JP2007511665A - Sintered body and manufacturing method thereof - Google Patents

Sintered body and manufacturing method thereof Download PDF

Info

Publication number
JP2007511665A
JP2007511665A JP2006529587A JP2006529587A JP2007511665A JP 2007511665 A JP2007511665 A JP 2007511665A JP 2006529587 A JP2006529587 A JP 2006529587A JP 2006529587 A JP2006529587 A JP 2006529587A JP 2007511665 A JP2007511665 A JP 2007511665A
Authority
JP
Japan
Prior art keywords
sintered body
gas phase
plasma
plasma activated
activated gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006529587A
Other languages
Japanese (ja)
Inventor
レンガウアー ヴァルター
ドライアー クラウス
レーディガー クラウス
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kennametal Widia Produktions GmbH and Co KG
Original Assignee
Kennametal Widia Produktions GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kennametal Widia Produktions GmbH and Co KG filed Critical Kennametal Widia Produktions GmbH and Co KG
Publication of JP2007511665A publication Critical patent/JP2007511665A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/05Mixtures of metal powder with non-metallic powder
    • C22C1/051Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/241Chemical after-treatment on the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Powder Metallurgy (AREA)

Abstract

本発明は硬質合金、特にCo、Niおよび/またはFe結合剤部分を有するWCをベースとする硬質合金またはサーメット、特に(Ti、W)(C、N)または(Ti、Mo)(C,N)とCo、Niおよび/またはFe結合剤部分とからなる組成物をベースとするサーメットからなる焼結体およびこれらの焼結体の製造方法に関する。本発明により、焼結体を加熱中、焼結中、または仕上げ焼結後に、少なくとも一定の時間、有利に10〜100分の時間にわたり、完全にまたは部分的に3×10Paの最大圧力下でプラズマ活性化ガス相にさらす。The present invention relates to hard alloys, in particular hard alloys or cermets based on WC with Co, Ni and / or Fe binder moieties, in particular (Ti, W) (C, N) or (Ti, Mo) (C, N ) And a cermet based on a composition comprising a Co, Ni and / or Fe binder part and a method for producing these sintered bodies. According to the invention, the maximum pressure of 3 × 10 4 Pa is fully or partly at least for a certain time, preferably for 10 to 100 minutes, during heating, sintering or after finish sintering of the sintered body. Underneath the plasma activated gas phase.

Description

本発明は硬質合金、特にCo、Niおよび/またはFe結合剤部分を有するWCをベースとする硬質合金またはサーメット、特に(Ti、W)(C、N)または(Ti、Mo)(C,N)とCo、Niおよび/またはFe結合剤部分とからなる組成物をベースとするサーメットからなる焼結体に関する。   The present invention relates to hard alloys, particularly hard alloys or cermets based on WC with Co, Ni and / or Fe binder moieties, in particular (Ti, W) (C, N) or (Ti, Mo) (C, N ) And a cermet based on a composition comprising a Co, Ni and / or Fe binder part.

本発明は更にこれらの焼結体を製造する方法に関する。   The invention further relates to a method for producing these sintered bodies.

記載された形式の焼結体は特に切削作業に刃の装入物として使用される。   Sintered bodies of the type described are used in particular as cutting material for cutting operations.

本発明の課題は改良された切断特性を有する焼結体を提供することである。更に短い処理時間を可能にし、できるだけ深い浸入帯域で組織の影響を可能にする、これらの焼結体の製造方法を提供すべきである。   The object of the present invention is to provide a sintered body with improved cutting properties. A method of manufacturing these sintered bodies should be provided that allows for shorter processing times and allows the influence of the tissue in the deepest possible penetration zone.

前記課題は、請求項1に記載される焼結体もしくは請求項6に記載される方法により解決される。   The object is solved by the sintered body described in claim 1 or the method described in claim 6.

本発明の他の構成は従属請求項に記載されている。   Other configurations of the invention are described in the dependent claims.

特に窒化もしくはニトロ化または浸炭窒化の形のプラズマ拡散処理は鋼の表面を改良処理するために長い間行われた方法であり、鋼の摩耗および腐蝕安定性を高める。近年チタン合金およびステライトもプラズマ拡散処理され、拡散浸入により、これらの物体の周辺帯域の組織が変化し、拡散帯域または1個以上の結合帯域を形成する。拡散浸入した物質は、例えば窒素または炭素であってもよく、これらは結晶格子の場合による間隔の変動を除いて基礎材料の結晶学的構造を変動しない。これらの拡散層または表面に近い帯域の上に若干のまたは多くの結合層が形成され、これらの層が例えば基礎材料の元素と拡散浸入した物質との結合のような他の層を形成する。   In particular, plasma diffusion treatment in the form of nitriding or nitration or carbonitriding is a method that has been used for a long time to improve the surface of steel and increases the wear and corrosion stability of the steel. In recent years, titanium alloys and stellite have also been subjected to plasma diffusion treatment, and the diffusion infiltration changes the texture of the surrounding zone of these objects, forming a diffusion zone or one or more coupling zones. The diffusion infiltrated material may be, for example, nitrogen or carbon, and these do not change the crystallographic structure of the base material except for the variation in spacing due to the case of the crystal lattice. Some or many bonding layers are formed over these diffusion layers or zones close to the surface, these layers forming other layers, for example bonding of the elements of the base material with the diffusion-infiltrated substances.

特開平5−302140号からTiCNのような硬質相とCoおよびNiのような結合金属からなり、ガス状窒素プラズマ雰囲気にさらされ、プラズマが高周波またはマイクロ波放電により形成される、サーメットが公知である。この場合に10〜500μmの厚さの窒化物帯域が形成され、窒化物帯域に0.1μm以下の粒度を有するTiN粒子が均一な分布で含有されるべきである。これに対して本発明の焼結体においては、表面に近い帯域に、プラズマ活性化ガス相により生じる付加的な組織成分が含有され、その粒度は硬質合金の硬質物質部分とサーメットを一般に有する組織成分の大きさの程度である。表面に拡散侵入するプラズマ活性化ガス相に含まれる物質は窒素、炭素、ホウ素、プラズマ状態に励起できる金属であってもよい。純粋に熱により活性化されたガス相に対してプラズマ活性化ガス相で処理される焼結体はかなり深い領域まで影響される表面帯域を有する。プラズマ活性化ガス相はプラズマのガス組成に応じて表面に近い帯域の精製および/または還元、滑らかさの意味での表面の粗さの改良、および新しい組織成分(相)およびその配置の形成を可能にする。表面に近い周辺帯域の組成は本発明により引き続き被覆される、炭化物、窒化物、酸化物、ホウ化物または炭素またはこれらの物質の組み合わせからなる層の付着を改良することができる。プラズマ活性化処理は結合剤相の影響も可能にし、例えばプラズマ活性化窒素はコバルト−ニッケル窒化物または鉄窒化物を形成することができ、これは熱活性化窒素では不可能である。   JP-A-5-302140 discloses a cermet comprising a hard phase such as TiCN and a binding metal such as Co and Ni, exposed to a gaseous nitrogen plasma atmosphere, and the plasma is formed by high frequency or microwave discharge. is there. In this case, a nitride zone having a thickness of 10 to 500 μm is formed, and TiN particles having a particle size of 0.1 μm or less should be contained in the nitride zone in a uniform distribution. On the other hand, in the sintered body of the present invention, an additional structure component generated by the plasma activated gas phase is contained in a zone close to the surface, and the grain size is generally a structure having a hard material portion of a hard alloy and a cermet. The magnitude of the component. The substance contained in the plasma activated gas phase that diffuses and penetrates the surface may be nitrogen, carbon, boron, or a metal that can be excited to a plasma state. A sintered body treated with a plasma activated gas phase versus a purely heat activated gas phase has a surface zone that is affected to a much deeper region. The plasma activated gas phase can be used to purify and / or reduce a zone close to the surface, improve surface roughness in the sense of smoothness, and form new tissue components (phases) and their arrangement, depending on the gas composition of the plasma. enable. The composition of the peripheral zone close to the surface can improve the adhesion of layers consisting of carbides, nitrides, oxides, borides or carbon or combinations of these materials that are subsequently coated according to the invention. The plasma activation process also allows for the influence of the binder phase, for example plasma activated nitrogen can form cobalt-nickel nitride or iron nitride, which is not possible with thermally activated nitrogen.

本発明の焼結体は有利に周辺帯域を有し、周辺帯域に移動および/または拡散によりプラズマ活性化ガス相からの物質またはこれから形成される化合物が含まれている。影響される周辺帯域の深さは処理パラメーター、温度、圧力および処理時間の選択によりこの周辺帯域の組織の均一性と同様に1200μmまで制御可能である。   The sintered body according to the invention preferably has a peripheral zone, which contains substances from the plasma activated gas phase or compounds formed therefrom by migration and / or diffusion. The depth of the affected peripheral zone can be controlled to 1200 μm as well as the tissue uniformity of this peripheral zone by selection of processing parameters, temperature, pressure and processing time.

特に周辺帯域ではプラズマ活性化ガス相により付加的に0.2μm以上の粒度の窒化物粒子が含まれている。   Particularly in the peripheral zone, nitride particles having a particle size of 0.2 μm or more are additionally contained due to the plasma activated gas phase.

これらの焼結体を製造するために、硬質金属またはサーメットを粉末冶金学により予め処理し、未加工品に圧縮し、引き続き未加工品が、焼結温度に加熱する間に、焼結の間に、または仕上げ焼結の後に、少なくとも一定の時間、有利に少なくとも10分から100分までの時間にわたり最大で3×10Paの圧力下に完全にまたは部分的にプラズマ活性化ガス相にさらされる方法を使用する。プラズマ活性化はマイクロ波によりまたはグロー放電により形成することができ、その際グロー放電は有利に焼結体をカソードとして接続し、カソードにパルスした直流電圧を印加するパルスした方法を使用して形成される。有利な直流電圧は200〜900Vである、直流電圧はパルス休止では0Vに低下するかまたは残留直流電圧に低下することがあり、残留直流電圧は関係するガス相の最も低いイオン化電位と同じかまたはこれより大きく、しかし最大値はパルスした直流電圧の最大値の50%である。パルス休止中の残留直流電圧が維持される限り、残留直流電圧の最大パルスした直流電圧に対する比は0.02〜0.5である。パルスした直流電圧のサイクル時間は20μsから20msである。パルス長さとパルス休止の比は0.1〜0.6である。 In order to produce these sintered bodies, the hard metal or cermet is pre-treated by powder metallurgy and compressed into a green product, and subsequently during the sintering, the green product is heated to the sintering temperature. Or after finish sintering, the plasma activated gas phase is completely or partially exposed under a pressure of at most 3 × 10 4 Pa for at least a certain time, preferably for a time of at least 10 to 100 minutes Use the method. The plasma activation can be formed by microwave or glow discharge, in which case the glow discharge is advantageously formed using a pulsed method of connecting the sintered body as a cathode and applying a pulsed DC voltage to the cathode. Is done. The advantageous DC voltage is 200-900V, the DC voltage may drop to 0V or to the residual DC voltage during pulse pause, the residual DC voltage being the same as the lowest ionization potential of the gas phase involved or Greater than this, but the maximum value is 50% of the maximum value of the pulsed DC voltage. As long as the residual DC voltage during the pulse pause is maintained, the ratio of the residual DC voltage to the maximum pulsed DC voltage is 0.02 to 0.5. The cycle time of the pulsed DC voltage is 20 μs to 20 ms. The ratio of pulse length to pulse pause is 0.1-0.6.

すでに記載したように、プラズマ活性化ガス相に窒素、炭素、ホウ素、またはプラズマ活性化金属、前記物質の化合物または混合物または前駆物質が含まれていてもよい。   As already mentioned, the plasma activated gas phase may contain nitrogen, carbon, boron, or plasma activated metals, compounds or mixtures or precursors of said substances.

本発明の方法の他の構成により反応性ガスまたは反応性ガス混合物を導入する前に処理物体を特に希ガスおよび/または化学的還元剤、有利に水素からなる不活性ガス雰囲気にさらす。化学的に反応性でない物質、例えばアルゴンは表面の精製に使用し、この後に他の処理工程でプラズマ活性化ガス相を導入し、これにより意図的に表面に近い層への移動および拡散工程が生じる。ガス相に含まれる水素は表面での還元工程の活性化に、特に酸化物堆積の分解に使用する。   Prior to the introduction of the reactive gas or reactive gas mixture according to another configuration of the method of the invention, the treated object is exposed to an inert gas atmosphere, in particular consisting of a noble gas and / or a chemical reducing agent, preferably hydrogen. Non-chemically reactive materials, such as argon, are used for surface purification, followed by the introduction of a plasma activated gas phase in other processing steps, thereby intentionally moving and diffusing to layers close to the surface. Arise. Hydrogen contained in the gas phase is used for activating the reduction process on the surface, in particular for decomposing oxide deposits.

プラズマ活性化ガス相での焼結体の処理のために、有利に900より高く1350℃までの温度を選択する。   For the treatment of the sintered body in the plasma activated gas phase, a temperature of preferably higher than 900 and up to 1350 ° C. is selected.

本発明の他の利点は以下に示される実施例および図面に説明される。   Other advantages of the present invention are illustrated in the examples and figures shown below.

図1〜4は比較試料(それぞれb)と異なりプラズマ活性化ガス相で処理された焼結体(それぞれa)の顕微鏡写真である。   1-4 are photomicrographs of sintered bodies (each a) treated with a plasma activated gas phase, unlike the comparative samples (each b).

実施例1
まず同じ化学的組成を有する(それぞれW40質量%、Ti25.5質量%、Ta9質量%、Nb0.5質量%、C7質量%、N3質量%およびCo15質量%)WC−Ti(C,N)−Coのタイプの2つの焼結した硬質合金体を1350℃の共晶温度より高い温度で、300ミリバールで20分間窒素雰囲気で処理し、その際第1の硬質合金体はプラズマを衝突させるが、第2の焼結体はプラズマを衝突させない。2つの試料においていわゆる濃縮した層が形成され、この層はチタンカルボニトリドの蓄積を示し、同時に試料内部にWC部分が排除された。しかし図1bと比べて図1aから理解できるように、窒素プラズマを衝突させた試料(図1a)での窒素に影響される帯域は、熱のみにさらされ、プラズマ活性化ガス層にさらされない試料の帯域より明らかに大きい。
Example 1
First, WC-Ti (C, N)-having the same chemical composition (W 40% by mass, Ti 25.5% by mass, Ta 9% by mass, Nb 0.5% by mass, C7% by mass, N3% by mass and Co 15% by mass, respectively) Two sintered hard alloy bodies of type Co are treated at a temperature higher than the eutectic temperature of 1350 ° C. at 300 mbar for 20 minutes in a nitrogen atmosphere, with the first hard alloy body impinging on the plasma, The second sintered body does not collide with plasma. A so-called concentrated layer was formed in the two samples, which showed the accumulation of titanium carbonitride and at the same time the WC portion was excluded inside the sample. However, as can be understood from FIG. 1a compared to FIG. 1b, the zone affected by nitrogen in the sample impinged on the nitrogen plasma (FIG. 1a) is exposed only to heat and not exposed to the plasma activated gas layer. Obviously larger than the bandwidth.

実施例2
W60.5質量%、Ti16質量%、Ta5質量%、Nb0.3質量%、C7質量%、N1.2質量%およびCo10質量%の組成の焼結したWC−Ti(C,N)−Co硬質合金体の側面および上側を1350℃の温度で、300ミリバールで窒素プラズマにさらしたが、これに対して下側はこのプラズマにさらさなかった。硬質合金体の上側の顕微鏡写真を示す図2aは図面で明るく示されるWC粒子のない約25μmの厚さのTi(C,N)の多い層が形成されたことが理解できるが、図2bによる下側の顕微鏡写真はここで熱のみで活性化され、攻撃された窒素の影響をほとんど示されない。
Example 2
Sintered WC-Ti (C, N) -Co hard having a composition of W60.5% by mass, Ti16% by mass, Ta5% by mass, Nb0.3% by mass, C7% by mass, N1.2% by mass and Co10% by mass The side and upper side of the alloy body were exposed to a nitrogen plasma at a temperature of 1350 ° C. and 300 mbar, whereas the lower side was not exposed to this plasma. FIG. 2a, which shows a micrograph of the upper side of the hard alloy body, can be understood that a Ti (C, N) -rich layer of about 25 μm thickness without WC particles, which is brightly shown in the drawing, was formed, according to FIG. 2b. The lower micrograph here is activated only by heat and shows little effect of the attacked nitrogen.

実施例3
W40質量%、Ti25.5質量%、Ta9質量%、Nb0.5質量%、C7質量%、N3質量%、およびCo15質量%の組成の2つの焼結した硬質合金体を1250℃の共晶温度より低い温度でN150ミリバールで60分熱処理し、その際第1の硬質合金体はプラズマ活性化窒素で処理し、第2の硬質合金体はガス雰囲気で熱のみで活性化された窒素で処理する。プラズマを衝突した試料は図3aに1200μmの深さまでのWCの明らかな排除を示す。図3aにおいて約20μmの深さまでTi(C,N)の蓄積が認められる。これに対して熱窒素雰囲気のみにさらされる硬質合金体は図3bにより5μmのみの深い周辺帯域の影響を示す。
Example 3
Two sintered hard alloy bodies having a composition of W 40% by mass, Ti 25.5% by mass, Ta 9% by mass, Nb 0.5% by mass, C7% by mass, N3% by mass, and Co15% by mass are obtained at an eutectic temperature of 1250 ° C. Heat treatment at 150 ° C. for 2 minutes at a lower temperature, with the first hard alloy body treated with plasma activated nitrogen and the second hard alloy body with nitrogen activated only by heat in a gas atmosphere Process. The sample bombarded with plasma shows a clear exclusion of WC up to a depth of 1200 μm in FIG. 3a. In FIG. 3a, accumulation of Ti (C, N) is observed up to a depth of about 20 μm. In contrast, a hard alloy body exposed only to a hot nitrogen atmosphere shows the effect of a deep peripheral zone of only 5 μm according to FIG. 3b.

実施例4
W60.5質量%、Ti16質量%、Ta5質量%、Nb0.3質量%、C7質量%、N1.2質量%、およびCo10質量%の組成の2つの焼結した硬質合金体を1250℃の共晶温度より低い温度でN150ミリバールで60分熱処理し、その際再び第1の硬質合金体はプラズマ活性化ガス相で熱処理し、第2の硬質合金体は純粋に熱のみで活性化されたガス相で熱処理する。プラズマを衝突した試料は50μmの厚さの窒化物層およびこの下の減少したWC部分(図4a)を有する約40μmの厚さの帯域を示すが、熱のみで活性化された窒素ガス相にさらされる硬質合金体においては厚さ5μmのみの窒化物層およびこの下にある5μm未満の厚さの帯域を見出すことができる。
Example 4
Two sintered hard alloy bodies having a composition of W 60.5% by mass, Ti 16% by mass, Ta 5% by mass, Nb 0.3% by mass, C7% by mass, N1.2% by mass, and Co 10% by mass were combined at 1250 ° C. The first hard alloy body is again heat treated in the plasma activated gas phase at a temperature lower than the crystallization temperature at 150 mbar of N 2 for 60 minutes, and the second hard alloy body is activated only by heat. Heat treatment in the gas phase The sample bombarded with the plasma shows a band of about 40 μm thickness with a 50 μm thick nitride layer and a reduced WC portion below this (FIG. 4 a), but in a nitrogen gas phase activated only by heat. In the exposed hard alloy body, it is possible to find a nitride layer with a thickness of only 5 μm and an underlying zone with a thickness of less than 5 μm.

前記実施例は、プラズマ活性化ガス相での焼結体の処理により意図的な組織の不均一性を調節することができるおよび/または結合層を形成できることを示し、結合層は硬質合金体の使用特性、例えば刃の付き具合、耐用時間、および切削工程での他の物体に比べて減少した反応特性を改良する。特にパルス法を使用して有利にグロー放電によるプラズマ活性化が形成され、パルス法はアーク放電の形成を回避する。プラズマ活性化は全部の処理時間にわたり維持されなくてよい。ガス圧力は300ミリバールまでの範囲に維持され、この範囲でプラズマ状態を達成することができ、すなわちプラズマが発火し、維持することができる。処理温度もしくはその限界の選択により焼結体内部に存在する他の領域が認識できる熱の影響を受けず、焼結体内部の組織が最初の形で維持され、表面に近い帯域のみが影響を受ける。焼結体の表面またはその反対側の堆積層もしく被覆層の部分的被覆により、そこでプラズマが全く攻撃されないかもしくはいわゆるプラズマの縁が形成されないことが達成される。場合による組織の変形はこの位置でガス雰囲気および設定される処理パラメーターにのみ影響されるが、プラズマに影響されず、プラズマは表面に近い周辺領域でそれに対して異なる組織の変形を取得する。   The above examples show that treatment of the sintered body in the plasma activated gas phase can adjust the intentional tissue non-uniformity and / or form a tie layer, the tie layer being a hard alloy body. Improves usage characteristics, such as blade fit, service life, and reduced response characteristics compared to other objects in the cutting process. In particular, the plasma method is preferably formed by glow discharge using the pulse method, which avoids the formation of arc discharge. Plasma activation may not be maintained over the entire processing time. The gas pressure is maintained in the range up to 300 mbar, in which the plasma state can be achieved, i.e. the plasma can be ignited and maintained. By selecting the processing temperature or its limit, it is not affected by the heat that can be recognized by other regions inside the sintered body, the structure inside the sintered body is maintained in its original form, and only the zone close to the surface is affected. receive. By partial coating of the deposited layer or coating layer on the surface of the sintered body or on the opposite side, it is achieved that no plasma is attacked or so-called plasma edges are not formed. The optional tissue deformation is only affected by the gas atmosphere and the processing parameters set at this location, but is not affected by the plasma, and the plasma acquires a different tissue deformation relative to it in the peripheral region close to the surface.

必要な場合または所望の場合は、プラズマ活性化ガス相下の処理の前に表面を精製する熱処理を続けることができる。選択的にまたは付加的にプラズマ活性化ガス相処理の前に化学的還元剤からなるガス相での処理を行うことができる。   If necessary or desired, heat treatment can be continued to purify the surface prior to treatment under the plasma activated gas phase. Alternatively or additionally, a treatment in the gas phase consisting of a chemical reducing agent can be performed before the plasma activated gas phase treatment.

プラズマの作用により表面に近い周辺帯域でプラズマ活性化なしに形成できない新しい相を形成することができる。従って本発明による方法を使用して表面に近い周辺層で変動した相組成および組織影響のより深い侵入帯域および処理パラメーターの選択により所望の組織不均一性を調節できる。これは、表面の均一に形成される平滑化または粗面化と同様に、後者は例えば所望の被覆に関して、技術水準により公知である匹敵する焼結体に比べて明らかな利点を提供する。   A new phase that cannot be formed without plasma activation can be formed in the peripheral zone near the surface by the action of plasma. Thus, the method according to the present invention can be used to adjust the desired tissue heterogeneity by selection of the phase composition varied in the peripheral layer near the surface and the deeper penetration zone of tissue effects and processing parameters. This provides a clear advantage over comparable sintered bodies known from the state of the art, for example with regard to the desired coating, as well as smoothing or roughening of the surface which is formed uniformly.

例1によりプラズマ処理した焼結体の顕微鏡写真である。2 is a photomicrograph of a sintered body plasma-treated according to Example 1. FIG. 例1によりプラズマ処理しない焼結体の顕微鏡写真である。2 is a photomicrograph of a sintered body not subjected to plasma treatment according to Example 1. FIG. 例2によりプラズマ処理した焼結体の顕微鏡写真である。3 is a micrograph of a sintered body that has been plasma-treated according to Example 2. FIG. 例2によりプラズマ処理しない焼結体の顕微鏡写真である。4 is a photomicrograph of a sintered body not subjected to plasma treatment according to Example 2. 例3によりプラズマ処理した焼結体の顕微鏡写真である。4 is a photomicrograph of a sintered body plasma-treated according to Example 3. 例3によりプラズマ処理しない焼結体の顕微鏡写真である。4 is a micrograph of a sintered body that is not plasma-treated according to Example 3. FIG. 例4によりプラズマ処理した焼結体の顕微鏡写真である。5 is a micrograph of a sintered body that has been plasma-treated according to Example 4. FIG. 例4によりプラズマ処理しない焼結体の顕微鏡写真である。6 is a micrograph of a sintered body that is not plasma-treated according to Example 4. FIG.

Claims (10)

硬質合金、特にCo、Niおよび/またはFe結合剤部分を有するWCをベースとする硬質合金またはサーメット、特に(Ti、W)(C、N)または(Ti、Mo)(C,N)とCo、Niおよび/またはFe結合剤部分とからなる組成物をベースとするサーメットからなる焼結体において、焼結体が、加熱中、焼結中、または仕上げ焼結後に、少なくとも一定の時間、有利に10〜100分の時間にわたり、完全にまたは部分的に3×10Paの最大圧力下でプラズマ活性化ガス相にさらされることを特徴とする焼結体。 Hard alloys, especially hard alloys or cermets based on WC with Co, Ni and / or Fe binder parts, in particular (Ti, W) (C, N) or (Ti, Mo) (C, N) and Co , A sintered body comprising a cermet based on a composition comprising Ni and / or Fe binder parts, wherein the sintered body is advantageously at least for a certain time during heating, during sintering or after finish sintering A sintered body characterized in that it is exposed to the plasma activated gas phase under a maximum pressure of 3 × 10 4 Pa for a period of 10 to 100 minutes. 表面に近い周辺帯域に、移動および/または拡散によりプラズマ活性化ガス相からなる物質またはこれから形成される化合物が含まれている請求項1記載の焼結体。   2. The sintered body according to claim 1, wherein the peripheral zone close to the surface contains a substance comprising a plasma activated gas phase by migration and / or diffusion or a compound formed therefrom. 焼結体が窒素、炭素、ホウ素、金属、これらの化合物または混合物または相当する前駆物質を含有するプラズマ活性化ガス相中で処理される請求項1または2記載の焼結体。   The sintered body according to claim 1 or 2, wherein the sintered body is treated in a plasma activated gas phase containing nitrogen, carbon, boron, metal, a compound or mixture thereof or a corresponding precursor. 焼結体の表面に近い帯域に、0.2μm以上の粒度の窒化物粒子が含まれている請求項1から3までのいずれか1項記載の焼結体。   The sintered body according to any one of claims 1 to 3, wherein nitride particles having a particle size of 0.2 µm or more are contained in a zone near the surface of the sintered body. 表面から焼結体内部に向かって焼結体の組織の勾配を有する請求項1から4までのいずれか1項記載の焼結体。   The sintered body according to any one of claims 1 to 4, wherein the sintered body has a gradient of the structure of the sintered body from the surface toward the inside of the sintered body. 請求項1から5までのいずれか1項記載の硬質合金またはサーメットからなる焼結体の製造方法において、粉末冶金学の方法で予め処理され、未加工品に圧縮した焼結体を、焼結温度に加熱する間、焼結中、または仕上げ焼結後に、少なくとも一定の時間、有利に10〜100分の時間にわたり、完全にまたは部分的に3×10Paの最大圧力下で、有利に900〜1350℃の温度で、プラズマ活性化ガス相にさらすことを特徴とする、焼結体の製造方法。 6. A method for producing a sintered body comprising a hard alloy or cermet according to claim 1, wherein a sintered body that has been pretreated by a powder metallurgy method and compressed into a green product is sintered. During heating to temperature, during sintering or after finish sintering, preferably for a period of at least a certain time, preferably for 10 to 100 minutes, completely or partly under a maximum pressure of 3 × 10 4 Pa The manufacturing method of a sintered compact characterized by exposing to a plasma activated gas phase at the temperature of 900-1350 degreeC. プラズマ活性化を、有利に焼結体をカソードとして接続し、カソードにパルスした直流電圧を印加するパルス法を使用して、マイクロ波またはグロー放電により形成する請求項6記載の方法。   7. A method according to claim 6, wherein the plasma activation is formed by microwave or glow discharge, preferably using a pulse method in which the sintered body is connected as a cathode and a pulsed DC voltage is applied to the cathode. プラズマ活性化ガス相に、窒素、炭素、ホウ素、金属、これらの化合物または混合物が含まれている請求項6または7記載の方法。   The method according to claim 6 or 7, wherein the plasma activated gas phase contains nitrogen, carbon, boron, metal, a compound or a mixture thereof. 反応性ガスまたは反応性ガス混合物を導入する前に、ガス相が不活性ガス、特に希ガスからなりおよび/または化学的還元剤が有利に水素を含有する、請求項6から8までのいずれか1項記載の方法。   Before introducing the reactive gas or reactive gas mixture, the gas phase consists of an inert gas, in particular a noble gas, and / or the chemical reducing agent preferably contains hydrogen. The method according to claim 1. プラズマ活性化ガス相中で処理中に基板焼結体の表面の部分が被覆されている請求項6から9までのいずれか1項記載の方法。   10. A method according to any one of claims 6 to 9, wherein a portion of the surface of the substrate sintered body is coated during processing in the plasma activated gas phase.
JP2006529587A 2003-05-21 2004-04-29 Sintered body and manufacturing method thereof Pending JP2007511665A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10322871A DE10322871A1 (en) 2003-05-21 2003-05-21 Sintered body and process for its production
PCT/DE2004/000901 WO2004108632A1 (en) 2003-05-21 2004-04-29 Sintered part and the method for the production thereof

Publications (1)

Publication Number Publication Date
JP2007511665A true JP2007511665A (en) 2007-05-10

Family

ID=33441065

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006529587A Pending JP2007511665A (en) 2003-05-21 2004-04-29 Sintered body and manufacturing method thereof

Country Status (6)

Country Link
US (1) US20060280639A1 (en)
EP (1) EP1625102A1 (en)
JP (1) JP2007511665A (en)
CN (1) CN100398497C (en)
DE (1) DE10322871A1 (en)
WO (1) WO2004108632A1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110248422A1 (en) * 2008-11-21 2011-10-13 Seco Tools Ab Method for producing cemented carbide or cermet products
CN101974713B (en) * 2010-10-25 2012-11-07 北京科技大学 Method for preparing gradient cemented carbide with beta removal layer
CN103357872A (en) * 2012-06-12 2013-10-23 北京京磁强磁材料有限公司 Sintering technology of NdFeB (neodymium iron boron) magnet
CN102825252B (en) * 2012-08-21 2015-07-29 沈阳化工大学 A kind of powder metallurgy manufactures the method for titanium base medical material
AT515148B1 (en) * 2013-12-12 2016-11-15 Böhler Edelstahl GmbH & Co KG Process for producing articles of iron-cobalt-molybdenum / tungsten-nitrogen alloys
CN103896635B (en) * 2014-03-07 2015-09-02 太原理工大学 The surface alloying process of powdered ceramic material
CN104174846B (en) * 2014-09-10 2017-02-01 太仓派欧技术咨询服务有限公司 Ceramic matrix composite niobium alloy skirt section 3D printing method
US20170067137A1 (en) * 2015-09-07 2017-03-09 Seiko Epson Corporation Titanium sintered body and ornament
CN106270491A (en) * 2016-09-18 2017-01-04 广东工业大学 A kind of cermet particles and preparation method and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
JPH03130364A (en) * 1988-12-10 1991-06-04 Krupp Widia Gmbh Covering of structural base material and its structural product
JPH05302140A (en) * 1992-04-24 1993-11-16 Sumitomo Electric Ind Ltd Cermet alloy and its manufacture
JPH06287674A (en) * 1993-03-31 1994-10-11 Hitachi Metals Ltd Coated cermet alloy
JPH0711375A (en) * 1992-10-26 1995-01-13 Kobe Steel Ltd Cemented carbide, hard carbon film-coated cemented carbide, production of cemented carbide and tool applying the same cemented carbide

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU432371B2 (en) * 1967-07-13 1973-02-06 Commonwealth Scientific And Industrial Research Organization Plasma sintering
US4290807A (en) * 1977-09-20 1981-09-22 Sumitomo Electric Industries, Ltd. Hard alloy and a process for the production of the same
JPS5925902A (en) * 1982-07-31 1984-02-10 Sumitomo Electric Ind Ltd Sintering method
DE3789829T2 (en) * 1986-06-06 1994-09-01 Seiko Instr Inc Rare earth iron magnet and manufacturing process.
US5223337A (en) * 1988-12-10 1993-06-29 Fried. Krupp Gmbh Tool produced by a plasma-activated CVD process
DE4037480A1 (en) * 1990-11-24 1992-05-27 Krupp Widia Gmbh METHOD FOR PRODUCING A COATED CARBIDE CUTTING BODY
US5232522A (en) * 1991-10-17 1993-08-03 The Dow Chemical Company Rapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate
WO1997007260A1 (en) * 1995-08-19 1997-02-27 Widia Gmbh Composite body and process for its production
US6074453A (en) * 1996-10-30 2000-06-13 Iowa State University Research Foundation, Inc. Ultrafine hydrogen storage powders
US6478887B1 (en) * 1998-12-16 2002-11-12 Smith International, Inc. Boronized wear-resistant materials and methods thereof
US6228484B1 (en) * 1999-05-26 2001-05-08 Widia Gmbh Composite body, especially for a cutting tool
CA2348145C (en) * 2001-05-22 2005-04-12 Surface Engineered Products Corporation Protective system for high temperature metal alloys
SE0002770D0 (en) * 2000-07-25 2000-07-25 Biomat System Ab a method of producing a body by adiabatic forming and the body produced
US7442227B2 (en) * 2001-10-09 2008-10-28 Washington Unniversity Tightly agglomerated non-oxide particles and method for producing the same
US20060057016A1 (en) * 2002-05-08 2006-03-16 Devendra Kumar Plasma-assisted sintering

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59229479A (en) * 1983-05-24 1984-12-22 Mitsubishi Metal Corp Production of surface coated sintered hard member for cutting tool
JPH03130364A (en) * 1988-12-10 1991-06-04 Krupp Widia Gmbh Covering of structural base material and its structural product
JPH05302140A (en) * 1992-04-24 1993-11-16 Sumitomo Electric Ind Ltd Cermet alloy and its manufacture
JPH0711375A (en) * 1992-10-26 1995-01-13 Kobe Steel Ltd Cemented carbide, hard carbon film-coated cemented carbide, production of cemented carbide and tool applying the same cemented carbide
JPH06287674A (en) * 1993-03-31 1994-10-11 Hitachi Metals Ltd Coated cermet alloy

Also Published As

Publication number Publication date
CN1842508A (en) 2006-10-04
EP1625102A1 (en) 2006-02-15
CN100398497C (en) 2008-07-02
US20060280639A1 (en) 2006-12-14
DE10322871A1 (en) 2004-12-16
WO2004108632A1 (en) 2004-12-16

Similar Documents

Publication Publication Date Title
JP5622731B2 (en) Method for producing a part comprising a block of cemented carbide type high density material having a characteristic gradient and the resulting part
CA2494366C (en) Electrode for electric discharge surface treatment, method of electric discharge surface treatment, and apparatus for electric discharge surface treatment
Ukhina et al. The influence of morphology and composition of metal–carbide coatings deposited on the diamond surface on the properties of copper–diamond composites
CN1296518C (en) Composite material and method for prodn. thereof
EP1434663A2 (en) Process for the production of sintered porous bodies
JP2007511665A (en) Sintered body and manufacturing method thereof
JP2004100004A (en) Coated cemented carbide and production method therefor
KR101849997B1 (en) Methods for coating surface of iron-based alloy and products with high hardness and low friction manufactured thereby
US6506226B1 (en) Hard metal or cermet body and method for producing the same
JP2005529236A (en) Hard metal support and manufacturing method thereof
JP2009515713A (en) Coated cemented carbide body
JPS6033187B2 (en) Surface hardening treatment method
Liao et al. Structural characteristics of 2024 aluminum alloy plasma-based ion implanted with nitrogen then titanium
JP3260157B2 (en) Method for producing diamond-coated member
JP2539922B2 (en) Diamond coated cemented carbide
Brunatto Surface state change influence’s theoretical approach of pressed iron on hollow cathode discharge characteristics: first results of plasma heating reproducibility for sintering purposes
JPH1112758A (en) Metallic parts coated with cermet sintered compact, and their production
JP2005002457A (en) Compound surface reforming method and compound surface reformed article
JP2000144298A (en) Diamond-containing hard member and its production
Brunatto et al. Plasma Sintering-carburizing of 410 LHC steel in carbon containing atmosphere
JP4123529B2 (en) Ultrafine particle dispersion film
JP4566296B2 (en) Method for producing titanium nitride sintered body
JPH04168276A (en) Diamond-coated cemented carbide tool
TWI338722B (en) Method, apparatus and article of manufacture for depositing composite coating metal diamond like carbon films of nano-diamond powders
SU1646677A1 (en) Of manufacturing sintered products of metal powders

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100617

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100714