JPS59229479A - Production of surface coated sintered hard member for cutting tool - Google Patents

Production of surface coated sintered hard member for cutting tool

Info

Publication number
JPS59229479A
JPS59229479A JP9137783A JP9137783A JPS59229479A JP S59229479 A JPS59229479 A JP S59229479A JP 9137783 A JP9137783 A JP 9137783A JP 9137783 A JP9137783 A JP 9137783A JP S59229479 A JPS59229479 A JP S59229479A
Authority
JP
Japan
Prior art keywords
reaction vessel
cutting
base member
hard
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9137783A
Other languages
Japanese (ja)
Other versions
JPS6155591B2 (en
Inventor
Noribumi Kikuchi
菊池 則文
Yasuo Suzuki
泰雄 鈴木
Akio Nishiyama
昭雄 西山
Yuzo Osawa
大沢 雄三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP9137783A priority Critical patent/JPS59229479A/en
Publication of JPS59229479A publication Critical patent/JPS59229479A/en
Publication of JPS6155591B2 publication Critical patent/JPS6155591B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/36Carbonitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

PURPOSE:To obtain a titled member which provides excellent cutting performance by introducing a reactive gaseous mixture contg. an Al supply source, CO2 and/or CO to a base member consisting of a sintered hard member or surface coated sintered hard member in a reaction vessel and performing plasma chemical vapor deposition treatment under prescribed conditions. CONSTITUTION:A base member constituted of cermet such as a WC-base sintered hard alloy or ceramics such as an Al2O3-base sintered material is charged into a reaction vessel. A reactive gaseous mixture composed of 0.5-5% one kind of an Al supply source such as AlCl3, Al(CH3)3, etc., 3-15% CO2 or/and CO or these and gaseous hydrocharbon, 10-30% N2, 30-70% Ar and the balance H2 is introduced into the reaction vessel. A plasma chemical vapor deposition treatment is then performed under the conditions of 0.1-20 Torr atmosphere in the reaction vessel, impression of -300--900V DC voltage on the base member or high frequency electric power of 0.2-10W/cm<2> and 800-1,200 deg.C heating temp. in the reaction vessel. As a result, the titled sintered member which consists of AlCNO, has high hardness and toughness and is extremely stable chemically is obtd. on the surface of the base member.

Description

【発明の詳細な説明】 この発明は、鋼および鋳鉄の切削、特にこれら両波削材
の高速切削や、高速シ切削および深切込み切削などの重
切削に切削工具として用いた場合に、すぐれた切削性能
を発揮する表面被覆超硬質焼結部材の製造法に関するも
のである。
[Detailed Description of the Invention] This invention provides an excellent cutting tool when used as a cutting tool for cutting steel and cast iron, especially for heavy cutting such as high-speed cutting of these corrugated materials, high-speed cutting, and deep cutting. The present invention relates to a method for manufacturing a surface-coated ultra-hard sintered member that exhibits cutting performance.

従来、一般に、炭化タングステン基超硬合金や炭化チタ
ン基焼結材料などのサーメットや、さらに酸化アルミニ
ウム基焼結材料などのセラミックスで構成された超硬質
焼結部材を基体部材とし、この基体部材の表面に、周期
律表の4a、5a。
Conventionally, the base member is generally an ultra-hard sintered member made of a cermet such as a tungsten carbide-based cemented carbide or a titanium carbide-based sintered material, or a ceramic such as an aluminum oxide-based sintered material. On the surface, 4a and 5a of the periodic table.

および6a族金属の炭化物、窒化物、および酸化物、並
びにこれらの2種以上の固溶体からなる群のうちの1種
の単層または2種以上の複層からなる被覆層を化学蒸着
法などによ多形成してなる表面被覆超硬質焼結部材が切
削工具として用いられているとと゛は良く知られるとこ
ろである。
A coating layer consisting of a single layer or a multilayer of two or more of the group 6a metal carbides, nitrides, and oxides, and solid solutions of two or more of these metals is formed by chemical vapor deposition or the like. It is well known that surface-coated ultra-hard sintered members with multiple shapes are used as cutting tools.

しかしながら、これらの従来表面被覆超硬質焼結部材に
おいては、あるものは鋼の切削に用いた場合にすぐれた
切削性能を示すが、鋳鉄の切削では所望の切削性能を示
さず、比較的短時間で使用寿命に至るものであり、また
他のものは、これとは反対に鋳鉄の切削ではすぐれた性
能を示し、比較的長期に亘る使用寿命を示すのに、鋼の
切削では切削寿命が短かいなど、・鋼および鋳鉄のいず
れの切削においても満足する切削性能を発揮するもので
はなく、ましてや、これら両波削材の高速切削や、高送
シ切削および深切込み切削などの重切削のような苛酷な
条件下での切削においては勿論のことである。
However, although some of these conventional surface-coated ultra-hard sintered members show excellent cutting performance when used for cutting steel, they do not show the desired cutting performance when cutting cast iron, and it takes a relatively short time. Others, on the contrary, show excellent performance and a relatively long service life when cutting cast iron, but have a short cutting life when cutting steel. Paddles, etc., do not exhibit satisfactory cutting performance when cutting either steel or cast iron, and even more so when performing heavy cutting such as high-speed cutting of these corrugated materials, high-feed cutting, and deep-cut cutting. Of course, this is true when cutting under such severe conditions.

そこで、本発明者等は、上述のような観点から、鋼およ
び鋳鉄の両方の切削に用いることができることは勿論の
とと、これら両波剛材の高速切削や重切削などの苛酷な
条件下での切削に際してもすぐれた切削性能を発揮する
切削工具を開発すべく研究を行なった結果、上記の超硬
質焼結部材、あるいは表面被覆超硬質焼結部材を基体部
材とし、この基体部材を反応容器内に装入し、容量係で
、AQCt3. AQ(CH3)3 、およびAP、2
(CH3)3Ct3のうちの1種(以下これらを総称し
てAM供給源という):0.5〜5%。
Therefore, from the above-mentioned viewpoint, the present inventors believe that it can be used for cutting both steel and cast iron, and that it can be used under harsh conditions such as high-speed cutting and heavy cutting of these rigid materials. As a result of research to develop a cutting tool that exhibits excellent cutting performance even when cutting with Charge into the container, and at the capacity section, AQCt3. AQ(CH3)3, and AP,2
One of (CH3)3Ct3 (hereinafter collectively referred to as AM source): 0.5 to 5%.

CO2およびCOのうちの1種または2種:3〜15%
、あるいはCO2およびCoのうちの1種または2種と
、炭化水素がス:3〜15%(ただし炭化水素ガス二0
3〜5%を含有、以下これらを総称して炭素・酸素供給
源という)。
One or two of CO2 and CO: 3-15%
, or one or two of CO2 and Co, and hydrocarbon gas: 3 to 15% (however, hydrocarbon gas 20%
(hereinafter collectively referred to as carbon/oxygen supply source).

N2 :  1 0〜30 チ。N2: 1 0-30 Chi.

Ar: 30〜70 %。Ar: 30-70%.

H2:残シ(ただし10%以上含有)。H2: Residue (contains 10% or more).

からなる配合組成を有する反応混合ガスを導入しながら
、 反応容器内加熱温度〇、1〜20 torrの真空。
While introducing a reaction mixture gas having a composition consisting of: heating temperature in the reaction vessel 〇, vacuum of 1 to 20 torr.

基体部材への印加ニー300〜−800Vの直流電圧、
または02〜10W/crlの高周波電力。
DC voltage of 300 to -800 V applied to the base member,
Or high frequency power of 02~10W/crl.

反応容器内加熱温度=800〜1200℃。Heating temperature inside the reaction vessel = 800-1200°C.

の条件にてプラズマ化学蒸着処理を行なうと、前記基体
部材の表面には結晶形の炭窒酸化アルミニウム(以下、
A11CNOで示す)からなる硬質被覆層が形成される
ようになり、このAQCNOは、常温および高温におい
て高硬度を有すると共に、高靭性を有し、かつ高温にお
いて化学的にきわめて安定なものであることから、この
結果のAA CN O硬質被覆層形成の表面被覆超硬質
焼結部材は、これを鋼および鋳鉄の切削に切削工具とし
て使用した場合にすぐれた性能を発揮し、さらにこれを
前記の両波剛材の高速切削や重切削などに用いても 5
− 同様にすぐれた切削性能を発揮し、長期に亘る使用寿命
を確保することができるという知見を得だのである。
When plasma chemical vapor deposition treatment is performed under the following conditions, crystalline aluminum carbonitoxide (hereinafter referred to as
A hard coating layer consisting of AQCNO (denoted as A11CNO) is formed, and this AQCNO has high hardness at room temperature and high temperature, high toughness, and is extremely chemically stable at high temperature. Therefore, the surface-coated ultra-hard sintered member formed with the AA CN O hard coating layer exhibits excellent performance when used as a cutting tool for cutting steel and cast iron. Can be used for high-speed cutting and heavy cutting of corrugated materials 5
- We have found that it can also exhibit excellent cutting performance and ensure a long service life.

この発明は、上記知見にもとづいてなされたものであっ
て、製造条件を上記の通シに限定した理由を以下に説明
する。
This invention was made based on the above knowledge, and the reason why the manufacturing conditions were limited to the above general conditions will be explained below.

(a)反応混合ガスの配合組成 ■ Ae供給源、炭素・酸素供給源、およびN2これら
の成分の配合量が、それぞれAl供給源二0.5チ未満
、炭素・酸素供給源二3チ未満、およびN2:10%未
満では、実用的反応速度で結晶形のAfi −CN O
硬質被覆層を基体部材の表面に形成することができず、
一方AP、供給源の配合量が5チを越えると、グロー放
電内での反応が活発になってAQ −CN O粉末を形
成するようになシ、基体部材表面に対して強固に蒸着し
たAfi CN O硬質被覆層を形成することが困難に
なシ、また炭素・酸素供給源が15%を越えたシ、N2
が30チを越えたりすると、AQ CN O硬質被覆層
中にAA203やAeNが混在するようになって、前記
被覆層の特性が劣 6− 化するようになることから、それぞれの配合量を、AQ
供給源:0.5〜5係、炭素・酸素供給源:3〜15%
、およびN2:10〜3o係と定めた。なお、炭化水素
ガスはAQCNO硬質被覆層中のC成分を相対的に高く
する必要がある場合に配合されるが、その配合量が0.
3%未満では、その効果が現われず、一方5%を越えて
配合すると黒鉛(炭素)が析出するようになって、同様
に前記硬質被覆層の特性が劣化するようになることから
、炭化水素ガスの配合量を0.3〜5チと定めた。
(a) Composition of reaction mixture ■ Ae supply source, carbon/oxygen supply source, and N2 The blended amounts of these components are less than 20.5 g of Al source and less than 23 g of carbon/oxygen source, respectively. , and N2: less than 10%, Afi-CNO in crystalline form at practical reaction rates.
A hard coating layer cannot be formed on the surface of the base member,
On the other hand, when the blended amount of AP and supply source exceeds 5 ml, the reaction within the glow discharge becomes active and AQ-CNO powder is formed, resulting in AFI being firmly deposited on the surface of the base member. It is difficult to form a CN O hard coating layer, and when the carbon/oxygen supply source exceeds 15%, N2
If it exceeds 30 cm, AA203 and AeN will be mixed in the AQ CN O hard coating layer, and the properties of the coating layer will deteriorate. AQ
Supply source: 0.5 to 5, carbon/oxygen supply source: 3 to 15%
, and N2: 10-3o. Note that hydrocarbon gas is blended when it is necessary to relatively increase the C component in the AQCNO hard coating layer, but if the blended amount is 0.
If the amount is less than 3%, the effect will not appear, while if it is more than 5%, graphite (carbon) will precipitate, which will similarly deteriorate the properties of the hard coating layer. The amount of gas blended was determined to be 0.3 to 5 inches.

■ Ar Arガスにはグロー放電を促進する作用があるが、その
配合量が30係未満では所望のグロー放電を確保するこ
とができず、一方70%を越えて配合するとグロー放電
が活発になりすぎ、これに伴って基体部材の表面温度が
1200℃を越えて高くなシすぎ、前記硬質被覆層の結
晶粒が粗大化して脆化するようになることから、その配
合量を30〜70%と定めだ。
■ Ar Ar gas has the effect of promoting glow discharge, but if the amount is less than 30%, the desired glow discharge cannot be achieved, while if it is more than 70%, glow discharge becomes active. If the surface temperature of the base member is too high, exceeding 1200°C, the crystal grains of the hard coating layer will become coarse and brittle. It is determined that

なお、N2の配合量が10%未満では、AC供給源の還
元が十分に行なわれず、との結果Ag CN O硬質被
覆層の形成に長時間を要するようになることから、N2
の配合量を10’%以上と定めた。
Note that if the amount of N2 is less than 10%, the reduction of the AC supply source will not be carried out sufficiently, and as a result, it will take a long time to form the Ag CN O hard coating layer.
The blending amount was set at 10'% or more.

■ 反応容器内雰囲気の圧力 その圧力が0.1 torr未満では反応速度がきわめ
て遅く、実用的でなく、一方その圧力を20torrを
越えたものにすると、雰囲気中での反応が起って、非晶
質のAP、CN O粉末が形成されるようになることか
ら、その圧力を0.1 y 20 torrと定めた。
■ Pressure of the atmosphere inside the reaction vessel If the pressure is less than 0.1 torr, the reaction rate is extremely slow and impractical; on the other hand, if the pressure exceeds 20 torr, a reaction occurs in the atmosphere, resulting in non-performance. The pressure was set at 0.1 y 20 torr since crystalline AP, CN 2 O powder was formed.

(C)基体部材への印加 基体部材への印加が、直流電圧の場合: −300V未
満、高周波電力の場合:0.2W/i未満では、グロー
放電がきわめて弱く、所望のAg、CN O被覆層を形
成することができず、−実直流電圧にあっては一5oo
v、高周波電力にあってはIOW/fflをそれぞれ越
えると、基体部材の温度が1200℃を越えて高くなシ
すぎ、脆化の原因となる結晶粒成長が著しく々ることか
ら、基体部材への印加な、直流電圧の場合ニー300〜
−5oov、高周波電力の場合:0.2〜IOW/ff
lと定めた。
(C) Application to the base member When the application to the base member is a DC voltage: less than -300V, and when high frequency power is applied: less than 0.2 W/i, the glow discharge is extremely weak and the desired Ag, CN O coating is not achieved. It is not possible to form a layer, and - at the actual DC voltage, it is -5oo
v. In the case of high-frequency power, if IOW/ffl is exceeded, the temperature of the base member will be too high, exceeding 1200°C, and crystal grain growth, which causes embrittlement, will increase significantly. When applying DC voltage, the knee is 300~
-5oov, for high frequency power: 0.2~IOW/ff
It was determined as l.

O)反応容器内加熱温度 加熱温度が800℃未満ではAACNO被覆層が非晶質
になってしまって、結晶形のそれを形成することができ
ず、一方加熱温度が1200℃を越えると、上記した通
り脆化の原因となる結晶粒成長がA1ICN O被覆層
に起るようになることから、その加熱温度を800〜1
200℃と定めた。
O) Heating temperature in the reaction vessel If the heating temperature is less than 800°C, the AACNO coating layer becomes amorphous and cannot form a crystalline form.On the other hand, if the heating temperature exceeds 1200°C, the above-mentioned As mentioned above, grain growth that causes embrittlement occurs in the A1ICN O coating layer, so the heating temperature is set to 800-1
The temperature was set at 200°C.

なお、この発明の方法によって形成されるAQCNO硬
質被覆層が結晶形をもつことはX線回折測定によシ容易
に確認できるものであシ、さらに原子比で、 AA 0.55〜0.6100.15〜0.22NO,
02〜o、oeoo、x3〜020の組成をもつもので
ある。
It should be noted that it can be easily confirmed by X-ray diffraction measurement that the AQCNO hard coating layer formed by the method of the present invention has a crystalline form, and furthermore, it has an atomic ratio of AA 0.55 to 0.6100. .15~0.22NO,
It has a composition of 02-o, oeoo, x3-020.

さらに、この発明の方法によってAlICN0被覆層を
形成するに際しては、その平均層厚を0.5〜20μm
とするのが望ましく、これは、その平均層厚が0.5μ
m未満では所望のすぐれた切削性能を長期に亘って発揮
することができず、一方20μmを越えた層厚にすると
、被覆処理時間が長くなることに原因して、結晶が粗粒
化し、靭性が低 9 − 下するようになるばかりでなく、表面が荒れて凹凸が激
しくなるという理由によるものである。
Furthermore, when forming the AlICN0 coating layer by the method of this invention, the average layer thickness is 0.5 to 20 μm.
It is desirable that the average layer thickness is 0.5μ.
If the layer thickness is less than 20 μm, the desired excellent cutting performance cannot be achieved over a long period of time. On the other hand, if the layer thickness exceeds 20 μm, the coating process time becomes longer, resulting in coarse grained crystals and poor toughness. This is because not only does the surface temperature become lower than 9 -, but also the surface becomes rough and uneven.

つぎに、この発明の表面被覆超硬質焼結部材の製造法を
実施例によシ具体的に説明する。
Next, the method for manufacturing the surface-coated ultra-hard sintered member of the present invention will be specifically explained using examples.

実施例 基体部材として、それぞれ第1表に示される組成並びに
被覆層を有する超硬質焼結材料製切削チップおよび表面
被覆超硬質焼結材料製切削チップを用意し、これらの基
体部材をそれぞれ通常のプラズマ化学蒸着装置の反応容
器内に装入し、ついで同じく第1表に示される条件にて
プラズマ化学蒸着処理を施し、前記基体部材の表面にM
 CN O硬質被覆層を形成することによって本発明表
面被覆切削チップl〜12をそれぞれ製造した。
A cutting tip made of an ultra-hard sintered material and a cutting tip made of a surface-coated ultra-hard sintered material each having the composition and coating layer shown in Table 1 were prepared as the base member of the example, and each of these base members was The base member is charged into a reaction vessel of a plasma chemical vapor deposition apparatus, and then subjected to plasma chemical vapor deposition treatment under the conditions shown in Table 1 to coat the surface of the base member with M.
Surface-coated cutting tips 1-12 of the present invention were each manufactured by forming a CNO hard coating layer.

つぎに、この結果得られた本発明表面被覆切削チップ]
、〜12におけるAll CN O被覆層の組成。
Next, the surface-coated cutting chip of the present invention obtained as a result]
Composition of the All CN O coating layer in , ~12.

結晶形、ビッカース硬さ、および平均層厚を測定し、こ
れらの測定結果も第1表に示した。
The crystal shape, Vickers hardness and average layer thickness were measured and the results are also shown in Table 1.

さらに、上記の本発明表面被覆切削チップ1〜12につ
いて、 10− 第   2   表 被削材:SNCM−8(硬さ:HB270)。
Furthermore, regarding the above-mentioned surface-coated cutting tips 1 to 12 of the present invention, 10-2nd surface cut material: SNCM-8 (hardness: HB270).

切削速度: 160 m/mXL。Cutting speed: 160 m/mXL.

送り: 0.34 run/ rev、 。Sending: 0.34 run/rev.

切込み:1.5M。Depth of cut: 1.5M.

切削時間:30飄。Cutting time: 30 mm.

の条件での鋼の高速切削試験、並びに、被削材:FC−
25(硬さ:HB200)。
High-speed cutting test of steel under the conditions of and work material: FC-
25 (hardness: HB200).

切削速度: 2 Q Om/rm 。Cutting speed: 2Q Om/rm.

送り:025朋/ rev、 。Sending: 025/rev.

切込み:1.5B。Depth of cut: 1.5B.

切削時間:20隠。Cutting time: 20 min.

の条件での鋳鉄の高速切削試験を行ない、試験後の切刃
の逃げ面摩耗幅を測定した。これらの測定結果を第2表
に示した。また、第2表には、比較の目的で、上記の本
発明表面被覆切削チップl〜12において、それぞれl
d CN O被覆層を形成する前の基体部材(以下従来
切削チップ1〜12という)の同一条件での切削試験結
果も示しだ。
A high-speed cutting test was conducted on cast iron under the following conditions, and the flank wear width of the cutting edge was measured after the test. The results of these measurements are shown in Table 2. Table 2 also shows, for comparison purposes, the surface-coated cutting tips 1 to 12 of the present invention, respectively.
Also shown are the cutting test results of the base member (hereinafter referred to as conventional cutting tips 1 to 12) before forming the CN O coating layer under the same conditions.

第2表に示される結果から、本発明表面被覆切削チップ
1〜12は、鋼および鋳鉄のいずれの高15− 重切削においても、それぞれAtICN0硬質被覆層を
形成しない以外は同一の従来切削チップl〜12に比し
て一段とすぐれた耐摩耗性を示し、これはAtlCN○
硬質被覆層の形成によってもたらされるととが明らかで
ある。
From the results shown in Table 2, surface-coated cutting chips 1 to 12 of the present invention can be used for high-15-heavy cutting of both steel and cast iron, respectively, compared to conventional cutting chips that are the same except that they do not form an AtICN0 hard coating layer. 〜12, showing much better wear resistance than AtlCN○
It is clear that this is caused by the formation of a hard coating layer.

上述のように、この発明の方法によれば、常温および高
温において高硬度を有すると共に高靭性を有し、かつ高
温において化学的に安定したAQ CN Q硬質被覆層
を基体部材の表面に形成することができ、しだがって、
このAACNO硬質被覆層を有する表面被覆超硬質焼結
部材を鋼および鋳鉄の切削に切削工具として使用すると
すぐれた性能を発揮し、さらにより一層苛酷な条件下で
の切削となる鋼および鋳鉄の高速切削や重切削などにお
いてもきわめてすぐれた切削性能を長期に互って安定的
に発揮するのである。
As described above, according to the method of the present invention, an AQ CN Q hard coating layer that has high hardness and toughness at room temperature and high temperature, and is chemically stable at high temperature is formed on the surface of the base member. can, therefore,
When this surface-coated ultra-hard sintered member with an AACNO hard coating layer is used as a cutting tool for cutting steel and cast iron, it exhibits excellent performance. It consistently exhibits excellent cutting performance over a long period of time, even in cutting and heavy cutting.

出願人  三菱金属株式会社 代理人  富  1) 和 夫 外1名16一Applicant: Mitsubishi Metals Corporation Agent Tomi 1) Kazuo and 1 other person 161

Claims (1)

【特許請求の範囲】 サーメットまたはセラミックスで構成された超硬質焼結
部材、あるいは前記超硬質焼結部材の表面に硬質層を形
成してなる表面被覆超硬質焼結部材を基体部材とし、こ
の基体部材を反応容器内に装入し、容量係で、 AeC23、AQ(CH3)3.およびAQ2(CH3
)3 C1sのうちの1種:0.5〜5%。 CO2およびCOのうちの1種または2種=3〜15チ
、あるいはCO2およびCoのうちの1種または2種と
、炭化水素ガス:3〜15%(ただし炭化水素が220
.3〜5%含有)。 N2 : l 0〜30%。 1− Ar:  3 0〜7 0 %。 N2;残り(ただし10%以上含有)。 からなる配合組成を有する反応混合ガスを導入しながら
、 反応容器内加熱温度0.1〜20 torrの真空。 基体部材への印加ニー300〜−800vの直流電圧、
!、たは0.2〜lOW/dの高周波電力。 反応容器内加熱温度=800〜1200℃。 の条件にてプラズマ化学蒸着処理を行なうことによって
、前記基体部材の表面に、結晶形の炭窒酸化アルミニウ
ムからなる硬質被覆層を形成することを特徴とする切削
工具用表面被覆超硬質焼結部材の製造法。
[Claims] A base member is an ultra-hard sintered member made of cermet or ceramics, or a surface-coated ultra-hard sintered member formed by forming a hard layer on the surface of the ultra-hard sintered member; Charge the members into the reaction vessel, and in the capacity section, AeC23, AQ(CH3)3. and AQ2(CH3
)3 One type of C1s: 0.5-5%. One or two of CO2 and CO = 3 to 15%, or one or two of CO2 and Co and hydrocarbon gas: 3 to 15% (however, if hydrocarbon is 220
.. 3-5%). N2: l 0-30%. 1-Ar: 30-70%. N2: Remaining (contains 10% or more). While introducing a reaction mixture gas having a composition consisting of: a vacuum at a heating temperature of 0.1 to 20 torr in the reaction vessel; DC voltage of 300 to -800v applied to the base member,
! , or a high frequency power of 0.2 to lOW/d. Heating temperature inside the reaction vessel = 800-1200°C. A surface-coated ultra-hard sintered member for a cutting tool, characterized in that a hard coating layer made of crystalline aluminum carbonitride oxide is formed on the surface of the base member by performing plasma chemical vapor deposition treatment under the following conditions. manufacturing method.
JP9137783A 1983-05-24 1983-05-24 Production of surface coated sintered hard member for cutting tool Granted JPS59229479A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9137783A JPS59229479A (en) 1983-05-24 1983-05-24 Production of surface coated sintered hard member for cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9137783A JPS59229479A (en) 1983-05-24 1983-05-24 Production of surface coated sintered hard member for cutting tool

Publications (2)

Publication Number Publication Date
JPS59229479A true JPS59229479A (en) 1984-12-22
JPS6155591B2 JPS6155591B2 (en) 1986-11-28

Family

ID=14024677

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9137783A Granted JPS59229479A (en) 1983-05-24 1983-05-24 Production of surface coated sintered hard member for cutting tool

Country Status (1)

Country Link
JP (1) JPS59229479A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243180A (en) * 1985-04-19 1986-10-29 Sumitomo Electric Ind Ltd Production of coated steel
JPS61253369A (en) * 1985-05-02 1986-11-11 Sumitomo Electric Ind Ltd Surface coating method for sintered hard alloy
WO2004108632A1 (en) * 2003-05-21 2004-12-16 Kennametal Widia Produktions Gmbh & Co. Kg Sintered part and the method for the production thereof
EP1683893A1 (en) * 2005-01-21 2006-07-26 Mitsubishi Materials Corporation Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting I
CN103372660A (en) * 2012-04-20 2013-10-30 三菱综合材料株式会社 Surface-coated cutting tool with flaking-poof hard coating layer
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61243180A (en) * 1985-04-19 1986-10-29 Sumitomo Electric Ind Ltd Production of coated steel
JPS61253369A (en) * 1985-05-02 1986-11-11 Sumitomo Electric Ind Ltd Surface coating method for sintered hard alloy
WO2004108632A1 (en) * 2003-05-21 2004-12-16 Kennametal Widia Produktions Gmbh & Co. Kg Sintered part and the method for the production thereof
JP2007511665A (en) * 2003-05-21 2007-05-10 ケンナメタル ヴィディア プロドゥクツィオーンス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト Sintered body and manufacturing method thereof
EP1683893A1 (en) * 2005-01-21 2006-07-26 Mitsubishi Materials Corporation Surface-coated cermet cutting tool with hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting I
CN103372660A (en) * 2012-04-20 2013-10-30 三菱综合材料株式会社 Surface-coated cutting tool with flaking-poof hard coating layer
JP2013240866A (en) * 2012-05-22 2013-12-05 Mitsubishi Materials Corp Surface-coated cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP2013248675A (en) * 2012-05-30 2013-12-12 Mitsubishi Materials Corp Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting
JP2014024131A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting
JP2014024130A (en) * 2012-07-25 2014-02-06 Mitsubishi Materials Corp Surface coated cutting tool coated with hard coating layer providing excellent chipping resistance in high-speed intermittent cutting

Also Published As

Publication number Publication date
JPS6155591B2 (en) 1986-11-28

Similar Documents

Publication Publication Date Title
JP3325987B2 (en) Coated object
KR100348542B1 (en) Oxide coated cutting tools
JP5328653B2 (en) Ti-based cermet, coated cermet and cutting tool
JP4786800B2 (en) Cutting tool coated with PVD-
JPH09174304A (en) Surface coated cemented carbide-made cutting tool excellent in pitching resistance
JPS59229479A (en) Production of surface coated sintered hard member for cutting tool
JP3887811B2 (en) Cutting tool made of surface-coated tungsten carbide based cemented carbide with a hard coating layer that provides excellent wear resistance in high-speed cutting
JP2556101B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool
JP4461407B2 (en) Cutting tool made of surface-coated cemented carbide with excellent chipping resistance in high-speed intermittent cutting
JPS6210301B2 (en)
JP4351521B2 (en) Surface coated cutting tool
JP3250414B2 (en) Method for producing cutting tool coated with titanium carbonitride layer surface
JPH08118105A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion
JP3419140B2 (en) Surface coated cutting tool
JP3994590B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with high efficiency cutting and hard coating layer
JP2917555B2 (en) Hard layer coated cemented carbide cutting tool and its manufacturing method
JPS6312940B2 (en)
JP3371796B2 (en) Surface coated cemented carbide cutting tool with excellent fracture resistance
JP3837959B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance due to hard coating layer
JP2970016B2 (en) Hard layer coated cemented carbide cutting tool
JP4484500B2 (en) Surface coated cutting tool
JP3887812B2 (en) Surface coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance with hard coating layer in intermittent heavy cutting
JP2932732B2 (en) Hard layer coated cemented carbide cutting tool
JP3994592B2 (en) Surface coated cemented carbide cutting tool with excellent surface lubricity against chips
JPH08118108A (en) Surface-coated cemented carbide alloy cutting tool with tungsten carbide group having hard coating layer excellent in interlayer adhesion