JP5293330B2 - Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material - Google Patents

Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Download PDF

Info

Publication number
JP5293330B2
JP5293330B2 JP2009077051A JP2009077051A JP5293330B2 JP 5293330 B2 JP5293330 B2 JP 5293330B2 JP 2009077051 A JP2009077051 A JP 2009077051A JP 2009077051 A JP2009077051 A JP 2009077051A JP 5293330 B2 JP5293330 B2 JP 5293330B2
Authority
JP
Japan
Prior art keywords
layer
tib
boron nitride
cubic boron
sintered material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009077051A
Other languages
Japanese (ja)
Other versions
JP2010228032A (en
Inventor
秀充 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009077051A priority Critical patent/JP5293330B2/en
Publication of JP2010228032A publication Critical patent/JP2010228032A/en
Application granted granted Critical
Publication of JP5293330B2 publication Critical patent/JP5293330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool formed of a cubic boron nitride-based ultra high-pressure sintered material exhibiting excellent abrasion resistance, and defecting resistance in the high-speed heavy machining of a high hardness material. <P>SOLUTION: The surface-coated cutting tool formed of the cubic boron nitride-based ultra high-pressure sintered material is vapor-deposited with hard coating layers composed of a lower layer, an intermediate layer, and an upper layer on a surface of the tool base composed of a cBN-based ultra high-pressure sintered material containing 70 vol% or more of the cBN content. In the surface coated cutting tool, (1) the lower layer is a TiB2 layer with a layer thickness of 0.05-0.5 &mu;m, (2) the intermediate layer has a layer thickness of 0.3-1 &mu;m, has an average composition satisfying 0.15&le;X&le;0.60, 0.05&le;Y&le;0.35, and 0.50&le;X+Y&le;0.65 when the intermediate layer is expressed by a composition formula: Ti<SB>1-X-Y</SB>B<SB>X</SB>N<SB>Y</SB>(X and Y are atomic ratios), and is a two-phase mixed layer composed of TiB<SB>2</SB>and TiN phases having gradient compositions in which the value of X gradually decreases and the value of Y gradually increases toward an upper layer side from a lower layer side, and (3) the upper layer has a layer thickness of 0.5-5 &mu;m and is a Ti-Al complex nitride layer satisfying that Y is 0.3-0.65 (atomic ratio) when the upper layer is expressed by a composition formula: (Ti<SB>1-Y</SB>Al<SB>Y</SB>)N. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

この発明は、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材を高速重切削加工した場合でも、硬質被覆層がすぐれた耐摩耗性を発揮し、長期にわたって安定した切削性能を発揮することができる、立方晶窒化ほう素基超高圧焼結材料で構成された切削工具基体(以下、工具基体という)の表面に硬質被覆層を形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(以下、被覆cBN基焼結工具という)に関するものである。   The present invention provides excellent wear resistance with a hard coating layer and stable cutting over a long period of time even when a work material made of a hard material such as a hardened material of alloy tool steel or bearing steel is subjected to high-speed heavy cutting. A surface-coated cubic boron nitride group in which a hard coating layer is formed on the surface of a cutting tool base (hereinafter referred to as a tool base) made of a cubic boron nitride-based ultra-high pressure sintered material capable of exhibiting performance The present invention relates to a cutting tool made of an ultra-high pressure sintered material (hereinafter referred to as a coated cBN-based sintered tool).

一般に、被覆cBN基焼結工具には、各種の鋼や鋳鉄などの被削材の旋削加工にバイトの先端部に着脱自在に取り付けて用いられるインサートや、前記インサートを着脱自在に取り付けて、面削加工や溝加工、さらに肩加工などに用いられるソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。   In general, a coated cBN-based sintered tool has an insert that can be attached to the tip of a cutting tool for turning of a work material such as various types of steel and cast iron, An insert-type end mill that performs cutting work in the same manner as a solid type end mill used for machining, grooving, and shoulder machining is known.

また、被覆cBN基焼結工具としては、各種の立方晶窒化ほう素基超高圧焼結材料で構成された工具本体の表面に、チタンとアルミニウムの複合窒化物(TiAlNで示す)層などの表面被覆層を蒸着形成してなる被覆cBN基焼結工具が知られており、これらが例えば各種の鋼や鋳鉄などの切削加工に用いられていることも知られている。   Further, as a coated cBN-based sintered tool, a surface of a composite body of titanium and aluminum (indicated by TiAlN) or the like on the surface of a tool body made of various cubic boron nitride-based ultrahigh pressure sintered materials Coated cBN-based sintered tools formed by vapor-depositing a coating layer are known, and it is also known that these are used for cutting of various steels and cast irons, for example.

さらに、上記の被覆cBN基焼結工具が、例えば図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、例えば500℃に加熱した状態で、Ti−Al合金からなるカソード電極(蒸発源)と、アノード電極との間に、例えば90Aの電流を印加してアーク放電を発生させ、同時に装置内に、例えば、反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方前記工具基体には、たとえば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、TiAlN層など、所望の層を蒸着形成することにより製造されることも知られている。   Further, the above-mentioned coated cBN-based sintered tool is loaded with the above-mentioned tool base in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, in a state heated to 500 ° C., for example, a current of 90 A is applied between the cathode electrode (evaporation source) made of a Ti—Al alloy and the anode electrode to generate an arc discharge. For example, a nitrogen gas is introduced as a reaction gas to obtain a reaction atmosphere of 2 Pa, for example. On the other hand, a TiAlN layer or the like is formed on the surface of the tool base under a condition that a bias voltage of, for example, −100 V is applied to the tool base. It is also known that it is manufactured by vapor deposition of the layers.

特開2001−234328号公報JP 2001-234328 A 特開平8−119774号公報JP-A-8-119774

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は、通常の切削条件に加えて、より高速条件下での切削加工が要求される傾向にあるが、上記の従来被覆工具においては、各種の鋼や鋳鉄を通常条件下で切削加工した場合に特段の問題は生じないが、これを、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速重切削に用いた場合には、切削時の高熱発生、高負荷による硬質被覆層の付着強度の不足のため、あるいは、欠損等の発生によって、比較的短時間で使用寿命に至るのが現状である。   In recent years, FA has been remarkable for cutting devices, but on the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and accordingly, cutting is performed at higher speed conditions in addition to normal cutting conditions. However, in the above-mentioned conventional coated tools, there is no particular problem when various types of steel and cast iron are machined under normal conditions. When used for high-speed heavy cutting of work materials made of hard materials such as hardened steel and bearing steel, high heat generation during cutting, due to insufficient adhesion strength of hard coating layer due to high load, or The present situation is that the service life is reached in a relatively short time due to the occurrence of defects or the like.

そこで、本発明者等は、上述のような観点から、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削加工で、硬質被覆層がすぐれた付着強度を備えるとともにすぐれた耐摩耗性、耐欠損性を発揮し、長期の使用に亘って、すぐれた切削性能を発揮する被覆cBN基焼結工具を開発すべく研究を行った結果、次のような知見を得た。   In view of the above, the inventors of the present invention have an excellent adhesion strength with a hard coating layer in high-speed cutting of a work material made of a hard material such as a hardened material of alloy tool steel or bearing steel. As a result of research to develop a coated cBN-based sintered tool that exhibits excellent wear resistance and fracture resistance, and exhibits excellent cutting performance over a long period of use, the following knowledge was obtained. Obtained.

(a)超高圧焼結材料製工具基体中の立方晶窒化ほう素(以下、cBNで示す)は、きわめて硬質で、焼結材料中で分散相を形成し、そしてこの分散相によって耐摩耗性の向上を図ることができるが、cBNの配合割合が70容量%以上に多くなったような場合には、工具基体の硬さ上昇は見込めるものの、TiAlN層からなる硬質被覆層との付着強度が低下傾向を示すようになるため、高熱発生を伴うとともに、切刃に対して高負荷が作用する高硬度材の高速重切削加工においては、硬質被覆層の欠損、剥離の発生によって、工具基体の有するすぐれた高温硬さを切削性能向上に生かすことができない。 (A) Cubic boron nitride (hereinafter referred to as cBN) in a tool base made of ultra-high pressure sintered material is extremely hard, forms a dispersed phase in the sintered material, and wear resistance is obtained by this dispersed phase. However, when the blending ratio of cBN is increased to 70% by volume or more, the hardness of the tool base can be increased, but the adhesion strength with the hard coating layer made of the TiAlN layer is high. In the high-speed heavy cutting process for high-hardness materials that are accompanied by high heat generation and a high load acts on the cutting edge because of the tendency to decrease, in the high-speed heavy cutting processing of the hard coating layer, The excellent high temperature hardness cannot be utilized to improve the cutting performance.

(b)そこで、工具基体とTiAlN層の付着強度を改善する硬質被覆層構造について、数多くの実験を重ねた結果、硬質被覆層を、下部層、中間層および上部層の三層構造として構成し、さらに、下部層は、TiB層、中間層は、TiB相とTiN相との2相混合組織からなる層(以下、TiB−TiN混合層で示す)、上部層は、TiAlN層で形成した場合には、層間付着強度が高いため、その結果、下部層および中間層を介したことにより、工具基体とTiAlN層の付着強度が大幅に改善されることを見出した。 (B) Therefore, as a result of many experiments conducted on the hard coating layer structure that improves the adhesion strength between the tool base and the TiAlN layer, the hard coating layer is configured as a three-layer structure of a lower layer, an intermediate layer, and an upper layer. Furthermore, the lower layer is a TiB 2 layer, the intermediate layer is a layer composed of a two-phase mixed structure of a TiB 2 phase and a TiN phase (hereinafter referred to as a TiB 2 -TiN mixed layer), and the upper layer is a TiAlN layer. When formed, the interlayer adhesion strength is high, and as a result, it has been found that the adhesion strength between the tool base and the TiAlN layer is greatly improved through the lower layer and the intermediate layer.

(c)さらに、中間層のTiB−TiN混合層について、下部層側ではTiBの含有比率を高くしTiNの含有比率を下げ、逆に、上部層側ではTiBの含有比率を下げTiN含有比率を高める傾斜組織構造を採用することにより、より一層、下部層−中間層、また、中間層−上部層間での層間付着強度が高くなることから、硬質被覆層間の付着強度がより一段と高くなることを見出したのである。 (C) In addition, the TiB 2-TiN mixed layer of the intermediate layer, the lower layer side to increase the content ratio of TiB 2 lowers the content of TiN, conversely, TiN lower the content of TiB 2 in the upper layer side By adopting the gradient structure that increases the content ratio, the interlayer adhesion strength between the lower layer-intermediate layer and between the intermediate layer and the upper layer is further increased, so that the adhesion strength between the hard coating layers is further increased. I found out.

(d)したがって、cBN含有量が70容量%以上の被覆cBN基焼結工具において、TiB層からなる下部層、傾斜組織構造のTiB−TiN混合層からなる中間層、TiAlN層からなる上部層で硬質被覆層を構成した場合には、各層間の付着強度が高くなることに加えて、工具基体と硬質被覆層を合わせた強度の点でも高くなることから、硬質被覆層は全体として、すぐれた高温硬さ、靭性、高温強度を備え、その結果、大きな発熱と高負荷を伴う合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速重切削加工において、欠損、剥離等を生じることなく、長期の使用に亘ってすぐれた耐摩耗性と耐欠損性を示し、安定した切削性能を発揮するものである。 (D) Thus, at 70 volume% or more of the coated cBN-based sintered tool cBN content, the lower layer composed of TiB 2 layer, an intermediate layer made of TiB 2-TiN mixed layers of mound organizational structure, the upper consisting of TiAlN layer When the hard coating layer is composed of layers, in addition to the adhesion strength between the layers being increased, the strength of the tool base and the hard coating layer is also increased, so the hard coating layer as a whole, Excellent high-temperature hardness, toughness, and high-temperature strength. As a result, in high-speed heavy cutting of work materials made of hard materials such as hardened alloy tool steel and bearing steel with large heat generation and high load. It exhibits excellent wear resistance and fracture resistance over a long period of use without causing peeling, and exhibits stable cutting performance.

この発明は、上記知見に基づいてなされたものであって、
「 立方晶窒化ほう素の含有量が70容量%以上の立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、下部層、中間層および上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)上記下部層は、0.05〜0.5μmの層厚を有するTiB層、
(b)上記中間層は、0.3〜1μmの層厚を有し、
組成式:Ti1−X−Y
で表した場合、0.15≦X≦0.60、0.05≦Y≦0.35、0.50≦X+Y≦0.65(但し、X、Yはいずれも原子比)を満足する平均組成を有し、さらに、下部層側から上部層側へ向うにしたがって、Xの値は次第に減少し、Yの値は次第に増加する傾斜組織構造を有するTiB相とTiN相との2相混合層、
(c)上記上部層は、0.5〜5μmの層厚を有し、
組成式:(Ti1−ZAl)N層
で表した場合、Zが0.3〜0.65(但し、Zは原子比)であるTiとAlの複合窒化物層、
であることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具(被覆cBN基焼結工具)。」
に特徴を有するものである。
This invention has been made based on the above findings,
"Hard coating layer consisting of lower layer, intermediate layer and upper layer is deposited on the surface of tool base made of cubic boron nitride based ultra high pressure sintered material with cubic boron nitride content of more than 70% by volume In the surface-coated cubic boron nitride based ultra high pressure sintered material cutting tool,
(A) The lower layer is a TiB 2 layer having a layer thickness of 0.05 to 0.5 μm,
(B) The intermediate layer has a layer thickness of 0.3 to 1 μm,
Composition formula: Ti 1-XY B X N Y
In this case, an average satisfying 0.15 ≦ X ≦ 0.60, 0.05 ≦ Y ≦ 0.35, 0.50 ≦ X + Y ≦ 0.65 (where X and Y are atomic ratios) Two-phase mixing of TiB 2 phase and TiN phase having a gradient structure in which the value of X gradually decreases and the value of Y gradually increases as it moves from the lower layer side to the upper layer side. layer,
(C) The upper layer has a layer thickness of 0.5 to 5 μm,
Composition formula: (Ti 1-Z Al Z ) When represented by an N layer, a composite nitride layer of Ti and Al in which Z is 0.3 to 0.65 (where Z is an atomic ratio),
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool (coated cBN-based sintered tool). "
It has the characteristics.

つぎに、この発明の被覆cBN基焼結工具の硬質被覆層を構成する各層について説明する。   Next, each layer constituting the hard coating layer of the coated cBN-based sintered tool of the present invention will be described.

下部層:
下部層を構成するTiB層は、高温での安定性にすぐれ、かつ硬さも高く、工具基体および中間層を構成するTiB−TiN混合層のいずれに対してもすぐれた密着性を有し、工具基体と硬質被覆層の付着強度の向上に寄与する。
さらに、下部層のTiBのヤング率は、工具基体の主成分であるcBN相のそれに近く、刃先に大きな応力が作用する重切削に用いた場合でも、下部層と工具基体の変形挙動の差が小さく、下部層の剥離や破壊が生じにくいため、結果として安定した刃先を長期に亘って維持することができる。
TiB層は、ターゲットにTiB焼結体を使用し、Arガス雰囲気中で高周波スパッタリングを行うことにより形成することができる。
TiB層の層厚は、0.05μm未満では、密着層としての効果が十分でなく、一方、その層厚が0.5μmを超えると、膜全体としての強度が低下し、高負荷での切削時に破壊が生じやすくなることから、TiB層の層厚は、0.05〜0.5μmと定めた。
Lower layer:
The TiB 2 layer constituting the lower layer has excellent stability at high temperatures and high hardness, and has excellent adhesion to both the tool base and the TiB 2 -TiN mixed layer constituting the intermediate layer. This contributes to an improvement in the adhesion strength between the tool base and the hard coating layer.
Furthermore, the Young's modulus of TiB 2 in the lower layer is close to that of the cBN phase, which is the main component of the tool base, and even when used for heavy cutting in which a large stress acts on the cutting edge, the difference in deformation behavior between the lower layer and the tool base. Is small, and peeling and destruction of the lower layer hardly occur. As a result, a stable cutting edge can be maintained for a long period of time.
The TiB 2 layer can be formed by using a TiB 2 sintered body as a target and performing high-frequency sputtering in an Ar gas atmosphere.
If the layer thickness of the TiB 2 layer is less than 0.05 μm, the effect as an adhesion layer is not sufficient, while if the layer thickness exceeds 0.5 μm, the strength of the entire film is reduced and the load is high. Since the breakage is likely to occur during cutting, the thickness of the TiB 2 layer is set to 0.05 to 0.5 μm.

中間層:
中間層を構成するTiB−TiN混合層を、
Ti1−X−Y
で表した場合、Xは0.15〜0.60、Yは0.05〜0.35、X+Yは0.50〜0.65(但し、X、Yはいずれも原子比)を満足する平均組成を有し、さらに、下部層側から上部層側へ向うにしたがって、Xの値は次第に減少し、Yの値は次第に増加する傾斜組織構造を形成するように、中間層中のTiB含有割合およびTiN含有割合を調整する。
上記組成式において、X、YおよびX+Yを、それぞれ、0.15〜0.60、0.05〜0.35および0.50〜0.65(但し、X、Yのいずれも原子比)を満足ように定めた理由は、以下のとおりである。
Bの含有割合Xが0.60を超える場合、あるいは、Nの含有割合Yが0.05を下回る場合には、上部層のTiAlN層との密着強度が十分でなく、層間での剥離が生じやすくなり、逆に、Bの含有割合Xが0.15を下回る場合、あるいは、Nの含有割合Yが0.35を超える場合には、下部層のTiB層と所定の密着性が得られなくなり、同様に層間での剥離が生じやすくなる。また、BとNの合計含有割合X+Yが0.65を超えると、相対的にNの含有割合が減少し、実質的にTiB相の量が大部分を占めるようになることを意味し、上部層TiAlN層との密着強度が十分でなくなる。
また、X+Yが0.50を下回る場合には、TiB相とTiN相の2相混合層を形成することが困難となり、特に、下部層戸の密着強度が得られなくなる。
したがって、TiB−TiN混合層の平均組成を示すBの含有割合X、Nの含有割合YおよびBとNの合計含有割合X+Yを、それぞれ、0.15〜0.60、0.05〜0.35および0.50〜0.65と定めた。
さらに、下部層および上部層との密着性、付着強度を高めるために、下部層側では、相対的にTiBの含有比率を高くしTiNの含有比率を下げ、逆に、上部層側では、相対的にTiBの含有比率を下げTiN含有比率を高める組織傾斜構造を有するTiB−TiN混合層を形成することが必要である。TiBの含有比率が高くTiNの含有比率が低い下部層側のTiB−TiN混合層、および、TiBの含有比率が低くTiNの含有比率が高い上部層側のTiB−TiN混合層は、それぞれ、下部層および上部層と類似する成分、組成の界面を形成するため、密着性、付着強度がより一層高められる。
Middle layer:
The TiB 2 -TiN mixed layer constituting the intermediate layer,
Ti 1-XY B X N Y
X is 0.15 to 0.60, Y is 0.05 to 0.35, and X + Y is 0.50 to 0.65 (where X and Y are both atomic ratios). The composition further includes TiB 2 in the intermediate layer so as to form a graded structure in which the value of X gradually decreases and the value of Y gradually increases from the lower layer side to the upper layer side. Adjust the ratio and TiN content ratio.
In the above composition formula, X, Y, and X + Y are 0.15 to 0.60, 0.05 to 0.35, and 0.50 to 0.65 (where X and Y are both atomic ratios), respectively. The reasons for satisfying are as follows.
When the content ratio X of B exceeds 0.60, or when the content ratio Y of N is less than 0.05, the adhesion strength between the upper layer and the TiAlN layer is not sufficient, and peeling between layers occurs. On the contrary, when the B content ratio X is less than 0.15, or when the N content ratio Y exceeds 0.35, predetermined adhesion with the TiB 2 layer of the lower layer is obtained. Similarly, peeling between layers is likely to occur. Further, when the total content ratio X + Y of B and N exceeds 0.65, it means that the content ratio of N is relatively decreased, and the amount of TiB 2 phase is substantially occupied, Adhesion strength with the upper TiAlN layer becomes insufficient.
When X + Y is less than 0.50, it becomes difficult to form a two-phase mixed layer of TiB 2 phase and TiN phase, and in particular, the adhesion strength of the lower layer door cannot be obtained.
Therefore, the content ratio X of B indicating the average composition of the TiB 2 -TiN mixed layer, the content ratio Y of N, and the total content ratio X + Y of B and N are 0.15 to 0.60 and 0.05 to 0, respectively. .35 and 0.50 to 0.65.
Furthermore, in order to increase the adhesion and adhesion strength between the lower layer and the upper layer, on the lower layer side, the content ratio of TiB 2 is relatively increased and the content ratio of TiN is lowered, and conversely, on the upper layer side, It is necessary to form a TiB 2 —TiN mixed layer having a textured gradient structure that relatively lowers the TiB 2 content ratio and increases the TiN content ratio. The TiB 2 -TiN mixed layer on the lower layer side with a high TiB 2 content ratio and a low TiN content ratio, and the TiB 2 -TiN mixed layer on the upper layer side with a low TiB 2 content ratio and a high TiN content ratio are Since the interfaces of components and compositions similar to those of the lower layer and the upper layer are formed, respectively, adhesion and adhesion strength are further improved.

TiB−TiN混合層は、ターゲットにTiB焼結体と金属チタンの2種類を使用し、Arガスと窒素ガスの混合雰囲気中で高周波スパッタリングを行うことにより形成することができる。ただ、TiB−TiN混合層中に傾斜組織構造を構成するために、スパッタリングによる成膜初期には、雰囲気ガス中の窒素ガス含有割合および金属チタンターゲットへの供給電力を小さくしておき、成膜の進行に伴って、雰囲気ガス中の窒素ガス含有割合および金属チタンターゲットへの電力を順次高めていくことが必要である。
また、形成するTiB−TiN混合層の層厚が0.3μm未満では、密着層としての効果が十分でなく、一方、その層厚が1μmを超えると、膜全体としての強度が低下し、高負荷での切削時に破壊が生じやすくなることから、TiB−TiN混合層の層厚は、0.3〜1μmと定めた。
The TiB 2 -TiN mixed layer can be formed by using high frequency sputtering in a mixed atmosphere of Ar gas and nitrogen gas, using two types of TiB 2 sintered bodies and titanium metal as targets. However, in order to form a tilted structure in the TiB 2 -TiN mixed layer, at the initial stage of film formation by sputtering, the nitrogen gas content ratio in the atmospheric gas and the power supplied to the titanium metal target are reduced, and the formation is completed. As the film progresses, it is necessary to sequentially increase the nitrogen gas content in the atmospheric gas and the power to the metal titanium target.
In addition, when the layer thickness of the TiB 2 -TiN mixed layer to be formed is less than 0.3 μm, the effect as the adhesion layer is not sufficient, while when the layer thickness exceeds 1 μm, the strength of the entire film is reduced, Since breakage is likely to occur during cutting under high load, the thickness of the TiB 2 -TiN mixed layer was determined to be 0.3 to 1 μm.

上部層:
TiAlN層におけるTi成分は高温強度の維持、Al成分は高温硬さと耐酸化性の向上に寄与することから、TiAlN層は、所定の高温強度、高温硬さおよび耐熱性を具備する層であって、合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速切削加工時における切刃部の耐摩耗性を確保する役割を基本的に担う。
ただ、上部層を構成するTiAlN層を、
組成式:(Ti1−ZAl)N
で表した場合に、Alの含有割合Zが0.65を超えると、結晶構造の変化により、高温強度が低下し欠損が生じやすくなり、一方、Alの含有割合Zが0.3未満になると、高温硬さと耐熱性が低下し、その結果、耐摩耗性の低下がみられるようになることから、Alの含有割合Zの値を0.3〜0.65(但し、原子比)と定めた。
TiAlN層からなる上部層は、例えば、アークイオンプレーティング法により成膜すればよいが、上部層の層厚が0.5μm未満では、自身のもつ耐熱性、高温硬さおよび高温強度を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が5μmを越えると、欠損が生じ易くなることから、上部層の層厚は、0.5〜5μmと定めた。
Upper layer:
Since the Ti component in the TiAlN layer maintains high temperature strength and the Al component contributes to improvement in high temperature hardness and oxidation resistance, the TiAlN layer is a layer having predetermined high temperature strength, high temperature hardness and heat resistance. Basically, it plays a role of ensuring the wear resistance of the cutting edge part during high-speed cutting of a work material made of a hard material such as a hardened material of alloy tool steel or bearing steel.
However, the TiAlN layer constituting the upper layer is
Formula: (Ti 1-Z Al Z ) N
In the case where the Al content ratio Z exceeds 0.65, the crystal structure changes and the high-temperature strength decreases and defects tend to occur. On the other hand, when the Al content ratio Z is less than 0.3, Since the high temperature hardness and heat resistance decrease, and as a result, the wear resistance decreases, the value of the Al content ratio Z is determined to be 0.3 to 0.65 (however, the atomic ratio). It was.
The upper layer made of a TiAlN layer may be formed by, for example, an arc ion plating method. However, if the thickness of the upper layer is less than 0.5 μm, the heat resistance, high-temperature hardness and high-temperature strength that it has are hard-coated. The layer cannot be applied to the layer for a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 5 μm, defects are likely to occur. Therefore, the layer thickness of the upper layer is determined to be 0.5 to 5 μm. .

この発明の被覆cBN基焼結工具は、cBNの配合割合が70容量%以上の工具基体表面に、下部層、中間層および上部層からなる硬質被覆層を形成し、かつ、下部層をTiB層、中間層を特定組成の、かつ、傾斜組織構造を有するTiB−TiN混合層、また、上部層を特定組成のTiAlN層とすることによって、特にすぐれた付着強度を有し、さらに、高温硬さ、靭性、耐衝撃性を兼ね備えることから、合金工具鋼や軸受け鋼の焼入れ材などの高硬材からなる被削材の、高熱発生を伴い、かつ、切刃に高負荷が作用する高速重切削という厳しい切削条件下であっても、前記硬質被覆層に、剥離等の発生はなく、長期の使用に亘って、すぐれた耐摩耗性、耐欠損性を発揮することができる。 In the coated cBN-based sintered tool of the present invention, a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer is formed on the surface of a tool base having a cBN compounding ratio of 70% by volume or more, and the lower layer is formed of TiB 2. By having a TiB 2 -TiN mixed layer having a specific composition and a graded structure in the intermediate layer and a TiAl 2 layer having a specific composition in the upper layer, the layer has a particularly excellent adhesion strength, and a high temperature Since it combines hardness, toughness, and impact resistance, high-speed heat generation is required for work materials made of hard materials such as hardened materials such as alloy tool steel and bearing steel, and a high load acts on the cutting edge. Even under severe cutting conditions such as heavy cutting, the hard coating layer does not peel off and can exhibit excellent wear resistance and fracture resistance over a long period of use.

この発明の被覆cBN基焼結工具の硬質被覆層を形成するための高周波スパッタリング(RF−SP)装置とアークイオンプレーティング(AIP)装置が併設されている物理蒸着装置の概略説明図を示し、(a)は平面図、(b)は側面図を示す。The schematic explanatory drawing of the physical vapor deposition apparatus with which the high frequency sputtering (RF-SP) apparatus and arc ion plating (AIP) apparatus for forming the hard coating layer of the coating | coated cBN group sintered tool of this invention are shown together, (A) is a plan view and (b) is a side view. 比較被覆cBN基焼結工具の硬質被覆層を形成するためのアークイオンプレーティング(AIP)装置の概略説明図を示す。The schematic explanatory drawing of the arc ion plating (AIP) apparatus for forming the hard coating layer of a comparative coating cBN group sintered tool is shown.

つぎに、この発明の被覆cBN基焼結工具を実施例により具体的に説明する。   Next, the coated cBN-based sintered tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、AlN粉末、Ni粉末、Al粉末、Co粉末、W粉末を用意し、これら原料粉末を表1に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置またはダイヤモンド切断機にて一辺3mmの正三角形状に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびCIS規格SNGA120412の形状(厚さ:4.76mm×一辺長さ:12.7mmの正方形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Cu:26%、Ti:5%、Ni:2.5%、Ag:残りからなる組成を有するAg合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格SNGA120412のインサート形状をもった工具基体A〜Jをそれぞれ製造した。   As the raw material powder, cBN powder, TiN powder, AlN powder, Ni powder, Al powder, Co powder, and W powder each having an average particle diameter in the range of 0.5 to 4 μm are prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Charged into the sintering machine and under normal conditions Force: 4 GPa, temperature: Presence at a predetermined temperature in the range of 1200-1400 ° C. Holding time: 0.8 hours under high pressure sintering, after sintering, the upper and lower surfaces are polished with a diamond grindstone, and wire electric discharge machining It is divided into equilateral triangles with a side of 3 mm by an apparatus or a diamond cutter, and further Co: 5% by mass, TaC: 5% by mass, WC: remaining composition and shape of CIS standard SNGA120212 (thickness: 4.76 mm × one side) Cu: 26%, Ti: 5%, Ni: 2.5% in the brazing part (corner part) of the WC-base cemented carbide insert body having a length of 12.7 mm square) , Ag: brazing using a brazing material of an Ag alloy having the remaining composition, and after processing the outer periphery to a predetermined dimension, the honing process is performed on the cutting edge portion with a width of 0.13 mm and an angle of 25 °. Finish polishing As a result, tool bases A to J having the insert shape of ISO standard SNGA120212 were produced.

ついで、上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング(AIP)装置とRFスパッタリング(RF−SP)装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、前記AIP装置のカソード電極(蒸発源)として、所定の成分組成をもったTi−Al合金、前記RF−SP装置のターゲット(蒸発源)として金属TiおよびTiB焼結体を装着し、
(a)まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を450〜600℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vのパルスバイアス電圧を印加して、さらに2.0PaのAr雰囲気として、もって工具基体表面をArガスボンバード洗浄し、
(b)ついで、装置内に反応ガスとして、アルゴンガスを導入して0.3Paの反応雰囲気とすると共に、TiB焼結体のターゲットに高周波電源を用いて300Wの高周波電力を印加してスパッタを行い、また、−200Vのパルス電圧を印加することにより前記回転テーブル上で自転しながら回転する工具基体表面に目標層厚の下部層(TiB層)を形成し、
(c)ついで、装置内に反応ガスとして、アルゴン−窒素混合ガスを導入し、スパッタの進行とともに、窒素含有割合を増加させるように調整しつつ、0.3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、TiB焼結体のターゲットに高周波電源を用いてスパッタを行うとともに、金属Tiのターゲットに高周波電源を用いてスパッタを行い、それぞれの印加電力を目標組織となるように調整し、工具基体表面に目標層厚、目標傾斜組織の中間層(TiB−TiN混合層)を形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2〜4Paの反応雰囲気とすると共に、回転テーブル上で自転しながら回転する工具基体に−10〜−50Vのパルスバイアス電圧を印加し、前記Ti−Al合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体表面に、表2に示される目標組成および目標層厚をもったTiAlN層からなる上部層を蒸着することにより、
ISO規格SNGA120412に規定するスローアウエイチップ形状の本発明の被覆cBN基焼結工具1〜10(本発明工具1〜10という)をそれぞれ製造した。
Next, each of the tool bases A to J is ultrasonically cleaned in acetone and dried, and the arc ion plating (AIP) apparatus and the RF sputtering (RF-SP) apparatus shown in FIG. The Ti-Al alloy having a predetermined composition as a cathode electrode (evaporation source) of the AIP device and a target of the RF-SP device (evaporation) are mounted on the rotary table in the vapor deposition apparatus along the outer periphery. A metal Ti and TiB 2 sintered body as a source),
(A) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 450 to 600 ° C. with a heater, and then is rotated to −200 V on the rotating tool base while rotating on the rotary table. Then, the tool base surface is cleaned with Ar gas bombardment by further applying a pulse bias voltage of
(B) Next, argon gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 0.3 Pa, and a high frequency power of 300 W is applied to the target of the TiB 2 sintered body using a high frequency power source and sputtered. In addition, a lower layer (TiB 2 layer) having a target layer thickness is formed on the surface of the tool base that rotates while rotating on the rotary table by applying a pulse voltage of −200 V,
(C) Next, an argon-nitrogen mixed gas is introduced as a reaction gas into the apparatus, and while adjusting the nitrogen content to increase with the progress of sputtering, the reaction atmosphere is set to 0.3 Pa, and the rotation A DC bias voltage of −100 V is applied to the rotating tool base while rotating on the table, and sputtering is performed on the target of the TiB 2 sintered body using a high-frequency power source, and a high-frequency power source is used on the metal Ti target. Sputtering is performed, and each applied power is adjusted to be a target structure, and an intermediate layer (TiB 2 -TiN mixed layer) having a target layer thickness and a target gradient structure is formed on the surface of the tool base,
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 to 4 Pa, and a pulse bias voltage of −10 to −50 V is applied to the tool base that rotates while rotating on the rotary table. Then, an arc discharge is generated by flowing a current of 100 A between the cathode electrode and the anode electrode made of the Ti—Al alloy, so that the tool substrate surface has the target composition and target layer thickness shown in Table 2. By depositing an upper layer consisting of a TiAlN layer,
The coated cBN-based sintered tools 1 to 10 of the present invention (referred to as the present invention tools 1 to 10) each having a throwaway tip shape defined in ISO standard SNGA12041 were manufactured.

また、比較の目的で、
(a)上記の工具基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に概略示される通常のアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、装置内には、硬質被覆層(TiAlN層)形成用のTi−Al合金からなるカソード電極を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを導入して、2.0Paの雰囲気とすると共に、前記テーブル上で自転しながら回転する工具基体に−200Vのパルスバイアス電圧を印加し、もって工具基体表面をアルゴンイオンによってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して2〜4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−10〜−50Vのパルスバイアス電圧を印加し、Ti−Al合金のカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚のTiAlN層を硬質被覆層として蒸着形成することにより、
比較被覆cBN基焼結工具1〜10(比較工具1〜10という)をそれぞれ製造した。
For comparison purposes,
(A) Each of the above tool bases A to J is ultrasonically cleaned in acetone and dried, and is radiused from the central axis on the rotary table in the ordinary arc ion plating apparatus schematically shown in FIG. Attached along the outer periphery at a position separated by a predetermined distance in the direction, and a cathode electrode made of a Ti-Al alloy for forming a hard coating layer (TiAlN layer) is arranged in the apparatus,
(B) First, while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced to create an atmosphere of 2.0 Pa. A pulse bias voltage of −200 V is applied to the tool base that rotates while rotating on the table, and the tool base surface is bombarded with argon ions,
(C) Nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 to 4 Pa, and a pulse bias voltage of −10 to −50 V is applied to the tool base that rotates while rotating on the rotary table. Then, a current of 100 A is passed between the cathode electrode and the anode electrode of the Ti—Al alloy to generate an arc discharge, so that a TiAlN layer having a target composition and a target layer thickness shown in Table 3 is formed on the surface of the tool base. By vapor deposition as a hard coating layer,
Comparative coated cBN-based sintered tools 1-10 (referred to as comparative tools 1-10) were produced.

この結果得られた本発明被覆cBN基焼結工具1〜10および比較被覆cBN基焼結工具1〜10の硬質被覆層の各層について、その組成をオージェ電子分光分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
なお、表2における中間層のB、N含有割合について、下部層側とは、0.1μm(膜厚方向)×1μm(界面と平行な方向)の領域での測定の平均値、上部層側とは、同様に、0.1μm(膜厚方向)×1μm(界面と平行な方向)の領域での測定の平均値をいい、また、平均組成(X値)、平均組成(Y値)とは、中間層の全体(中間層厚)×幅1μmの領域により測定した値をいう。
さらに、本発明被覆cBN基焼結工具1〜10および比較被覆cBN基焼結工具1〜10の各層の層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
About each layer of the hard coating layer of the present invention coated cBN-based sintered tool 1-10 and comparative coated cBN-based sintered tool 1-10 obtained as a result, the composition was measured by Auger electron spectroscopic analysis. The composition was substantially the same as the composition.
In addition, regarding the B and N content ratio of the intermediate layer in Table 2, the lower layer side is the average value of the measurement in the region of 0.1 μm (film thickness direction) × 1 μm (direction parallel to the interface), the upper layer side Means the average value of the measurement in the region of 0.1 μm (film thickness direction) × 1 μm (direction parallel to the interface), and the average composition (X value) and average composition (Y value) Denotes a value measured by a region of the entire intermediate layer (intermediate layer thickness) × width 1 μm.
Further, when the layer thicknesses of the respective layers of the present coated cBN-based sintered tool 1 to 10 and the comparative coated cBN-based sintered tool 1 to 10 were measured with a transmission electron microscope, both were substantially equal to the target layer thickness. The same average value (average value of 5 locations) was shown.

つぎに、上記の各種の被覆cBN基焼結工具を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆cBN基焼結工具1〜10および比較被覆cBN基焼結工具1〜10ついて、以下に示す切削条件A、Bで高硬度鋼の高速重切削試験を実施した。
[切削条件A]
被削材:JIS・SCr420 (硬さ:HRC60)の丸棒、
切削速度: 280 m/min.、
切り込み: 0.3 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件での焼入クロム鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、120m/min.、0.15mm/rev.)、
[切削条件B]
被削材:JIS・SUJ2 (硬さ:HRC61)の丸棒、
切削速度: 230 m/min.、
切り込み: 0.3 mm、
送り: 0.3 mm/rev.、
切削時間: 10 分、
の条件での焼入軸受鋼の乾式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、130m/min.、0.12mm/rev.)。
表4に、切削加工試験結果を示す。
Next, the above-mentioned various coated cBN-based sintered tools are screwed to the tip of the tool steel tool with a fixing jig, and the present coated cBN-based sintered tools 1 to 10 and the comparative coating are used. The cBN-based sintered tools 1 to 10 were subjected to a high speed heavy cutting test of high hardness steel under the cutting conditions A and B shown below.
[Cutting conditions A]
Work material: JIS / SCr420 (Hardness: HRC60) round bar,
Cutting speed: 280 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-feed cutting test of hardened chrome steel under the conditions of (normal cutting speed and feed are 120 m / min. And 0.15 mm / rev., Respectively),
[Cutting conditions B]
Work material: JIS / SUJ2 (Hardness: HRC61) round bar,
Cutting speed: 230 m / min. ,
Cutting depth: 0.3 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed high-feed cutting test of hardened bearing steel under the conditions (normal cutting speed and feed are 130 m / min. And 0.12 mm / rev., Respectively).
Table 4 shows the cutting test results.

Figure 0005293330
Figure 0005293330

Figure 0005293330
Figure 0005293330

Figure 0005293330
Figure 0005293330

Figure 0005293330
Figure 0005293330

表2〜4に示される結果から、本発明被覆cBN基焼結工具は、cBNの配合割合が70容量%以上の工具基体表面に、下部層、中間層および上部層からなる硬質被覆層を形成し、かつ、下部層をTiB層、中間層を組織傾斜構造を有する特定組成のTiB−TiN混合層、また、上部層を特定組成のTiAlN層とすることによって、cBN含有割合の高い工具基体に対しても、硬質被覆層は特にすぐれた付着強度を備え、さらに、高温硬さ、靭性、耐衝撃性を兼ね備えることから、合金工具鋼や軸受け鋼の焼入れ材などの高硬材からなる被削材の、高熱発生を伴い、かつ、切刃に対して高負荷が作用する高速重切削という厳しい切削条件下で用いた場合であっても、前記硬質被覆層に、欠損、剥離等の発生はなく、長期の使用に亘って、すぐれた耐摩耗性、耐欠損性を発揮することができる。
これに対して、下部層、中間層を形成せず、工具基体表面に直接TiAlN層を被覆形成した比較被覆cBN基焼結工具は、工具基体−TiAlN層間の付着強度が十分でないため欠損、剥離等を発生し、そのため、逃げ面摩耗が発生しやすく耐摩耗性に劣るため、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 2 to 4, the coated cBN-based sintered tool of the present invention forms a hard coating layer composed of a lower layer, an intermediate layer, and an upper layer on the surface of a tool base having a cBN blending ratio of 70% by volume or more. In addition, a tool having a high cBN content ratio is obtained by using a TiB 2 -TiN mixed layer with a specific composition having a TiB 2 layer as a lower layer, a gradient structure as an intermediate layer, and a TiAlN layer having a specific composition as an upper layer. Even for the base, the hard coating layer has particularly excellent adhesion strength, and also has high-temperature hardness, toughness, and impact resistance, so it is made of a hard material such as a hardened material of alloy tool steel or bearing steel. Even when the work material is used under severe cutting conditions such as high-speed heavy cutting that is accompanied by high heat generation and a high load acts on the cutting edge, the hard coating layer may be damaged, peeled, etc. No occurrence, long-term use Te, excellent wear resistance can be exhibited chipping resistance.
On the other hand, the comparative coated cBN-based sintered tool in which the lower layer and intermediate layer are not formed and the TiAlN layer is directly coated on the surface of the tool base is not sufficient in adhesion strength between the tool base and the TiAlN layer. Therefore, flank wear is likely to occur and the wear resistance is inferior, and it is apparent that the service life is reached in a relatively short time.

上述のように、この発明の被覆cBN基焼結工具は、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に合金工具鋼や軸受け鋼の焼入れ材などの高硬度材からなる被削材の高速重切削であっても、前記硬質被覆層がすぐれた付着強度を有し耐摩耗性、耐欠損性に優れるため、長期に亘って安定した切削性能を発揮するものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cBN-based sintered tool of the present invention has high hardness such as hardened material of alloy tool steel and bearing steel, as well as cutting under normal cutting conditions such as various steels and cast iron. Even in high-speed heavy cutting of work materials made of materials, the hard coating layer has excellent adhesion strength and excellent wear resistance and fracture resistance, so it exhibits stable cutting performance over a long period of time Therefore, it is possible to satisfactorily meet the demand for higher performance of the cutting apparatus, labor saving and energy saving of the cutting process, and further cost reduction.

Claims (1)

立方晶窒化ほう素の含有量が70容量%以上の立方晶窒化ほう素基超高圧焼結材料からなる工具基体の表面に、下部層、中間層および上部層からなる硬質被覆層を蒸着形成した表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具において、
(a)上記下部層は、0.05〜0.5μmの層厚を有するTiB層、
(b)上記中間層は、0.3〜1μmの層厚を有し、
組成式:Ti1−X−Y
で表した場合、0.15≦X≦0.60、0.05≦Y≦0.35、0.50≦X+Y≦0.65(但し、X、Yはいずれも原子比)を満足する平均組成を有し、さらに、下部層側から上部層側へ向うにしたがって、Xの値は次第に減少し、Yの値は次第に増加する傾斜組織構造を有するTiB相とTiN相との2相混合層、
(c)上記上部層は、0.5〜5μmの層厚を有し、
組成式:(Ti1−ZAl)N層
で表した場合、Zが0.3〜0.65(但し、Zは原子比)であるTiとAlの複合窒化物層、
であることを特徴とする表面被覆立方晶窒化ほう素基超高圧焼結材料製切削工具。
A hard coating layer composed of a lower layer, an intermediate layer, and an upper layer was deposited on the surface of a tool substrate made of a cubic boron nitride-based ultrahigh pressure sintered material having a cubic boron nitride content of 70% by volume or more. In the cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material,
(A) The lower layer is a TiB 2 layer having a layer thickness of 0.05 to 0.5 μm,
(B) The intermediate layer has a layer thickness of 0.3 to 1 μm,
Composition formula: Ti 1-XY B X N Y
In this case, an average satisfying 0.15 ≦ X ≦ 0.60, 0.05 ≦ Y ≦ 0.35, 0.50 ≦ X + Y ≦ 0.65 (where X and Y are atomic ratios) Two-phase mixing of TiB 2 phase and TiN phase having a gradient structure in which the value of X gradually decreases and the value of Y gradually increases as it moves from the lower layer side to the upper layer side. layer,
(C) The upper layer has a layer thickness of 0.5 to 5 μm,
Composition formula: (Ti 1-Z Al Z ) When represented by an N layer, a composite nitride layer of Ti and Al in which Z is 0.3 to 0.65 (where Z is an atomic ratio),
A surface-coated cubic boron nitride-based ultra-high pressure sintered material cutting tool characterized by
JP2009077051A 2009-03-26 2009-03-26 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material Expired - Fee Related JP5293330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077051A JP5293330B2 (en) 2009-03-26 2009-03-26 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077051A JP5293330B2 (en) 2009-03-26 2009-03-26 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Publications (2)

Publication Number Publication Date
JP2010228032A JP2010228032A (en) 2010-10-14
JP5293330B2 true JP5293330B2 (en) 2013-09-18

Family

ID=43044394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077051A Expired - Fee Related JP5293330B2 (en) 2009-03-26 2009-03-26 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material

Country Status (1)

Country Link
JP (1) JP5293330B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5446412B2 (en) * 2009-04-15 2014-03-19 株式会社タンガロイ Coated cBN sintered body
JP5686247B2 (en) * 2011-01-27 2015-03-18 三菱マテリアル株式会社 Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
US9340863B2 (en) 2011-12-15 2016-05-17 Kobe Steel, Ltd. Multilayer hard film and method for producing same
CN104640654B (en) * 2012-08-20 2017-05-10 日立金属株式会社 Method for cutting cold work tool steel, and method for producing cold-working die material
CN112397559B (en) * 2020-11-09 2024-02-02 武汉华星光电半导体显示技术有限公司 Stretchable display module and preparation method thereof
CN113981369A (en) * 2021-10-28 2022-01-28 赣州澳克泰工具技术有限公司 Multilayer coating system and method for producing same

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5944385B2 (en) * 1977-11-28 1984-10-29 住友電気工業株式会社 Coated cemented carbide parts
JPH03260054A (en) * 1990-03-09 1991-11-20 Masao Murakawa Cubic bn coated member having superior exfoliation resistance and its production
JP3866305B2 (en) * 1994-10-27 2007-01-10 住友電工ハードメタル株式会社 Composite high hardness material for tools
JP3599628B2 (en) * 2000-02-25 2004-12-08 株式会社タンガロイ Composite hard film coated member
JP2001322884A (en) * 2000-03-08 2001-11-20 Sumitomo Electric Ind Ltd Coated cubic boron nitride sintered compact
JP3616049B2 (en) * 2001-11-07 2005-02-02 日立ツール株式会社 Physical vapor deposition hard coating tool with excellent crater wear resistance
DE10222347C2 (en) * 2002-05-21 2003-11-27 Walter Ag TiBN coating for a cutting insert or a cutting tool
JP2004136430A (en) * 2002-08-23 2004-05-13 Hitachi Tool Engineering Ltd Coated tool

Also Published As

Publication number Publication date
JP2010228032A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP5574277B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material with excellent peeling resistance
JP5293330B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP2008188734A (en) Surface coated cutting tool with hard coating layer exercising superior chipping resistance
JP5418833B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4284503B2 (en) Cutting tool made of surface-coated cubic boron nitride-based sintered material that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting
JP5402507B2 (en) Surface coated cutting tool
JP4883475B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP2008254159A (en) Surface-coated cutting tool made of cubic boron nitride group ultrahigh-pressure sintered material
JP6213269B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP5223743B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4883473B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP4807575B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel
JP4883472B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2012066341A (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high-pressure sintered material
JP2011051060A (en) Surface coating cutting tool
JP2008302439A (en) Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material
JP5246596B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP5402155B2 (en) Cutting tool made of surface coated cubic boron nitride based ultra high pressure sintered material
JP4883471B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance in hard cutting of hardened steel
JP2005022021A (en) Cutting tool made of surface coated cubic boron nitride group sintered material with hard coating layer exhibiting excellent chipping resistance in heavy cutting
JP4748445B2 (en) Cutting tool made of super-high-pressure sintered material with surface-coated cubic boron nitride that exhibits excellent chipping resistance with a hard coating layer in intermittent cutting of high-hardness steel
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP4748446B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent chipping resistance when cutting hard difficult-to-cut materials
JP6172519B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance over a long period of time when cutting hardened steel
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130527

R150 Certificate of patent or registration of utility model

Ref document number: 5293330

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees