JP5935479B2 - Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting - Google Patents

Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting Download PDF

Info

Publication number
JP5935479B2
JP5935479B2 JP2012096382A JP2012096382A JP5935479B2 JP 5935479 B2 JP5935479 B2 JP 5935479B2 JP 2012096382 A JP2012096382 A JP 2012096382A JP 2012096382 A JP2012096382 A JP 2012096382A JP 5935479 B2 JP5935479 B2 JP 5935479B2
Authority
JP
Japan
Prior art keywords
coating layer
hard coating
average
layer
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012096382A
Other languages
Japanese (ja)
Other versions
JP2013223894A (en
Inventor
五十嵐 誠
誠 五十嵐
翔 龍岡
翔 龍岡
直之 岩崎
直之 岩崎
長田 晃
晃 長田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012096382A priority Critical patent/JP5935479B2/en
Priority to CN201310085606.5A priority patent/CN103372660B/en
Publication of JP2013223894A publication Critical patent/JP2013223894A/en
Application granted granted Critical
Publication of JP5935479B2 publication Critical patent/JP5935479B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

この発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速ミーリング切削加工や高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is a surface that exhibits high chipping resistance with a hard coating layer in high-speed milling cutting and high-speed intermittent cutting in which an impact load is applied to the cutting edge while generating high heat in alloy steel and the like. The present invention relates to a coated cutting tool (hereinafter referred to as a coated tool).

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、上記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速ミーリング切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, generally composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN) based ultra high pressure sintered body There is known a coated tool in which a Ti—Al based composite nitride layer is formed by physical vapor deposition on a surface of a substrate (hereinafter collectively referred to as a substrate) as a hard coating layer. It is known that it exhibits excellent wear resistance.
However, although the above-mentioned conventional coated tool coated with a Ti-Al composite nitride layer is relatively excellent in wear resistance, it tends to cause abnormal wear such as chipping when used under high-speed milling cutting conditions. Therefore, various proposals for improving the hard coating layer have been made.

例えば、特許文献1には、基体の表面に、組成式:(Ti1−XAl)Nで表した場合に、0.35≦X≦0.60(但し、Xは原子比)を満足するTiとAlの複合窒化物からなる硬質被覆層を物理蒸着法で被覆形成するとともに、硬質被覆層を、平均粒径30nm以下に粒状晶組織と、平均粒径50〜500nmの柱状晶組織との交互積層構造として構成することが提案されており、そしてこれによって、高硬度鋼の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性、耐欠損性、耐剥離性を発揮するとされている。
ただ、この被覆工具は、物理蒸着法により硬質被覆層を蒸着形成するため、Alの含有割合Xを0.6以上にはできず、より一段と切削性能を向上させることが望まれている。
For example, Patent Document 1 satisfies 0.35 ≦ X ≦ 0.60 (where X is an atomic ratio) when expressed on the surface of a substrate by a composition formula: (Ti 1-X Al X ) N. A hard coating layer made of a composite nitride of Ti and Al is formed by physical vapor deposition, and the hard coating layer has a granular crystal structure with an average particle size of 30 nm or less, and a columnar crystal structure with an average particle size of 50 to 500 nm. It has been proposed that it be constructed as an alternating layered structure, and this makes it possible for the hard coating layer to exhibit excellent chipping resistance, fracture resistance, and peeling resistance in high-speed intermittent cutting of high-hardness steel. Yes.
However, since this coated tool deposits a hard coating layer by physical vapor deposition, the Al content ratio X cannot be increased to 0.6 or more, and it is desired to further improve the cutting performance.

このような観点から、化学蒸着法で硬質被覆層を形成することで、Alの含有割合Xを、0.9程度にまで高める技術も提案されている。
例えば、特許文献2には、TiCl、AlCl、NHの混合反応ガス中で、650〜900℃の温度範囲において化学蒸着を行うことにより、Alの含有割合Xの値が0.65〜0.95である(Ti1−XAl)N層を蒸着形成できることが記載されているが、この文献では、この(Ti1−XAl)N層の上にさらにAl層を被覆し、これによって断熱効果を高めることを目的とするものであるから、Xの値を0.65〜0.95まで高めた(Ti1−XAl)N層の形成によって、切削性能へ如何なる影響があるかという点についてまでの開示はない。
From such a viewpoint, a technique for increasing the Al content ratio X to about 0.9 by forming a hard coating layer by chemical vapor deposition has also been proposed.
For example, Patent Document 2 discloses that the value of the Al content ratio X is 0.65 to 0.65 by performing chemical vapor deposition in a temperature range of 650 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , and NH 3. Although it is described that a (Ti 1-X Al X ) N layer of 0.95 can be formed by vapor deposition, in this document, an Al 2 O 3 layer is further formed on the (Ti 1-X Al X ) N layer. Therefore, the cutting performance is improved by forming the (Ti 1-X Al X ) N layer in which the value of X is increased from 0.65 to 0.95. There is no disclosure up to the point of how this will be affected.

また、例えば、特許文献3には、TiCl、AlCl、NH、Nの混合反応ガス中、700〜900℃の温度でプラズマを用いない化学蒸着を行うことにより、Alの含有割合Xの値が0.75〜0.93である立方晶の(Ti1−XAl)N層からなる硬質被覆層を蒸着形成できることが記載されているが、特許文献2と同様、被覆工具としての適用可能性については何らの開示もない。 Further, for example, Patent Document 3 discloses that Al is contained by performing chemical vapor deposition without using plasma at a temperature of 700 to 900 ° C. in a mixed reaction gas of TiCl 4 , AlCl 3 , NH 3 , and N 2 H 4. It is described that a hard coating layer composed of a cubic (Ti 1-X Al X ) N layer having a ratio X value of 0.75 to 0.93 can be formed by vapor deposition. There is no disclosure of applicability as a tool.

特開2011−224715号公報JP2011-224715A 特表2011−516722号公報Special table 2011-516722 gazette 米国特許第7767320号明細書US Pat. No. 7,767,320

近年の切削装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用に亘ってのすぐれた耐摩耗性が求められている。
しかし、上記特許文献1に記載される被覆工具は、(Ti1−XAl)N層からなる硬質被覆層が物理蒸着法で蒸着形成され、硬質被覆層中のAl含有量Xを高めることができないため、例えば、合金鋼の高速ミーリング切削に供した場合には、耐チッピング性が十分であるとは言えない。
一方、上記特許文献2、3に記載される化学蒸着法で被覆形成した(Ti1−XAl)N層については、Al含有量Xを高めることができ、また、立方晶構造を形成させることができることから、所定の硬さを有し耐摩耗性にはすぐれた硬質被覆層が得られるものの、基体との密着強度は十分でなく、また、靭性に劣ることから、合金鋼の高速ミーリング切削に供する被覆工具として用いた場合には、チッピング、欠損、剥離等の異常損傷が発生しやすく、満足できる切削性能を発揮するとは言えない。
本発明は、合金鋼の高速ミーリング切削等に供した場合であっても、すぐれた耐チッピング性を発揮するとともに、長期の使用に亘ってすぐれた耐摩耗性を発揮する被覆工具を提供することを目的とするものである。
In recent years, the performance of cutting machines has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work.Accordingly, cutting has become a trend toward higher speed and higher efficiency. The coated tool is further required to have abnormal damage resistance such as chipping resistance, chipping resistance, and peel resistance, and excellent wear resistance over a long period of use.
However, in the coated tool described in Patent Document 1, a hard coating layer made of a (Ti 1-X Al X ) N layer is deposited by physical vapor deposition to increase the Al content X in the hard coating layer. Therefore, for example, when it is subjected to high-speed milling cutting of alloy steel, it cannot be said that the chipping resistance is sufficient.
On the other hand, for the (Ti 1-X Al X ) N layer formed by the chemical vapor deposition method described in Patent Documents 2 and 3, the Al content X can be increased and a cubic structure is formed. Therefore, although a hard coating layer having a predetermined hardness and excellent wear resistance can be obtained, the adhesion strength to the substrate is not sufficient and the toughness is inferior. When used as a coated tool for cutting, abnormal damage such as chipping, chipping and peeling tends to occur, and it cannot be said that satisfactory cutting performance is exhibited.
The present invention provides a coated tool that exhibits excellent chipping resistance and excellent wear resistance over a long period of use even when subjected to high-speed milling cutting of alloy steel, etc. It is intended.

本発明者等は、上述の観点から、TiとAlの複合炭窒化物(以下、「(Ti,Al)(C,N)」あるいは「(Ti1−XAl)(C1−Y)」で示すことがある)からなる硬質被覆層を化学蒸着で被覆形成した被覆工具の耐チッピング性、耐摩耗性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 From the above-mentioned viewpoint, the present inventors have developed a composite carbonitride of Ti and Al (hereinafter, “(Ti, Al) (C, N)” or “(Ti 1-X Al X ) (C Y N 1- 1 Y) "is sometimes indicated by) hard layer chipping resistance of the coated tool coated formed by chemical vapor deposition consisting of, in order improve the abrasion resistance, the results of extensive studies, the following findings Obtained.

炭化タングステン基超硬合金(以下、「WC基超硬合金」で示す)、炭窒化チタン基サーメット(以下、「TiCN基サーメット」で示す)、または立方晶窒化ホウ素基超高圧焼結体(以下、「cBN基超高圧焼結体」で示す)のいずれかで構成された基体の表面に、
例えば、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層を蒸着形成するとともに、硬質被覆層と基体との界面から、硬質被覆層の表層側に向かうにしたがって、硬質被覆層中のAl含有割合が漸次増加する組成傾斜構造を有することによって、組成に応じた(Ti1−XAl)(C1−Y)の格子定数の違いによる歪が積極的に導入され、さらに、硬質被覆層と基体との界面側では、平均アスペクト比Aが1〜2である粒状組織を形成し、一方、硬質被覆層の表層側では、平均アスペクト比Aが3〜10である柱状組織を形成することによって、(Ti1−XAl)(C1−Y)層からなる硬質被覆層の耐チッピング性が向上することを見出したのである。
Tungsten carbide-based cemented carbide (hereinafter referred to as “WC-based cemented carbide”), titanium carbonitride-based cermet (hereinafter referred to as “TiCN-based cermet”), or cubic boron nitride-based ultrahigh pressure sintered body (hereinafter referred to as “TiCN-based cemented carbide”) On the surface of the substrate composed of any one of “cBN-based ultra-high pressure sintered body”
For example, by chemical vapor deposition which comprises, as a reaction gas component trimethyl aluminum (Al (CH 3) 3) , as a hard coating layer, (Ti 1-X Al X ) of the cubic structure (C Y N 1-Y) layer Depending on the composition, it has a composition gradient structure in which the Al content in the hard coating layer gradually increases from the interface between the hard coating layer and the substrate toward the surface of the hard coating layer. Further, strain due to the difference in lattice constant of (Ti 1-X Al X ) (C Y N 1-Y ) was positively introduced, and on the interface side between the hard coating layer and the substrate, the average aspect ratio AL was 1-2 in which granular structure formed, on the other hand, in the surface layer of the hard coating layer, by forming the columnar texture average aspect ratio a H is 3~10, (Ti 1-X Al X) (C Y N 1- It was found that) the chipping resistance of the hard coating layer consisting of layers is improved.

なお、上記(Ti1−XAl)(C1−Y)層において、X、Yは何れも原子比であって、0.55≦X≦0.95、0.0005≦Y≦0.005を満足するものであるから、従来のPVD法では蒸着形成することができない高Al含有割合X(例えば、X=0.80〜0.95)まで立方晶構造を維持した(Ti,Al)(C,N)層を、好ましくは、トリメチルアルミニウム(Al(CH)を反応ガス成分として含有する化学蒸着法により蒸着形成し得たことがわかる。 In the (Ti 1-X Al X ) (C Y N 1-Y ) layer, X and Y are atomic ratios, and 0.55 ≦ X ≦ 0.95, 0.0005 ≦ Y ≦ Since 0.005 is satisfied, the cubic structure is maintained up to a high Al content ratio X (for example, X = 0.80 to 0.95) that cannot be formed by vapor deposition by the conventional PVD method (Ti, It can be seen that the Al) (C, N) layer was preferably formed by chemical vapor deposition containing trimethylaluminum (Al (CH 3 ) 3 ) as a reactive gas component.

また、本発明者等は、本発明の化学蒸着法により上記立方晶構造の(Ti1−XAl)(C1−Y)層を蒸着形成した場合には、層中に微量の塩素が含有されるが、平均塩素含有量が1原子%以下であれば、硬質被覆層の脆化は生じず硬質被覆層特性に悪影響を及ぼすことはないばかりか、硬質被覆層と基体との界面から、硬質被覆層の表層側に向かうにしたがって、平均塩素含有量が漸次減少する組成傾斜構造を有する場合には、硬質被覆層は潤滑性を備えるばかりか、耐チッピング性も向上することを見出したのである。 Further, the present inventors have, when by chemical vapor deposition of the present invention was deposited forming a (Ti 1-X Al X) (C Y N 1-Y) layer of the cubic structure, a trace amount in the layer Although chlorine is contained, if the average chlorine content is 1 atomic% or less, the hard coating layer will not be embrittled and will not adversely affect the properties of the hard coating layer. When having a composition gradient structure in which the average chlorine content gradually decreases from the interface toward the surface side of the hard coating layer, the hard coating layer not only has lubricity but also improves chipping resistance. I found it.

したがって、上記のような硬質被覆層を備えた被覆工具を、例えば、合金鋼の高速ミーリング切削、高速断続切削等に用いた場合には、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用にわたってすぐれた耐摩耗性を発揮することができるのである。   Therefore, when the coated tool provided with the hard coating layer as described above is used for, for example, high-speed milling cutting and high-speed intermittent cutting of alloy steel, the occurrence of chipping, chipping, peeling, etc. can be suppressed, and long-term Therefore, it is possible to exhibit excellent wear resistance throughout the use.

この発明は、上記の研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、
(a)平均層厚2〜20μmの立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層が形成されており
(b)上記硬質被覆層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(c)上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.55≦X≦0.70であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは0.80≦X≦0.95であり、さらに、硬質被覆層中のAl含有割合は、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かうにしたがって漸次増加する組成傾斜構造を有しており、
(d)上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lに存在する立方晶構造のTiとAlの複合炭窒化物結晶粒各々について長軸幅、短軸幅を求め、それらの結晶粒の長軸幅と短軸幅の比を平均アスペクト比Aとすると、該平均アスペクト比Aは1〜2であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hに存在する立方晶構造のTiとAlの複合炭窒化物結晶粒各々について長軸幅、短軸幅を求め、それら結晶粒の長軸幅と短軸幅の比を平均アスペクト比Aとすると、該平均アスペクト比Aは3〜10であることを特徴とする表面被覆切削工具。
(2) 上記硬質被覆層中に含有される平均塩素含有量は、0.001〜1.0原子%であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.02〜1.0原子%であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.001〜0.01原子%であり、さらに、硬質被覆層中の平均塩素含有量は、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かうにしたがって漸次減少する組成傾斜構造を有していることを特徴とする前記(2)に記載の表面被覆切削工具。
(4) 上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により蒸着形成することを特徴とする前記(1)乃至(3)のいずれかに記載の表面被覆切削工具の製造方法。」
に特徴を有するものである。
This invention was made based on the above research results,
“(1) On the surface of a substrate composed of either a tungsten carbide-based cemented carbide, a titanium carbonitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body,
(A) a hard coat layer of a composite carbonitride layer of Ti and Al on cubic flat HitoshisoAtsu 2~20μm are the made form,
(B) The hard coating layer has an average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(C) From the interface between the hard coating layer and the substrate, composition analysis is performed centering on the position L entering the inside of the 0.5 μm hard coating layer, and the Al content of the composite carbonitride of Ti and Al having a cubic structure When the ratio is obtained and the average value is X L (however, the atomic ratio), the Al content ratio X L is 0.55 ≦ X L ≦ 0.70, and is 0 from the surface layer of the hard coating layer. The composition analysis is performed centering on the position H inside the hard coating layer of 5 μm, the Al content ratio of the composite carbonitride of Ti and Al having a cubic structure is obtained, and the average value is calculated as X H (however, the atomic ratio ), The Al content ratio X H is 0.80 ≦ X H ≦ 0.95, and the Al content ratio in the hard coating layer is determined from the interface side between the hard coating layer and the substrate. It has a composition gradient structure that gradually increases toward the surface side of
(D) From the interface between the hard coating layer and the substrate, the long axis width of each of the composite carbonitride crystal grains of Ti and Al having a cubic structure existing at a position L entering the inside of the 0.5 μm hard coating layer, seeking short axis width and the ratio of the long axis width and the width of the short axis of their crystal grains and an average aspect ratio a L, the average aspect ratio a L is 1 to 2, also the surface layer of the hard coating layer The long axis width and the short axis width are obtained for each of the Ti and Al composite carbonitride crystal grains having a cubic structure existing at the position H inside the 0.5 μm hard coating layer. and when the ratio of the width of the short axis and an average aspect ratio a H, the surface-coated cutting tool, wherein the average aspect ratio a H is 3-10.
(2) The surface-coated cutting tool according to (1) above, wherein the average chlorine content contained in the hard coating layer is 0.001 to 1.0 atomic%.
(3) From the interface between the hard coating layer and the substrate, composition analysis is performed centering on the position L entering the inside of the 0.5 μm hard coating layer to determine the chlorine content, and the average value is the average chlorine content. When C L, the average chlorine content C L is 0.02 to 1.0 atomic%, and, from the surface layer of the hard coating layer, around a position H that has entered the interior of 0.5μm hard layer perform composition analysis, determine the content of chlorine, when the average value and the average chlorine content C H, the average chlorine content C H is 0.001 to 0.01 atomic%, further, a hard coating layer (2) characterized in that the average chlorine content therein has a composition gradient structure that gradually decreases from the interface side between the hard coating layer and the substrate toward the surface layer side of the hard coating layer. The surface-coated cutting tool described.
(4) The hard coating layer is at least surface-coated cutting tool according to any one of (1) to (3), characterized in that the vapor deposited by chemical vapor deposition containing trimethyl aluminum as a reaction gas component Manufacturing method . "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層について、より具体的に説明する。   Next, the hard coating layer of the coated tool of the present invention will be described more specifically.

TiとAlの立方晶複合炭窒化物層((Ti1−XAl)(C1−Y)層)の平均組成:
上記(Ti1−XAl)(C1−Y)層において、Alの含有割合X(原子比)の値が0.55未満になると、高温硬さが不足し耐摩耗性が低下するようになり、一方、X(原子比)の値が0.95を超えると、相対的なTi含有割合の減少により、立方晶構造を維持できず、そのため高温強度が低下し、チッピング、欠損を発生しやすくなることから、X(原子比)の値は、0.55以上0.95以下とすることが必要である。
なお、PVD法によって上記組成の(Ti1−XAl)(C1−Y)層を蒸着形成した場合には、結晶構造は六方晶であるが、本発明では、後記する化学蒸着法によって蒸着形成していることから、高Al含有割合Xの範囲(例えば、X=0.80〜0.95)まで立方晶構造を維持したままで上記組成の(Ti1−XAl)(C1−Y)層を得ることができるので、皮膜硬さの低下はない。
また、上記(Ti1−XAl)(C1−Y)層において、C成分には層の硬さを向上させ、一方、N成分には層の高温強度を向上させる作用があるが、C成分の含有割合Y(原子比)が0.0005未満となると高硬度が得られなくなり、一方、Y(原子比)が0.005を超えると、高温強度が低下してくることから、Y(原子比)の値は、0.0005以上0.005以下と定めた。
また、上記(Ti1−XAl)(C1−Y)層は、その平均層厚が2μm未満では、基体との密着性を十分確保することができず、一方、その平均層厚が20μmを越えると、高熱発生を伴う高速ミーリング切削で熱塑性変形を起し易くなり、これが偏摩耗の原因となることから、その合計平均層厚は2〜20μmと定めた。
The average composition of the cubic composite carbonitride layer of Ti and Al ((Ti 1-X Al X) (C Y N 1-Y) layer):
In the above (Ti 1-X Al X ) (C Y N 1-Y ) layer, if the Al content ratio X (atomic ratio) is less than 0.55, the high temperature hardness is insufficient and the wear resistance is reduced. On the other hand, if the value of X (atomic ratio) exceeds 0.95, the cubic structure cannot be maintained due to the decrease in the relative Ti content, so the high-temperature strength decreases, chipping, and defects Therefore, the value of X (atomic ratio) needs to be 0.55 or more and 0.95 or less.
When the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above composition is formed by vapor deposition by the PVD method, the crystal structure is a hexagonal crystal. (Ti 1-X Al X ) having the above composition while maintaining the cubic structure up to the range of the high Al content ratio X (for example, X = 0.80 to 0.95). Since a (C Y N 1-Y ) layer can be obtained, there is no decrease in film hardness.
Further, in the (Ti 1-X Al X ) (C Y N 1-Y ) layer, the C component improves the layer hardness, while the N component has an effect of improving the high-temperature strength of the layer. However, when the content ratio Y (atomic ratio) of the C component is less than 0.0005, high hardness cannot be obtained. On the other hand, when Y (atomic ratio) exceeds 0.005, the high-temperature strength decreases. , Y (atomic ratio) was set to 0.0005 or more and 0.005 or less.
The (Ti 1-X Al X ) (C Y N 1-Y ) layer has an average layer thickness of less than 2 μm, and cannot sufficiently ensure adhesion to the substrate, whereas the average layer When the thickness exceeds 20 μm, it becomes easy to cause thermoplastic deformation by high-speed milling with high heat generation, which causes uneven wear. Therefore, the total average layer thickness is set to 2 to 20 μm.

この発明では、上記平均組成を有する(Ti1−XAl)(C1−Y)層において、層全体にわたって均一組成にするのではなく、硬質被覆層の基体との界面側から、硬質被覆層の表層側に向かって、硬質被覆層中のAl含有割合が連続的に増加する組成傾斜構造を形成する。
即ち、基体表面と硬質被覆層の界面から、0.5μm硬質被覆層の内部に入った基体との界面側の位置Lを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合X(原子比)を0.55以上0.70以下とし、また、硬質被覆層の表面から、0.5μm硬質被覆層の内部に入った表層部の位置Hを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合X(原子比)を、0.80以上0.95以下とし、硬質被覆層の基体との界面側から、硬質被覆層の表層側に向かって、Al含有割合が漸次増加するAlの組成傾斜構造を構成する。
このような組成傾斜構造によって、硬質被覆層内には、表層側に向かって、その組成に応じた結晶格子定数の違いによる格子ひずみが導入され、その結果として、硬質被覆層の耐チッピング性が向上する。
In the present invention, in the (Ti 1-X Al X ) (C Y N 1-Y ) layer having the above average composition, it is not a uniform composition over the entire layer, but from the interface side of the hard coating layer with the substrate, A composition gradient structure in which the Al content in the hard coating layer continuously increases toward the surface layer side of the hard coating layer is formed.
That is, compositional analysis is performed from the interface between the substrate surface and the hard coating layer, centering on the position L on the interface side with the substrate entering the inside of the 0.5 μm hard coating layer, and a composite carbonitriding of Ti and Al having a cubic structure The Al content ratio X L (atomic ratio) of the product is 0.55 or more and 0.70 or less, and from the surface of the hard coating layer, centering on the position H of the surface layer portion that enters the 0.5 μm hard coating layer The composition analysis is performed, the Al content ratio X H (atomic ratio) of the composite carbonitride of Ti and Al having a cubic structure is 0.80 or more and 0.95 or less, and from the interface side with the substrate of the hard coating layer, An Al composition gradient structure in which the Al content rate gradually increases toward the surface layer side of the hard coating layer is formed.
By such a composition gradient structure, lattice strain due to the difference in crystal lattice constant depending on the composition is introduced into the hard coating layer toward the surface layer side. As a result, the chipping resistance of the hard coating layer is improved. improves.

また、この発明では、硬質被覆層を構成する(Ti1−XAl)(C1−Y)結晶粒の組織について、基体との界面側の硬質被覆層では粒状組織とし、一方、硬質被覆層の表層側では柱状組織を形成する。
即ち、基体表面と硬質被覆層の界面から、0.5μm硬質被覆層の内部に入った基体との界面側の位置Lにおける結晶粒の平均アスペクトAは1〜2である粒状組織とし、また、硬質被覆層の表面から、0.5μm硬質被覆層の内部に入った表層部の位置Hにおける結晶粒の平均アスペクトAは3〜10である柱状組織とする。
この発明は、上記のような組織形態を形成することによって、基体との界面側では、硬質被覆層の密着性を高めることができ、また、表層側の硬質被覆層は、すぐれた耐摩耗性を具備すると同時に、基体との界面側と表層側において組織形態が異なることから表層側からのクラック伝播を防止するため優れた耐チッピング性を具備するようになる。
In the present invention, the structure of the (Ti 1-X Al X ) (C Y N 1-Y ) crystal grains constituting the hard coating layer has a granular structure in the hard coating layer on the interface side with the substrate, A columnar structure is formed on the surface side of the hard coating layer.
That is, from the interface between the substrate surface and the hard coating layer, an average aspect A L of the crystal grains at the position L of the interface with the inside containing substrates of 0.5μm hard layer and granular structure is 1-2, also , from the surface of the hard coating layer, an average aspect a H of the crystal grains at the position H of the surface layer portion which has entered the interior of 0.5μm hard layer and columnar tissue from 3 to 10.
In the present invention, by forming the above-described structure, the adhesion of the hard coating layer can be improved on the interface side with the substrate, and the hard coating layer on the surface layer side has excellent wear resistance. At the same time, since the structure is different between the interface side with the substrate and the surface layer side, it has excellent chipping resistance in order to prevent crack propagation from the surface layer side.

また、この発明では、後記するような化学蒸着法によって(Ti1−XAl)(C1−Y)層を蒸着形成するが、この際、反応ガス成分である塩素が層中に含有される。
層中に含有される塩素は、多量(1原子%を超える量)になると層自体の脆化を招くが、0.001原子%〜1原子%の範囲で微量に含有されている場合に限り、層の靭性を低下させずに潤滑性を高めることができるため、平均塩素含有量0.001原子%〜1原子%以下の塩素を層中に含有することが望ましい。
さらに、層中に塩素を含有させるに際し、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かって、平均塩素含有量が漸次減少している組成傾斜構造を形成した場合には、硬質被覆層の耐チッピング性の低下を招くことなく、潤滑性を高めることができる。
具体的には、基体表面と硬質被覆層の界面から、0.5μm硬質被覆層の内部に入った位置Lを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.02〜1.0原子%であり、また、硬質被覆層の表面から、0.5μm硬質被覆層の内部に入った位置Hを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.001〜0.01原子%であり、硬質被覆層の表層側に向かうにしたがって平均塩素含有量が漸次減少するような組成傾斜構造を形成することによって、硬質被覆層の潤滑性、耐チッピング性を高めることができる。
In the present invention, a (Ti 1-X Al X ) (C Y N 1-Y ) layer is formed by vapor deposition by a chemical vapor deposition method as described later. At this time, chlorine, which is a reactive gas component, is contained in the layer. Contained.
Chlorine contained in the layer causes embrittlement of the layer itself when it is in a large amount (amount exceeding 1 atomic%), but only if it is contained in a trace amount in the range of 0.001 atomic% to 1 atomic%. Since the lubricity can be improved without lowering the toughness of the layer, it is desirable to contain chlorine having an average chlorine content of 0.001 atomic% to 1 atomic% in the layer.
Further, when chlorine is contained in the layer, a composition gradient structure in which the average chlorine content gradually decreases from the interface side between the hard coating layer and the substrate toward the surface layer side of the hard coating layer is formed. Can improve lubricity without causing a reduction in chipping resistance of the hard coating layer.
Specifically, from the interface between the substrate surface and the hard coating layer, composition analysis is performed centering on the position L entering the inside of the 0.5 μm hard coating layer, the chlorine content is determined, and the average value is the average chlorine content center when the amount C L, the average chlorine content C L is 0.02 to 1.0 atomic%, and the surface of the hard coating layer, the position H which has entered the interior of 0.5μm hard layer The chlorine content is determined, and the average value is defined as the average chlorine content C H. The average chlorine content C H is 0.001 to 0.01 atomic%, and the hard coating layer By forming a composition gradient structure in which the average chlorine content gradually decreases toward the surface layer side, the lubricity and chipping resistance of the hard coating layer can be enhanced.

この発明の(Ti1−XAl)(C1−Y)層は、例えば、次に述べる条件の熱CVD法によって蒸着形成することができる。
反応ガス組成(容量%):
TiCl 2.6〜5.0%、Al(CH0〜10.0%、
AlCl 0〜10.0%、NH 6.0〜10.0%、
6.0〜10.0%、C0〜1.0%、
Ar 6.0〜10.0%、残りH、(但し、Al(CHとAlClの何れもが同時に0%となることはない。)
反応雰囲気温度: 700〜900℃、
反応雰囲気圧力: 2〜10kPa、
上記条件の熱CVD法によって、平均組成が、0.55≦X≦0.95、0.0005≦Y≦0.005(但し、X、Yは何れも原子比)を満足し、
組成式:(Ti1−XAl)(C1−Y
で表されるTiとAlの立方晶複合炭窒化物層が蒸着形成される。
The (Ti 1-X Al X ) (C Y N 1-Y ) layer of the present invention can be deposited by, for example, a thermal CVD method under the following conditions.
Reaction gas composition (volume%):
TiCl 4 2.6 to 5.0%, Al (CH 3 ) 3 0 to 10.0%,
AlCl 3 0 to 10.0%, NH 3 6.0 to 10.0%,
N 2 6.0~10.0%, C 2 H 4 0~1.0%,
Ar 6.0 to 10.0%, remaining H 2 (However, neither Al (CH 3 ) 3 nor AlCl 3 becomes 0% at the same time.)
Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 2 to 10 kPa,
By the thermal CVD method under the above conditions, the average composition satisfies 0.55 ≦ X ≦ 0.95, 0.0005 ≦ Y ≦ 0.005 (where X and Y are atomic ratios),
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
A cubic composite carbonitride layer of Ti and Al expressed by

上記の化学蒸着法(熱CVD法)によって蒸着形成する(Ti1−XAl)(C1−Y)層について、Al含有割合が、硬質被覆層の表層側に向かうにしたがって漸次増加し、また、硬質被覆層の位置LにおけるAl含有割合X(原子比)が、0.55≦X≦0.70を満足し、また、位置HにおけるAl含有割合X(原子比)が、0.80≦X≦0.95を満足する組成傾斜構造は、例えば、上記反応ガス成分であるトリメチルアルミニウム(Al(CH)の添加量を蒸着形成の進行とともに調整する(即ち、増加する)ことや、蒸着形成の進行とともにAlCl成分の添加量を相対的に多く、かつArガスの添加量を相対的に少なくすることで蒸着形成を行うことが出来る。 Gradually increases with the above chemical vapor deposition (thermal CVD method) by depositing form (Ti 1-X Al X) (C Y N 1-Y) layer, Al content is, toward the surface layer side of the hard coating layer In addition, the Al content ratio X L (atomic ratio) at the position L of the hard coating layer satisfies 0.55 ≦ X L ≦ 0.70, and the Al content ratio X H (atomic ratio) at the position H However, in the composition gradient structure satisfying 0.80 ≦ X H ≦ 0.95, for example, the amount of trimethylaluminum (Al (CH 3 ) 3 ), which is the reaction gas component, is adjusted with the progress of vapor deposition ( In other words, it is possible to perform vapor deposition by increasing the amount of AlCl 3 component and relatively decreasing the amount of Ar gas added with the progress of vapor deposition.

また、結晶粒の組織形態についても、Alの組成傾斜構造と同様に、例えば、蒸着形成の進行とともに反応ガス成分トリメチルアルミニウム(Al(CH)の添加量を増加することや、蒸着形成の進行とともにNガスの添加量を相対的に多く、かつCガスを蒸着途中から少量添加することによって、硬質被覆層と基体との界面側では平均アスペクト比が1〜2の結晶粒が形成され、一方、硬質被覆層の表層側では、平均アスペクト比が3〜10の結晶粒を形成することが出来る。 In addition, with respect to the structure of crystal grains, as with the composition gradient structure of Al, for example, the amount of the reaction gas component trimethylaluminum (Al (CH 3 ) 3 ) increased with the progress of vapor deposition, As the N 2 gas is added, the amount of N 2 gas added is relatively large and a small amount of C 2 H 4 gas is added from the middle of the vapor deposition, so that crystals having an average aspect ratio of 1 to 2 on the interface side between the hard coating layer and the substrate On the other hand, crystal grains having an average aspect ratio of 3 to 10 can be formed on the surface layer side of the hard coating layer.

さらに、上記化学蒸着法(熱CVD法)によれば、蒸着形成の進行とともに反応ガス成分トリメチルアルミニウム(Al(CH)の添加量を増加することから、相対的に反応ガス成分AlClの添加量は減少し、蒸着形成される(Ti1−XAl)(C1−Y)層中の平均塩素含有量は硬質被覆層の表層側に向かうにしたがって漸次減少する組成傾斜構造が形成される。
したがって、例えば、反応ガス成分トリメチルアルミニウム(Al(CH)の添加量を、所望の組成傾斜(Al、塩素)とともに、所望のX値、アスペクト比、平均塩素含有量等に応じて調整することにより所望の硬質被覆層を得ることが可能である。
Furthermore, according to the chemical vapor deposition method (thermal CVD method), the amount of the reaction gas component trimethylaluminum (Al (CH 3 ) 3 ) is increased with the progress of the vapor deposition formation, so that the reaction gas component AlCl 3 is relatively increased. the amount of decrease is vapor deposited (Ti 1-X Al X) (C Y N 1-Y) average chlorine content in the layer gradually decreases composition gradient toward the surface layer side of the hard coating layer A structure is formed.
Thus, for example, the amount of reaction gas component trimethylaluminum (Al (CH 3 ) 3 ) is adjusted according to the desired X value, aspect ratio, average chlorine content, etc., along with the desired composition gradient (Al, chlorine). By doing so, it is possible to obtain a desired hard coating layer.

本発明の被覆工具は、化学蒸着法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層が蒸着形成され、該硬質被覆層は、硬質被覆層と基体との界面から、硬質被覆層の表層側に向かうにしたがって、Al含有割合が漸次増加する組成傾斜構造を有し、また、界面側と表層側で異なった組織形態が形成され、さらに、平均塩素含有量が漸次減少する組成傾斜構造を有することによって、すぐれた密着性、潤滑性、耐チッピング性、耐摩耗性を備え、合金鋼の高速ミーリング切削や焼き入れ鋼の高速断続切削に用いた場合でも、長期の使用にわたってすぐれた切削性能を発揮することができるのである。 Coated tool of the present invention, by chemical vapor deposition, as a hard coating layer, cubic (Ti 1-X Al X) (C Y N 1-Y) layer of crystal structure is deposited formed, rigid coating layer, the hard From the interface between the coating layer and the substrate, it has a composition gradient structure in which the Al content rate gradually increases as it goes to the surface layer side of the hard coating layer, and different structure forms are formed on the interface side and the surface layer side, In addition, it has a composition gradient structure that gradually decreases the average chlorine content, providing excellent adhesion, lubricity, chipping resistance, and wear resistance, and high-speed milling cutting of alloy steel and high-speed intermittent cutting of hardened steel. Even when it is used for the above, excellent cutting performance can be exhibited over a long period of use.

本発明被覆工具の硬質被覆層縦断面の概略説明図を示す。The schematic explanatory drawing of the hard coating layer longitudinal cross-section of this invention coated tool is shown.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格・SEEN1203AFSN1に規定するインサート形状をもったWC基超硬合金製の基体A〜Dをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, and Co powder all having an average particle diameter of 1 to 3 μm were prepared. Then, after adding wax, ball mill mixing in acetone for 24 hours, drying under reduced pressure, press-molding into a green compact of a predetermined shape at a pressure of 98 MPa. Substrate made of WC-base cemented carbide having an insert shape defined in ISO standard / SEEN1203AFSN1 after vacuum sintering in vacuum at a predetermined temperature within a range of 1370 to 1470 ° C. for 1 hour. A to D were produced.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1540℃に1時間保持の条件で焼結し、焼結後、ISO規格・SEEN1203AFTN1のインサート形状をもったTiCN基サーメット製の基体a〜dを作製した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and pressed into a compact at a pressure of 98 MPa. The green compact was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1540 ° C. for 1 hour, and after sintering, a base body made of TiCN base cermet having an ISO standard / SEEN1203AFTN1 insert shape a -D were produced.



つぎに、これらの工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表5に示される本発明被覆工具1〜10を製造した。 Next, on the surfaces of the tool bases A to D and the tool bases a to d, (Ti 1-X Al X ) (C Y ) of the present invention is used under the conditions shown in Table 3 using a normal chemical vapor deposition apparatus. The present invention coated tools 1 to 10 shown in Table 5 were manufactured by vapor-depositing N 1 -Y ) layers at a target layer thickness.

また、比較の目的で、同じく工具基体A〜Dおよび工具基体a〜dの表面に、通常の化学蒸着装置を用い、表4に示される条件で、比較例の(Ti1−xAl)(C1−y)を目標層厚で蒸着形成することにより、表6に示される比較例被覆工具1〜8を製造した。 Further, for the purpose of comparison, an ordinary chemical vapor deposition apparatus was used on the surfaces of the tool bases A to D and the tool bases a to d, and under the conditions shown in Table 4, (Ti 1-x Al x ) of the comparative example. Comparative example-coated tools 1 to 8 shown in Table 6 were manufactured by vapor-depositing (C y N 1-y ) with a target layer thickness.

参考のため、工具基体Aおよび工具基体aの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)を目標層厚で蒸着形成することにより、表6に示される参考例被覆工具9、10を製造した。
なお、アークイオンプレーティングの条件は、次のとおりである。
(a)上記工具基体Aおよびaを、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、また、カソード電極(蒸発源)として、所定組成のAl−Ti合金を配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金からなるカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に、装置内に反応ガスとして窒素ガスを導入して4Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ、上記Al−Ti合金からなるカソード電極(蒸発源)とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記工具基体の表面に、表6に示される目標平均組成、目標平均層厚の(Al,Ti)N層からなる被覆層を蒸着形成し、
比較被覆工具としての比較表面被覆インサート(以下、比較被覆インサートと云う)9〜10をそれぞれ製造した。
For reference, (Ti 1-x Al x ) (C y N 1-y ) of the reference example is applied to the surfaces of the tool base A and the tool base a by arc ion plating using a conventional physical vapor deposition apparatus. Reference example coated tools 9 and 10 shown in Table 6 were manufactured by vapor deposition with a target layer thickness.
The conditions for arc ion plating are as follows.
(A) The tool bases A and a are ultrasonically cleaned in acetone and dried, and in the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the arc ion plating apparatus. Along with this, an Al-Ti alloy having a predetermined composition is arranged as a cathode electrode (evaporation source),
(B) First, the inside of the apparatus is heated to 500 ° C. with a heater while the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and then the tool base that rotates while rotating on the rotary table is −1000 V. A DC bias voltage is applied, and an arc discharge is generated by flowing a current of 100 A between the cathode electrode and the anode electrode made of an Al—Ti alloy, and the tool base surface is bombard washed.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 4 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and A current of 120 A is passed between the cathode electrode (evaporation source) made of the Al—Ti alloy and the anode electrode to generate arc discharge, and the target average composition and target shown in Table 6 are formed on the surface of the tool base. A cover layer composed of an (Al, Ti) N layer having an average layer thickness is formed by vapor deposition.
Comparative surface-coated inserts (hereinafter referred to as comparative coated inserts) 9 to 10 as comparative coated tools were produced.

ついで、上記の本発明被覆工具1〜10の硬質被覆層について、硬質被覆層の平均Al含有割合X、平均C含有割合Y、Alの含有割合X,X、平均アスペクト比A,A、平均塩素含有量、平均塩素含有量C,平均塩素含有量Cについて測定した。
なお、具体的な測定は次のとおりである。
蛍光X線分析装置を用い、硬質被覆層表面にスポット径100μmのX線を照射し、得られた特性X線の解析結果から平均Al含有割合X、平均C含有割合Y及び平均塩素含有量を求めた。
ついで、ダイヤモンド研磨盤を用い基体表面に対し垂直な断面を作成し、電子線マイクロアナライザ装置を用い、硬質被覆層と基体との界面から0.5μm硬質被覆層の内部に入った位置Lをスポットの中心とし、スポット径0.4μmの電子線を照射し、すなわち位置Lを中心とし硬質被覆層と基体との界面から0.3μm硬質被覆層の内部に入った位置から0.7μm硬質被覆層の内部に入った位置まで電子線を照射し、得られた特性X線の解析結果の10点平均からAlの含有割合X及び平均塩素含有量Cを求めた。なお、“中心に組成分析を行う”とは、該位置を中心に上記スポット径0.4μmの電子線を照射し、得られた特性X線の解析結果の10点平均を得ることを意味する。また、位置Lにおいて基体表面と平行に幅50μmの線Lを引き、線Lの横切る結晶粒各々について長軸と短軸の長さを求め、長軸の長さを短軸の長さで除算することにより結晶粒各々のアスペクト比を求め、それら個々のアスペクト比を平均することにより位置Hにおける平均アスペクト比Aを求めた。
硬質被覆層の表面から0.5μm硬質被覆層の内部に入った位置Hをスポットの中心とし、スポット径0.4μmの電子線を照射し、すなわち位置Hを中心とし硬質被覆層の表面から0.3μm硬質被覆層の内部に入った位置から0.7μm硬質被覆層の内部に入った位置まで電子線を照射し、得られた特性X線の解析結果の10点平均からAlの含有割合X及び平均塩素含有量Cを求め、また、位置Hにおいて基体表面と水平方向に幅50μmの線Lを引き、線Lの横切る結晶粒各々について長軸と短軸の長さを求め、長軸の長さを短軸の長さで除算することにより結晶粒各々のアスペクト比を求め、それら個々のアスペクト比を平均することにより位置Hにおける平均アスペクト比Aを求めた。
また、硬質被覆層の平均層厚は、走査型電子顕微鏡を用い断面測定を行い、5ヶ所の平均値を求め、その平均値を硬質被覆層の平均層厚とした。
さらに、硬質被覆層の結晶構造については、X線回折装置を用い、Cu−Kα線を線源としてX線回折を行った場合、JCPDS00−038−1420立方晶TiNとJCPDS00−046−1200立方晶AlN、各々に示される同一結晶面の回折角度の間(例えば、36.66〜38.53°、43.59〜44.77°、61.81〜65.18°)に回折ピークが現れることを確認することによって調査した。
表5に、その結果を示す。
Next, for the hard coating layers of the above-described inventive coated tools 1 to 10, the average Al content ratio X, the average C content ratio Y, the Al content ratios X L and X H , and the average aspect ratios A L and A of the hard coating layer. H , average chlorine content, average chlorine content C L , and average chlorine content C H were measured.
The specific measurement is as follows.
Using a fluorescent X-ray analyzer, the surface of the hard coating layer is irradiated with X-rays having a spot diameter of 100 μm, and the average Al content ratio X, average C content ratio Y and average chlorine content are determined from the analysis results of the characteristic X-rays obtained. Asked.
Next, a cross section perpendicular to the surface of the substrate was created using a diamond polishing machine, and a position L that entered the 0.5 μm hard coating layer from the interface between the hard coating layer and the substrate was spotted using an electron beam microanalyzer device. Irradiate an electron beam with a spot diameter of 0.4 μm at the center of the substrate, that is, 0.7 μm hard coating layer from the position entering the inside of the 0.3 μm hard coating layer from the interface between the hard coating layer and the substrate centering on the position L. The electron beam was irradiated up to the position inside, and the Al content ratio XL and the average chlorine content CL were determined from the average of 10 points of the analysis results of the obtained characteristic X-rays. Note that “perform composition analysis at the center” means that the electron beam having the spot diameter of 0.4 μm is irradiated around the position, and an average of 10 points of the obtained characteristic X-ray analysis results is obtained. . Further, a line L L having a width of 50 μm is drawn in parallel with the substrate surface at the position L, the lengths of the major axis and the minor axis are obtained for each crystal grain crossing the line L L , and the major axis length is changed to the minor axis length. in seeking the aspect ratio of crystal grains each by dividing, to obtain an average aspect ratio a L at position H by averaging the individual aspect ratios.
The position H that enters the inside of the hard coating layer from the surface of the hard coating layer is the center of the spot, and an electron beam with a spot diameter of 0.4 μm is irradiated, that is, the position H is the center and 0 from the surface of the hard coating layer. Irradiate the electron beam from the position inside the 3 μm hard coating layer to the position inside the 0.7 μm hard coating layer, and obtain the Al content ratio X from the average of 10 points of the analysis result of the characteristic X-ray obtained. H and average chlorine content C H are obtained, and a line L H having a width of 50 μm is drawn in the horizontal direction from the substrate surface at position H, and the lengths of the major axis and minor axis are obtained for each crystal grain crossing the line L H. Then, the aspect ratio of each crystal grain was determined by dividing the length of the major axis by the length of the minor axis, and the average aspect ratio A H at the position H was determined by averaging the individual aspect ratios.
The average thickness of the hard coating layer was measured by a cross-section using a scanning electron microscope to obtain an average value at five locations, and the average value was taken as the average thickness of the hard coating layer.
Furthermore, regarding the crystal structure of the hard coating layer, when X-ray diffraction is performed using an X-ray diffractometer and Cu—Kα ray as a radiation source, JCPDS00-038-1420 cubic TiN and JCPDS00-046-1200 cubic crystal A diffraction peak appears between the diffraction angles of the same crystal plane shown in each of AlN (for example, 36.66 to 38.53 °, 43.59 to 44.77 °, 61.81 to 65.18 °). Investigated by confirming.
Table 5 shows the results.

ついで、比較例被覆工具1〜8および参考例被覆工具9、10のそれぞれについても、本発明被覆工具1〜10と同様にして、硬質被覆層の平均Al含有割合x、平均C含有割合y、Alの含有割合x,y、平均アスペクト比a,a、平均塩素含有量、平均塩素含有量c,平均塩素含有量cについて測定した。
また、硬質被覆層の結晶構造についても、本発明被覆工具1〜10と同様にして、調査した。
表6に、その結果を示す。
Then, for each of the comparative example coated tools 1 to 8 and the reference example coated tools 9 and 10, as in the present invention coated tools 1 to 10, the average Al content ratio x, the average C content ratio y of the hard coating layer, The Al content ratios x L and y H , the average aspect ratios a L and a H , the average chlorine content, the average chlorine content c L , and the average chlorine content c H were measured.
Further, the crystal structure of the hard coating layer was also investigated in the same manner as in the present coated tools 1 to 10.
Table 6 shows the results.





つぎに、上記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜10、比較例被覆工具1〜8および参考例被覆工具9,10について、以下に示す、合金鋼の乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 917min−1
切削速度: 360m/min、
切り込み: 1mm、
一刃送り量: 0.1mm/刃、
切削時間: 9分、
表7に、上記切削試験の結果を示す。
Next, the present coated tools 1 to 10, the comparative coated tools 1 to 8 and the reference in the state where each of the various coated tools is clamped to the tip of the cutter made of tool steel having a cutter diameter of 125 mm by a fixing jig. Example With respect to the coated tools 9 and 10, the following dry high speed face milling and center cut machining test of alloy steel was performed, and the flank wear width of the cutting edge was measured.
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 917 min −1 ,
Cutting speed: 360 m / min,
Cutting depth: 1mm,
Single-blade feed rate: 0.1 mm / tooth,
Cutting time: 9 minutes
Table 7 shows the results of the cutting test.


原料粉末として、いずれも0.5〜4μmの範囲内の平均粒径を有するcBN粉末、TiN粉末、TiCN粉末、TiC粉末、Al粉末、Al粉末を用意し、これら原料粉末を表8に示される配合組成に配合し、ボールミルで80時間湿式混合し、乾燥した後、120MPaの圧力で直径:50mm×厚さ:1.5mmの寸法をもった圧粉体にプレス成形し、ついでこの圧粉体を、圧力:1Paの真空雰囲気中、900〜1300℃の範囲内の所定温度に60分間保持の条件で焼結して切刃片用予備焼結体とし、この予備焼結体を、別途用意した、Co:8質量%、WC:残りの組成、並びに直径:50mm×厚さ:2mmの寸法をもったWC基超硬合金製支持片と重ね合わせた状態で、通常の超高圧焼結装置に装入し、通常の条件である圧力:4GPa、温度:1200〜1400℃の範囲内の所定温度に保持時間:0.8時間の条件で超高圧焼結し、焼結後上下面をダイヤモンド砥石を用いて研磨し、ワイヤー放電加工装置にて所定の寸法に分割し、さらにCo:5質量%、TaC:5質量%、WC:残りの組成およびISO規格CNGA120412の形状(厚さ:4.76mm×内接円直径:12.7mmの80°菱形)をもったWC基超硬合金製インサート本体のろう付け部(コーナー部)に、体積%で、Zr:37.5%、Cu:25%、Ti:残りからなる組成を有するTi合金のろう材を用いてろう付けし、所定寸法に外周加工した後、切刃部に幅:0.13mm、角度:25°のホーニング加工を施し、さらに仕上げ研摩を施すことによりISO規格CNGA120412のインサート形状をもった工具基体イ〜ニをそれぞれ製造した。 As the raw material powder, cBN powder, TiN powder, TiCN powder, TiC powder, Al powder, and Al 2 O 3 powder each having an average particle diameter in the range of 0.5 to 4 μm were prepared. The mixture is blended in the composition shown in FIG. 1, wet mixed with a ball mill for 80 hours, dried, and then pressed into a green compact having a diameter of 50 mm × thickness: 1.5 mm under a pressure of 120 MPa. The green compact is sintered in a vacuum atmosphere at a pressure of 1 Pa at a predetermined temperature within a range of 900 to 1300 ° C. for 60 minutes to obtain a presintered body for a cutting edge piece. In addition, Co: 8% by mass, WC: remaining composition, and diameter: 50 mm × thickness: 2 mm, superposed on a WC-based cemented carbide support piece with a normal super-high pressure Insert into the sintering machine and under normal conditions Pressure: 4 GPa, temperature: 1200 ° C. to 1400 ° C. at a predetermined temperature holding time: 0.8 hour sintering, and after sintering, the upper and lower surfaces are polished using a diamond grindstone, and wire discharge It is divided into predetermined dimensions by a processing device, and further Co: 5 mass%, TaC: 5 mass%, WC: remaining composition and ISO standard CNGA1204112 shape (thickness: 4.76 mm × inscribed circle diameter: 12. The brazing part (corner part) of the insert body made of a WC-based cemented carbide with a 7 mm 80 ° rhombus) has a composition consisting of Zr: 37.5%, Cu: 25%, Ti: the rest in volume%. After brazing using a brazing material of Ti alloy and having a predetermined dimension, the cutting edge is subjected to honing with a width of 0.13 mm and an angle of 25 °, and then subjected to final polishing to ISO standards. CNGA12 The tool substrate b - d having the insert shape of 412 was produced, respectively.


つぎに、これらの工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表3に示される条件で、本発明の(Ti1−XAl)(C1−Y)層を目標層厚で蒸着形成することにより、表9に示される本発明被覆工具11〜15を製造した。 Then, these tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 3, (Ti 1-X Al X) of the present invention (C Y N 1-Y) layer The present invention coated tools 11 to 15 shown in Table 9 were manufactured by vapor-depositing with a target layer thickness.

また、比較の目的で、同じく工具基体イ〜ニの表面に、通常の化学蒸着装置を用い、表4に示される条件で、比較例の(Ti1−xAl)(C1−y)を目標層厚で蒸着形成することにより、表10に示される比較例被覆工具11〜14を製造した。 For the purpose of comparison, the same tool substrate i ~ the surface of the two, using a conventional chemical vapor deposition apparatus under the conditions shown in Table 4, (Ti 1-x Al x) of Comparative Example (C y N 1- Comparative example-coated tools 11 to 14 shown in Table 10 were manufactured by vapor deposition forming y ) with a target layer thickness.

参考のため、工具基体イの表面に、従来の物理蒸着装置を用いて、アークイオンプレーティングにより、参考例の(Ti1−xAl)(C1−y)を目標層厚で蒸着形成することにより、表10に示される参考例被覆工具15を製造した。
なお、アークイオンプレーティングの条件は、実施例1に示される条件と同様の条件である。
For reference, (Ti 1-x Al x ) (C y N 1-y ) of the reference example is set to the target layer thickness by arc ion plating on the surface of the tool substrate A using a conventional physical vapor deposition apparatus. A reference example-coated tool 15 shown in Table 10 was manufactured by vapor deposition.
The arc ion plating conditions are the same as the conditions shown in the first embodiment.

ついで、上記の本発明被覆工具11〜15の硬質被覆層について、硬質被覆層の平均Al含有割合X、平均C含有割合Y、Alの含有割合X,X、平均アスペクト比A,A、平均塩素含有量、平均塩素含有量C,平均塩素含有量C、硬質被覆層の結晶構造について実施例1に示される方法と同様の方法を用い測定した。
表9に、その結果を示す。
Next, with respect to the hard coating layers of the present invention coated tools 11 to 15, the average Al content ratio X, the average C content ratio Y, the Al content ratios X L and X H , and the average aspect ratios A L and A of the hard coating layer. H , average chlorine content, average chlorine content C L , average chlorine content C H , and the crystal structure of the hard coating layer were measured using the same method as shown in Example 1.
Table 9 shows the results.

ついで、比較例被覆工具11〜14および参考例被覆工具15のそれぞれについても、本発明被覆工具11〜15と同様にして、硬質被覆層の平均Al含有割合x、平均C含有割合y、Alの含有割合x,y、平均アスペクト比a,a、平均塩素含有量、平均塩素含有量c,平均塩素含有量c、硬質被覆層の結晶構造について測定した。
表10に、その結果を示す。
Next, for each of the comparative example coated tools 11 to 14 and the reference example coated tool 15, the average Al content ratio x, the average C content ratio y, and Al of the hard coating layer are the same as in the present invention coated tools 11 to 15. The content ratio x L , y H , average aspect ratio a L , a H , average chlorine content, average chlorine content c L , average chlorine content c H , and crystal structure of the hard coating layer were measured.
Table 10 shows the results.



つぎに、上記の各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具11〜15、比較例被覆工具11〜14および参考例被覆工具15について、以下に示す、浸炭焼入れ合金鋼の乾式高速断続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
被削材: JIS・SCM415(硬さ:HRC62)の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 210 m/min、
切り込み: 0.15mm、
送り: 0.15mm/rev、
切削時間: 4分、
表11に、上記切削試験の結果を示す。
Next, in the state where each of the above various coated tools is screwed to the tip of the tool steel tool with a fixing jig, the present coated tools 11 to 15, the comparative coated tools 11 to 14, and the reference coated samples The tool 15 was subjected to the following dry high-speed intermittent cutting test of carburized and quenched alloy steel, and the flank wear width of the cutting edge was measured.
Work material: JIS SCM415 (Hardness: HRC62) lengthwise equidistant four round grooved round bars,
Cutting speed: 210 m / min,
Cutting depth: 0.15mm,
Feed: 0.15mm / rev,
Cutting time: 4 minutes
Table 11 shows the results of the cutting test.


表5〜7および表9〜11に示される結果から、本発明被覆工具1〜15は、立方晶構造の(Ti1−XAl)(C1−Y)層が蒸着形成され、該硬質被覆層は、硬質被覆層と基体との界面から、硬質被覆層の表層側に向かうにしたがって、Al含有割合が漸次増加する組成傾斜構造を有し、また、界面側と表層側で異なった組織形態が形成され、さらに、平均塩素含有量が漸次減少する組成傾斜構造を有することによって、合金鋼の高速ミーリング切削加工または外径高速断続切削加工ですぐれた密着性、潤滑性、耐チッピング性、耐摩耗性を発揮する。
これに対して、比較例被覆工具1〜8、11〜14、参考例被覆工具9,10、15については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7 and Tables 9 to 11, the present invention coated tools 1 to 15 are formed by vapor deposition of a (Ti 1-X Al X ) (C Y N 1-Y ) layer having a cubic structure, The hard coating layer has a composition gradient structure in which the Al content ratio gradually increases from the interface between the hard coating layer and the substrate toward the surface layer side of the hard coating layer, and is different between the interface side and the surface layer side. In addition, it has a composition gradient structure in which the average chlorine content is gradually reduced, and has excellent adhesion, lubricity, and chipping resistance in high-speed milling machining or high-speed outer diameter intermittent machining of alloy steel. Demonstrate and wear resistance.
On the other hand, all of the comparative example coated tools 1-8, 11-14, and the reference example coated tools 9, 10, 15 not only cause abnormal damage such as chipping, chipping, and peeling on the hard coating layer. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、合金鋼の高速ミーリング切削加工及び外径高速断続切削ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, the coated tool of the present invention can be used not only for high-speed milling cutting of alloy steel and high-speed intermittent cutting of outer diameter, but also as a coating tool for various work materials, and for a long period of use. Since it exhibits excellent wear resistance, it can satisfactorily respond to higher performance of cutting equipment, labor saving and energy saving of cutting, and cost reduction.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、または立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された基体の表面に、
(a)平均層厚2〜20μmの立方晶構造のTiとAlの複合炭窒化物層からなる硬質被覆層が形成されており
(b)上記硬質被覆層は、その平均組成を、
組成式:(Ti1−XAl)(C1−Y
で表した場合、Al含有割合XおよびC含有割合Y(但し、X、Yは何れも原子比)は、それぞれ、0.55≦X≦0.95、0.0005≦Y≦0.005を満足し、
(c)上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは、0.55≦X≦0.70であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hを中心に組成分析を行い、立方晶構造のTiとAlの複合炭窒化物のAl含有割合を求め、その平均値をX(但し、原子比)とすると、該Al含有割合Xは0.80≦X≦0.95であり、さらに、硬質被覆層中のAl含有割合は、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かうにしたがって漸次増加する組成傾斜構造を有しており、
(d)上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lに存在する立方晶構造のTiとAlの複合炭窒化物結晶粒各々について長軸幅、短軸幅を求め、それらの結晶粒の長軸幅と短軸幅の比を平均アスペクト比Aとすると、該平均アスペクト比Aは1〜2であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hに存在する立方晶構造のTiとAlの複合炭窒化物結晶粒各々について長軸幅、短軸幅を求め、それら結晶粒の長軸幅と短軸幅の比を平均アスペクト比Aとすると、該平均アスペクト比Aは3〜10であることを特徴とする表面被覆切削工具。
On the surface of the substrate composed of either tungsten carbide-based cemented carbide, titanium carbonitride-based cermet, or cubic boron nitride-based ultra-high pressure sintered body,
(A) a hard coat layer of a composite carbonitride layer of Ti and Al on cubic flat HitoshisoAtsu 2~20μm are the made form,
(B) The hard coating layer has an average composition,
Formula: (Ti 1-X Al X ) (C Y N 1-Y)
In this case, the Al content ratio X and the C content ratio Y (where X and Y are atomic ratios) satisfy 0.55 ≦ X ≦ 0.95 and 0.0005 ≦ Y ≦ 0.005, respectively. Satisfied,
(C) From the interface between the hard coating layer and the substrate, composition analysis is performed centering on the position L entering the inside of the 0.5 μm hard coating layer, and the Al content of the composite carbonitride of Ti and Al having a cubic structure When the ratio is obtained and the average value is X L (however, the atomic ratio), the Al content ratio X L is 0.55 ≦ X L ≦ 0.70, and is 0 from the surface layer of the hard coating layer. The composition analysis is performed centering on the position H inside the hard coating layer of 5 μm, the Al content ratio of the composite carbonitride of Ti and Al having a cubic structure is obtained, and the average value is calculated as X H (however, the atomic ratio ), The Al content ratio X H is 0.80 ≦ X H ≦ 0.95, and the Al content ratio in the hard coating layer is determined from the interface side between the hard coating layer and the substrate. It has a composition gradient structure that gradually increases toward the surface side of
(D) From the interface between the hard coating layer and the substrate, the long axis width of each of the composite carbonitride crystal grains of Ti and Al having a cubic structure existing at a position L entering the inside of the 0.5 μm hard coating layer, seeking short axis width and the ratio of the long axis width and the width of the short axis of their crystal grains and an average aspect ratio a L, the average aspect ratio a L is 1 to 2, also the surface layer of the hard coating layer The long axis width and the short axis width are obtained for each of the Ti and Al composite carbonitride crystal grains having a cubic structure existing at the position H inside the 0.5 μm hard coating layer. and when the ratio of the width of the short axis and an average aspect ratio a H, the surface-coated cutting tool, wherein the average aspect ratio a H is 3-10.
上記硬質被覆層中に含有される平均塩素含有量は、0.001〜1.0原子%であることを特徴とする請求項1に記載の表面被覆切削工具。   The surface-coated cutting tool according to claim 1, wherein an average chlorine content contained in the hard coating layer is 0.001 to 1.0 atomic%. 上記硬質被覆層と基体との界面から、0.5μm硬質被覆層の内部に入った位置Lを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.02〜1.0原子%であり、また、硬質被覆層の表層から、0.5μm硬質被覆層の内部に入った位置Hを中心に組成分析を行い、塩素の含有割合を求め、その平均値を平均塩素含有量Cとすると、該平均塩素含有量Cは0.001〜0.01原子%であり、さらに、硬質被覆層中の平均塩素含有量は、硬質被覆層と基体との界面側から、硬質被覆層の表層側に向かうにしたがって漸次減少する組成傾斜構造を有していることを特徴とする請求項2に記載の表面被覆切削工具。 From the interface between the hard coating layer and the substrate, composition analysis is performed centering on the position L entering the inside of the 0.5 μm hard coating layer, the content ratio of chlorine is obtained, and the average value is calculated as the average chlorine content CL . Then, the average chlorine content C L is 0.02 to 1.0 atomic%, and, from the surface layer of the hard coating layer, a composition analysis about the position H which has entered the interior of 0.5μm hard layer The chlorine content is determined, and the average value is defined as the average chlorine content C H. The average chlorine content C H is 0.001 to 0.01 atomic%, and the average in the hard coating layer. The surface coating according to claim 2, wherein the chlorine content has a composition gradient structure that gradually decreases from the interface side between the hard coating layer and the substrate toward the surface side of the hard coating layer. Cutting tools. 上記硬質被覆層は、少なくとも、トリメチルアルミニウムを反応ガス成分として含有する化学蒸着法により蒸着形成することを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具の製造方法

The hard coating layer, at least, the manufacturing method of the surface-coated cutting tool according to any one of claims 1 to 3, characterized in that the vapor deposited by chemical vapor deposition containing trimethyl aluminum as a reaction gas component.

JP2012096382A 2012-04-20 2012-04-20 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting Active JP5935479B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012096382A JP5935479B2 (en) 2012-04-20 2012-04-20 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
CN201310085606.5A CN103372660B (en) 2012-04-20 2013-03-18 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing knife

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012096382A JP5935479B2 (en) 2012-04-20 2012-04-20 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting

Publications (2)

Publication Number Publication Date
JP2013223894A JP2013223894A (en) 2013-10-31
JP5935479B2 true JP5935479B2 (en) 2016-06-15

Family

ID=49458841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012096382A Active JP5935479B2 (en) 2012-04-20 2012-04-20 Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting

Country Status (2)

Country Link
JP (1) JP5935479B2 (en)
CN (1) CN103372660B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6233575B2 (en) * 2013-11-22 2017-11-22 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6296298B2 (en) * 2014-08-28 2018-03-20 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6666431B2 (en) * 2016-04-14 2020-03-13 住友電気工業株式会社 Hard coatings and cutting tools
JP6624246B2 (en) * 2017-07-18 2019-12-25 Jfeスチール株式会社 Grain-oriented electrical steel sheet and its manufacturing method
WO2022264198A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool
WO2022264197A1 (en) * 2021-06-14 2022-12-22 住友電工ハードメタル株式会社 Cutting tool

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
JP2800571B2 (en) * 1992-06-25 1998-09-21 三菱マテリアル株式会社 Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance
JP3161087B2 (en) * 1992-09-28 2001-04-25 三菱マテリアル株式会社 Surface coated WC based cemented carbide cutting tool
JP3190009B2 (en) * 1996-11-06 2001-07-16 日立ツール株式会社 Coated hard alloy
DE102005032860B4 (en) * 2005-07-04 2007-08-09 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Hard material coated bodies and process for their production
DE102008013965A1 (en) * 2008-03-12 2009-09-17 Kennametal Inc. Hard material coated body
JP5594575B2 (en) * 2010-04-20 2014-09-24 三菱マテリアル株式会社 Surface coated cutting tool with excellent wear resistance due to hard coating layer
CN102398051B (en) * 2010-09-16 2015-10-14 三菱综合材料株式会社 Hard coating layer plays the excellent resistance to surface-coated cutting tool collapsing cutter
JP6024981B2 (en) * 2012-03-09 2016-11-16 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting

Also Published As

Publication number Publication date
JP2013223894A (en) 2013-10-31
CN103372660A (en) 2013-10-30
CN103372660B (en) 2017-03-01

Similar Documents

Publication Publication Date Title
JP6024981B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6090063B2 (en) Surface coated cutting tool
JP5946017B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP5939508B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6268530B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6620482B2 (en) Surface coated cutting tool with excellent chipping resistance
JP5939509B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6037113B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6391045B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6344040B2 (en) Surface-coated cutting tool with excellent chipping resistance
JP2016137549A (en) Surface-coated cutting tool with hard coating layer exerting excellent chipping resistance
JP5099586B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP6296294B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2014128837A (en) Surface-coated cutting tool with hard coating layer exerting excellent anti-chipping properties
JP5935479B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed milling and high-speed intermittent cutting
JP6296298B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
WO2016052479A1 (en) Surface-coated cutting tool having excellent chip resistance
JP5946016B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6044401B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP2009090395A (en) Surface-coated cutting tool having hard coated layer exhibiting excellent chipping resistance in heavy cutting
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6171800B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP2013094853A (en) Surface coated cutting tool including hard coating layer which exhibits excellent peel resistance in high-speed intermittent cutting
JP6213066B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6651130B2 (en) Surface coated cutting tool with excellent chipping and wear resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160127

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160323

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160425

R150 Certificate of patent (=grant) or registration of utility model

Ref document number: 5935479

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150