WO2016052479A1 - Surface-coated cutting tool having excellent chip resistance - Google Patents

Surface-coated cutting tool having excellent chip resistance Download PDF

Info

Publication number
WO2016052479A1
WO2016052479A1 PCT/JP2015/077457 JP2015077457W WO2016052479A1 WO 2016052479 A1 WO2016052479 A1 WO 2016052479A1 JP 2015077457 W JP2015077457 W JP 2015077457W WO 2016052479 A1 WO2016052479 A1 WO 2016052479A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
crystal
centered cubic
nacl
type face
Prior art date
Application number
PCT/JP2015/077457
Other languages
French (fr)
Japanese (ja)
Inventor
佐藤 賢一
翔 龍岡
健志 山口
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015182740A external-priority patent/JP6620482B2/en
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to CN201580049361.8A priority Critical patent/CN107073591A/en
Priority to KR1020177011376A priority patent/KR20170057434A/en
Priority to EP15845750.7A priority patent/EP3202515A4/en
Priority to US15/514,703 priority patent/US20170216930A1/en
Publication of WO2016052479A1 publication Critical patent/WO2016052479A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides

Definitions

  • the present invention provides an excellent hard coating layer even when cutting various steels and cast irons at high speed and under high-speed intermittent heavy cutting conditions in which intermittent and impactful high loads act on the cutting edge.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time.
  • a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet.
  • the lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO).
  • TiCNO carbonitride oxide
  • Al 2 O 3 layer aluminum oxide layer having an ⁇ -type crystal structure in a state where the upper layer is chemically vapor-deposited
  • the above-mentioned conventional coated tools exhibit excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, for example, but when this is used for high-speed intermittent cutting, a hard coating layer is used. Peeling and chipping are likely to occur, and the tool life is shortened.
  • various types of coating tools in which the upper layer is improved have been proposed in order to suppress peeling and chipping of the hard coating layer.
  • Patent Document 1 a non-oxide film made of one or more of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals in the periodic table is formed on the surface of a tool base, and ⁇
  • an oxide film mainly composed of Al 2 O 3 is formed, an oxide, an oxycarbide, and an acid of group 4a, 5a, and 6a metals in the periodic table are provided between the non-oxide film and the oxide film.
  • An alumina-coated tool that forms a bonding layer having an fcc structure composed of a nitride or oxycarbonitride oxide-based single-layer film or multilayer film, and has a non-oxide film and a binder phase in an epitaxial relationship;
  • a coated tool has been proposed in which the adhesion strength between the tool base and the alumina coating is increased, and the fracture resistance, peel resistance, and wear resistance are improved.
  • a Ti compound layer composed of at least one of TiN, TiC, TiCN, TiCO, and TiCNO is formed as a lower layer on the surface of a tool base, and an Al 2 O 3 layer is formed as an upper layer.
  • fine TiO 2 particles having a particle diameter of 10 to 100 nm are formed at the interface between the lower layer and the upper layer, and the line segment ratio of the fine TiO 2 particles per 10 ⁇ m of interface length is By setting the content to 10 to 50%, the aluminum oxide crystal grains of the upper layer grow non-epitaxially with respect to the lower layer on the TiO 2 grains, while at the interface where the TiO 2 grains do not exist, It has been proposed to improve the chipping resistance and wear resistance of the hard coating layer by epitaxial growth.
  • the inventors of the present invention from the above-mentioned viewpoints, made Ti compound crystal grains constituting the lower layer formed on the surface of the tool substrate and a composite nitride of Ti and Al constituting the upper layer formed thereon.
  • extensive research has been conducted with a focus on controlling the epitaxial relationship between crystal grains of composite carbonitride (hereinafter abbreviated as TiAlCN in some cases).
  • a crystal grain of a Ti carbonitride (TiCN) layer having a NaCl type face centered cubic crystal structure constituting at least one of the lower layers and a crystal grain of the TiAlCN layer constituting the upper layer Predetermining the formation ratio of crystal grains that pass through the interface between the TiCN layer and the TiAlCN layer, and that the crystal orientation of the TiCN crystal grains and the crystal orientation of the TiAlCN crystal grains are within 5 degrees.
  • the adhesion strength at the interface between the TiCN layer and the TiAlCN layer is improved.
  • the cutting edge is subjected to high-speed intermittent heavy cutting conditions in which an intermittent and impactful high load acts.
  • the hard coating layer exhibits excellent chipping resistance and peeling resistance.
  • the present invention has been made based on the above findings, “(1) Hard coating comprising a lower layer and an upper layer on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body
  • a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body
  • the lower layer has a total average layer thickness of 1 to 20 ⁇ m composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer.
  • a Ti carbonitride compound layer having a crystal structure of at least a NaCl type face centered cubic crystal.
  • the upper layer is a composite of Ti and Al having an NaCl type face centered cubic single phase crystal structure having an average layer thickness of 1 to 20 ⁇ m or a mixed phase structure of NaCl type face centered cubic and hexagonal crystals.
  • a nitride or composite carbonitride layer, (C) When the composite nitride or composite carbonitride layer of Ti and Al is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the total amount of Ti of Ti and Al
  • the average content ratio Xave and the average content ratio Yave (where Xave and Yave are atomic ratios) of the total amount of C and N in C are 0.60 ⁇ Xave ⁇ 0.95 and 0 ⁇ Yave, respectively.
  • a Ti carbonitride layer having a NaCl-type face-centered cubic crystal structure in the lower layer and a Ti-Al composite nitride or composite charcoal having an NaCl-type face-centered cubic crystal structure in the upper layer For the nitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffractometer, and the individual crystal grain is compared with the normal of the base surface.
  • the crystal grains are adjacent to each other via the interface between the upper layer and the lower layer, and have a crystal structure of the NaCl type face centered cubic crystal of the lower layer
  • a crystal grain whose orientation difference between the normal direction of the (hkl) plane of the grain and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face centered cubic crystal structure of the upper layer is within 5 degrees
  • the crystal grain linear density is two Surface-coated cutting tool, characterized in that at 10 ⁇ m or more.
  • the crystal grains are adjacent to each other via the interface between the upper layer and the lower layer, and have a crystal structure of the NaCl type face centered cubic crystal of the lower layer
  • a crystal grain whose orientation difference between the normal direction of the (hkl) plane of the grain and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face centered cubic crystal structure of the upper layer is within 5 degrees
  • the crystal structure of NaCl type face centered cubic crystals of the upper layer and the lower layer The ratio of the area occupied by Ti in the carbonitride layer is 30 area% or more with respect to the total area of crystal grains adjacent via the interface between the upper layer and the lower layer (1)
  • the surface-coated cutting tool according to 1.
  • the outermost layer comprising at least an Al 2 O 3 layer having an average layer thickness of 1 to 25 ⁇ m is further formed on the surface of the upper layer made of a nitride or composite carbonitride layer,
  • the surface-coated cutting tool according to any one of 1) to (3). " It has the characteristics.
  • Ti compound layer Ti compound layers (eg, Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer) are basically Exists as a lower layer of the TiAlCN layer, and the hard coating layer has a high temperature strength due to its excellent high temperature strength. In addition, the hard coating layer adheres to both the tool base and the upper TiAlCN layer. It has the effect
  • the average layer thickness is less than 1 ⁇ m, the above-mentioned effect cannot be fully exerted.
  • the average layer thickness exceeds 20 ⁇ m, the thermoplastic deformation particularly in high-speed heavy cutting and high-speed intermittent cutting with high heat generation. Since this causes uneven wear, the average layer thickness was set to 1 to 20 ⁇ m.
  • the lower layer has at least a NaCl type face centered cubic crystal structure. It is necessary to form a TiCN layer composed of TiCN crystal grains.
  • the lower layer is formed using a conventional chemical vapor deposition apparatus, for example, Reaction gas composition (volume%): TiCl 4 1.0 to 5.0%, N 2 5 to 35%, CO 0 to 5%, CH 3 CN 0 to 1%, CH 4 0 to 10%, balance H 2 , Reaction atmosphere temperature: 780 to 900 ° C. Reaction atmosphere pressure: 5 to 13 kPa, It can form by carrying out chemical vapor deposition until it becomes target average layer thickness on the conditions of.
  • Reaction gas composition volume%): TiCl 4 1.0 to 5.0%, N 2 5 to 35%, CO 0 to 5%, CH 3 CN 0 to 1%, CH 4 0 to 10%, balance H 2 , Reaction atmosphere temperature: 780 to 900 ° C.
  • Reaction atmosphere pressure 5 to 13 kPa
  • the upper layer of the hard coating layer of the present invention is a chemical vapor deposited NaCl type face centered cubic single phase crystal structure or an NaCl type face centered cubic and hexagonal mixed crystal structure having an average layer thickness of 1 to 20 ⁇ m.
  • TiAlCN layer constituting the upper layer of the present invention is high in hardness and exhibits excellent wear resistance.
  • the average thickness of the TiAlCN layer constituting the upper layer is determined to be 1 to 20 ⁇ m.
  • the TiAlCN layer constituting the upper layer of the present invention is expressed by the composition formula: (Ti 1-x Al x ) (N 1-y C y ), the average content ratio Xave in the total amount of Ti and Al in Al And the content ratio Yave (where Xave and Yave are both atomic ratios) of the total amount of C and N in C and C satisfy 0.60 ⁇ Xave ⁇ 0.95 and 0 ⁇ Yave ⁇ 0.005, respectively. .
  • the average content ratio Xave (atomic ratio) of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so high-speed intermittent heavy cutting such as alloy steel When it is used, the wear resistance is not sufficient.
  • the average content ratio Xave of Al exceeds 0.95, the content ratio of Ti is relatively decreased, so that embrittlement is caused and chipping resistance is lowered. Therefore, the average content ratio Xave (atomic ratio) of Al is set to 0.60 ⁇ Xave ⁇ 0.95.
  • the average content ratio (atomic ratio) Yave of the C component contained in the composite nitride or composite carbonitride layer is a minute amount in the range of 0 ⁇ Yave ⁇ 0.005
  • the adhesion between the upper layer and the lower layer As a result, the impact at the time of cutting is reduced by improving the lubricity, and as a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved.
  • the content ratio Yave of the C component is out of the range of 0 ⁇ Yave ⁇ 0.005
  • the toughness of the composite nitride or composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reduced. Therefore, the content ratio Yave (atomic ratio) of the C component is 0 ⁇ Yave ⁇ 0.005.
  • the present invention relates to a Ti carbon nitride layer having a NaCl type face centered cubic crystal structure in a lower layer, and a Ti and Al composite nitride or composite carbon having an NaCl type face centered cubic crystal structure in an upper layer.
  • the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffraction apparatus, and the individual crystal grains are compared with the normal of the tool base surface.
  • the crystal grains adjacent to each other through the interface between the upper layer and the lower layer, and having the crystal structure of the NaCl type face centered cubic crystal of the lower layer A crystal grain whose orientation difference between the normal direction of the (hkl) plane and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face-centered cubic crystal structure of the upper layer is within 5 degrees is Exists at the interface between the layer and the lower layer, and the linear density of the crystal grains is 2/10 ⁇ m. Determine the crystal grains of the orientation so as to above.
  • FIG. 1 shows a schematic diagram of a layer structure of a TiCN layer (lower layer) having a NaCl type face centered cubic crystal structure and a TiAlCN layer (upper layer) having a NaCl type face centered cubic crystal structure.
  • a crystal structure form in which crystal grains grow through the interface is observed at the interface between the upper layer and the lower layer.
  • the “crystal grains adjacent to each other via the interface between the upper layer and the lower layer” in the present invention are crystal grains having such a crystal structure.
  • an arbitrary crystal plane (hkl) of the crystal grains having the crystal structure of the NaCl-type face-centered cubic crystal in the lower layer (for example, (112) plane) normal direction is measured with respect to the tool base surface normal, and the measured tilt angle is ⁇ (hkl) (degrees).
  • the inclination angle formed by the normal direction of the (hkl) plane in the crystal grain having the center cubic crystal structure with respect to the normal line of the tool base surface is measured, and the measured inclination angle is expressed by ⁇ (hkl) (degrees).
  • the upper layer performs crystal growth (epitaxial growth) that inherits the orientation of the lower layer.
  • ⁇ 5 (degrees) is 2/10 ⁇ m or more, the upper layer and the lower layer The adhesion strength at the interface is improved, and as a result, the chipping resistance and peel resistance of the hard coating layer can be increased.
  • an arbitrary crystal plane can be selected for the (hkl) plane to be measured, and is not particularly limited. Typically, for example, the (100) plane, the (110) plane, ( It is possible to determine the plane orientation difference between the upper layer and the lower layer by measuring the inclination angle formed by the normal lines such as the (111) plane, the (211) plane, and the (210) plane with respect to the normal line on the tool base surface.
  • linear density is 2/10 ⁇ m
  • Epitaxially grown crystal grain area ratio Further, the crystal grains are adjacent to each other through the interface between the upper layer and the lower layer, and the orientation difference (
  • the grain density of the crystal grains at the interface between the upper layer and the lower layer is 2/10 ⁇ m or more, and at the same time, the area ratio of such epitaxially grown crystal grains passes through the interface between the upper layer and the lower layer.
  • the total area of adjacent crystal grains (that is, the Ti carbonitride layer having the NaCl-type face-centered cubic crystal structure in the adjacent lower layer and the NaCl-type face-centered cubic crystal in the upper layer)
  • the hard coating layer having such a crystal structure is Since chipping resistance and peel resistance are further improved, Area ratio of Takisharu grown crystal grains is preferably 30% or more.
  • Crystal grains having a NaCl-type face-centered cubic structure constituting the composite nitride or composite carbonitride layer:
  • the particle width in the direction parallel to the tool substrate surface is w
  • the grain length in the direction perpendicular to the tool substrate surface is l
  • the ratio l / w between w and l is the aspect ratio a of each crystal grain
  • the average of the aspect ratio a obtained for each crystal grain When the average aspect ratio is A and the average value of the particle widths w obtained for individual crystal grains is the average particle width W, the average particle width W is 0.1 to 2.0 ⁇ m and the average aspect ratio A is 2 to 10 It is desirable to control so as to satisfy When this condition is satisfied, the cubic crystal grains constituting the composite nitride or composite carbonitride layer have a columnar
  • the average aspect ratio A is less than 2, it becomes difficult to form a periodic distribution of the composition, which is a feature of the present invention, in the crystal grains of the NaCl-type face-centered cubic structure. This is not preferable because cracks are likely to grow along a plane along a periodic distribution of the composition in the cubic crystal phase, which is a feature of the present invention, and a plurality of grain boundaries.
  • the average particle width W is less than 0.1 ⁇ m, the wear resistance is lowered, and when it exceeds 2.0 ⁇ m, the toughness is lowered. Therefore, the average grain width W of the cubic crystal grains constituting the composite nitride or composite carbonitride layer is preferably 0.1 to 2.0 ⁇ m.
  • the present invention relates to a composite nitride or composite of Ti and Al having an NaCl type face centered cubic single phase crystal structure having an average layer thickness of 1 to 20 ⁇ m or a mixed phase structure of NaCl type face centered cubic and hexagonal crystals.
  • An uppermost surface layer including at least an Al 2 O 3 layer having an average layer thickness of 1 to 25 ⁇ m can be further formed on the surface of the upper layer made of the carbonitride layer.
  • the outermost Al 2 O 3 layer increases the high temperature hardness and heat resistance of the hard coating layer, but if the average surface thickness of the outermost surface layer is less than 1 ⁇ m, the above properties cannot be sufficiently provided in the hard coating layer.
  • the average layer thickness exceeds 25 ⁇ m, the high heat generated at the time of cutting and the intermittent and shocking high load acting on the cutting edge make it easier for the thermoplastic deformation to cause uneven wear and accelerate the wear. Therefore, the average layer thickness is desirably 1 to 25 ⁇ m.
  • the lower layer and the outermost surface layer of the present invention can be formed by, for example, an ordinary chemical vapor deposition method.
  • the upper layer can also be formed by a normal chemical vapor deposition method, but can also be formed by, for example, the following vapor deposition method. That is, a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , and H 2 are applied to a chemical vapor deposition reactor equipped with a tool base.
  • the reaction gas composition on the surface of the tool substrate is controlled by adjusting the supply conditions of the gas group A and the gas group B, and the reaction atmosphere pressure is 2 to 5 kPa, the reaction atmosphere.
  • a TiAlCN layer having a predetermined target layer thickness and target composition can be formed.
  • the normal direction of the (hkl) plane of the TiCN crystal grains of the lower layer and the orientation difference thereof are formed on the lower layer having the TiCN layer having the NaCl type face centered cubic crystal structure.
  • the epitaxially grown upper layer TiAlCN crystal grains that are within 5 degrees, and the epitaxially grown crystal grains have a linear density of 2/10 ⁇ m or more at the interface between the upper layer and the lower layer.
  • the area ratio of the epitaxially grown crystal grains 30% or more of the total area the adhesion strength between the upper layer and the lower layer is improved, and as a result, the cutting edge is intermittently connected at high speed. Even under high-speed intermittent heavy cutting conditions where high loads such as impact and impact are applied, the hard coating layer exhibits excellent chipping resistance and peeling resistance, and excellent cutting over a long period of use. It is to demonstrate the performance.
  • the layer structure of the hard coating layer of the present invention comprising a TiCN layer (lower layer) having an NaCl type face centered cubic crystal structure and a TiAlCN layer (upper layer) having an NaCl type face centered cubic crystal structure.
  • a schematic diagram is shown.
  • WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa.
  • Mo 2 C powder Mo 2 C powder
  • ZrC powder ZrC powder
  • NbC powder WC powder
  • Co powder all having an average particle diameter of 0.5 to 2 ⁇ m.
  • Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa.
  • the body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
  • the reaction gas composition (capacity% relative to the total of the gas group A and the gas group B) is set as NH 3 : 1.5 to 3.0% as the gas group A.
  • the coated tools 1 to 13 of the present invention were produced by forming a top layer by performing a thermal CVD method.
  • the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3.
  • the lower layer shown in Table 6 is formed on the surfaces of the tool bases A to D under the formation conditions shown in Table 3, and the conditions shown in Table 3, Table 4, and Table 5 are set.
  • a hard coating layer including at least a composite nitride or composite carbonitride layer of Ti and Al was formed by vapor deposition in the same manner as the coated tools 1 to 13 of the present invention at a target layer thickness ( ⁇ m) shown in FIG.
  • the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3 in the same manner as the coated tools 11 to 13 of the present invention.
  • the cross sections in the direction perpendicular to the tool substrate of each component layer of the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13 were measured using a scanning electron microscope (magnification 5000 times), and 5 points within the observation field of view.
  • the average layer thickness was substantially the same as the target layer thickness shown in Tables 6 and 7.
  • the electron beam was irradiated from the sample surface side in the sample whose surface was polished using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). Then, the average content ratio Xave of Al was determined from the 10-point average of the analysis result of the obtained characteristic X-ray.
  • the average content ratio Yave of C was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS).
  • the ion beam was irradiated in the range of 70 ⁇ m ⁇ 70 ⁇ m from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action.
  • the average content ratio Yave of C indicates the average value in the depth direction for the TiAlCN layer.
  • the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material.
  • the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is determined as an unavoidable C content ratio, and C 2 H 4 is intentionally determined.
  • a value obtained by subtracting the unavoidable C content from the content (atomic ratio) of the C component contained in the TiAlCN layer obtained when supplied was determined as Yave.
  • the crystal orientation of the individual crystal grains is analyzed using a field emission scanning electron microscope, and the individual crystal grains with respect to the normal of the tool substrate surface are analyzed.
  • the crystal planes of the respective crystal grains measured with respect to the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer adjacent to each other via the interface For example, the difference between the inclination angles formed by the normal line of (hkl) plane and the normal line of the tool substrate surface is obtained, and adjacent to each other via the interface measured above depending on whether or not the difference is within 5 degrees.
  • the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains correspond to the crystal grains defined in the present invention. That is, for the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13, 1.0 ⁇ m in the thickness direction of the lower layer from the interface between the upper layer and the lower layer, and 1. in the thickness direction of the upper layer.
  • a measurement range (2.0 ⁇ m ⁇ 50 ⁇ m) of a cross-sectional polished surface of 0 ⁇ m and 50 ⁇ m in a direction parallel to the tool base surface is set in a lens barrel of a field emission scanning electron microscope, and incident on the polished surface is 70 degrees.
  • An electron backscatter diffraction image apparatus is used by irradiating an electron beam with an acceleration voltage of 15 kV at an angle with an irradiation current of 1 nA to each crystal grain having a cubic crystal lattice existing within the measurement range of each polished surface. Measure the inclination angle formed by the normal of the (hkl) plane of the crystal grain with respect to the normal of the tool substrate surface in a 2.0 ⁇ 50 ⁇ m measurement area at an interval of 0.1 ⁇ m / step.
  • ) is within 5 degrees. Is within 5 degrees, it is determined that the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer which are adjacent to each other through the interface measured above are epitaxially grown crystal grains.
  • the number of crystal grains determined to be epitaxially grown was determined as the number per unit length of the interface between the upper layer and the lower layer.
  • the number of TiCN crystal grains in contact with the interface is one, and the number of TiAlCN crystal grains in contact with the interface is one.
  • the area ratio (area%) to the total area of the crystal grains in which the crystal grains determined to be epitaxially grown were in contact at the interface between the upper layer and the lower layer was measured. Tables 6 and 7 show these values.
  • the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13 using the scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate, the tool substrate surface and the horizontal direction
  • the individual crystal grains in the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer constituting the composite nitride or composite carbonitride layer existing in the range of 10 ⁇ m in length Observed from the cross section side of the film perpendicular to the tool substrate surface, the maximum particle width w in the direction parallel to the substrate surface and the maximum particle length l in the direction perpendicular to the substrate surface were measured, and the aspect ratio a ( l / w), the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain is the average grain width. Calculated as W . Tables 6 and 7 show these values.
  • the coated tools 1 to 13 and the comparative coated tools 1 to 13 according to the present invention will be described below in a state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig.
  • the dry high-speed face milling which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 8.
  • Tool substrate Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, Cutting test: dry high-speed face milling, center cutting, Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm, Rotational speed: 968 min ⁇ 1 Cutting speed: 380 m / min, Cutting depth: 1.5 mm, Single blade feed: 0.1 mm / tooth, Cutting time: 8 minutes
  • WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 ⁇ m are prepared. Blended in the composition shown in Table 9, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases E to G made of WC-base cemented carbide having an insert shape of CNMG120212 were produced.
  • NbC powder NbC powder
  • WC powder Co powder
  • Ni powder Ni powder each having an average particle diameter of 0.5 to 2 ⁇ m
  • These raw material powders were blended into the composition shown in Table 10, wet mixed for 24 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 98 MPa.
  • a tool substrate H made of cermet was formed.
  • Comparative coating tools 14 to 26 shown in Table 12 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
  • the comparative coated tools 20 to 26 were formed with the upper layer shown in Table 12 under the forming conditions shown in Table 3.
  • each component layer of the inventive coated tool 14-26 and comparative coated tool 14-26 is measured using a scanning electron microscope (magnification 5000 times), and the layer thicknesses at five points in the observation field are measured and averaged. As a result, the average layer thickness was found to be substantially the same as the target layer thickness shown in Tables 11 and 12.
  • the average content ratio Xave of Al and the average content ratio Yave of C in the upper TiAlCN layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). Also, the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains adjacent to each other through the interface are subjected to the method of the (hkl) plane of the lower layer TiCN crystal grains using a field emission scanning electron microscope.
  • EPMA electron beam microanalyzer
  • the inclination angle formed by the line and the normal of the tool base surface is ⁇ (degrees)
  • the inclination angle formed by the normal of the (hkl) plane of the TiAlCN crystal grain of the upper layer and the normal of the tool base surface is ⁇ (degrees)
  • the absolute value of the difference in inclination angle (
  • ) is obtained, and the number of TiCN crystal grains in the lower layer and TiAlCN grains in the upper layer, which are 5 degrees or less, is counted. The number per unit length of the interface between the upper layer and the lower layer was determined.
  • the present coated tools 14 to 26 and the comparative coated tools 14 to 26 in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig are shown below.
  • Cutting condition 1 Work material: JIS ⁇ S45C lengthwise equal 4 round grooved round bars, Cutting speed: 380 m / min, Cutting depth: 1.5 mm, Feed: 0.25 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 220 m / min),
  • Cutting condition 2 Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove, Cutting speed: 320 m / min, Cutting depth: 1.5 mm, Feed: 0.1 mm / rev, Cutting time: 5 minutes, (Normal cutting speed is 200 m / min), Table 13 shows the results of the cutting test.
  • cBN powder, TiN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 ⁇ m were prepared. These raw material powders are shown in Table 14. After blending into the blended composition, wet mixing with a ball mill for 80 hours, drying, and press-molding into a green compact with a diameter of 50 mm ⁇ thickness: 1.5 mm at a pressure of 120 MPa, and then this green compact Is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece, and this presintered body is separately prepared.
  • a normal ultra high pressure sintering apparatus in a state of being superposed on a support piece made of WC base cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm ⁇ thickness: 2 mm
  • Normal pressure 4 Pa
  • temperature Presence at a predetermined temperature in the range of 1200 to 1400 ° C.
  • Holding time 0.8 hours under high pressure sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and used in a wire electric discharge machine.
  • the brazing part (corner part) of the insert body made of a WC-base cemented carbide having a diamond) is Ti- having a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the remainder in mass%.
  • the cutting edge is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to final polishing to achieve ISO. Standard CNGA12 Tool substrate b having a 412 insert shape, The filtrate was produced, respectively.
  • a conventional chemical vapor deposition apparatus was used on the surfaces of the tool bases i and b, and the present invention was coated with the conditions shown in Tables 3, 4 and 5 and the target layer thicknesses shown in Table 16.
  • Comparative coating tools 27 to 32 shown in Table 16 were manufactured by vapor-depositing a hard coating layer in the same manner as the tools.
  • the cross sections of the inventive coated tools 27 to 32 and comparative example coated tools 27 to 32 were measured using a scanning electron microscope, and the average layer thickness was obtained by measuring and averaging the five layer thicknesses within the observation field. It was.
  • the average content ratio Xave of Al and the average content ratio Yave of C in the upper TiAlCN layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). Also, the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains adjacent to each other through the interface are subjected to the method of the (hkl) plane of the lower layer TiCN crystal grains using a field emission scanning electron microscope.
  • EPMA electron beam microanalyzer
  • the inclination angle formed by the line and the normal of the tool base surface is ⁇ (degrees)
  • the inclination angle formed by the normal of the (hkl) plane of the TiAlCN crystal grain of the upper layer and the normal of the tool base surface is ⁇ (degrees)
  • the absolute value of the difference in inclination angle (
  • ) is obtained, and the number of TiCN crystal grains in the lower layer and TiAlCN grains in the upper layer, which are 5 degrees or less, is counted. The number per unit length of the interface between the upper layer and the lower layer was determined.
  • the coated tools 27 to 32 of the present invention and the comparative coated tools 27 to 32 will be described below in a state where any of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig.
  • the carburized and hardened alloy steel was subjected to a dry high-speed intermittent cutting test, and the flank wear width of the cutting edge was measured.
  • Work material JIS ⁇ SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves, Cutting speed: 255 m / min, Cutting depth: 0.12mm, Feed: 0.1mm / rev, Cutting time: 4 minutes
  • Table 17 shows the results of the cutting test.
  • the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer that are adjacent through the interface grow epitaxially. Therefore, the adhesion density of the hard coating layer is improved even when used in high-speed intermittent heavy cutting conditions that involve high heat generation and intermittent and shocking high loads on the cutting edge. Excellent chipping and peeling resistance, and excellent cutting performance over a long period of use.
  • the comparative product coated tools 1 to 32 reach the service life in a relatively short time due to occurrence of chipping and peeling of the hard coating layer in high-speed intermittent heavy cutting.
  • the coated tool of the present invention is not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also severe cutting such as high-speed intermittent heavy cutting in which high loads such as intermittent and impact loads act on the cutting blade. Even under conditions, chipping and peeling of the hard coating layer are suppressed, and excellent cutting performance is demonstrated over long-term use. In addition, it can cope with the cost reduction sufficiently satisfactorily.

Abstract

 Provided is a surface-coated cutting tool, the hard coating layer of which exhibits excellent chip resistance and peeling resistance under conditions of high-speed intermittent cutting. This surface-coated cutting tool has a tool base, the surface of which is coated with at least a bottom layer that includes a TiCN layer having an NaCl surface-centered cubic crystal structure and a top layer that comprises a TiAlCN layer having a NaCl surface-centered cubic monophasic crystal structure or a multiphase crystal structure of NaCl surface-centered cubic crystals and hexagonal crystals, and is preferably further coated with an outermost surface layer including an Al2O3 layer, wherein a complex nitride or complex carbonitride layer of the Ti and Al, when represented by the compositional formula Ti1 – xAlx (CyN1 – y), has an average content ratio Xave of Al in the total amount of Ti and Al, and an average content ratio Yave of C in the total amount of C and N (where Xave and Yave are each atomic ratios), that respectively satisfy the expressions 0.60 ≤ Xave ≤ 0.95 and 0 ≤ Yave ≤ 0.005.

Description

耐チッピング性にすぐれた表面被覆切削工具Surface coated cutting tool with excellent chipping resistance
 本発明は、各種の鋼や鋳鉄などの切削加工を、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件で行った場合でも、硬質被覆層がすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示す表面被覆切削工具(以下、被覆工具という)に関するものである。 The present invention provides an excellent hard coating layer even when cutting various steels and cast irons at high speed and under high-speed intermittent heavy cutting conditions in which intermittent and impactful high loads act on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and exhibits excellent cutting performance over a long period of time.
 従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された基体(以下、これらを総称して工具基体という)の表面に、
(a)下部層が、Tiの炭化物(以下、TiCで示す)層、窒化物(以下、同じくTiNで示す)層、炭窒化物(以下、TiCNで示す)層、炭酸化物(以下、TiCOで示す)層、および炭窒酸化物(以下、TiCNOで示す)層のうちの1層または2層以上からなるTi化合物層、
(b)上部層が、化学蒸着した状態でα型の結晶構造を有する酸化アルミニウム層(以下、Al層で示す)、
 前記(a)および(b)で構成された硬質被覆層を蒸着形成してなる被覆工具が知られている。
Conventionally, generally on the surface of a substrate (hereinafter collectively referred to as a tool substrate) composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. ,
(A) The lower layer is a Ti carbide (hereinafter referred to as TiC) layer, a nitride (hereinafter also referred to as TiN) layer, a carbonitride (hereinafter referred to as TiCN) layer, a carbon oxide (hereinafter referred to as TiCO). And a Ti compound layer composed of one or more of a carbonitride oxide (hereinafter referred to as TiCNO) layer,
(B) an aluminum oxide layer (hereinafter, referred to as an Al 2 O 3 layer) having an α-type crystal structure in a state where the upper layer is chemically vapor-deposited;
There is known a coated tool formed by vapor-depositing a hard coating layer composed of (a) and (b).
 しかし、前述した従来の被覆工具は、例えば各種の鋼や鋳鉄などの連続切削や断続切削ではすぐれた耐摩耗性を発揮するが、これを、高速断続切削に用いた場合には、硬質被覆層の剥離やチッピングが発生しやすく、工具寿命が短命になるという問題点があった。
 そこで、硬質被覆層の剥離、チッピングを抑制するために、上部層に改良を加えた各種の被覆工具が提案されている。
However, the above-mentioned conventional coated tools exhibit excellent wear resistance in continuous cutting and intermittent cutting of various steels and cast irons, for example, but when this is used for high-speed intermittent cutting, a hard coating layer is used. Peeling and chipping are likely to occur, and the tool life is shortened.
In view of this, various types of coating tools in which the upper layer is improved have been proposed in order to suppress peeling and chipping of the hard coating layer.
 例えば、特許文献1には、工具基体の表面に、周期律表の4a、5a、6a属金属の炭化物、窒化物、炭窒化物の一種以上からなる非酸化膜を形成し、この上にα-Alを主とする酸化膜が形成したアルミナ被覆工具において、前記非酸化膜と前記酸化膜との間に周期律表の4a、5a、6a属金属の酸化物、酸炭化物、酸窒化物および酸炭窒化物の酸化物系の単層皮膜または多層皮膜からなるfcc構造を持つ結合層を形成し、かつ、非酸化膜と結合相がエピタキシャル関係にあるようにしたアルミナ被覆工具とすることによって、工具基体とアルミナ被膜との密着強度を高め、耐欠損性、耐剥離性、耐摩耗性を向上させて被覆工具が提案されている。 For example, in Patent Document 1, a non-oxide film made of one or more of carbides, nitrides, and carbonitrides of Group 4a, 5a, and 6a metals in the periodic table is formed on the surface of a tool base, and α In an alumina-coated tool in which an oxide film mainly composed of Al 2 O 3 is formed, an oxide, an oxycarbide, and an acid of group 4a, 5a, and 6a metals in the periodic table are provided between the non-oxide film and the oxide film. An alumina-coated tool that forms a bonding layer having an fcc structure composed of a nitride or oxycarbonitride oxide-based single-layer film or multilayer film, and has a non-oxide film and a binder phase in an epitaxial relationship; Thus, a coated tool has been proposed in which the adhesion strength between the tool base and the alumina coating is increased, and the fracture resistance, peel resistance, and wear resistance are improved.
 また、例えば、特許文献2には、工具基体の表面に、下部層として、TiN、TiC、TiCN、TiCO、TiCNOの少なくとも1層以上からなるTi化合物層、上部層としてAl層、を蒸着形成した表面被覆切削工具において、下部層と上部層の界面に粒径10~100nmの微粒のTiO粒を形成し、かつ、該微粒TiO粒の界面長10μm当りに占める線分割合を10~50%とすることにより、上部層の酸化アルミニウム結晶粒は、該TiO粒上では下部層に対して非エピタキシャル成長させ、一方、TiO粒の存在しない界面においては、下部層に対してエピタキシャル成長させることにより、硬質被覆層の耐チッピング性と耐摩耗性を向上させることが提案されている。 Further, for example, in Patent Document 2, a Ti compound layer composed of at least one of TiN, TiC, TiCN, TiCO, and TiCNO is formed as a lower layer on the surface of a tool base, and an Al 2 O 3 layer is formed as an upper layer. In the surface-coated cutting tool formed by vapor deposition, fine TiO 2 particles having a particle diameter of 10 to 100 nm are formed at the interface between the lower layer and the upper layer, and the line segment ratio of the fine TiO 2 particles per 10 μm of interface length is By setting the content to 10 to 50%, the aluminum oxide crystal grains of the upper layer grow non-epitaxially with respect to the lower layer on the TiO 2 grains, while at the interface where the TiO 2 grains do not exist, It has been proposed to improve the chipping resistance and wear resistance of the hard coating layer by epitaxial growth.
特開平10-18039号公報JP-A-10-18039 特開2010-201575号公報JP 2010-201575 A
 近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化すると共に、高切り込み、高送り等の断続重切削等で切刃には、衝撃的・断続的な高負荷が作用する傾向にあるが、前述の従来の被覆工具においては、これを鋼や鋳鉄などの通常の条件での連続切削や断続切削に用いた場合には問題はないが、特にこれを高速断続重切削条件で用いた場合には、硬質被覆層の表面で発生した亀裂が硬質被覆層全体に進展しやすく、比較的短時間で使用寿命に至るのが現状である。 In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. As a result, cutting speed has been further increased, high cutting depth, high feed, etc. There is a tendency for impact and intermittent high loads to act on the cutting edge due to intermittent heavy cutting, etc., but in the above-mentioned conventional coated tools, this is continuous cutting under normal conditions such as steel and cast iron. There is no problem when it is used for intermittent cutting, especially when it is used under high-speed interrupted heavy cutting conditions, cracks generated on the surface of the hard coating layer tend to propagate to the entire hard coating layer, relatively The current situation is that the service life is reached in a short time.
 そこで、本発明者らは、前述のような観点から、工具基体表面上に形成した下部層を構成するTi化合物の結晶粒とその上に形成した上部層を構成するTiとAlの複合窒化物または複合炭窒化物(以下、場合により、TiAlCNと略記する)の結晶粒との間のエピタキシャル関係を制御することに着眼して鋭意研究を重ねた。
 その結果、下部層の少なくとも一つの層を構成するNaCl型面心立方晶の結晶構造を有するTiの炭窒化物(TiCN)層の結晶粒と、上部層を構成するTiAlCN層の結晶粒との結晶粒について、TiCN層とTiAlCN層との界面を貫いて、TiCN結晶粒の結晶方位とTiAlCN結晶粒の結晶方位との方位差が5度以内となるようなエピタキシャル成長した結晶粒の形成割合を所定の量とすることによって、TiCN層とTiAlCN層との界面の付着強度が向上し、その結果、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件においても、硬質被覆層はすぐれた耐チッピング性、耐剥離性を発揮するという知見を得た。
In view of the above, the inventors of the present invention, from the above-mentioned viewpoints, made Ti compound crystal grains constituting the lower layer formed on the surface of the tool substrate and a composite nitride of Ti and Al constituting the upper layer formed thereon. Alternatively, extensive research has been conducted with a focus on controlling the epitaxial relationship between crystal grains of composite carbonitride (hereinafter abbreviated as TiAlCN in some cases).
As a result, a crystal grain of a Ti carbonitride (TiCN) layer having a NaCl type face centered cubic crystal structure constituting at least one of the lower layers and a crystal grain of the TiAlCN layer constituting the upper layer Predetermining the formation ratio of crystal grains that pass through the interface between the TiCN layer and the TiAlCN layer, and that the crystal orientation of the TiCN crystal grains and the crystal orientation of the TiAlCN crystal grains are within 5 degrees. By increasing the amount, the adhesion strength at the interface between the TiCN layer and the TiAlCN layer is improved. As a result, the cutting edge is subjected to high-speed intermittent heavy cutting conditions in which an intermittent and impactful high load acts. In addition, it was found that the hard coating layer exhibits excellent chipping resistance and peeling resistance.
 本発明は、上記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
(a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1~20μmの合計平均層厚を有するTi化合物層であって、かつ、少なくともNaCl型面心立方晶の結晶構造を有するTiの炭窒化合物層を含み、
(b)前記上部層は、1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層であり、
(c)前記TiとAlの複合窒化物または複合炭窒化物層を組成式:(Ti1-xAl)(C1-y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
(d)前記下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層および前記上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、工具基体に垂直な縦断面方向から個々の結晶粒の結晶方位を解析し、前記基体表面の法線に対して、前記個々の結晶粒の結晶面の法線がなす傾斜角を測定した場合、上部層と下部層の界面を介して隣接している結晶粒であって、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向と、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向との方位差が5度以内である結晶粒が、上部層と下部層の界面において存在し、該結晶粒の線密度が2個/10μm以上であることを特徴とする表面被覆切削工具。
(2)前記下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層および前記上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、工具基体に垂直な縦断面方向から個々の結晶粒の結晶方位を解析し、前記基体表面の法線に対して、前記個々の結晶粒の結晶面の法線がなす傾斜角を測定した場合、上部層と下部層の界面を介して隣接している結晶粒であって、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向と、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向との方位差が5度以内である結晶粒が、前記上部層および前記下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層に占める面積割合は、上部層と下部層の界面を介して隣接している結晶粒の総面積に対して30面積%以上であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記TiとAlの複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、該層内のNaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の結晶粒の平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする(1)または(2)のいずれかに記載の表面被覆切削工具。
(4)前記(b)の1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1~25μmの平均層厚を有するAl層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする前記(1)乃至(3)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“(1) Hard coating comprising a lower layer and an upper layer on the surface of a tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh pressure sintered body In a surface-coated cutting tool in which a layer is formed,
(A) The lower layer has a total average layer thickness of 1 to 20 μm composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. And a Ti carbonitride compound layer having a crystal structure of at least a NaCl type face centered cubic crystal.
(B) The upper layer is a composite of Ti and Al having an NaCl type face centered cubic single phase crystal structure having an average layer thickness of 1 to 20 μm or a mixed phase structure of NaCl type face centered cubic and hexagonal crystals. A nitride or composite carbonitride layer,
(C) When the composite nitride or composite carbonitride layer of Ti and Al is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the total amount of Ti of Ti and Al The average content ratio Xave and the average content ratio Yave (where Xave and Yave are atomic ratios) of the total amount of C and N in C are 0.60 ≦ Xave ≦ 0.95 and 0 ≦ Yave, respectively. ≦ 0.005 is satisfied,
(D) a Ti carbonitride layer having a NaCl-type face-centered cubic crystal structure in the lower layer and a Ti-Al composite nitride or composite charcoal having an NaCl-type face-centered cubic crystal structure in the upper layer For the nitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffractometer, and the individual crystal grain is compared with the normal of the base surface. When the inclination angle formed by the normal of the crystal plane is measured, the crystal grains are adjacent to each other via the interface between the upper layer and the lower layer, and have a crystal structure of the NaCl type face centered cubic crystal of the lower layer A crystal grain whose orientation difference between the normal direction of the (hkl) plane of the grain and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face centered cubic crystal structure of the upper layer is within 5 degrees Exists at the interface between the upper layer and the lower layer, and the crystal grain linear density is two Surface-coated cutting tool, characterized in that at 10μm or more.
(2) The Ti carbonitride layer having the NaCl-type face-centered cubic crystal structure of the lower layer and the Ti-Al composite nitride or the composite charcoal having the NaCl-type face-centered cubic crystal structure of the upper layer For the nitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffractometer, and the individual crystal grain is compared with the normal of the base surface. When the inclination angle formed by the normal of the crystal plane is measured, the crystal grains are adjacent to each other via the interface between the upper layer and the lower layer, and have a crystal structure of the NaCl type face centered cubic crystal of the lower layer A crystal grain whose orientation difference between the normal direction of the (hkl) plane of the grain and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face centered cubic crystal structure of the upper layer is within 5 degrees The crystal structure of NaCl type face centered cubic crystals of the upper layer and the lower layer The ratio of the area occupied by Ti in the carbonitride layer is 30 area% or more with respect to the total area of crystal grains adjacent via the interface between the upper layer and the lower layer (1) The surface-coated cutting tool according to 1.
(3) When the Ti and Al composite nitride or composite carbonitride layer is observed from the longitudinal sectional direction of the layer, the Ti and Al composite nitridation having a NaCl type face centered cubic structure in the layer is observed. (1) or (2) characterized by having a columnar structure having an average grain width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10 The surface coating cutting tool in any one.
(4) The composite of Ti and Al having the crystal structure of the NaCl type face centered cubic single phase having an average layer thickness of 1 to 20 μm or the mixed type crystal structure of NaCl type face centered cubic and hexagonal crystal as in (b). The outermost layer comprising at least an Al 2 O 3 layer having an average layer thickness of 1 to 25 μm is further formed on the surface of the upper layer made of a nitride or composite carbonitride layer, The surface-coated cutting tool according to any one of 1) to (3). "
It has the characteristics.
 以下に、本発明の被覆工具の硬質被覆層の構成層について詳細に説明する。
下部層(Ti化合物層):
 Ti化合物層(例えば、Tiの炭化物(TiC)層、窒化物(TiN)層、炭窒化物(TiCN)層、炭酸化物(TiCO)層および炭窒酸化物(TiCNO)層)は、基本的にはTiAlCN層の下部層として存在し、自身の具備するすぐれた高温強度によって硬質被覆層が高温強度を具備するようになるほか工具基体および上部層のTiAlCN層のいずれにも密着し、硬質被覆層の工具基体に対する密着性を維持する作用を有する。しかしながら、その平均層厚が1μm未満では、前記作用を十分に発揮させることができず、一方、その平均層厚が20μmを越えると、特に高熱発生を伴う高速重切削・高速断続切削では熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その平均層厚を1~20μmと定めた。
 さらに、下部層の配向性を引き継いで上部層をエピタキシャル成長させ、硬質被覆層の耐チッピング性、耐剥離性を向上させるために、前記下部層は、少なくともNaCl型面心立方晶の結晶構造を有するTiCN結晶粒からなるTiCN層を形成することが必要である。
 下部層は、通常の化学蒸着装置を使用して、例えば、
 反応ガス組成(容量%):TiCl 1.0~5.0%、N 5~35%、CO 0~5%、CHCN 0~1%、CH 0~10%、残部H
 反応雰囲気温度:780~900℃、
 反応雰囲気圧力:5~13kPa、
の条件で目標平均層厚になるまで化学蒸着することによって形成することができる。
Below, the structural layer of the hard coating layer of the coating tool of this invention is demonstrated in detail.
Lower layer (Ti compound layer):
Ti compound layers (eg, Ti carbide (TiC) layer, nitride (TiN) layer, carbonitride (TiCN) layer, carbonate (TiCO) layer and carbonitride oxide (TiCNO) layer) are basically Exists as a lower layer of the TiAlCN layer, and the hard coating layer has a high temperature strength due to its excellent high temperature strength. In addition, the hard coating layer adheres to both the tool base and the upper TiAlCN layer. It has the effect | action which maintains the adhesiveness with respect to a tool base | substrate. However, if the average layer thickness is less than 1 μm, the above-mentioned effect cannot be fully exerted. On the other hand, if the average layer thickness exceeds 20 μm, the thermoplastic deformation particularly in high-speed heavy cutting and high-speed intermittent cutting with high heat generation. Since this causes uneven wear, the average layer thickness was set to 1 to 20 μm.
Further, in order to epitaxially grow the upper layer by taking over the orientation of the lower layer and to improve the chipping resistance and peeling resistance of the hard coating layer, the lower layer has at least a NaCl type face centered cubic crystal structure. It is necessary to form a TiCN layer composed of TiCN crystal grains.
The lower layer is formed using a conventional chemical vapor deposition apparatus, for example,
Reaction gas composition (volume%): TiCl 4 1.0 to 5.0%, N 2 5 to 35%, CO 0 to 5%, CH 3 CN 0 to 1%, CH 4 0 to 10%, balance H 2 ,
Reaction atmosphere temperature: 780 to 900 ° C.
Reaction atmosphere pressure: 5 to 13 kPa,
It can form by carrying out chemical vapor deposition until it becomes target average layer thickness on the conditions of.
上部層(NaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層):
 本発明の硬質被覆層の上部層は、化学蒸着された1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層(TiAlCN層)からなる。
 本発明の上部層を構成するTiAlCN層は、硬さが高く、すぐれた耐摩耗性を発揮するが、その平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、結晶粒が粗大化し、チッピングを発生しやすくなる。
 したがって、上部層を構成するTiAlCN層の平均層厚は1~20μmと定めた。
Upper layer (Ti-Al composite nitride or composite carbonitride layer having a NaCl-type face-centered cubic single-phase crystal structure or a NaCl-type face-centered cubic and hexagonal mixed-phase crystal structure):
The upper layer of the hard coating layer of the present invention is a chemical vapor deposited NaCl type face centered cubic single phase crystal structure or an NaCl type face centered cubic and hexagonal mixed crystal structure having an average layer thickness of 1 to 20 μm. And a composite nitride or composite carbonitride layer (TiAlCN layer) of Ti and Al.
The TiAlCN layer constituting the upper layer of the present invention is high in hardness and exhibits excellent wear resistance. However, if the average layer thickness is less than 1 μm, the layer thickness is thin, and thus wear resistance over a long period of use. On the other hand, if the average layer thickness exceeds 20 μm, the crystal grains become coarse and chipping tends to occur.
Therefore, the average thickness of the TiAlCN layer constituting the upper layer is determined to be 1 to 20 μm.
 本発明の上部層を構成するTiAlCN層を、組成式:(Ti1-xAl)(N1-y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足する。
 ここで、Alの平均含有割合Xave (原子比)が0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続重切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xaveが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下する。
 したがって、Alの平均含有割合Xave (原子比)は、0.60≦Xave≦0.95とする。
 また、複合窒化物または複合炭窒化物層に含まれるC成分の平均含有割合(原子比)Yaveは、0≦Yave≦0.005の範囲の微量であるとき、上部層と下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の含有割合Yaveが0≦Yave≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下する。
 したがって、C成分の含有割合Yave (原子比)は、0≦Yave≦0.005とする。
When the TiAlCN layer constituting the upper layer of the present invention is expressed by the composition formula: (Ti 1-x Al x ) (N 1-y C y ), the average content ratio Xave in the total amount of Ti and Al in Al And the content ratio Yave (where Xave and Yave are both atomic ratios) of the total amount of C and N in C and C satisfy 0.60 ≦ Xave ≦ 0.95 and 0 ≦ Yave ≦ 0.005, respectively. .
Here, when the average content ratio Xave (atomic ratio) of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so high-speed intermittent heavy cutting such as alloy steel When it is used, the wear resistance is not sufficient. On the other hand, when the average content ratio Xave of Al exceeds 0.95, the content ratio of Ti is relatively decreased, so that embrittlement is caused and chipping resistance is lowered.
Therefore, the average content ratio Xave (atomic ratio) of Al is set to 0.60 ≦ Xave ≦ 0.95.
Further, when the average content ratio (atomic ratio) Yave of the C component contained in the composite nitride or composite carbonitride layer is a minute amount in the range of 0 ≦ Yave ≦ 0.005, the adhesion between the upper layer and the lower layer As a result, the impact at the time of cutting is reduced by improving the lubricity, and as a result, the chipping resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved. On the other hand, if the content ratio Yave of the C component is out of the range of 0 ≦ Yave ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer is lowered, so that the chipping resistance and chipping resistance are reduced.
Therefore, the content ratio Yave (atomic ratio) of the C component is 0 ≦ Yave ≦ 0.005.
下部層のNaCl型面心立方構造のTiCN結晶粒と上部層のNaCl型面心立方構造のTiAlCN結晶粒の結晶面の方位差:
 本発明は、下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層と、上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、工具基体に垂直な縦断面方向から個々の結晶粒の結晶方位を解析し、工具基体表面の法線に対して、前記個々の結晶粒の結晶面の法線がなす傾斜角を測定した場合、上部層と下部層の界面を介して隣接する結晶粒であって、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向と、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向との方位差が5度以内である結晶粒が、上部層と下部層の界面において存在し、該結晶粒の線密度が2個/10μm以上とするように結晶粒の配向性を定める。
Orientation difference between TiCN crystal grains of NaCl type face centered cubic structure in the lower layer and TiAlCN crystal grains of NaCl type face centered cubic structure in the upper layer:
The present invention relates to a Ti carbon nitride layer having a NaCl type face centered cubic crystal structure in a lower layer, and a Ti and Al composite nitride or composite carbon having an NaCl type face centered cubic crystal structure in an upper layer. For the nitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffraction apparatus, and the individual crystal grains are compared with the normal of the tool base surface. When the inclination angle formed by the normal of the crystal plane is measured, the crystal grains adjacent to each other through the interface between the upper layer and the lower layer, and having the crystal structure of the NaCl type face centered cubic crystal of the lower layer A crystal grain whose orientation difference between the normal direction of the (hkl) plane and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face-centered cubic crystal structure of the upper layer is within 5 degrees is Exists at the interface between the layer and the lower layer, and the linear density of the crystal grains is 2/10 μm. Determine the crystal grains of the orientation so as to above.
 図1に、NaCl型面心立方晶の結晶構造を有するTiCN層(下部層)と、NaCl型面心立方晶の結晶構造を有するTiAlCN層(上部層)との層構造の概略模式図を示す。
 図1からもわかるように、上部層と下部層の界面には、結晶粒が恰も界面を貫いて成長しているような結晶組織形態が観察される。本発明でいう「上部層と下部層の界面を介して隣接している結晶粒」とは、このような結晶組織形態を有する結晶粒である。
 そして、前記「上部層と下部層の界面を介して隣接している結晶粒」について、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の任意の結晶面(hkl)(例えば、(112)面)の法線方向が、工具基体表面の法線に対してなす傾斜角を測定し、測定された傾斜角をα(hkl)(度)とし、また、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒における(hkl)面の法線方向が、工具基体表面の法線に対してなす傾斜角を測定し、測定された傾斜角をβ(hkl)(度)とした場合、α(hkl)(度)とβ(hkl)(度)の差の絶対値が5度以下(即ち、|α(hkl)-β(hkl)|≦5(度)である場合に、上部層が下部層の配向性を引き継いだ結晶成長(エピタキシャル成長)をしているといえる。
 そして、|α(hkl)-β(hkl)|≦5(度)を満たす上部層と下部層の界面の結晶粒の線密度が2個/10μm以上存在する場合に、上部層と下部層の界面の付着強度が向上し、その結果として、硬質被覆層の耐チッピング性、耐剥離性を高めることができる。
 一方、|α(hkl)-β(hkl)|≦5(度)である結晶粒の線密度が2個/10μm未満の場合には、硬質被覆層全体として、上部層が十分なエピタキシャル成長組織を有するとはいえないため、チッピング、剥離等の異常損傷を十分に抑制することはできない。
 なお、測定する(hkl)面については任意の結晶面を選択することが可能であり、特に限定されるものではないが、代表的には、例えば、(100)面、(110)面、(111)面、(211)面、(210)面等の法線が工具基体表面の法線に対してなす傾斜角を測定することによって、上部層と下部層の面方位差を決定することができる。
 また、上記でいう「線密度が2個/10μm」とは、上部層と下部層の界面に沿った10μmの長さ範囲の中に、|α(hkl)-β(hkl)|≦5(度)を満足する結晶粒が2個以上あることをいう。
FIG. 1 shows a schematic diagram of a layer structure of a TiCN layer (lower layer) having a NaCl type face centered cubic crystal structure and a TiAlCN layer (upper layer) having a NaCl type face centered cubic crystal structure. .
As can be seen from FIG. 1, a crystal structure form in which crystal grains grow through the interface is observed at the interface between the upper layer and the lower layer. The “crystal grains adjacent to each other via the interface between the upper layer and the lower layer” in the present invention are crystal grains having such a crystal structure.
For the “crystal grains adjacent via the interface between the upper layer and the lower layer”, an arbitrary crystal plane (hkl) of the crystal grains having the crystal structure of the NaCl-type face-centered cubic crystal in the lower layer (for example, (112) plane) normal direction is measured with respect to the tool base surface normal, and the measured tilt angle is α (hkl) (degrees). The inclination angle formed by the normal direction of the (hkl) plane in the crystal grain having the center cubic crystal structure with respect to the normal line of the tool base surface is measured, and the measured inclination angle is expressed by β (hkl) (degrees). When the absolute value of the difference between α (hkl) (degrees) and β (hkl) (degrees) is 5 degrees or less (ie, | α (hkl) −β (hkl) | ≦ 5 (degrees) In addition, it can be said that the upper layer performs crystal growth (epitaxial growth) that inherits the orientation of the lower layer.
When the line density of the crystal grains at the interface between the upper layer and the lower layer satisfying | α (hkl) −β (hkl) | ≦ 5 (degrees) is 2/10 μm or more, the upper layer and the lower layer The adhesion strength at the interface is improved, and as a result, the chipping resistance and peel resistance of the hard coating layer can be increased.
On the other hand, when the linear density of crystal grains satisfying | α (hkl) −β (hkl) | ≦ 5 (degrees) is less than 2/10 μm, the upper layer of the hard coating layer as a whole has a sufficient epitaxial growth structure. Therefore, abnormal damage such as chipping and peeling cannot be sufficiently suppressed.
Note that an arbitrary crystal plane can be selected for the (hkl) plane to be measured, and is not particularly limited. Typically, for example, the (100) plane, the (110) plane, ( It is possible to determine the plane orientation difference between the upper layer and the lower layer by measuring the inclination angle formed by the normal lines such as the (111) plane, the (211) plane, and the (210) plane with respect to the normal line on the tool base surface. it can.
In addition, the above-mentioned “linear density is 2/10 μm” means that within the length range of 10 μm along the interface between the upper layer and the lower layer, | α (hkl) −β (hkl) | ≦ 5 ( This means that there are two or more crystal grains satisfying (degree).
エピタキシャル成長した結晶粒の面積割合:
 また、上部層と下部層の界面を介して隣接している結晶粒であって、上記で求めた方位差(|α(hkl)-β(hkl)|)が5(度)以下を満たす結晶粒であり、上部層と下部層の界面における該結晶粒の線密度が2個/10μm以上であると同時に、このようなエピタキシャル成長した結晶粒の面積割合が、上部層と下部層の界面を介して隣接している結晶粒の総面積(即ち、隣接している下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層と、上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層の結晶粒の合計面積)に対して30%以上の面積割合を占める場合には、このような結晶組織を有する硬質被覆層は、より一段と耐チッピング性、耐剥離性を向上させるので、エピタキシャル成長した結晶粒の面積割合は30%以上とすることが好ましい。
Epitaxially grown crystal grain area ratio:
Further, the crystal grains are adjacent to each other through the interface between the upper layer and the lower layer, and the orientation difference (| α (hkl) −β (hkl) |) obtained above satisfies 5 (degrees) or less. The grain density of the crystal grains at the interface between the upper layer and the lower layer is 2/10 μm or more, and at the same time, the area ratio of such epitaxially grown crystal grains passes through the interface between the upper layer and the lower layer. The total area of adjacent crystal grains (that is, the Ti carbonitride layer having the NaCl-type face-centered cubic crystal structure in the adjacent lower layer and the NaCl-type face-centered cubic crystal in the upper layer) In the case of occupying an area ratio of 30% or more with respect to the total area of Ti and Al composite nitride or composite carbonitride layer having a structure), the hard coating layer having such a crystal structure is Since chipping resistance and peel resistance are further improved, Area ratio of Takisharu grown crystal grains is preferably 30% or more.
複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方構造(以下、単に「立方晶」という場合もある)を有する結晶粒:
 前記複合窒化物または複合炭窒化物層中の各立方晶結晶粒について、工具基体表面と垂直な皮膜断面側から観察・測定した場合に、工具基体表面と平行な方向の粒子幅をw、また、工具基体表面に垂直な方向の粒子長さをlとし、前記wとlとの比l/wを各結晶粒のアスペクト比aとし、さらに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比A、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとした場合、平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10を満足するように制御することが望ましい。
 この条件を満たすとき、複合窒化物または複合炭窒化物層を構成する立方晶結晶粒は柱状組織となり、すぐれた耐摩耗性を示す。一方、平均アスペクト比Aが2を下回ると、NaCl型の面心立方構造の結晶粒内に本発明の特徴である組成の周期的な分布を形成しにくくなり、10を超えた柱状晶になると、本発明の特徴である立方晶結晶相内の組成の周期的な分布に沿った面と複数の粒界を伝うようにクラックが成長し易くなるため好ましくない。また、平均粒子幅Wが0.1μm未満であると耐摩耗性が低下し、2.0μmを超えると靭性が低下する。したがって、複合窒化物または複合炭窒化物層を構成する立方晶結晶粒の平均粒子幅Wは、0.1~2.0μmであることが望ましい。
Crystal grains having a NaCl-type face-centered cubic structure (hereinafter sometimes simply referred to as “cubic”) constituting the composite nitride or composite carbonitride layer:
For each cubic crystal grain in the composite nitride or composite carbonitride layer, when observed and measured from the film cross-section side perpendicular to the tool substrate surface, the particle width in the direction parallel to the tool substrate surface is w, The grain length in the direction perpendicular to the tool substrate surface is l, the ratio l / w between w and l is the aspect ratio a of each crystal grain, and the average of the aspect ratio a obtained for each crystal grain When the average aspect ratio is A and the average value of the particle widths w obtained for individual crystal grains is the average particle width W, the average particle width W is 0.1 to 2.0 μm and the average aspect ratio A is 2 to 10 It is desirable to control so as to satisfy
When this condition is satisfied, the cubic crystal grains constituting the composite nitride or composite carbonitride layer have a columnar structure and exhibit excellent wear resistance. On the other hand, when the average aspect ratio A is less than 2, it becomes difficult to form a periodic distribution of the composition, which is a feature of the present invention, in the crystal grains of the NaCl-type face-centered cubic structure. This is not preferable because cracks are likely to grow along a plane along a periodic distribution of the composition in the cubic crystal phase, which is a feature of the present invention, and a plurality of grain boundaries. Further, when the average particle width W is less than 0.1 μm, the wear resistance is lowered, and when it exceeds 2.0 μm, the toughness is lowered. Therefore, the average grain width W of the cubic crystal grains constituting the composite nitride or composite carbonitride layer is preferably 0.1 to 2.0 μm.
最表面層:
 本発明は、1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1~25μmの平均層厚を有するAl層を少なくとも含む最表面層をさらに被覆形成することができる。
 最表面層のAl層は、硬質被覆層の高温硬さと耐熱性を高めるが、最表面層の平均層厚が1μm未満では前記特性を硬質被覆層に十分に具備せしめることができず、一方、その平均層厚が25μmを越えると、切削時に発生する高熱と切刃に作用する断続的かつ衝撃的高負荷によって、偏摩耗の原因となる熱塑性変形が発生し易くなり、摩耗が加速するようになるため、その平均層厚は1~25μmとすることが望ましい。
Outermost layer:
The present invention relates to a composite nitride or composite of Ti and Al having an NaCl type face centered cubic single phase crystal structure having an average layer thickness of 1 to 20 μm or a mixed phase structure of NaCl type face centered cubic and hexagonal crystals. An uppermost surface layer including at least an Al 2 O 3 layer having an average layer thickness of 1 to 25 μm can be further formed on the surface of the upper layer made of the carbonitride layer.
The outermost Al 2 O 3 layer increases the high temperature hardness and heat resistance of the hard coating layer, but if the average surface thickness of the outermost surface layer is less than 1 μm, the above properties cannot be sufficiently provided in the hard coating layer. On the other hand, if the average layer thickness exceeds 25 μm, the high heat generated at the time of cutting and the intermittent and shocking high load acting on the cutting edge make it easier for the thermoplastic deformation to cause uneven wear and accelerate the wear. Therefore, the average layer thickness is desirably 1 to 25 μm.
成膜方法:
 本発明の下部層及び最表面層は、例えば、通常の化学蒸着方法によって形成することができる。
 また、上部層は、通常の化学蒸着方法によって形成することもできるが、例えば、次のような蒸着法によって成膜することもできる。
 即ち、工具基体を装着した化学蒸着反応装置へ、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群Bを、おのおの別々のガス供給管から反応装置内へ供給し、工具基体表面における反応ガス組成をガス群Aとガス群Bの供給条件を調節して制御し、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃として、所定時間、熱CVD法を行うことにより、所定の目標層厚、目標組成のTiAlCN層を成膜することができる。
Deposition method:
The lower layer and the outermost surface layer of the present invention can be formed by, for example, an ordinary chemical vapor deposition method.
The upper layer can also be formed by a normal chemical vapor deposition method, but can also be formed by, for example, the following vapor deposition method.
That is, a gas group A composed of NH 3 and H 2 and a gas group B composed of TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , and H 2 are applied to a chemical vapor deposition reactor equipped with a tool base. The reaction gas composition on the surface of the tool substrate is controlled by adjusting the supply conditions of the gas group A and the gas group B, and the reaction atmosphere pressure is 2 to 5 kPa, the reaction atmosphere. By performing the thermal CVD method at a temperature of 700 to 900 ° C. for a predetermined time, a TiAlCN layer having a predetermined target layer thickness and target composition can be formed.
 本発明の被覆工具は、NaCl型面心立方晶の結晶構造を有するTiCN層を有する下部層の上に、該下部層のTiCN結晶粒の(hkl)面の法線方向と、その方位差が5度以内であるエピタキシャル成長した上部層のTiAlCN結晶粒を形成し、しかも、エピタキシャル成長した結晶粒を、上部層と下部層の界面における該結晶粒の線密度が2個/10μm以上であることによって、あるいは、さらに、該エピタキシャル成長した結晶粒の面積割合を、全体の面積の30%以上とすることによって、上部層と下部層の付着強度が向上し、その結果、高速で、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件においても、硬質被覆層はすぐれた耐チッピング性、耐剥離性を発揮し、長期の使用にわたってすぐれた切削性能を発揮するのである。 In the coated tool of the present invention, the normal direction of the (hkl) plane of the TiCN crystal grains of the lower layer and the orientation difference thereof are formed on the lower layer having the TiCN layer having the NaCl type face centered cubic crystal structure. By forming the epitaxially grown upper layer TiAlCN crystal grains that are within 5 degrees, and the epitaxially grown crystal grains have a linear density of 2/10 μm or more at the interface between the upper layer and the lower layer, Alternatively, further, by making the area ratio of the epitaxially grown crystal grains 30% or more of the total area, the adhesion strength between the upper layer and the lower layer is improved, and as a result, the cutting edge is intermittently connected at high speed. Even under high-speed intermittent heavy cutting conditions where high loads such as impact and impact are applied, the hard coating layer exhibits excellent chipping resistance and peeling resistance, and excellent cutting over a long period of use. It is to demonstrate the performance.
NaCl型面心立方晶の結晶構造を有するTiCN層(下部層)と、NaCl型面心立方晶の結晶構造を有するTiAlCN層(上部層)とを備えた本発明の硬質被覆層の層構造の概略模式図を示す。The layer structure of the hard coating layer of the present invention comprising a TiCN layer (lower layer) having an NaCl type face centered cubic crystal structure and a TiAlCN layer (upper layer) having an NaCl type face centered cubic crystal structure. A schematic diagram is shown.
 つぎに、本発明の被覆工具を実施例により具体的に説明する。 Next, the coated tool of the present invention will be specifically described with reference to examples.
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A~Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Blended into the composition, added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, pressed into a compact of a predetermined shape at a pressure of 98 MPa, and the compact was 1370 in a vacuum of 5 Pa. Vacuum sintered under the condition of holding for 1 hour at a predetermined temperature in the range of ~ 1470 ° C, and after sintering, manufacture tool bodies A to C made of WC-base cemented carbide with ISO standard SEEN1203AFSN insert shape, respectively. did.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder all having an average particle diameter of 0.5 to 2 μm. And Ni powder are prepared, these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an ISO standard SEEN1203AFSN insert shape was produced.
 つぎに、これらの工具基体A~Dの表面に、化学蒸着装置を用い、
 まず、表3に示される形成条件で、表6に示される下部層を形成し、
 次いで、表4、表5に示される形成条件A~J、すなわち、NHとHからなるガス群Aと、TiCl、AlCl、NH、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.5~3.0%、H:50~75%、ガス群BとしてTiCl:0.1~0.15%、AlCl:0.3~0.5%、N:0~2%、C:0~0.05%、H:残、反応雰囲気圧力:2~5kPa、反応雰囲気温度:700~900℃、供給周期1~5秒、1周期当たりのガス供給時間0.15~0.25秒、ガス供給Aとガス供給Bの位相差0.10~0.20秒として、所定時間、熱CVD法を行って上部層を形成することにより、本発明被覆工具1~13を作製した。
 なお、本発明被覆工具11~13については、表3に示される形成条件で、表6に示される上部層を形成した。
Next, a chemical vapor deposition apparatus is used on the surfaces of these tool bases A to D,
First, under the formation conditions shown in Table 3, the lower layer shown in Table 6 is formed,
Next, from the formation conditions A to J shown in Tables 4 and 5, that is, from the gas group A composed of NH 3 and H 2 , TiCl 4 , AlCl 3 , NH 3 , N 2 , C 2 H 4 , H 2 As the gas group B and the gas supply method, the reaction gas composition (capacity% relative to the total of the gas group A and the gas group B) is set as NH 3 : 1.5 to 3.0% as the gas group A. , H 2 : 50 to 75%, gas group B as TiCl 4 : 0.1 to 0.15%, AlCl 3 : 0.3 to 0.5%, N 2 : 0 to 2%, C 2 H 4 : 0 to 0.05%, H 2 : remaining, reaction atmosphere pressure: 2 to 5 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 1 to 5 seconds, gas supply time 0.15 to 0.25 per cycle Second, the phase difference between gas supply A and gas supply B is 0.10-0.20 seconds, In the meantime, the coated tools 1 to 13 of the present invention were produced by forming a top layer by performing a thermal CVD method.
For the inventive coated tools 11 to 13, the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3.
 また、比較の目的で、工具基体A~Dの表面に、表3に示される形成条件で、表6に示される下部層を形成し、表3および表4、表5に示される条件かつ表7に示される目標層厚(μm)で本発明被覆工具1~13と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成した。
 なお、比較被覆工具11~13については、本発明被覆工具11~13と同様に、表3に示される形成条件で、表6に示される上部層を形成した。
For comparison purposes, the lower layer shown in Table 6 is formed on the surfaces of the tool bases A to D under the formation conditions shown in Table 3, and the conditions shown in Table 3, Table 4, and Table 5 are set. A hard coating layer including at least a composite nitride or composite carbonitride layer of Ti and Al was formed by vapor deposition in the same manner as the coated tools 1 to 13 of the present invention at a target layer thickness (μm) shown in FIG.
For the comparative coated tools 11 to 13, the upper layer shown in Table 6 was formed under the formation conditions shown in Table 3 in the same manner as the coated tools 11 to 13 of the present invention.
 本発明被覆工具1~13、比較被覆工具1~13の各構成層の工具基体に垂直な方向の断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ平均層厚を示した。 The cross sections in the direction perpendicular to the tool substrate of each component layer of the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13 were measured using a scanning electron microscope (magnification 5000 times), and 5 points within the observation field of view. When the average layer thickness was measured and averaged to determine the average layer thickness, the average layer thickness was substantially the same as the target layer thickness shown in Tables 6 and 7.
 また、上部層のTiAlCN層のAlの平均含有割合Xaveについては、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均含有割合Xaveを求めた。
 また、Cの平均含有割合Yaveについては、二次イオン質量分析(Secondary-Ion-Mass-Spectroscopy:SIMS)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合YaveはTiAlCN層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のTiAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるTiAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYaveとして求めた。
In addition, regarding the average content ratio Xave of Al in the upper TiAlCN layer, the electron beam was irradiated from the sample surface side in the sample whose surface was polished using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA). Then, the average content ratio Xave of Al was determined from the 10-point average of the analysis result of the obtained characteristic X-ray.
The average content ratio Yave of C was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). The ion beam was irradiated in the range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the components emitted by the sputtering action. The average content ratio Yave of C indicates the average value in the depth direction for the TiAlCN layer. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the TiAlCN layer when the supply amount of C 2 H 4 is 0 is determined as an unavoidable C content ratio, and C 2 H 4 is intentionally determined. A value obtained by subtracting the unavoidable C content from the content (atomic ratio) of the C component contained in the TiAlCN layer obtained when supplied was determined as Yave.
 また、硬質被覆層の下部層のTiCN結晶粒および上部層のTiAlCN結晶粒について、電界放出型走査電子顕微鏡を用いて個々の結晶粒の結晶方位を解析し、工具基体表面の法線に対する個々の結晶粒の結晶面の法線がなす傾斜角を測定するとともに、界面を介して相互に隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒について、測定したそれぞれの結晶粒の結晶面(例えば、(hkl)面)の法線と工具基体表面の法線がなす傾斜角の差を求め、その差が5度以内であるか否かによって、上記で測定した界面を介して相互に隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒が、本発明で規定する結晶粒に該当するか否かを判定する。
 すなわち、本発明被覆工具1~13、比較品被覆工具1~13について、上部層と下部層の界面からの下部層の厚さ方向へ1.0μm、また、上部層の厚さ方向へ1.0μm、さらに、工具基体表面と平行方向に50μmの断面研磨面の測定範囲(2.0μm×50μm)を、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、それぞれの前記研磨面の測定範囲内に存在する立方晶結晶格子を有する結晶粒個々に照射して、電子後方散乱回折像装置を用い、2.0×50μmの測定領域を0.1μm/stepの間隔で、工具基体表面の法線に対して、前記結晶粒の結晶面である(hkl)面の法線がなす傾斜角を測定し、例えば、下部層のTiCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がα(度)、また、上部層のTiAlCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がβ(度)であった場合には、傾斜角の差の絶対値(=|α(度)-β(度)|)が5度以内であるか否かを求め、この傾斜角の差が5度以内である場合には、上記で測定した界面を介して相互に隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒結晶粒はエピタキシャル成長した結晶粒であると判定する。
 そして、このようなエピタキシャル成長したと判定された結晶粒の数を、上部層と下部層の界面の単位長さ当たり個数として求めた。
 なお、本発明では、エピタキシャル成長したと判定された結晶粒の個数のカウントにおいては、界面を介して接するTiCN結晶粒の数を1個、また、界面を介して接するTiAlCN結晶粒の数を1個として、それぞれカウントする。
 さらに、エピタキシャル成長した結晶粒であると判定された結晶粒が上部層と下部層の界面で接する結晶粒の総面積に対する面積割合(面積%)を測定した。
 表6、表7にこれらの値を示す。
Further, for the TiCN crystal grains in the lower layer of the hard coating layer and the TiAlCN crystal grains in the upper layer, the crystal orientation of the individual crystal grains is analyzed using a field emission scanning electron microscope, and the individual crystal grains with respect to the normal of the tool substrate surface are analyzed. In addition to measuring the inclination angle formed by the normal of the crystal plane of the crystal grain, the crystal planes of the respective crystal grains measured with respect to the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer adjacent to each other via the interface ( For example, the difference between the inclination angles formed by the normal line of (hkl) plane and the normal line of the tool substrate surface is obtained, and adjacent to each other via the interface measured above depending on whether or not the difference is within 5 degrees. It is determined whether the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains correspond to the crystal grains defined in the present invention.
That is, for the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13, 1.0 μm in the thickness direction of the lower layer from the interface between the upper layer and the lower layer, and 1. in the thickness direction of the upper layer. A measurement range (2.0 μm × 50 μm) of a cross-sectional polished surface of 0 μm and 50 μm in a direction parallel to the tool base surface is set in a lens barrel of a field emission scanning electron microscope, and incident on the polished surface is 70 degrees. An electron backscatter diffraction image apparatus is used by irradiating an electron beam with an acceleration voltage of 15 kV at an angle with an irradiation current of 1 nA to each crystal grain having a cubic crystal lattice existing within the measurement range of each polished surface. Measure the inclination angle formed by the normal of the (hkl) plane of the crystal grain with respect to the normal of the tool substrate surface in a 2.0 × 50 μm measurement area at an interval of 0.1 μm / step. For example, (h) of the TiCN crystal grains of the lower layer l) The inclination angle formed by the normal of the surface and the normal of the tool substrate surface is α (degrees), and the inclination angle formed by the normal of the (hkl) surface of the TiAlCN crystal grain of the upper layer and the normal of the tool substrate surface Is β (degrees), it is determined whether or not the absolute value of the difference in inclination angles (= | α (degrees) −β (degrees) |) is within 5 degrees. Is within 5 degrees, it is determined that the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer which are adjacent to each other through the interface measured above are epitaxially grown crystal grains.
Then, the number of crystal grains determined to be epitaxially grown was determined as the number per unit length of the interface between the upper layer and the lower layer.
In the present invention, in counting the number of crystal grains determined to be epitaxially grown, the number of TiCN crystal grains in contact with the interface is one, and the number of TiAlCN crystal grains in contact with the interface is one. Respectively.
Furthermore, the area ratio (area%) to the total area of the crystal grains in which the crystal grains determined to be epitaxially grown were in contact at the interface between the upper layer and the lower layer was measured.
Tables 6 and 7 show these values.
また、本発明被覆工具1~13および比較被覆工具1~13について、工具基体に垂直な方向の断面方向から走査型電子顕微鏡(倍率5000倍及び20000倍)を用いて、工具基体表面と水平方向に長さ10μmの範囲に存在する複合窒化物または複合炭窒化物層を構成する(Ti1-x―yAlMe)(C1-z)層中の個々の結晶粒について、工具基体表面と垂直な皮膜断面側から観察し、基体表面と平行な方向の最大粒子幅w、基体表面に垂直な方向の最大粒子長さlを測定し、各結晶粒のアスペクト比a(=l/w)を算出するとともに、個々の結晶粒について求めたアスペクト比aの平均値を平均アスペクト比Aとして算出し、また、個々の結晶粒について求めた粒子幅wの平均値を平均粒子幅Wとして算出した。表6、表7にこれらの値を示す。 Further, for the coated tools 1 to 13 of the present invention and the comparative coated tools 1 to 13, using the scanning electron microscope (magnification 5000 times and 20000 times) from the cross-sectional direction perpendicular to the tool substrate, the tool substrate surface and the horizontal direction The individual crystal grains in the (Ti 1-xy Al x Me y ) (C z N 1-z ) layer constituting the composite nitride or composite carbonitride layer existing in the range of 10 μm in length Observed from the cross section side of the film perpendicular to the tool substrate surface, the maximum particle width w in the direction parallel to the substrate surface and the maximum particle length l in the direction perpendicular to the substrate surface were measured, and the aspect ratio a (= l / w), the average value of the aspect ratio a obtained for each crystal grain is calculated as the average aspect ratio A, and the average value of the grain width w obtained for each crystal grain is the average grain width. Calculated as W . Tables 6 and 7 show these values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1~13と比較被覆工具1~13について、以下に示す、炭素鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表8に示す。 Next, the coated tools 1 to 13 and the comparative coated tools 1 to 13 according to the present invention will be described below in a state where each of the various coated tools is clamped to the tip of a cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig. The dry high-speed face milling, which is a kind of high-speed intermittent cutting of carbon steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured. The results are shown in Table 8.
 工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
 切削試験:乾式高速正面フライス、センターカット切削加工、
 被削材:JIS・SCM440幅100mm、長さ400mmのブロック材、
 回転速度:968 min-1
 切削速度:380 m/min、
 切り込み:1.5 mm、
 一刃送り量:0.1 mm/刃、
 切削時間:8分、
Tool substrate: Tungsten carbide-based cemented carbide, titanium carbonitride-based cermet,
Cutting test: dry high-speed face milling, center cutting,
Work material: JIS / SCM440 block material with a width of 100 mm and a length of 400 mm,
Rotational speed: 968 min −1
Cutting speed: 380 m / min,
Cutting depth: 1.5 mm,
Single blade feed: 0.1 mm / tooth,
Cutting time: 8 minutes
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 原料粉末として、いずれも1~3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体E~Gをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared. Blended in the composition shown in Table 9, added with wax, ball milled in acetone for 24 hours, dried under reduced pressure, pressed into a green compact of a predetermined shape at a pressure of 98 MPa. In a 5 Pa vacuum, vacuum sintering is performed at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is subjected to a honing process of R: 0.07 mm. Tool bases E to G made of WC-base cemented carbide having an insert shape of CNMG120212 were produced.
 また、原料粉末として、いずれも0.5~2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体Hを形成した。 In addition, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder each having an average particle diameter of 0.5 to 2 μm are prepared, These raw material powders were blended into the composition shown in Table 10, wet mixed for 24 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 98 MPa. Sintered in an atmosphere at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge part is subjected to a honing process of R: 0.09 mm so that the TiCN base has an insert shape of ISO standard / CNMG120212 A tool substrate H made of cermet was formed.
 つぎに、これらの工具基体E~Gおよび工具基体Hの表面に、化学蒸着装置を用い、実施例1と同様の方法により表3、表4及び表5に示される条件で、まず、表11に示される下部層を形成し、ついで、(Ti1-xAl)(C1-y)層を蒸着形成することにより、表11に示される本発明被覆工具14~26を製造した。
 なお、本発明被覆工具20~26については、表3に示される形成条件で、表11に示すような上部層を形成した。
Next, on the surfaces of the tool bases E to G and the tool base H, a chemical vapor deposition apparatus is used and the conditions shown in Table 3, Table 4 and Table 5 are applied in the same manner as in Example 1, first, Table 11 Were formed, and then (Ti 1-x Al x ) (C y N 1-y ) layer was deposited to produce the coated tools 14 to 26 of the present invention shown in Table 11. .
For the inventive coated tools 20 to 26, the upper layer as shown in Table 11 was formed under the formation conditions shown in Table 3.
 また、比較の目的で、同じく工具基体E~Gおよび工具基体Hの表面に、通常の化学蒸着装置を用い、表3、表4及び表5に示される条件かつ表12に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表12に示される比較被覆工具14~26を製造した。
 なお、本発明被覆工具20~26と同様に、比較被覆工具20~26については、表3に示される形成条件で、表12に示される上部層を形成した。
For comparison purposes, a normal chemical vapor deposition apparatus was used on the surfaces of the tool bases E to G and the tool base H, and the conditions shown in Tables 3, 4 and 5 and the target layer thicknesses shown in Table 12 were used. Comparative coating tools 14 to 26 shown in Table 12 were produced by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
As with the inventive coated tools 20 to 26, the comparative coated tools 20 to 26 were formed with the upper layer shown in Table 12 under the forming conditions shown in Table 3.
 本発明被覆工具14~26および比較被覆工具14~26の各構成層の断面を、走査電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表11および表12に示される目標層厚と実質的に同じ平均層厚を示した。 The cross-section of each component layer of the inventive coated tool 14-26 and comparative coated tool 14-26 is measured using a scanning electron microscope (magnification 5000 times), and the layer thicknesses at five points in the observation field are measured and averaged. As a result, the average layer thickness was found to be substantially the same as the target layer thickness shown in Tables 11 and 12.
 上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、実施例1と同様にして求めた。
 また、界面を介して相互に隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒結晶粒について、電界放出型走査電子顕微鏡を用いて、下部層のTiCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がα(度)、また、上部層のTiAlCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がβ(度)とともに、傾斜角の差の絶対値(=|α(度)-β(度)|)を求め、これが5度以下である下部層のTiCN結晶粒と上部層のTiAlCN結晶粒の数をカウントし、上部層と下部層の界面の単位長さ当たりの個数を求めた。
 さらに、上記|α(度)-β(度)|≦5(度)を満たす下部層のTiCN結晶粒と上部層のTiAlCN結晶粒の上部層と下部層の界面で接する結晶粒の総面積に対する面積割合(面積%)を求めた。
 また、結晶粒の平均粒子幅W、平均アスペクト比A、実施例1と同様にして求めた。
 表11、表12にこれらの値を示す。
The average content ratio Xave of Al and the average content ratio Yave of C in the upper TiAlCN layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA).
Also, the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains adjacent to each other through the interface are subjected to the method of the (hkl) plane of the lower layer TiCN crystal grains using a field emission scanning electron microscope. The inclination angle formed by the line and the normal of the tool base surface is α (degrees), and the inclination angle formed by the normal of the (hkl) plane of the TiAlCN crystal grain of the upper layer and the normal of the tool base surface is β (degrees) In addition, the absolute value of the difference in inclination angle (= | α (degree) −β (degree) |) is obtained, and the number of TiCN crystal grains in the lower layer and TiAlCN grains in the upper layer, which are 5 degrees or less, is counted. The number per unit length of the interface between the upper layer and the lower layer was determined.
Further, with respect to the total area of the crystal grains in contact with the interface between the upper layer and the lower layer of the lower layer TiCN crystal grain satisfying | α (degree) −β (degree) | ≦ 5 (degrees) and the upper layer TiAlCN crystal grain. The area ratio (area%) was determined.
The average grain width W and average aspect ratio A of the crystal grains were determined in the same manner as in Example 1.
Tables 11 and 12 show these values.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具14~26および比較被覆工具14~26について、以下に示す、炭素鋼の乾式高速断続切削試験、鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
 切削条件1:
 被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
 切削速度:380 m/min、
 切り込み:1.5 mm、
 送り:0.25 mm/rev、
 切削時間:5 分、
(通常の切削速度は、220m/min)、
 切削条件2:
 被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒、
 切削速度:320 m/min、
 切り込み:1.5 mm、
 送り:0.1 mm/rev、
 切削時間:5 分、
(通常の切削速度は、200m/min)、
 表13に、切削試験の結果を示す。
Next, the present coated tools 14 to 26 and the comparative coated tools 14 to 26 in the state where all the various coated tools are screwed to the tip of the tool steel tool with a fixing jig are shown below. A dry high-speed intermittent cutting test for carbon steel and a wet high-speed intermittent cutting test for cast iron were performed, and the flank wear width of the cutting edge was measured for both.
Cutting condition 1:
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 380 m / min,
Cutting depth: 1.5 mm,
Feed: 0.25 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 220 m / min),
Cutting condition 2:
Work material: JIS / FCD700 lengthwise equal length 4 round bar with round groove,
Cutting speed: 320 m / min,
Cutting depth: 1.5 mm,
Feed: 0.1 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200 m / min),
Table 13 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 原料粉末として、いずれも0.5~4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表14に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900~1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200~1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびJIS規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、質量%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi-Zr-Cu合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ、ロをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. These raw material powders are shown in Table 14. After blending into the blended composition, wet mixing with a ball mill for 80 hours, drying, and press-molding into a green compact with a diameter of 50 mm × thickness: 1.5 mm at a pressure of 120 MPa, and then this green compact Is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature in the range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece, and this presintered body is separately prepared. A normal ultra high pressure sintering apparatus in a state of being superposed on a support piece made of WC base cemented carbide having Co: 8 mass%, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm Normal pressure: 4 Pa, temperature: Presence at a predetermined temperature in the range of 1200 to 1400 ° C. Holding time: 0.8 hours under high pressure sintering, and after sintering, the upper and lower surfaces are polished with a diamond grindstone, and used in a wire electric discharge machine. Then, it is divided into predetermined dimensions, and Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and shape of JIS standard CNGA120212 (thickness: 4.76 mm × inscribed circle diameter: 12.7 mm 80) The brazing part (corner part) of the insert body made of a WC-base cemented carbide having a diamond) is Ti- having a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the remainder in mass%. After brazing using a brazing material of Zr-Cu alloy and processing the outer periphery to a predetermined size, the cutting edge is subjected to honing processing with a width of 0.13 mm and an angle of 25 °, and further subjected to final polishing to achieve ISO. Standard CNGA12 Tool substrate b having a 412 insert shape, The filtrate was produced, respectively.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
 つぎに、これらの工具基体イ、ロの表面に、通常の化学蒸着装置を用い、実施例1、2と同様の方法により表3、表4及び表5に示される条件で、表15に示される下部層を形成し、ついで、(Ti1-xAl)(C1-y)層を含む硬質被覆層を目標層厚で蒸着形成することにより、表15に示される本発明被覆工具27~32を製造した。
 なお、本発明被覆工具30~32については、表3に示される形成条件で、表15に示される下部層および上部層を形成した。
Next, on the surfaces of these tool bases (a) and (b), using ordinary chemical vapor deposition equipment, the conditions shown in Table 3, Table 4 and Table 5 were performed in the same manner as in Examples 1 and 2, and Table 15 shows. And then depositing a hard coating layer including a (Ti 1-x Al x ) (C y N 1-y ) layer at a target layer thickness to form a coating according to the invention shown in Table 15 Tools 27-32 were produced.
For the inventive coated tools 30 to 32, the lower layer and the upper layer shown in Table 15 were formed under the forming conditions shown in Table 3.
 また、比較の目的で、同じく工具基体イ、ロの表面に、通常の化学蒸着装置を用い、表3、表4及び表5に示される条件かつ表16に示される目標層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表16に示される比較例被覆工具27~32を製造した。 For comparison purposes, a conventional chemical vapor deposition apparatus was used on the surfaces of the tool bases i and b, and the present invention was coated with the conditions shown in Tables 3, 4 and 5 and the target layer thicknesses shown in Table 16. Comparative coating tools 27 to 32 shown in Table 16 were manufactured by vapor-depositing a hard coating layer in the same manner as the tools.
 また、本発明被覆工具27~32、比較例被覆工具27~32の断面を、走査電子顕微鏡を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。 Further, the cross sections of the inventive coated tools 27 to 32 and comparative example coated tools 27 to 32 were measured using a scanning electron microscope, and the average layer thickness was obtained by measuring and averaging the five layer thicknesses within the observation field. It was.
 上部層のTiAlCN層のAlの平均含有割合Xave、Cの平均含有割合Yaveを、電子線マイクロアナライザ(Electron-Probe-Micro-Analyser:EPMA)を用い、実施例1と同様にして求めた。
 また、界面を介して相互に隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒結晶粒について、電界放出型走査電子顕微鏡を用いて、下部層のTiCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がα(度)、また、上部層のTiAlCN結晶粒の(hkl)面の法線と工具基体表面の法線がなす傾斜角がβ(度)とともに、傾斜角の差の絶対値(=|α(度)-β(度)|)を求め、これが5度以下である下部層のTiCN結晶粒と上部層のTiAlCN結晶粒の数をカウントし、上部層と下部層の界面の単位長さ当たりの個数を求めた。
 さらに、上記|α(度)-β(度)|≦5(度)を満たす下部層のTiCN結晶粒と上部層のTiAlCN結晶粒の上部層と下部層の界面で接する結晶粒の総面積に対する面積割合(面積%)を求めた。
 また、結晶粒の平均粒子幅W、平均アスペクト比A、実施例1と同様にして求めた。
 表15、表16にこれらの値を示す。
The average content ratio Xave of Al and the average content ratio Yave of C in the upper TiAlCN layer were determined in the same manner as in Example 1 using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA).
Also, the lower layer TiCN crystal grains and the upper layer TiAlCN crystal grains adjacent to each other through the interface are subjected to the method of the (hkl) plane of the lower layer TiCN crystal grains using a field emission scanning electron microscope. The inclination angle formed by the line and the normal of the tool base surface is α (degrees), and the inclination angle formed by the normal of the (hkl) plane of the TiAlCN crystal grain of the upper layer and the normal of the tool base surface is β (degrees) In addition, the absolute value of the difference in inclination angle (= | α (degree) −β (degree) |) is obtained, and the number of TiCN crystal grains in the lower layer and TiAlCN grains in the upper layer, which are 5 degrees or less, is counted. The number per unit length of the interface between the upper layer and the lower layer was determined.
Further, with respect to the total area of the crystal grains in contact with the interface between the upper layer and the lower layer of the lower layer TiCN crystal grain satisfying | α (degree) −β (degree) | ≦ 5 (degrees) and the upper layer TiAlCN crystal grain. The area ratio (area%) was determined.
The average grain width W and average aspect ratio A of the crystal grains were determined in the same manner as in Example 1.
Tables 15 and 16 show these values.
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
 つぎに、前記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具27~32、比較例被覆工具27~32について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
 被削材: JIS・SCr420(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
 切削速度: 255m/min、
 切り込み: 0.12mm、
 送り: 0.1mm/rev、
 切削時間: 4分、
 表17に、前記切削試験の結果を示す。
Next, the coated tools 27 to 32 of the present invention and the comparative coated tools 27 to 32 will be described below in a state where any of the various coated tools is screwed to the tip of the tool steel tool with a fixing jig. The carburized and hardened alloy steel was subjected to a dry high-speed intermittent cutting test, and the flank wear width of the cutting edge was measured.
Work material: JIS · SCr420 (Hardness: HRC62) lengthwise equidistant four round bars with vertical grooves,
Cutting speed: 255 m / min,
Cutting depth: 0.12mm,
Feed: 0.1mm / rev,
Cutting time: 4 minutes
Table 17 shows the results of the cutting test.
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
 表6~8、11~13、15~17に示される結果から、本発明被覆工具1~32は、界面を介して隣接する下部層のTiCN結晶粒と上部層のTiAlCN結晶粒がエピタキシャル成長をすることで、界面での付着密度が向上するため、高熱発生を伴い、かつ、切刃に断続的・衝撃的な高負荷が作用する高速断続重切削条件に用いた場合でも、硬質被覆層の耐チッピング性、耐剥離性にすぐれ、長期の使用に亘ってすぐれた切削性能を発揮する。
 これに対して、比較品被覆工具1~32では、高速断続重切削加工においては、硬質被覆層のチッピング発生、剥離発生により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 6 to 8, 11 to 13, and 15 to 17, in the coated tools 1 to 32 of the present invention, the TiCN crystal grains of the lower layer and the TiAlCN crystal grains of the upper layer that are adjacent through the interface grow epitaxially. Therefore, the adhesion density of the hard coating layer is improved even when used in high-speed intermittent heavy cutting conditions that involve high heat generation and intermittent and shocking high loads on the cutting edge. Excellent chipping and peeling resistance, and excellent cutting performance over a long period of use.
On the other hand, it is clear that the comparative product coated tools 1 to 32 reach the service life in a relatively short time due to occurrence of chipping and peeling of the hard coating layer in high-speed intermittent heavy cutting.
 本発明の被覆工具は、各種鋼や鋳鉄などの通常の条件での連続切削や断続切削は勿論のこと、切刃に断続的・衝撃的負荷な高負荷が作用する高速断続重切削という厳しい切削条件下でも、硬質被覆層のチッピング発生、剥離発生が抑制され、長期の使用に亘ってすぐれた切削性能を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The coated tool of the present invention is not only continuous cutting and intermittent cutting under normal conditions such as various steels and cast irons, but also severe cutting such as high-speed intermittent heavy cutting in which high loads such as intermittent and impact loads act on the cutting blade. Even under conditions, chipping and peeling of the hard coating layer are suppressed, and excellent cutting performance is demonstrated over long-term use. In addition, it can cope with the cost reduction sufficiently satisfactorily.

Claims (4)

  1.  炭化タングステン基超硬合金または炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、下部層と上部層とからなる硬質被覆層が形成された表面被覆切削工具において、
    (a)前記下部層は、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上からなる1~20μmの合計平均層厚を有するTi化合物層であって、かつ、少なくともNaCl型面心立方晶の結晶構造を有するTiの炭窒化合物層を含み、
    (b)前記上部層は、1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層であり、
    (c)前記TiとAlの複合窒化物または複合炭窒化物層を組成式:(Ti1-xAl)(C1-y)で表した場合、AlのTiとAlの合量に占める平均含有割合XaveおよびCのCとNの合量に占める平均含有割合Yave(但し、Xave、Yaveはいずれも原子比)が、それぞれ、0.60≦Xave≦0.95、0≦Yave≦0.005を満足し、
    (d)前記下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層および前記上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、工具基体に垂直な縦断面方向から個々の結晶粒の結晶方位を解析し、前記基体表面の法線に対して、前記個々の結晶粒の結晶面の法線がなす傾斜角を測定した場合、上部層と下部層の界面を介して隣接している結晶粒であって、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向と、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向との方位差が5度以内である結晶粒が、上部層と下部層の界面において存在し、該結晶粒の線密度が2個/10μm以上であることを特徴とする表面被覆切削工具。
    A hard coating layer consisting of a lower layer and an upper layer is formed on the surface of the tool base made of tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultrahigh-pressure sintered body. Surface coated cutting tools
    (A) The lower layer has a total average layer thickness of 1 to 20 μm composed of one or more of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride layer. And a Ti carbonitride compound layer having a crystal structure of at least a NaCl type face centered cubic crystal.
    (B) The upper layer is a composite of Ti and Al having an NaCl type face centered cubic single phase crystal structure having an average layer thickness of 1 to 20 μm or a mixed phase structure of NaCl type face centered cubic and hexagonal crystals. A nitride or composite carbonitride layer,
    (C) When the composite nitride or composite carbonitride layer of Ti and Al is represented by a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the total amount of Ti of Ti and Al The average content ratio Xave and the average content ratio Yave (where Xave and Yave are atomic ratios) of the total amount of C and N in C are 0.60 ≦ Xave ≦ 0.95 and 0 ≦ Yave, respectively. ≦ 0.005 is satisfied,
    (D) a Ti carbonitride layer having a NaCl-type face-centered cubic crystal structure in the lower layer and a Ti-Al composite nitride or composite charcoal having an NaCl-type face-centered cubic crystal structure in the upper layer For the nitride layer, the crystal orientation of each crystal grain is analyzed from the longitudinal section direction perpendicular to the tool base using an electron beam backscatter diffractometer, and the individual crystal grain is compared with the normal of the base surface. When the inclination angle formed by the normal of the crystal plane is measured, the crystal grains are adjacent to each other via the interface between the upper layer and the lower layer, and have a crystal structure of the NaCl type face centered cubic crystal of the lower layer A crystal grain whose orientation difference between the normal direction of the (hkl) plane of the grain and the normal direction of the (hkl) plane of the crystal grain having the NaCl type face centered cubic crystal structure of the upper layer is within 5 degrees Exists at the interface between the upper layer and the lower layer, and the crystal grain linear density is two Surface-coated cutting tool, characterized in that at 10μm or more.
  2.  前記下部層のNaCl型面心立方晶の結晶構造を有するTiの炭窒化物層および前記上部層のNaCl型面心立方晶の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層について、電子線後方散乱回折装置を用いて、工具基体に垂直な縦断面方向から個々の結晶粒の結晶方位を解析し、前記基体表面の法線に対して、前記個々の結晶粒の結晶面の法線がなす傾斜角を測定した場合、上部層と下部層の界面を介して隣接している結晶粒であって、下部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向と、上部層のNaCl型面心立方晶の結晶構造を有する結晶粒の(hkl)面の法線方向との方位差が5度以内である結晶粒が占める面積割合は、上部層と下部層の界面を介して隣接している結晶粒の総面積に対して30面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 Ti Ti-Al composite nitride or composite carbonitride layer having NaCl-type face-centered cubic crystal structure in the lower layer and Ti-Al composite nitride or composite carbonitride layer having the NaCl-type face-centered cubic crystal structure in the upper layer About the crystal orientation of the individual crystal grains from the longitudinal cross-sectional direction perpendicular to the tool substrate using an electron beam backscatter diffractometer, the crystal plane of the individual crystal grains with respect to the normal of the substrate surface When the inclination angle formed by the normal line is measured, the crystal grains adjacent to each other through the interface between the upper layer and the lower layer, and having the crystal structure of the NaCl type face centered cubic crystal of the lower layer ( The ratio of the area occupied by crystal grains whose orientation difference between the normal direction of the (hkl) plane and the normal direction of the (hkl) plane of the crystal grains having the NaCl type face centered cubic crystal structure in the upper layer is within 5 degrees Are adjacent through the interface between the upper and lower layers The surface-coated cutting tool according to claim 1, characterized in that 30% by area or more based on the total area.
  3.  前記TiとAlの複合窒化物または複合炭窒化物層について、該層の縦断面方向から観察した場合に、該層内のNaCl型の面心立方構造を有するTiとAlとMeの複合窒化物または複合炭窒化物の結晶粒の平均粒子幅Wが0.1~2.0μm、平均アスペクト比Aが2~10である柱状組織を有することを特徴とする請求項1または2に記載の表面被覆切削工具。 When the Ti / Al composite nitride or composite carbonitride layer is observed from the longitudinal cross-sectional direction of the layer, the Ti / Al / Me composite nitride having a NaCl-type face-centered cubic structure in the layer is observed. 3. The surface according to claim 1, wherein the composite carbonitride has a columnar structure having an average grain width W of 0.1 to 2.0 μm and an average aspect ratio A of 2 to 10 of crystal grains of the composite carbonitride. Coated cutting tool.
  4.  前記(b)の1~20μmの平均層厚を有するNaCl型面心立方晶単相の結晶構造またはNaCl型面心立方晶と六方晶の混相の結晶構造を有するTiとAlの複合窒化物または複合炭窒化物層からなる上部層の表面に、1~25μmの平均層厚を有するAl層を少なくとも含む最表面層がさらに被覆形成されていることを特徴とする請求項1乃至請求項3のいずれか一項に記載の表面被覆切削工具。  (B) Ti-Al composite nitride having a single-phase NaCl type face-centered cubic crystal structure having an average layer thickness of 1 to 20 μm or a mixed phase structure of NaCl-type face-centered cubic crystals and hexagonal crystals, or The outermost surface layer including at least an Al 2 O 3 layer having an average layer thickness of 1 to 25 μm is further coated on the surface of the upper layer made of the composite carbonitride layer. Item 4. The surface-coated cutting tool according to any one of items 3 to 4.
PCT/JP2015/077457 2014-09-30 2015-09-29 Surface-coated cutting tool having excellent chip resistance WO2016052479A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580049361.8A CN107073591A (en) 2014-09-30 2015-09-29 Surface coated cutting tool with excellent chip resistance
KR1020177011376A KR20170057434A (en) 2014-09-30 2015-09-29 Surface-coated cutting tool having excellent chip resistance
EP15845750.7A EP3202515A4 (en) 2014-09-30 2015-09-29 Surface-coated cutting tool having excellent chip resistance
US15/514,703 US20170216930A1 (en) 2014-09-30 2015-09-29 Surface-coated cutting tool having excellent chip resistance

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-200000 2014-09-30
JP2014200000 2014-09-30
JP2015-182740 2015-09-16
JP2015182740A JP6620482B2 (en) 2014-09-30 2015-09-16 Surface coated cutting tool with excellent chipping resistance

Publications (1)

Publication Number Publication Date
WO2016052479A1 true WO2016052479A1 (en) 2016-04-07

Family

ID=55630506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/077457 WO2016052479A1 (en) 2014-09-30 2015-09-29 Surface-coated cutting tool having excellent chip resistance

Country Status (1)

Country Link
WO (1) WO2016052479A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018047735A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
WO2018047733A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
WO2018047734A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method of producing same
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
EP3858524A4 (en) * 2018-09-28 2022-04-06 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
EP3345702B1 (en) * 2015-08-31 2022-08-10 Mitsubishi Materials Corporation Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018039A (en) * 1996-07-03 1998-01-20 Hitachi Metals Ltd Alumina-coated tool and its production
JP5111379B2 (en) * 2006-08-31 2013-01-09 京セラ株式会社 Cutting tool, manufacturing method thereof and cutting method
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
JP2015160259A (en) * 2014-02-26 2015-09-07 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abrasion resistance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1018039A (en) * 1996-07-03 1998-01-20 Hitachi Metals Ltd Alumina-coated tool and its production
JP5111379B2 (en) * 2006-08-31 2013-01-09 京セラ株式会社 Cutting tool, manufacturing method thereof and cutting method
JP2013146839A (en) * 2012-01-23 2013-08-01 Mitsubishi Materials Corp Surface coated cutting tool with hard coating layer maintaining superior heat resistance and wear resistance
JP2015160259A (en) * 2014-02-26 2015-09-07 三菱マテリアル株式会社 Surface-coated cutting tool excellent in abrasion resistance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3202515A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3345702B1 (en) * 2015-08-31 2022-08-10 Mitsubishi Materials Corporation Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
US20190232386A1 (en) * 2016-09-06 2019-08-01 Sumitomo Electric Hardmetal Corp. Cutting Tool and Method for Manufacturing Same
WO2018047734A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method of producing same
JPWO2018047734A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same
JPWO2018047733A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same
JPWO2018047735A1 (en) * 2016-09-06 2019-06-24 住友電工ハードメタル株式会社 Cutting tool and method of manufacturing the same
WO2018047735A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
EP3511097A4 (en) * 2016-09-06 2020-05-13 Sumitomo Electric Hardmetal Corp. Cutting tool and method for producing same
WO2018047733A1 (en) * 2016-09-06 2018-03-15 住友電工ハードメタル株式会社 Cutting tool and method for producing same
JP2020055097A (en) * 2018-09-28 2020-04-09 三菱マテリアル株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
CN112770858A (en) * 2018-09-28 2021-05-07 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
EP3858524A4 (en) * 2018-09-28 2022-04-06 Mitsubishi Materials Corporation Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP7231885B2 (en) 2018-09-28 2023-03-02 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance
CN112770858B (en) * 2018-09-28 2023-05-16 三菱综合材料株式会社 Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance

Similar Documents

Publication Publication Date Title
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
WO2016047581A1 (en) Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6044336B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
WO2015182711A1 (en) Surface-coated cutting tool comprising hard coating layer that exhibits excellent chipping resistance
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2019005867A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent anti-chipping properties
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP2018161739A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
WO2017038840A1 (en) Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP5286931B2 (en) Surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer in high-speed heavy cutting
JP2018149668A (en) Surface coated cutting tool with hard coating layer exhibiting superior chipping resistance and abrasion resistance
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2022030401A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15845750

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15514703

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015845750

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177011376

Country of ref document: KR

Kind code of ref document: A