference to the drawings.

【0013】図1は、本発明の残留応力測定方法を適用
した測定装置の一例を示す構成図である。同図において
1は、回折用のX線源となるX線管球である。このX線
管球1のターゲット材質は、測定するセラミックス部材
や測定深さに応じて適宜選択するものとし、また使用す
る回折ピークも同様である。例えば、被検体がβ-Si3 N
4 焼結体の場合には、V-Kα線による (411)面の回折
ピーク(2θ=152.67deg)、 Cr-Kα線による (212)面の
回折ピーク(2θ=131.47deg)、 Cu-Kα線による (323)
面の回折ピーク(2θ=141.45deg)等が、α -Al2 O3
結体の場合には、 Cr-Kα線による(1,1,10)面の回折ピ
ーク(2θ=135.03deg)、 Cu-Kα線による (416)面の回
折ピーク(2θ=136.11deg)等が、 ZrO2 焼結体(Y-TZP)
の場合には、 Cr-Kα線による (133)面の回折ピーク(2
θ=152.09deg)、 Cu-Kα線による (026)面の回折ピー
ク(2θ=140.22deg)等が、 SiC焼結体の場合には、 Cr-
Kα線による (116)面の回折ピーク(2θ=121.69deg)、
Cu-Kα線による (306)面の回折ピーク(2θ=134.09de
g)等が用いられる。
FIG. 1 is a block diagram showing an example of a measuring apparatus to which the residual stress measuring method of the present invention is applied. In the figure, 1 is an X-ray tube which serves as an X-ray source for diffraction. The target material of the X-ray tube 1 is appropriately selected according to the ceramic member to be measured and the measurement depth, and the diffraction peak used is also the same. For example, if the sample is β-Si 3 N
In the case of 4 sintered bodies, the diffraction peak of (411) plane by V-Kα ray (2θ = 152.67deg), the diffraction peak of (212) plane by Cr-Kα ray (2θ = 131.47deg), Cu-Kα By line (323)
In the case of α-Al 2 O 3 sintered body, the diffraction peak (2θ = 141.45 deg) of the plane is the diffraction peak (2θ = 135.03 deg) of the (1,1,10) plane due to the Cr-Kα line. Diffraction peak (2θ = 136.11deg) of (416) plane by Cu-Kα ray is ZrO 2 sintered body (Y-TZP)
In the case of, the diffraction peak (2
θ = 152.09deg), the diffraction peak (2θ = 140.22deg) of the (026) plane due to Cu-Kα rays, etc.
Diffraction peak of (116) plane by Kα ray (2θ = 121.69deg),
Diffraction peak of (306) plane by Cu-Kα ray (2θ = 134.09de
g) etc. are used.

【0014】X線管球1から照射されたX線2は、フィ
ルタ3を通過して単波長のX線4として取り出される。
このフィルタ3を通過した単波長X線4は、例えば二重
ピンホ―ルを有するコリメ―タ5によって、所定の微小
径スポットにコリメ―トされ、この微小X線6がゴニオ
メ―タ7の中心位置に配置された被測定物、すなわち被
測定面として曲面を有するセラミックス部材8に照射さ
れる。
The X-rays 2 emitted from the X-ray tube 1 pass through the filter 3 and are extracted as single-wavelength X-rays 4.
The single-wavelength X-rays 4 that have passed through the filter 3 are collimated to a predetermined spot having a small diameter by a collimator 5 having a double pinhole, and the minute X-rays 6 are the center of the goniometer 7. The measured object arranged at the position, that is, the ceramic member 8 having a curved surface as the measured surface is irradiated.

【0015】ここで、上記単波長X線4は、図2に示す
ように、セラミックス部材8の被測定面である曲面8a
上における微小X線6の照射領域Aの径をdとし、被測
定面である曲面8aの曲率半径をr、この曲率半径rの
2倍の値をDとしたとき、これらの比d/Dが 1/15以
下となるように、例えばコリメ―タ5によってコリメー
トする。上記Dの値は、被測定物であるセラミックス部
材8が円断面を有する場合にはその直径である。上記し
たd/D比が1/15以下を満足するように、微小X線6
の照射領域径dを設定することによって、被測定面の曲
率の影響をほぼ排除することが可能となり、正確な回折
X線ピークが得られる。すなわち、上記d/D比が 1/
15を超えると、被測定面の曲率の影響によって、ブラッ
グの反射の条件を正確に満足させることができなくな
る。上記したd/D比のより好ましい値は、 1/20以下
を満足させることである。なお、微小X線6の照射領域
Aの径dについては、後に詳述する。
Here, the single wavelength X-ray 4 is, as shown in FIG. 2, a curved surface 8a which is a surface to be measured of the ceramic member 8.
The diameter of the irradiation area A of the minute X-rays 6 on the upper side is d, the radius of curvature of the curved surface 8a which is the surface to be measured is r, and the radius of curvature r
When the doubled value is D, the collimator 5 collimates the ratio d / D so that the ratio d / D becomes 1/15 or less. The value of D is the diameter of the measured ceramic member 8 when it has a circular cross section. Fine X-rays 6 so that the above-mentioned d / D ratio is less than 1/15
By setting the irradiation area diameter d of 1, it is possible to almost eliminate the influence of the curvature of the surface to be measured, and an accurate diffraction X-ray peak can be obtained. That is, the above d / D ratio is 1 /
When it exceeds 15, the Bragg reflection condition cannot be accurately satisfied due to the influence of the curvature of the surface to be measured. The more preferable value of the above-mentioned d / D ratio is to satisfy 1/20 or less. The diameter d of the irradiation area A of the minute X-rays 6 will be described in detail later.

【0016】上述したように、微小X線6の照射領域径
dは、上記d/D比の値を満足させれば本発明の効果は
得られるが、被測定面である曲面8aの曲率半径rが大
きく、かつ微小部分の残留応力を測定する際には、上記
条件を満足させた上でX線の照射領域Aの面積が 0.2mm
2 以下となるように設定することが好ましく、さらに好
ましくは 0.1mm2 以下とすることである。
As described above, if the irradiation area diameter d of the minute X-rays 6 satisfies the value of the above d / D ratio, the effect of the present invention can be obtained, but the radius of curvature of the curved surface 8a which is the surface to be measured. When r is large and the residual stress in a minute portion is measured, the area of X-ray irradiation area A is 0.2 mm after satisfying the above conditions.
Is preferably set to be 2 or less, more preferably be 0.1 mm 2 or less.

【0017】また、上記被測定物となるセラミックス部
材8としては、被測定面として曲面を有するものであれ
ば、球状や円柱状のセラミックス部材に限らず、部分的
に曲面を有する平板状のセラミックス部材等、種々のセ
ラミックス部材を適用することができる。具体的には、
ベアリングボールのような球状セラミックス部品、ロン
グリンクのような円柱状セラミックス部品等の単体部品
から、ターボロータ軸のような円柱状セラミックス−金
属接合部品等の複合部品まで、種々のセラミックス部品
に適用することができる。
The ceramic member 8 to be measured is not limited to a spherical or cylindrical ceramic member as long as it has a curved surface as the measured surface, and a flat ceramic having a partially curved surface. Various ceramic members such as members can be applied. In particular,
Applicable to various ceramic parts, from single parts such as spherical ceramic parts such as bearing balls, cylindrical ceramic parts such as long links, to composite parts such as cylindrical ceramic-metal bonded parts such as turbo rotor shafts. be able to.

【0018】上記したゴニオメ―タ7の外周部には、被
測定物であるセラミックス部材8の曲面8aによって回
折された回折X線9の強度および回折角等の測定を行う
X線検出器、例えば位置敏感比例検出器(PSPC)10が配
置されている。この位置敏感比例検出器10は、回折X
線の回折角および強度等を検出器を走査させることなく
迅速に測定可能にしたものである。なお、上記したフィ
ルタ3は、位置敏感比例検出器10の直前に設置しても
よい。
An X-ray detector for measuring the intensity and diffraction angle of the diffracted X-rays 9 diffracted by the curved surface 8a of the ceramic member 8 to be measured is provided on the outer peripheral portion of the above-mentioned goniometer 7, for example. A position sensitive proportional detector (PSPC) 10 is arranged. This position-sensitive proportional detector 10 has a diffraction X
The diffraction angle and intensity of a line can be quickly measured without scanning the detector. The filter 3 described above may be installed immediately before the position-sensitive proportional detector 10.

【0019】上記構成の残留応力測定装置では、以下の
ようにして残留応力が測定される。セラミックス部材内
に生じた残留応力は、この応力の大きさに比例して結晶
の格子面間隔(d値)を変化させる。生じた残留応力が
引張り応力の場合、応力と平行方向の面間隔d値は小さ
くなり、応力に直角方向の面間隔d値は大きくなる。ま
た圧縮応力の場合にはその逆になる。この性質を利用
し、図3(a)、(b)、(c)に示すように、被検体
測定面法線Nと格子面法線N′とのなす角度(X線入射
角)ψを変化させてX線を照射し、X線侵入深さ内での
ある特定の回折ピークの回折角度(2θ)の変化を調べる
ことにより、次式から残留応力σが求まる。
The residual stress measuring device having the above structure measures residual stress as follows. The residual stress generated in the ceramic member changes the lattice plane spacing (d value) of the crystal in proportion to the magnitude of this stress. When the generated residual stress is a tensile stress, the surface distance d in the direction parallel to the stress becomes small, and the surface distance d in the direction perpendicular to the stress becomes large. In the case of compressive stress, the opposite is true. Utilizing this property, the angle (X-ray incident angle) ψ formed by the object measurement surface normal N and the lattice surface normal N ′ is calculated as shown in FIGS. 3 (a), (b), and (c). The residual stress σ is obtained from the following equation by changing the X-ray irradiation while changing the diffraction angle (2θ) of a specific diffraction peak within the X-ray penetration depth.

【0020】[0020]

【数1】 [Equation 1]

【0021】(式中、σは残留応力(kgf/mm2 )、Eは
ヤング率(kgf/mm2 )、νはポアソン比、θ0 は標準ブ
ラッグ角を示す)Kは材料および測定波長によって決ま
る応力定数であるため、測定値(ψと 2θ)から図4に
示すように、 2θと sin2 ψとのグラフを作成し、例え
ば最小二乗法によって勾配を求め、それにKを乗ずれば
残留応力σは一義的に求まる。
(Where σ is residual stress (kgf / mm 2 ), E is Young's modulus (kgf / mm 2 ), ν is Poisson's ratio, θ 0 is standard Bragg angle) K is dependent on material and measurement wavelength Since it is a stress constant that is determined, a graph of 2θ and sin 2 ψ is created from the measured values (ψ and 2θ) as shown in Fig. 4, and the gradient is obtained by, for example, the least-squares method. The stress σ is uniquely obtained.

【0022】ここで、 sin2 ψ法によって残留応力を測
定する場合、上述したように、X線入射角ψを変化させ
てX線を照射する。よって、被検体測定面法線Nと平行
にX線を照射する際には、図5(a)に示すように、微
小X線6の照射領域Aは円形となるが、被検体測定面法
線Nから角度ψだけ傾けて微小X線6を照射する際に
は、図5(b)に示すように、微小X線6の照射領域A
は楕円状となる。よって、本発明でいうX線の照射領域
径dとは、X線入射角ψを最大とした際の楕円状照射領
域Aの長径を指すものとする。
Here, when the residual stress is measured by the sin 2 ψ method, the X-ray is irradiated by changing the X-ray incident angle ψ as described above. Therefore, when irradiating X-rays in parallel with the normal line N to the object measurement surface, the irradiation area A of the minute X-rays 6 becomes circular as shown in FIG. When irradiating the minute X-rays 6 with an angle ψ from the line N, as shown in FIG.
Becomes oval. Therefore, the X-ray irradiation area diameter d in the present invention refers to the major axis of the elliptical irradiation area A when the X-ray incident angle ψ is maximized.

【0023】次に、本発明の残留応力測定方法を用いた
具体的な測定例について述べる。
Next, a specific measurement example using the residual stress measuring method of the present invention will be described.

【0024】実施例1 まず、被測定物として円柱状のセラミックス−金属接合
体を以下の手順により作製した。図6に示すように、Si
3 N 4 焼結体からなる直径10mm×長さ10mmの円柱状のセ
ラミックス部材11と、同形状の鋼材(S45C)12との
間に、応力緩衝層となる直径10mm×厚さ 0.2mmの銅部材
13を介在させ、かつそれぞれの接合すべき面の間に厚
さ60μm の Ag-Cu箔と厚さ 3μm のTi箔とをろう材14
として挿入した。次いで、この積層物を真空中、約 830
℃、 6分間の条件で熱処理して、これらセラミックス部
材11、鋼材12および銅部材13を加熱接合し、円柱
状セラミックス−金属接合体15を作製した。
Example 1 First, a cylindrical ceramic-metal bonded body was manufactured as an object to be measured by the following procedure. As shown in FIG.
10 mm diameter x 0.2 mm thick copper to be a stress buffer layer between a cylindrical ceramic member 11 made of 3 N 4 sintered body and having a diameter of 10 mm and a length of 10 mm, and a steel material (S45C) 12 having the same shape. A brazing filler metal 14 with a member 13 interposed and a Ag-Cu foil with a thickness of 60 μm and a Ti foil with a thickness of 3 μm between the surfaces to be joined
Inserted as. The laminate is then placed under vacuum at about 830
The ceramic member 11, the steel material 12 and the copper member 13 were heat-bonded by heat treatment under the condition of 6 ° C. for 6 minutes to produce a columnar ceramic-metal bonded body 15.

【0025】このようにして得た円柱状セラミックス−
金属接合体15について、セラミックス部材11の残留
応力の軸方向(z方向)成分σz および円周方向(θ方
向)成分σθをそれぞれ測定した。測定条件は、以下の
通りである。
Cylindrical ceramics obtained in this way
For the metal bonded body 15, the axial direction (z direction) component σ z and the circumferential direction (θ direction) component σ θ of the residual stress of the ceramic member 11 were measured. The measurement conditions are as follows.

【0026】特定X線として、50kV、 160mAの Cr-Kα
線を用い、X線の照射径はψ=0度で0.15mmに設定した。
X線入射角ψは、 5度、15度、20度、25度、30度および
35度(並傾法)とした。なお、X線入射角ψを35度とし
た際のX線の照射領域径d(楕円の長径)は、0.32mmで
あった。よって、d/D比は1/31である。
As a specific X-ray, 50 kV, 160 mA of Cr-Kα
X-ray irradiation diameter was set to 0.15 mm at φ = 0 degrees.
The X-ray incident angle ψ is 5 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees and
It was set to 35 degrees (parallel tilt method). The X-ray irradiation area diameter d (ellipse major axis) was 0.32 mm when the X-ray incident angle ψ was 35 degrees. Therefore, the d / D ratio is 1/31.

【0027】測定は、 2θ=131.47degの (212)面の回折
ピークを用い、回折ピークのずれから 2θ-sin2 ψのグ
ラフを作成し、このグラフの勾配と応力定数(K=-883
MPa/deg)とを使用して、それぞれ残留応力を算出した。
測定位置は、接合界面近傍から軸方向に所定の間隔を開
けて数箇所とした。
For the measurement, a diffraction peak on the (212) plane at 2θ = 131.47 deg was used, and a graph of 2θ-sin 2 ψ was created from the deviation of the diffraction peak, and the gradient and stress constant (K = -883) of this graph.
(MPa / deg) was used to calculate each residual stress.
The measurement positions were set at several positions in the axial direction from the vicinity of the bonding interface with a predetermined gap.

【0028】図7に残留応力の軸方向成分σz および円
周方向成分σθの測定結果を示す。図7から明らかなよ
うに、接合界面から最小 0.1mm単位で正確に残留応力の
測定が可能であったことが分かる。また、これら残留応
力の軸方向成分σz および円周方向成分σθからせん断
応力τθz の解析が可能であった。このせん断応力τ
θz は図中一点鎖線で示す。また、図中点線は、有限要
素法(FEM)による弾塑性解析の軸対象モデルであり、残
留応力の軸方向成分σz に相当する。これから、X線回
折よる残留応力の測定結果が正確な値を示していること
が推察できる。
FIG. 7 shows the measurement results of the axial component σ z and the circumferential component σ θ of the residual stress. As is clear from FIG. 7, it was found that the residual stress could be accurately measured from the bonding interface in units of 0.1 mm at the minimum. Further, the shear stress τ θz could be analyzed from the axial component σ z and the circumferential component σ θ of these residual stresses. This shear stress τ
θz is indicated by a dashed line in the figure. The dotted line in the figure is an axially symmetric model for elasto-plastic analysis by the finite element method (FEM) and corresponds to the axial component σ z of residual stress. From this, it can be inferred that the measurement result of the residual stress by X-ray diffraction shows an accurate value.

【0029】さらに、図7に示した測定結果から以下の
ことが解明された。すなわち、接合界面近傍には、軸方
向に大きな引張応力が残留しているが、セラミックス部
材の材料強度を超えていないため、接合体の破壊には至
っていない。この測定結果の考察からも、本発明の残留
応力測定方法が、曲面を有するセラミックス部材の評価
方法として非常に有効な手段で有ることが明らかであ
る。
Further, the following is clarified from the measurement results shown in FIG. That is, a large tensile stress remains in the vicinity of the bonded interface in the axial direction, but since the material strength of the ceramic member is not exceeded, the bonded body has not been destroyed. From the consideration of the measurement results, it is clear that the residual stress measuring method of the present invention is a very effective means for evaluating a ceramic member having a curved surface.

【0030】なお、本発明との比較として、X線の照射
径を 0.1mmに変更して、上記実施例と同様に、円柱状セ
ラミックス−金属接合体11の残留応力の測定を行った
ところ、正確な残留応力値を求めることはできず、図7
に示したような応力曲線を精度よく得ることはできなか
った。なお、この比較例において、X線入射角ψを35度
とした際のX線の照射領域径d(楕円の長径)は1.77mm
となり、よってd/D比は 1/5.6であった。
As a comparison with the present invention, the irradiation diameter of X-ray was changed to 0.1 mm, and the residual stress of the cylindrical ceramic-metal bonded body 11 was measured in the same manner as in the above-mentioned embodiment. It is not possible to obtain an accurate residual stress value.
It was not possible to accurately obtain the stress curve as shown in. In this comparative example, the X-ray irradiation area diameter d (major axis of ellipse) is 1.77 mm when the X-ray incident angle ψ is 35 degrees.
Therefore, the d / D ratio was 1 / 5.6.

【0031】実施例2 図8に示すように、接合近傍部の断面の直径が 6mmの 2
つの鋼材(S45C)21の間に、Si3 N 4 焼結体からなる
直径 6mm×幅 5mmの円柱状のセラミックス部材22を介
在させ、さらにこれらの接合面間に応力緩衝層となる直
径 6mm×厚さ0.2mmの銅部材23をそれぞれ介在させ
た。そして、それぞれの接合すべき面の間に実施例1と
同様のろう材(図示せず)を挿入し、実施例1と同一条
件で加熱接合して、円柱状セラミックス−金属接合体2
4(引張試験片)を作製した。
Example 2 As shown in FIG. 8, the diameter of the cross section near the joint was 6 mm.
Between two steel materials (S45C) 21, a cylindrical ceramic member 22 made of a Si 3 N 4 sintered body and having a diameter of 6 mm and a width of 5 mm is interposed, and a diameter of 6 mm serving as a stress buffer layer is formed between these joint surfaces. Each copper member 23 having a thickness of 0.2 mm was interposed. Then, a brazing filler metal (not shown) similar to that used in Example 1 is inserted between the surfaces to be joined, and heat-bonded under the same conditions as in Example 1 to form a cylindrical ceramic-metal bonded body 2.
4 (tensile test piece) was produced.

【0032】このようにして得た円柱状セラミックス−
金属接合体24について、セラミックス部材22の残留
応力の軸方向(z方向)成分σz を測定した。測定条件
は、実施例1と同様とした。なお、X線入射角ψを35度
とした際のX線の照射領域径d(楕円の長径)は、0.32
mmであった。よって、d/D比は1/18.8である。
Cylindrical ceramics obtained in this way
For the metal bonded body 24, the axial direction (z direction) component σ z of the residual stress of the ceramic member 22 was measured. The measurement conditions were the same as in Example 1. When the X-ray incidence angle ψ is 35 degrees, the X-ray irradiation area diameter d (ellipse major axis) is 0.32.
It was mm. Therefore, the d / D ratio is 1 / 18.8.

【0033】図9に、残留応力の軸方向成分σz の測定
結果を示す。図9から明らかなように、接合界面から最
小 0.1mm単位で、正確に残留応力の測定が可能であった
ことが分かる。
FIG. 9 shows the measurement result of the axial component σ z of the residual stress. As is clear from FIG. 9, it was found that the residual stress could be accurately measured from the bonding interface in units of 0.1 mm at the minimum.

【0034】なお、本発明との比較として、X線の照射
径を 1.0mmに変更して、上記実施例と同様に、円柱状セ
ラミックス−金属接合体24の残留応力の測定を行った
ところ、正確な残留応力値を求めることはできず、図9
に示したような応力曲線を得ることはできなかった。な
お、この比較例においてX線入射角ψを35度とした際の
X線の照射領域径d(楕円の長径)は1.77mmとなり、よ
ってd/D比は 1/3.4であった。
As a comparison with the present invention, when the X-ray irradiation diameter was changed to 1.0 mm and the residual stress of the cylindrical ceramic-metal bonded body 24 was measured in the same manner as in the above embodiment, An accurate residual stress value cannot be calculated, and
It was not possible to obtain the stress curve as shown in. In this comparative example, when the X-ray incidence angle ψ was 35 degrees, the X-ray irradiation area diameter d (major axis of ellipse) was 1.77 mm, and the d / D ratio was 1 / 3.4.

【0035】[0035]

【発明の効果】以上説明したように、本発明のセラミッ
クス部材の残留応力測定方法によれば、測定面が曲面状
である場合においても、微小部分の残留応力を高精度に
測定することが可能となる。したがって、セラミックス
部材の製造過程等、様々な要因によって残留する応力を
精細に測定し、確実な品質評価が可能となる。
As described above, according to the residual stress measuring method for a ceramic member of the present invention, the residual stress in a minute portion can be measured with high accuracy even when the measurement surface is curved. Becomes Therefore, it is possible to precisely measure the residual stress due to various factors such as the manufacturing process of the ceramic member, and to perform reliable quality evaluation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の残留応力測定方法を適用した測定装置
の一例の構成を模式的に示す図である。
FIG. 1 is a diagram schematically showing a configuration of an example of a measuring apparatus to which a residual stress measuring method of the present invention is applied.

【図2】本発明におけるX線の照射領域径と測定曲面の
曲率との関係を説明するための図である。
FIG. 2 is a diagram for explaining a relationship between an X-ray irradiation area diameter and a curvature of a measurement curved surface in the present invention.

【図3】X線による残留応力の測定原理を示す図であ
る。
FIG. 3 is a diagram showing a principle of measuring residual stress by X-ray.

【図4】X線による残留応力の算出方法を説明するため
の図である。
FIG. 4 is a diagram for explaining a method of calculating a residual stress by X-ray.

【図5】本発明におけるX線の照射領域径を説明するた
めの図である。
FIG. 5 is a diagram for explaining an X-ray irradiation area diameter in the present invention.

【図6】本発明の一実施例で残留応力の測定に使用した
円柱状セラミックス−金属接合体を示す斜視図である。
FIG. 6 is a perspective view showing a cylindrical ceramic-metal bonded body used for measuring residual stress in one example of the present invention.

【図7】図6に示す円柱状セラミックス−金属接合体の
残留応力の測定結果を示すグラフである。
7 is a graph showing measurement results of residual stress of the cylindrical ceramic-metal bonded body shown in FIG.

【図8】本発明の他の実施例で残留応力の測定に使用し
た円柱状セラミックス−金属接合体を示す斜視図であ
る。
FIG. 8 is a perspective view showing a cylindrical ceramic-metal bonded body used for measuring residual stress in another example of the present invention.

【図9】図8に示す円柱状セラミックス−金属接合体の
残留応力の測定結果を示すグラフである。
9 is a graph showing measurement results of residual stress of the cylindrical ceramic-metal bonded body shown in FIG.

【符号の説明】[Explanation of symbols]

1……X線管球 2……X線管球から照射されたX線 3……フィルタ 4……単波長X線 5……コリメ―タ 6……微小X線 7……ゴニオメ―タ 8……曲面を有するセラミックス部材 9……回折X線 10…位置敏感比例検出器 A……X線の照射領域 d……X線の照射領域径 r……曲率半径 D……曲率半径の 2倍の値 1 ... X-ray tube 2 ... X-ray emitted from X-ray tube 3 ... Filter 4 ... Single wavelength X-ray 5 ... Collimator 6 ... Micro X-ray 7 ... Goniometer 8 ...... Ceramic member with curved surface 9 ...... Diffracted X-ray 10 ... Position-sensitive proportional detector A ...... X-ray irradiation area d ...... X-ray irradiation area diameter r ...... Curve radius D ...... Twice the curvature radius The value of the

Claims (1)

【特許請求の範囲】 【請求項1】 被測定面として曲面を有するセラミック
ス部材の該曲面にX線を照射し、得られる回折X線から
前記セラミックス部材の残留応力を測定する方法におい
て、 前記セラミックス部材の曲面に照射するX線は、このX
線の照射領域の径をd、前記曲面の曲率半径の 2倍の値
をDとしたとき、これらの比d/Dが 1/15以下である
ことを特徴とするセラミックス部材の残留応力測定方
法。
Claim: What is claimed is: 1. A method of irradiating an X-ray on a curved surface of a ceramic member having a curved surface as a surface to be measured, and measuring the residual stress of the ceramic member from the obtained diffracted X-ray. The X-rays that irradiate the curved surface of the member are
The ratio d / D of these values is 1/15 or less, where d is the diameter of the irradiation area of the line and D is the radius of curvature of the curved surface. ..
JP18744591A 1991-07-26 1991-07-26 Method for measuring residual stress of ceramic member Withdrawn JPH0534214A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18744591A JPH0534214A (en) 1991-07-26 1991-07-26 Method for measuring residual stress of ceramic member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18744591A JPH0534214A (en) 1991-07-26 1991-07-26 Method for measuring residual stress of ceramic member

Publications (1)

Publication Number Publication Date
JPH0534214A true JPH0534214A (en) 1993-02-09

Family

ID=16206199

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18744591A Withdrawn JPH0534214A (en) 1991-07-26 1991-07-26 Method for measuring residual stress of ceramic member

Country Status (1)

Country Link
JP (1) JPH0534214A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628815A (en) * 2012-04-10 2012-08-08 上海交通大学 Method for detecting residual stress of shot-blasted layer on root part of small-curved-surface gear
CN103926025A (en) * 2014-04-13 2014-07-16 北京工业大学 Test device and method for measuring residual stress of coating
CN103994842A (en) * 2014-06-05 2014-08-20 盐城工学院 Method for measuring residual stress of composite material annular part based on cutting and bending method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102628815A (en) * 2012-04-10 2012-08-08 上海交通大学 Method for detecting residual stress of shot-blasted layer on root part of small-curved-surface gear
CN103926025A (en) * 2014-04-13 2014-07-16 北京工业大学 Test device and method for measuring residual stress of coating
CN103994842A (en) * 2014-06-05 2014-08-20 盐城工学院 Method for measuring residual stress of composite material annular part based on cutting and bending method

Similar Documents

Publication Publication Date Title
Webster et al. Synchrotron X-ray residual strain scanning of a friction stir weld
Qozam et al. Microstructure effect on the Lcr elastic wave for welding residual stress measurement
Javadi et al. Comparison between using longitudinal and shear waves in ultrasonic stress measurement to investigate the effect of post-weld heat-treatment on welding residual stresses
Chiang et al. A simple method for adhesion measurements
JPH0587646A (en) Measuring method for residual stress of ceramic member
JPH0534214A (en) Method for measuring residual stress of ceramic member
Haldren et al. Swept-frequency ultrasonic phase evaluation of adhesive bonding in tri-layer structures
Sathish et al. Residual stress measurement with focused acoustic waves and direct comparison with X-ray diffraction stress measurements
JPH0579926A (en) Residual stress measuring method for aluminum nitride sintered body
Knollman Variation of shear modulus through the interfacial bond zone of an adhesive
JPH01276052A (en) Measuring method for residual stress of ceramics member
JPH04215024A (en) Ceramic member inspecting method
Sathish et al. Local surface skimming longitudinal wave velocity and residual stress mapping
JPH0495834A (en) Manufacture of ceramics member
JPH0648851A (en) Ceramic-metal joined body
JPH05142067A (en) Measuring method for distribution of concentrated stress
Duke Jr et al. A study of the stress wave factor technique for evaluation of composite materials
JP2852682B2 (en) Strength measurement method for ceramic parts
Ivochkin et al. Measurement of velocity distribution for longitudinal acoustic waves in welds by a laser optoacoustic technique
JPS59153152A (en) Double convergent roentgen-ray spectral crystal and roentgen-ray inspecting device with said crystal
Hasegawa et al. Acoustoelastic birefringence effect in wood II: influence of texture anisotropy on the polarization direction of shear wave in wood
Dumontet et al. Determination of the X-Ray Elastic Constants of the Ti-6Al-4V Processed by Powder Bed-Laser Beam Melting
Yajima et al. X-Ray Examination of Fracture Surfaces of Silicon Nitride Ceramics
Dementyev et al. Analysis of the physical and mechanical properties of the welded joint transition zone A182+ 321
Schäfers et al. Experimental investigations of residual stresses in thick high‐strength steel plates

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008