JP4123529B2 - Ultrafine particle dispersion film - Google Patents

Ultrafine particle dispersion film Download PDF

Info

Publication number
JP4123529B2
JP4123529B2 JP02360596A JP2360596A JP4123529B2 JP 4123529 B2 JP4123529 B2 JP 4123529B2 JP 02360596 A JP02360596 A JP 02360596A JP 2360596 A JP2360596 A JP 2360596A JP 4123529 B2 JP4123529 B2 JP 4123529B2
Authority
JP
Japan
Prior art keywords
film
particle dispersion
ultrafine
particles
ultrafine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP02360596A
Other languages
Japanese (ja)
Other versions
JPH09217141A (en
Inventor
美紀 入江
明 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP02360596A priority Critical patent/JP4123529B2/en
Publication of JPH09217141A publication Critical patent/JPH09217141A/en
Application granted granted Critical
Publication of JP4123529B2 publication Critical patent/JP4123529B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、切削工具や耐摩工具等の硬質部材の表面に設ける耐摩耗膜、保護膜として好適な超微粒子分散複合膜に関する。
【0002】
【従来の技術】
切削工具等の材料として最も一般的には高速度工具鋼や超硬合金が用いられている。高速度合金鋼は、主としてCr,Mo,W,V,CoおよびCを合金成分として含有し、Feをマトリックスとする合金鋼である。一般的に高速度工具鋼は優れた靱性を有するため、高い信頼性が要求される切削工具の材料として用いられている。その製造方法としては、溶解鋳造法や、アトマイズ粉を熱間静水圧プレス処理(HIP)等によって固める粉末冶金法等が広く用いられている。また、上記のように靱性に優れた高速度工具鋼に耐摩耗性を付加するために、炭化物や窒化物の量を増加させる方法が提案されている。
【0003】
たとえば、特開昭60-2648号公報、特開昭61-179845号公報には、マトリックス中に極めて微細なTiN粒子を分散させた高速度工具鋼と、高速度工具鋼等の合金鋼とが複合された工具材料が示されている。また特開平6-271972号公報には、Ni、Co、Fe等の金属中に、TiN、TiCN等の硬質超微粒子を分散させた材料を切削工具の被覆材料として使用すると、切削加工の高速化による能率向上、靱性アップによる欠けや折損に関する信頼性向上に大きく貢献することができることが示されている。
【0004】
一方、超硬合金は、WC,TiC,TaC,NdC等の炭化物をCoやNiをベースとして焼結した合金である。超硬合金は、原材料としての粉末を混合、プレス、焼結する一連の工程からなる粉末冶金的な手法によって製造されるもので、靱性という面では高速度工具鋼に劣るが、耐摩耗性に優れているため、高速切削においてその特徴を発揮する工具材料となる。
【0005】
【発明が解決しようとする課題】
上述のように、高速度工具鋼は靱性に優れるものの、耐摩耗性が不十分であるため、高速切削に適した工具用材料として用いることは困難である。高速度工具鋼の耐摩耗性を向上させるためには、合金成分を増し、マトリックス中の炭化物の量を増加させることが通常の手段として用いられる。しかしながら、高速度工具鋼の特徴である優れた靱性を維持したままで、耐摩耗性の向上を達成することは容易ではない。
【0006】
すなわち、合金成分を増加させる事により高速度工具鋼中の炭化物の量は増加し、耐摩耗性は上昇する反面、靱性の急激な低下が起こる。特に、溶解鋳造法によって製造される場合には、高速度工具鋼中における炭化物の体積含有率は15%程度であって、また、粉末冶金法によって炭化物の量を多少増加させる事ができるが、体積含有率で30%程度までである。高速度工具鋼粉末に炭化物、窒化物の粉末を混合し、焼結する方法によれば、理論上は任意の量の炭化物、窒化物を含有させることは可能となる。
【0007】
ところが、この場合においても硬質相を増加させるにつれて靱性の低下が起きる。一般的に、粒径が数μmの粉末を用いて混合し、圧縮成形後、焼結すると、これらの炭化物、窒化物等の硬質セラミックの量が増えるにつれて高速度工具鋼の粉末の粒界に炭化物、窒化物が網目状に集合してしまうので、靱性の低下は許容できない程度になる。そこで炭化物、窒化物をサブミクロンオーダーの微粒にすることも考えられるが、このような超微粒子は凝集しやすく、均一に分散させることは容易ではなく、炭化物、窒化物が分散させられた高速度工具鋼の組織を得ることはできない。
【0008】
一方、超硬合金は、高速度工具鋼とは異なり、耐摩耗性は優れているが、十分な靱性を有していない。超硬合金の靱性を向上させる方法として、硬質相の炭化物を微細にする方法が採用されている。しかしながら、この方法にも限界があり、得られる靱性は高速度工具鋼の靱性にははるかに及ばない。この炭化物の量を60体積%程度まで低下させた組成の超硬合金は耐摩耗性が急激に低下し、切削工具の材料として実用に耐えないのである。
【0009】
以上のように、従来の切削工具用材料として用いられる高速度工具鋼および超硬合金は、それぞれ欠点を有し、実用上、それらの欠点を生じさせない条件下でしか使用することができない。そのため、高速度工具鋼または超硬合金の特性を十分発揮することができないという問題点があった。そこで、この発明の目的は、超硬合金の持つ耐摩耗性(高硬度)とともに、靱性を有した超微粒子分散材料を提供することを課題とするものである。
【0010】
【課題を解決するための手段】
前記課題を達成するため、本発明の超微粒子分散膜を被覆した耐摩耗部材は、硬質物質からなる基材の表面に、硬質超微粒子と金属超微粒子から構成され、硬質超微粒子と金属超微粒子の結晶粒径が5nm以下であるような超微粒子分散膜を形成したことを特徴とする。なお、前記超微粒子分散膜は基板である切削工具や耐摩工具の全表面に実施してもまたは切刃部分の表面にのみ実施してもよい。なお、硬質部材に超微粒子分散膜を被覆する方法として、真空アーク放電を利用した間欠成膜法が最も適している。
【0011】
【発明の実施の態様】
本発明による超微粒子分散膜によれば、硬質超微粒子としてのTiN粒子は金属材料のみでは不足する耐摩耗性を高める。TiNは、ビッカース硬度(Hv)で2000kgf/mm2程度であり、一般的な高速度工具鋼の2倍以上の硬さを有する。この硬質のTiN超微粒子と金属(Ni)超微粒子を分散、複合化した膜を形成することによりホールペッチ則(硬度が結晶粒径の平方根に逆比例する法則)から予測される高硬度化あるいはナノサイズ効果による硬度上昇によって耐摩耗性の向上が期待される。
【0012】
また、TiNは鋼との反応性が少なく、切削工具に適用した場合、切削時の凝着摩耗を抑制し、切削面の面粗度を向上させると云われている。この硬質超微粒子としてのTiNを金属例えばNi中に分散させるのに、従来の技術によれば、TiN粒子が大きいため、TiN量が増えると強度の低下が生じていた。そこで、本発明によれば、TiN粒子と金属(Ni)粒子の粒径が各々5nm以下で、かつ両者を均一に分散させて、硬度の低下を軽減させることを可能とした。
【0013】
本発明膜の作成には真空アーク放電を利用した間欠成膜法を用いている。たとえば、TiNとNiから構成される材料では真空アーク放電によりTiとNiを別々に蒸発させ、真空槽内に窒素ガスを導入することにより、基板表面にTiNとNiの複合膜を作成させることができる。しかしながら、従来の成膜方法は図2に示すようにTi陰極5とNi陰極4の2つの陰極から生成されたプラズマ(蒸気)を基板8上に連続的に照射し蒸着していた。図2の中の記号1は真空チャンバー、2はプラズマガイドノズル、3は放電用電源、7は基板ホルダ、9は磁場コイルを示している。
【0014】
このような場合には、TiN粒子とNi粒子が均一に分散するよりもTiN粒子同士あるいはNi粒子同士が凝集し、連結した構造をとる方が膜構造全体の粒界エネルギー(界面エネルギー)が小さくなり(異相界面を持つよりも同相界面を持つ方がエネルギーが小さくなり)、より安定な構造となると考えられる。実際、この成膜方法で作製したTiN-Ni超微粒子分散膜においては透過電子顕微鏡による観察からは10nm程度の粒径のTiNとNi粒子同士が凝集、連結した構造になっている。このため、期待とおりの硬度あるいは靱性の向上は困難であった。
【0015】
そこで、我々は超微粒子の粒径を5nm以下にし、かつ均一な分散を実現するために、金属陰極から生成されプラズマ中でイオン化された金属イオンを間欠(パルス)的に照射する成膜方法を見いだした。その成膜方法は、例えばTiNとNiの超微粒子分散膜の作製では、TiとNiの原料ターゲットである金属陰極から生成したプラズマを交互に基板照射することを特徴とする方法である。照射時間はTiNおよびNiが堆積しないような時間を設定する。すなわち、1回のパルスでの照射時間は、TiNおよびNiは基板上に島状(クラスタ状)で堆積して冷却固化するために、TiN超微粒子同士あるいはNi超微粒子同士が凝集したり連結するには至らない時間とした。
【0016】
【実施例】
真空アーク放電を利用した間欠(パルス)成膜によるTiN-Ni超微粒子分散膜の試作を行った。本発明の成膜装置を図1に示す。プラズマガイドノズル2にプラズマガイド磁場コイル6を配置し、このコイル6に電流を流すことで、ノズル2内に磁界を生じさせる。電源3からのアーク放電により金属である原料ターゲットすなわち本例ではTi陰極5とNi陰極4から発生した粒子の中で、イオン化超微粒子のみが、この磁場に導かれてチャンバー1内に放出される。その他の粒子は、ノズル2内に付着する。
【0017】
湾曲したプラズマガイドノズルの4ケ所に設置されたプラズマガイド磁場コイル6の電流をOFFにすることで、ノズル内の磁場が消失し、アーク放電により原料ターゲットから発生した粒子のすべてがノズル内に付着し、基板7に到達できない。すなわち、原料ターゲットと基板とが角度(ほぼ直角)を持って設置されており、湾曲した磁場の存在のためにターゲットから放出されプラズマとなった粒子中のイオン化超微粒子のみが、プラズマコイル中の磁界に沿って取り出され、基板ホルダ上に取り付けている基板に成膜する。
【0018】
主に基板に成膜されることとなる。この場合はプラズマガイド磁場コイルの電流をON/OFFすることにより間欠(パルス)照射を実現した。真空チャンバー内を10-5Torrの真空にして、次に窒素ガスを導入し5×10-4Torrの圧力になるようにしたものであって、その間欠(パルス)成膜条件を表1に示す。
【0019】
【表1】

Figure 0004123529
【0020】
基板として、組成がJIS規格P30,形状がJIS SNG432の超硬合金製チップを用意し、その表面に真空アーク放電による間欠(パルス)成膜法を用いて表2に示す超微粒子分散膜を形成し、試料1〜4(本発明品1〜4)を得た。また、比較のためにTiNとNiを用いて従来の焼結法(焼結温度1500℃)で作製した試料5と6及び従来材の超硬合金と高速度工具鋼の試料7と8も用意した。試料5はTiN60%のものに関して、焼結中の結合金属の液相体積が過大なため焼結支持台と反応し、組成変動や変形のような焼結欠陥を生じ、特性の測定は出来なかった。各試料の硬度等の測定値を表2に併せて示している。
【0021】
【表2】
Figure 0004123529
【0022】
硬度測定はヌープ硬度(荷重100gf)、靱性値はビッカース圧子(荷重1Kgf)による圧痕からの亀裂による評価を行った。又、材料の組成は、エネルギー分散型X線分光(EDX)分析により測定した。組成のTiN以外はNiであった。粒径は本発明品1〜4(試料No.1〜4)では透過電子顕微鏡で超硬合金製チップ上に形成された膜微細組織を観察することで、直接的に粒径を観測した。比較材2については、X線回折ピークの半価幅から粒径を求めた。
【0023】
表2の結果から、真空アーク放電を利用した間欠(パルス)成膜法により、硬質材料と金属材料の粒径を5nm以下にすることが可能とした。なお、透過電子顕微鏡で粒径0.5nm程度の粒子が確認できたので本成膜の粒径は0.5nm以上で5nm以下である。超微粒子を高分散させることで、耐摩耗性(高硬度)とともに、靱性を有した膜を提供することができる。このような膜は、高硬度化等の機械的特性に優れた特性を有する。
【0024】
このような超微粒子分散膜は、本実施例で示したプロセス以外に真空蒸着、スパッタリング法等でも間欠(パルス)的に基板上に照射することにより作製することが不可能ではないが、本願による成膜方法が超微粒子分散膜を作製するのに好適である。また、本願による成膜方法は、機械的特性以外の光学、電気、磁気的性質に優れた膜の作製にも有用である。
【0025】
【発明の効果】
以上のように本発明の超微粒子分散膜を用いれば優れた機械的特性を有する膜が開発できる。また、成膜手法としては真空アーク放電を利用した間欠(パルス)成膜法が最も適している。
【図面の簡単な説明】
【図1】本発明の間欠成膜による方法を示す図である。
【図2】従来の成膜方法を示す図である。
【符号の説明】
1:真空チャンバー
2:プラズマガイドノズル
3:放電用電源
4:Ni陰極
5:Ti陰極
6:プラズマガイド磁場コイル
7:基板ホルダ
8:基板
9:磁場コイル[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an ultrafine particle-dispersed composite film suitable as a wear-resistant film and a protective film provided on the surface of a hard member such as a cutting tool or an abrasion-resistant tool.
[0002]
[Prior art]
High-speed tool steel and cemented carbide are most commonly used as materials for cutting tools and the like. The high speed alloy steel is an alloy steel mainly containing Cr, Mo, W, V, Co and C as alloy components and Fe as a matrix. In general, high-speed tool steel has excellent toughness and is therefore used as a material for cutting tools that require high reliability. As its production method, a melt casting method, a powder metallurgy method in which atomized powder is hardened by hot isostatic pressing (HIP) or the like are widely used. Further, in order to add wear resistance to the high-speed tool steel having excellent toughness as described above, a method of increasing the amount of carbide or nitride has been proposed.
[0003]
For example, JP-A-60-2648 and JP-A-61-179845 disclose a high-speed tool steel in which extremely fine TiN particles are dispersed in a matrix and an alloy steel such as a high-speed tool steel. A composite tool material is shown. In addition, in JP-A-6-271972, when a material in which hard ultrafine particles such as TiN and TiCN are dispersed in a metal such as Ni, Co, and Fe is used as a coating material for a cutting tool, the cutting speed is increased. It has been shown that it can greatly contribute to the improvement of efficiency due to the improvement of the reliability of cracks and breakage due to the improvement of toughness.
[0004]
On the other hand, cemented carbide is an alloy obtained by sintering carbides such as WC, TiC, TaC, and NdC based on Co and Ni. Cemented carbide is manufactured by a powder metallurgical method consisting of a series of processes that mix, press, and sinter powders as raw materials. It is inferior to high-speed tool steel in terms of toughness, but it has high wear resistance. Since it is excellent, it becomes a tool material that exhibits its characteristics in high-speed cutting.
[0005]
[Problems to be solved by the invention]
As described above, although high-speed tool steel is excellent in toughness, it is difficult to use it as a tool material suitable for high-speed cutting because of insufficient wear resistance. In order to improve the wear resistance of the high-speed tool steel, increasing the alloy components and increasing the amount of carbides in the matrix are usually used. However, it is not easy to achieve improved wear resistance while maintaining the excellent toughness characteristic of high-speed tool steel.
[0006]
That is, by increasing the alloy component, the amount of carbide in the high-speed tool steel increases, and the wear resistance increases, but the toughness rapidly decreases. In particular, when manufactured by the melt casting method, the volume content of carbide in the high-speed tool steel is about 15%, and the amount of carbide can be increased somewhat by powder metallurgy, The volume content is up to about 30%. According to the method of mixing carbide and nitride powder with high-speed tool steel powder and sintering, it is theoretically possible to contain any amount of carbide and nitride.
[0007]
However, even in this case, as the hard phase increases, the toughness decreases. Generally, when powders with a particle size of several μm are mixed, compression molded, and sintered, as the amount of these hard ceramics such as carbides and nitrides increases, the grain boundaries of high-speed tool steel powders increase. Since carbides and nitrides gather in a network, the reduction in toughness is unacceptable. Therefore, it is conceivable to make carbide and nitride fine particles on the order of submicrons. However, such ultrafine particles tend to aggregate and are not easy to uniformly disperse, and the high speed at which carbide and nitride are dispersed. The tool steel structure cannot be obtained.
[0008]
On the other hand, unlike the high-speed tool steel, the cemented carbide has excellent wear resistance but does not have sufficient toughness. As a method of improving the toughness of the cemented carbide, a method of making the hard phase carbide fine is adopted. However, this method also has limitations, and the toughness obtained is far below that of high speed tool steel. A cemented carbide having a composition in which the amount of carbide is reduced to about 60% by volume has a sharp decrease in wear resistance and cannot be practically used as a material for a cutting tool.
[0009]
As described above, the high-speed tool steel and cemented carbide used as conventional cutting tool materials have their respective defects, and can be used only under conditions that do not cause such defects in practice. Therefore, there has been a problem that the characteristics of the high-speed tool steel or the cemented carbide cannot be sufficiently exhibited. Therefore, an object of the present invention is to provide an ultrafine particle dispersed material having toughness as well as wear resistance (high hardness) of a cemented carbide.
[0010]
[Means for Solving the Problems]
In order to achieve the above object, the wear-resistant member coated with the ultrafine particle dispersion film of the present invention is composed of a hard ultrafine particle and a metal ultrafine particle on the surface of a substrate made of a hard substance, and the hard ultrafine particle and the metal ultrafine particle are formed. An ultrafine particle dispersion film having a crystal grain size of 5 nm or less is formed. The ultrafine particle dispersion film may be formed on the entire surface of the cutting tool or wear-resistant tool as the substrate or only on the surface of the cutting edge portion. As a method for coating the hard member with the ultrafine particle dispersion film, an intermittent film formation method using vacuum arc discharge is most suitable.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
According to the ultrafine particle dispersion film according to the present invention, TiN particles as hard ultrafine particles enhance wear resistance that is insufficient only with a metal material. TiN has a Vickers hardness (Hv) of about 2000 kgf / mm 2 and has a hardness twice or more that of a general high-speed tool steel. By forming a film in which these hard TiN ultrafine particles and metal (Ni) ultrafine particles are dispersed and combined, the hardness is increased or nanoscopically predicted from the Hall Petch rule (the law whose hardness is inversely proportional to the square root of the crystal grain size). Improvement in wear resistance is expected due to the increase in hardness due to the size effect.
[0012]
Further, TiN has little reactivity with steel, and when applied to a cutting tool, TiN is said to suppress adhesive wear during cutting and improve the surface roughness of the cutting surface. In order to disperse TiN as the hard ultrafine particles in a metal such as Ni, according to the conventional technique, since the TiN particles are large, the strength is lowered when the amount of TiN increases. Therefore, according to the present invention, the TiN particles and the metal (Ni) particles each have a particle size of 5 nm or less, and both can be uniformly dispersed to reduce the decrease in hardness.
[0013]
For the production of the film of the present invention, an intermittent film formation method using vacuum arc discharge is used. For example, in a material composed of TiN and Ni, Ti and Ni are vaporized separately by vacuum arc discharge, and nitrogen gas is introduced into the vacuum chamber to create a composite film of TiN and Ni on the substrate surface. it can. However, in the conventional film forming method, as shown in FIG. 2, plasma (vapor) generated from two cathodes of the Ti cathode 5 and the Ni cathode 4 is continuously irradiated onto the substrate 8 for vapor deposition. In FIG. 2, symbol 1 is a vacuum chamber, 2 is a plasma guide nozzle, 3 is a power source for discharge, 7 is a substrate holder, and 9 is a magnetic field coil.
[0014]
In such a case, the grain boundary energy (interface energy) of the whole film structure is smaller when TiN particles or Ni particles are aggregated and connected to each other than when TiN particles and Ni particles are uniformly dispersed. (It is considered that having an in-phase interface has less energy than having a hetero-phase interface), and a more stable structure is considered. In fact, the TiN—Ni ultrafine particle dispersion film produced by this film forming method has a structure in which TiN and Ni particles having a particle diameter of about 10 nm are aggregated and connected by observation with a transmission electron microscope. For this reason, it was difficult to improve the hardness or toughness as expected.
[0015]
Therefore, in order to reduce the particle size of ultrafine particles to 5 nm or less and to achieve uniform dispersion, we have developed a film-forming method in which metal ions generated from a metal cathode are intermittently (pulsed) irradiated in plasma. I found it. The film formation method is characterized in that, for example, in the production of an ultrafine particle dispersion film of TiN and Ni, plasma generated from a metal cathode that is a raw material target of Ti and Ni is alternately irradiated onto the substrate. The irradiation time is set so that TiN and Ni are not deposited. In other words, the irradiation time in one pulse is that TiN and Ni are deposited in islands (clusters) on the substrate and solidify by cooling, so that TiN ultrafine particles or Ni ultrafine particles are aggregated or connected. The time was not reached.
[0016]
【Example】
A TiN-Ni ultrafine particle dispersion film was fabricated by intermittent (pulse) film formation using vacuum arc discharge. A film forming apparatus of the present invention is shown in FIG. A plasma guide magnetic field coil 6 is disposed in the plasma guide nozzle 2, and a magnetic field is generated in the nozzle 2 by passing a current through the coil 6. Only the ionized ultrafine particles among the particles generated from the Ti cathode 5 and the Ni cathode 4 in this example by the arc discharge from the power source 3 are led into this chamber 1 and released into the chamber 1. . Other particles adhere to the nozzle 2.
[0017]
By turning off the current of the plasma guide magnetic coil 6 installed at four locations of the curved plasma guide nozzle, the magnetic field in the nozzle disappears and all the particles generated from the raw material target by arc discharge adhere to the nozzle. However, the substrate 7 cannot be reached. That is, the raw material target and the substrate are installed at an angle (almost right angle), and only the ionized ultrafine particles in the particles that are emitted from the target and become plasma due to the presence of the curved magnetic field are contained in the plasma coil. A film is taken out along the magnetic field and deposited on the substrate mounted on the substrate holder.
[0018]
The film is mainly formed on the substrate. In this case, intermittent (pulse) irradiation was realized by turning on / off the current of the plasma guide magnetic field coil. The vacuum chamber was evacuated to 10 -5 Torr, then nitrogen gas was introduced to a pressure of 5 × 10 -4 Torr. Table 1 shows the intermittent (pulse) film formation conditions. Show.
[0019]
[Table 1]
Figure 0004123529
[0020]
As the substrate, a chip made of cemented carbide with composition JIS standard P30 and shape JIS SNG432 is prepared, and the ultrafine particle dispersion film shown in Table 2 is formed on the surface using intermittent (pulse) film formation method by vacuum arc discharge. Samples 1 to 4 (Invention products 1 to 4) were obtained. For comparison, Samples 5 and 6 made by conventional sintering method (sintering temperature 1500 ° C) using TiN and Ni and Samples 7 and 8 of conventional cemented carbide and high-speed tool steel are also available. did. Sample 5 is 60% TiN, and the liquid phase volume of the bonding metal during sintering reacts with the sintering support base, causing sintering defects such as composition fluctuations and deformation, and the characteristics cannot be measured. It was. Table 2 also shows measured values such as hardness of each sample.
[0021]
[Table 2]
Figure 0004123529
[0022]
The hardness was evaluated by Knoop hardness (load 100 gf), and the toughness value was evaluated by cracks from indentations with a Vickers indenter (load 1 kgf). The composition of the material was measured by energy dispersive X-ray spectroscopy (EDX) analysis. Except for TiN, the composition was Ni. In the products 1 to 4 of the present invention (samples Nos. 1 to 4), the particle size was directly observed by observing the film microstructure formed on the cemented carbide chip with a transmission electron microscope. For Comparative Material 2, the particle size was determined from the half width of the X-ray diffraction peak.
[0023]
From the results shown in Table 2, the particle diameters of the hard material and the metal material can be reduced to 5 nm or less by an intermittent (pulse) film forming method using vacuum arc discharge. Since particles having a particle size of about 0.5 nm were confirmed with a transmission electron microscope, the particle size of this film formation was 0.5 nm or more and 5 nm or less. Highly dispersed ultrafine particles can provide a film having wear resistance (high hardness) and toughness. Such a film has excellent mechanical properties such as increased hardness.
[0024]
Such an ultrafine particle-dispersed film cannot be produced by irradiating the substrate intermittently (pulsed) by vacuum deposition, sputtering, or the like other than the process shown in this embodiment. The film forming method is suitable for producing an ultrafine particle dispersed film. In addition, the film forming method according to the present application is also useful for producing a film having excellent optical, electrical, and magnetic properties other than mechanical properties.
[0025]
【The invention's effect】
As described above, if the ultrafine particle dispersion film of the present invention is used, a film having excellent mechanical properties can be developed. As a film forming method, an intermittent (pulse) film forming method using vacuum arc discharge is most suitable.
[Brief description of the drawings]
FIG. 1 is a diagram showing a method of intermittent film formation according to the present invention.
FIG. 2 is a diagram showing a conventional film forming method.
[Explanation of symbols]
1: Vacuum chamber 2: Plasma guide nozzle 3: Power supply for discharge 4: Ni cathode 5: Ti cathode 6: Plasma guide magnetic field coil 7: Substrate holder 8: Substrate 9: Magnetic field coil

Claims (3)

硬質超微粒子と金属超微粒子から構成され、それぞれの結晶粒径が0.5nm以上で5nm以下であることを特徴とする超微粒子分散膜であり、該膜は真空アーク放電を利用した間欠成膜法で作られていることを特徴とする超微粒子分散膜。 An ultrafine particle dispersion film comprising hard ultrafine particles and metal ultrafine particles, each having a crystal grain size of 0.5 nm or more and 5 nm or less . The film is intermittently formed using vacuum arc discharge. Ultra fine particle dispersion film characterized by being made by the method. 硬質超微粒子が窒化チタンであり、金属超微粒子がニッケルから構成される請求項1記載の超微粒子分散膜。  The ultrafine particle dispersion film according to claim 1, wherein the hard ultrafine particles are titanium nitride and the metal ultrafine particles are composed of nickel. 請求項1または2に示す超微粒子分散膜が、磁場を利用してイオン化超微粒子のみを選択的に基板に到達せしめることを特徴とする真空アーク放電を利用した間欠成膜法で作られていることを特徴とする超微粒子分散膜。 The ultrafine particle dispersion film according to claim 1 or 2 is made by an intermittent film formation method using vacuum arc discharge, wherein only ionized ultrafine particles are selectively allowed to reach a substrate using a magnetic field . An ultrafine particle dispersion film.
JP02360596A 1996-02-09 1996-02-09 Ultrafine particle dispersion film Expired - Fee Related JP4123529B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP02360596A JP4123529B2 (en) 1996-02-09 1996-02-09 Ultrafine particle dispersion film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP02360596A JP4123529B2 (en) 1996-02-09 1996-02-09 Ultrafine particle dispersion film

Publications (2)

Publication Number Publication Date
JPH09217141A JPH09217141A (en) 1997-08-19
JP4123529B2 true JP4123529B2 (en) 2008-07-23

Family

ID=12115247

Family Applications (1)

Application Number Title Priority Date Filing Date
JP02360596A Expired - Fee Related JP4123529B2 (en) 1996-02-09 1996-02-09 Ultrafine particle dispersion film

Country Status (1)

Country Link
JP (1) JP4123529B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4438326B2 (en) * 2003-06-13 2010-03-24 日新電機株式会社 Deflection magnetic field type vacuum arc deposition system

Also Published As

Publication number Publication date
JPH09217141A (en) 1997-08-19

Similar Documents

Publication Publication Date Title
JP3637883B2 (en) Surface coated boron nitride sintered body tool
KR20050026525A (en) Electrode for electric discharge surface treatment, electric discharge surface treatment method and electric discharge surface treatment apparatus
JP2019509399A (en) Method for producing a hard material layer on a substrate, hard material layer, cutting tool and coating source
EP2816138A1 (en) Cermet film, coated metal body having cermet film, method for producing cermet film, and method for producing coated metal body
Li et al. Structures and properties of TiAlCrN coatings deposited on Ti (C, N)-based cermets with various WC contents
Oskolkova et al. Surface hardening of hard tungsten-carbide alloys: A review
JP4375691B2 (en) Composite high hardness material
JPH08134635A (en) Aluminum-titanium alloy target materia for dry-process vapor deposition
JP4123529B2 (en) Ultrafine particle dispersion film
JPH03115571A (en) Diamond-coated sintered alloy excellent in adhesive strength and its production
JP4281666B2 (en) Surface coated cemented carbide mold with excellent wear resistance of lubricated amorphous carbon coating in high speed press forming of metal powder
WO2018141963A1 (en) Method for coating superhard particles and using the particles for fabricating a composite material
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2008284637A (en) Coated cutting tool
JP2003183761A (en) Tool material for fine working
JP2000336451A (en) Modified sintered alloy, coated sintered alloy, and their production
JP2008030158A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy
JP3260157B2 (en) Method for producing diamond-coated member
JPH0222453A (en) Surface-treated tungsten carbide-base sintered hard alloy for cutting tool
JP2006255793A (en) End mill for cutting heat-resisting alloy
JPH116056A (en) Target containing intermetallic compound, and manufacture of hard covered member using it
CN116372206B (en) Nanometer coating for cutter and coated cutter
JP3092887B2 (en) Surface-finished sintered alloy and method for producing the same
JP3729463B2 (en) Tough cemented carbide and coated cemented carbide for milling
JP2002254229A (en) Drill made of surface-coated cemented carbide and excellent in wear resistance in high speed cutting

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060919

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080415

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080428

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees