JP2008173756A - Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy - Google Patents

Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy Download PDF

Info

Publication number
JP2008173756A
JP2008173756A JP2007012047A JP2007012047A JP2008173756A JP 2008173756 A JP2008173756 A JP 2008173756A JP 2007012047 A JP2007012047 A JP 2007012047A JP 2007012047 A JP2007012047 A JP 2007012047A JP 2008173756 A JP2008173756 A JP 2008173756A
Authority
JP
Japan
Prior art keywords
layer
component
highest
content
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2007012047A
Other languages
Japanese (ja)
Inventor
Kazunori Sato
和則 佐藤
Tsutomu Ogami
強 大上
Satoyuki Masuno
智行 益野
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2007012047A priority Critical patent/JP2008173756A/en
Publication of JP2008173756A publication Critical patent/JP2008173756A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having a hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of a heat resistant alloy. <P>SOLUTION: The surface-coated cutting tool has a tool substrate made of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet, and the hard coating layer applied to a surface of the tool substrate. The hard coating layer comprises a composite nitride layer composed of Cr, Al, and Si, vapor-deposited by arc ion plating, as a lower layer, and a composite nitride layer composed of Cr, Al, Si, Mo, and S, simultaneously vapor-deposited by arc ion plating and sputtering, as an upper layer. The upper layer is formed of a composition variable layer comprising (Al, Cr, Si, Mo, S)N having a mean layer thickness of 1 to 8 μm, in which a maximum point of Al-Cr-Si content and a maximum point of Mo-S content exist alternately repeatedly along a layer thickness direction at intervals of 0.03 to 0.1 μm. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

この発明は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴い、かつ、切刃に大きな負荷がかかる高速重切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention is hard even when cutting heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys under high-speed heavy cutting conditions that involve high heat generation and a heavy load on the cutting blade. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

被覆工具の一つとして、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、硬質被覆層として、AlとCrとSiの窒化物[以下、(Al,Cr,Si)Nで示す]層を物理蒸着してなる被覆工具が知られており、そして、前記被覆工具の硬質被覆層は、すぐれた高温硬さ、耐熱性および高温強度を有し、通常の条件下で、各種の一般鋼や普通鋳鉄などの切削に用いた場合には、すぐれた切削性能を発揮することが知られている。
特開2004−106183号公報
As one of the coated tools, the surface of a tool base composed of a tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet is coated with Al as a hard coating layer. Coated tools formed by physical vapor deposition of a nitride layer of Cr and Si [hereinafter referred to as (Al, Cr, Si) N] are known, and the hard coated layer of the coated tool has excellent high-temperature hardness. In addition, it has heat resistance and high temperature strength, and is known to exhibit excellent cutting performance when used for cutting various general steels and ordinary cast irons under normal conditions.
JP 2004-106183 A

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴って切削加工は一段と高速化する傾向にあるが、上記の従来被覆工具においては、これを通常条件での切削加工に用いた場合には問題はないが、これをTi基合金、Ni基合金、Co基合金等の耐熱合金の特に高い発熱を伴うとともに切刃に対し大きな負荷がかかる高速重切削に用いた場合には、硬質被覆層の潤滑性不足、溶着発生等により、チッピングの発生を抑えることができず、また、摩耗進行も促進されるため、比較的短時間で使用寿命に至るのが現状である。   In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there has been a strong demand for labor saving and energy saving and further cost reduction for cutting processing, and along with this, cutting processing tends to be further accelerated. In the case of a coated tool, there is no problem when it is used for cutting under normal conditions, but this is accompanied by a particularly high heat generation of a heat-resistant alloy such as a Ti-base alloy, Ni-base alloy, Co-base alloy and the like, and a cutting blade. When used for high-speed heavy cutting that requires a large load, chipping cannot be suppressed due to insufficient lubricity of the hard coating layer, welding, etc., and the progress of wear is also promoted. At present, the service life is reached in a short time.

そこで、本発明者等は、上述のような観点から、特に耐熱合金の高速重切削加工で、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する被覆工具を開発すべく、上記の従来被覆工具に着目し、研究を行った結果、
(イ)例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造の(Al,Cr,Si)N蒸着用アークイオンプレーティング(AIP)装置とMo−S蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、装置中央部に工具基体(例えば、超硬基体)装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に、所定組成のAl−Cr−Si合金からなるカソード電極(蒸発源)を備えた(Al,Cr,Si)N蒸着用アークイオンプレーティング装置、他方側に、MoSターゲット(蒸発源)を備えたMo−S蒸着用マグネトロンスパッタリング装置を対向配設し、また工具基体装着用回転テーブル上に、これの中心軸から半径方向に所定距離離れた位置に複数の工具基体をリング状に装着し、この状態で装置内雰囲気を窒素雰囲気として、前記回転テーブルを回転させると共に、形成される硬質被覆層の層厚均一化を図る目的で工具基体自体も自転させながら、まず、前記の(Al,Cr,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Si合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させ、工具基体表面に所定層厚かつ均一組成のAlとCrとSiの窒化物層(以下、(Al,Cr,Si)N層で示す)からなる下部層を蒸着形成し、ついで、(Al,Cr,Si)N蒸着用アークイオンプレーティング装置のAl−Cr−Si合金からなるカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させながら、それと同時に、対向配設したMo−S蒸着用マグネトロンスパッタリング装置のMoSターゲット(蒸発源)にパルス電圧を印加しMoSをスパッタすると、アークイオンプレーティングとスパッタリングによって、前記(Al,Cr,Si)N層からなる下部層表面に、AlとCrとSiとMoとSの窒化物層(以下、(Al,Cr,Si,Mo,S)N層で示す)からなる上部層が蒸着形成され、そして、上記上部層は、回転テーブル上に配置された工具基体が、上記一方側のAl−Cr−Si合金のカソード電極(蒸発源)に最も接近した位置で、相対的に、蒸着層中のAl、Cr、Siの含有割合が最大となって、Mo、Sの含有割合が最小となる領域(以下、Al−Cr−Si最高含有点という)が形成され、また、前記工具基体が、上記他方側のMoSターゲット(蒸発源)に最も接近した位置で、相対的に、蒸着層中のMoとSの含有割合が最大となって、Al、Cr、Siの含有割合が最小となる領域(以下、Mo−S最高含有点という)が形成され、上記回転テーブルの回転によって上部層中には層厚方向に沿って、前記Al−Cr−Si最高含有点とMo−S最高含有点が回転テーブルの回転速度に応じた所定間隔をもって交互に繰り返し現れると共に、前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へ、Al、Cr、Si、Mo、Sの含有量がそれぞれ連続的に変化する成分濃度分布構造の蒸着層(以下、組成変化(Al,Cr,Si,Mo,S)N層という)が形成されること。
In view of the above, the present inventors have developed the above-described coated tool that exhibits excellent chipping resistance and wear resistance with a hard coating layer particularly in high-speed heavy cutting of a heat-resistant alloy. As a result of conducting research focusing on conventional coated tools,
(B) For example, an (Al, Cr, Si) N deposition arc ion plating (AIP) apparatus and a Mo-S structure shown in FIG. 1 (a) are schematic plan views and FIG. Using a vapor deposition apparatus provided with a magnetron sputtering (SP) apparatus for vapor deposition, a rotary table for mounting a tool substrate (for example, a carbide substrate) is provided at the center of the apparatus, and a predetermined composition is formed on one side of the rotary table. Al-Cr-Si of an alloy cathode (evaporation source) with a (Al, Cr, Si) N deposition arc ion plating apparatus, on the other side, MoS having a MoS 2 target (evaporation source) A magnetron sputtering apparatus for vapor deposition is arranged opposite to each other, and a plurality of tool bases are mounted in a ring shape on the rotary table for mounting the tool base at a predetermined distance from the central axis in the radial direction. In this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the tool base itself is rotated for the purpose of uniformizing the thickness of the hard coating layer to be formed. Arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode made of an Al—Cr—Si alloy of an arc ion plating apparatus for Al, Cr, Si) N deposition, and a predetermined layer thickness is formed on the surface of the tool base. A lower layer composed of a nitride layer of uniform Al, Cr, and Si (hereinafter referred to as an (Al, Cr, Si) N layer) is formed by evaporation, and then (Al, Cr, Si) N evaporation arc ions are formed. While generating arc discharge between the cathode electrode (evaporation source) and the anode electrode made of an Al—Cr—Si alloy of the plating apparatus, at the same time, the Mo-S deposition mug disposed oppositely. When sputtered MoS 2 target (evaporation source) a pulse voltage is applied to the MoS 2 Tron sputtering apparatus, by arc ion plating and sputtering, in the (Al, Cr, Si) consisting of N layer lower layer surface, and Al An upper layer composed of a nitride layer of Cr, Si, Mo and S (hereinafter referred to as (Al, Cr, Si, Mo, S) N layer) is formed by vapor deposition, and the upper layer is formed on a turntable. In the position where the arranged tool base is closest to the cathode electrode (evaporation source) of the Al-Cr-Si alloy on one side, the content ratio of Al, Cr, Si in the deposited layer is relatively maximum. is to, Mo, area proportion of S is minimized (hereinafter, Al-Cr-Si of up containing points) is formed, also, the tool base body, the other side of the MoS 2 target (evaporation The region where the content ratio of Mo and S in the vapor deposition layer is relatively maximum and the content ratio of Al, Cr, Si is minimum (hereinafter referred to as the highest Mo-S content) And the highest Al-Cr-Si content point and the highest Mo-S content point according to the rotational speed of the rotary table along the layer thickness direction in the upper layer by the rotation of the rotary table. Appear alternately and repeatedly at a predetermined interval, from the Al-Cr-Si highest content point to the Mo-S highest content point, from the Mo-S highest content point to the Al-Cr-Si highest content point, Al, Cr, A vapor deposition layer having a component concentration distribution structure (hereinafter referred to as composition change (Al, Cr, Si, Mo, S) N layer) in which the contents of Si, Mo, and S continuously change is formed.

(ロ)上記組成変化(Al,Cr,Si,Mo,S)N層からなる硬質被覆層の上部層において、そのAl成分は高温硬さ、耐熱性および耐酸化性を向上させ、Cr成分は高温強度を向上させ、Si成分は一段と耐熱性を向上させ、また、Mo成分およびS成分は、上部層中でその多くがMoSの形態で存在し、被削材切粉との潤滑性を高める作用があり、したがって相対的にAl,Cr,Siの含有割合が高いAl−Cr−Si最高含有点では、上記組成変化(Al,Cr,Si,Mo,S)N層からなる硬質被覆層はすぐれた高温硬さ、耐熱性、耐酸化性、高温強度を有するが、その反面、被削材切粉との潤滑性は十分でないため、耐熱合金の高速重切削条件下では溶着、偏摩耗、チッピングを生じやすいことから、上記組成変化(Al,Cr,Si,Mo,S)N層のAl−Cr−Si最高含有点における潤滑性不足を補う目的で、すぐれた潤滑性を備えたMo−S最高含有点を厚さ方向に交互に介在させることによって、上記組成変化(Al,Cr,Si,Mo,S)N層からなる硬質被覆層全体として、すぐれた高温硬さ、耐熱性、耐酸化性、高温強度おうおび潤滑性を具備するようになり、その結果として、高速条件下で耐熱合金の重切削加工を行っても溶着、偏摩耗等を生じることなくすぐれた耐チッピング性、耐摩耗性を発揮するようになること。
以上(イ)、(ロ)に示される研究結果を得たのである。
(B) In the upper layer of the hard coating layer composed of the composition change (Al, Cr, Si, Mo, S) N layer, the Al component improves high-temperature hardness, heat resistance and oxidation resistance, and the Cr component is The high temperature strength is improved, the Si component further improves the heat resistance, and the Mo component and S component are mostly in the form of MoS 2 in the upper layer, improving the lubricity with the work piece chips. Hard coating layer comprising the above-mentioned composition change (Al, Cr, Si, Mo, S) N layer at the Al-Cr-Si highest content point, which has an action to enhance and therefore has a relatively high Al, Cr, Si content ratio It has excellent high-temperature hardness, heat resistance, oxidation resistance, and high-temperature strength, but on the other hand, it does not have sufficient lubricity with the work piece swarf. The above composition change (A l, Cr, Si, Mo, S) In order to compensate for the lack of lubricity at the Al-Cr-Si highest content point of the N layer, the Mo-S highest content point with excellent lubricity is alternately arranged in the thickness direction. By interposing, the entire hard coating layer composed of the above-mentioned composition change (Al, Cr, Si, Mo, S) N layer has excellent high temperature hardness, heat resistance, oxidation resistance, high temperature strength and lubricity. As a result, excellent chipping resistance and wear resistance are exhibited without causing welding, uneven wear, etc. even when heavy cutting of a heat resistant alloy is performed under high speed conditions.
The research results shown in (a) and (b) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Si合金を設け、また、他方にMoSターゲットを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Si合金カソード電極側でのアークイオンプレーティングと、MoSターゲット側でのスパッタリングにより、工具基体表面に下部層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
下部層は、上記アークイオンプレーティングで蒸着形成された1〜3μmの平均層厚を有し、かつ、Al成分、Cr成分、Si成分の含有割合(ただし、原子比)を、それぞれα、β、γで表したときに、αは0.30〜0.65、βは0.30〜0.65、γは0.01〜0.10で、かつ、α+β+γ=1を満足するAlとCrとSiの複合窒化物層、
また、上部層は、上記アークイオンプレーティングと上記スパッタリングの同時蒸着により形成された1〜8μmの平均層厚を有するAlとCrとSiとMoとSの複合窒化物層であって、しかも、上記上部層は、
(a)上部層の層厚方向に沿って、前記Al−Cr−Si合金カソード電極近傍で形成されるAl−Cr−Si最高含有点と前記MoSターゲット近傍で形成されるMo−S最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Mo、Sの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Si合金カソード電極近傍で形成される前記Al−Cr−Si最高含有点におけるAl成分、Cr成分、Si成分、Mo成分およびS成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.30〜0.50、Zは0.05〜0.10、Qは0.01〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記MoSターゲット近傍で形成される前記Mo−S最高含有点におけるAl成分、Cr成分、Si成分、Mo成分およびS成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.05〜0.20、Zは0.001〜0.03、Qは0.25〜0.40、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足するAlとCrとSiとMoとSの複合窒化物層である、
ことを特徴とする耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する被覆工具(表面被覆切削工具)。」
に特徴を有するものである。
This invention was made based on the above research results,
“Turn table of vapor deposition apparatus in which a tungsten carbide based cemented carbide or titanium carbonitride based cermet is provided with an Al—Cr—Si alloy as a cathode electrode on one side and a MoS 2 target on the other side The upper layer is placed on the surface of the tool base by arc ion plating on the Al—Cr—Si alloy cathode electrode side and sputtering on the MoS 2 target side while the tool base is rotated on a rotary table. In surface-coated cutting tools in which a hard coating layer consisting of an upper layer is formed by vapor deposition,
The lower layer has an average layer thickness of 1 to 3 μm deposited by arc ion plating, and the content ratios (however, the atomic ratio) of the Al component, Cr component, and Si component are α, β, respectively. Al and Cr satisfying α + β + γ = 1 when α is 0.30 to 0.65, β is 0.30 to 0.65, γ is 0.01 to 0.10, and And Si composite nitride layer,
The upper layer is a composite nitride layer of Al, Cr, Si, Mo, and S having an average layer thickness of 1 to 8 μm formed by simultaneous vapor deposition of the arc ion plating and the sputtering, The upper layer is
(A) Along the layer thickness direction of the upper layer, the Al—Cr—Si highest content point formed in the vicinity of the Al—Cr—Si alloy cathode electrode and the Mo—S highest content formed in the vicinity of the MoS 2 target And dots are alternately present at intervals of 0.03 to 0.1 μm,
(B) From the highest Al-Cr-Si content point to the highest Mo-S content point, from the highest Mo-S content point to the highest Al-Cr-Si content point, Al, Cr, Si, Mo, S Have a component concentration distribution structure in which the content ratio of each continuously changes,
(C) Al component, Cr component, Si component, Mo component and S component at the highest Al-Cr-Si content point formed in the vicinity of the Al-Cr-Si alloy cathode electrode, the content ratio (however, atom Ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.30 to 0.50, Z is 0.05 to 0.10, Q is 0.01 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) The Al component, Cr component, Si component, Mo component and S component at the Mo-S highest content point formed in the vicinity of the MoS 2 target have their content ratios (however, the atomic ratio) set to X, When represented by Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.05 to 0.20, Z is 0.001 to 0.03, and Q is 0.25 to 0. .40, R is 0.40 to 0.55, and is a composite nitride layer of Al, Cr, Si, Mo, and S that satisfies X + Y + Z + Q + R = 1.
A coated tool (surface coated cutting tool) that exhibits excellent chipping resistance and wear resistance due to high-speed heavy cutting of heat-resistant alloys. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層を構成する組成変化(Al,Cr,Si,Mo,S)N層に関し、上記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the composition change (Al, Cr, Si, Mo, S) N layer constituting the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)下部層(AlとCrとSiの複合窒化物層)
硬質被覆層の下部層を構成するAlとCrとSiの複合窒化物層(以下、「(Al,Cr,Si)N層で示す」におけるAl成分には高温硬さと耐酸化性、同Cr成分には高温強度、さらに同Si成分には耐熱性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐酸化性を維持するが、Alの含有割合を示すα値がCrとSiとの合量に占める割合(原子比、以下同じ)で0.30未満では、所望のすぐれた高温硬さおよび耐酸化性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同α値が0.65を越えると、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、α値を0.30〜0.65と定めた。また、Crの割合を示すβ値がAlとSiの合量に占める割合で、0.30未満では、所定の高温強度を確保することができないためチッピングが発生しやすくなり、一方同β値が0.65を超えると、高温硬さに明確な低下傾向が現れるようになることから、β値を0.30〜0.65と定めた。さらに、Siの割合を示すγ値がAlとCrの合量に占める割合で、0.01未満では、所定の耐熱性向上効果を期待することができず、一方同γ値が0.10を超えると、所定の高温硬さ、高温強度を確保することができなくなることから、γ値を0.01〜0.10と定めた。
さらに、その平均層厚が1μm未満では、自身のもつすぐれた高温硬さ、耐酸化性、高温強度および耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が3μmを越えると、チッピングが発生し易くなることから、その平均層厚を1〜3μmと定めた。
(A) Lower layer (Al, Cr, Si composite nitride layer)
The Al component in the Al, Cr and Si composite nitride layer (hereinafter referred to as “(Al, Cr, Si) N layer”) constituting the lower layer of the hard coating layer includes high temperature hardness and oxidation resistance, and the Cr component Has the effect of improving the high-temperature strength and the heat resistance of the Si component, and the lower layer maintains a high high-temperature hardness and oxidation resistance by relatively increasing the Al component content ratio. If the α value indicating the content ratio of Cr is less than 0.30 in terms of the total amount of Cr and Si (atomic ratio, the same shall apply hereinafter), the desired excellent high-temperature hardness and oxidation resistance cannot be ensured. On the other hand, when the α value indicating the proportion of Al exceeds 0.65, the high temperature strength rapidly decreases, and as a result, chipping (small chipping) is likely to occur. Therefore, the α value was determined to be 0.30 to 0.65, and C The β value indicating the proportion of Al and Si occupies the total amount of Al and Si. If the β value is less than 0.30, the predetermined high-temperature strength cannot be ensured, and chipping is likely to occur, while the β value is 0.65. When the value exceeds 1, the high temperature hardness has a clear tendency to appear, so the β value is set to 0.30 to 0.65, and the γ value indicating the proportion of Si is the total amount of Al and Cr. If the ratio is less than 0.01, a predetermined heat resistance improvement effect cannot be expected. On the other hand, if the γ value exceeds 0.10, a predetermined high temperature hardness and high temperature strength can be secured. Since it became impossible, the γ value was set to 0.01 to 0.10.
Furthermore, if the average layer thickness is less than 1 μm, the excellent high temperature hardness, oxidation resistance, high temperature strength and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. When the average layer thickness exceeds 3 μm, chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 3 μm.

(b)上部層(組成変化(Al,Cr,Si,Mo,S)N層)におけるAl−Cr−Si最高含有点のAl、Cr、Si含有割合
組成変化(Al,Cr,Si,Mo,S)N層におけるAl成分、Cr成分およびSi成分は、前記下部層におけると同様な作用を有し、また、Mo成分およびS成分は、上部層中でその多くがMoSの形態で存在し、被削材切粉との潤滑性を高める作用がある。つまり、相対的にAl,Cr,Si成分の含有割合が高いAl−Cr−Si最高含有点ではすぐれた高温硬さ、耐熱性、耐酸化性、高温強度を備えるが、Alの含有割合(X値)が0.40未満の場合には、硬質被覆層として最小限要求される高温硬さ、耐熱性、耐酸化性を維持することはできず、Crの含有割合(Y値)が0.30未満の場合には、高温強度の不足によるチッピング発生の恐れがあり、また、Siの含有割合(Z値)が0.05未満の場合には、硬質被覆層の耐熱性の向上を期待できない。一方、Alの含有割合(X値)が0.60を超えたり、Crの含有割合(Y値)が0.50を超えたり、Siの含有割合(Z値)が0.10を越えたりしたような場合には、Moの含有割合(Q値)およびSの含有割合(R値)が小さくなりすぎて、被削材切粉に対する潤滑性の向上を図ることができなくなることから、Alの含有割合(X値)を0.40〜0.60、Crの含有割合(Y値)を0.30〜0.50、Siの含有割合(Z値)を0.05〜0.10と、それぞれ定めた。
なお、Al−Cr−Si最高含有点におけるMo成分の含有割合(Q値)およびS成分の含有割合(R値)は、高温硬さ、耐酸化性、高温強度および耐熱性を保持しつつすぐれた潤滑性を発揮させるためには、0.01≦Q≦0.10、0.01≦R≦0.10の範囲とする必要があり、しかも、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満たす数値でなければならない。
(B) Al, Cr, Si content ratio of Al-Cr-Si highest content point in upper layer (composition change (Al, Cr, Si, Mo, S) N layer) Composition change (Al, Cr, Si, Mo, The Al component, Cr component and Si component in the S) N layer have the same action as in the lower layer, and the Mo component and S component are mostly present in the form of MoS 2 in the upper layer. It has the effect of improving the lubricity with the work piece chips. In other words, the Al-Cr-Si highest content point where the content ratio of Al, Cr, Si components is relatively high has excellent high temperature hardness, heat resistance, oxidation resistance, and high temperature strength, but the Al content ratio (X When the value is less than 0.40, the minimum required high-temperature hardness, heat resistance, and oxidation resistance for the hard coating layer cannot be maintained, and the Cr content ratio (Y value) is 0.00. If it is less than 30, chipping may occur due to insufficient high-temperature strength, and if the Si content (Z value) is less than 0.05, improvement in heat resistance of the hard coating layer cannot be expected. . On the other hand, the Al content ratio (X value) exceeded 0.60, the Cr content ratio (Y value) exceeded 0.50, or the Si content ratio (Z value) exceeded 0.10. In such a case, since the Mo content (Q value) and the S content (R value) are too small, it becomes impossible to improve the lubricity with respect to the work piece chips. The content ratio (X value) is 0.40 to 0.60, the Cr content ratio (Y value) is 0.30 to 0.50, the Si content ratio (Z value) is 0.05 to 0.10, Respectively.
In addition, the content ratio (Q value) of the Mo component and the content ratio (R value) of the S component at the highest Al-Cr-Si content point are excellent while maintaining high temperature hardness, oxidation resistance, high temperature strength and heat resistance. In order to exhibit excellent lubricity, it is necessary to set the ranges of 0.01 ≦ Q ≦ 0.10 and 0.01 ≦ R ≦ 0.10, and X, Y, Z, Q, and R are The numerical value must satisfy X + Y + Z + Q + R = 1.

(c)上部層(組成変化(Al,Cr,Si,Mo,S)N層)におけるMo−S最高含有点のMo、S含有割合
硬質被覆層のMo−S最高含有点において、組成変化(Al,Cr,Si,Mo,S)N層はすぐれた潤滑性を備えるが、硬質被覆層は、これらの特性ばかりでなく、硬質被覆層として最小限要求される高温硬さ、耐酸化性、高温強度、耐熱性を当然備える必要があることから、Mo−S最高含有点におけるMo含有割合(Q値)、S含有割合(R値)を、Al,Cr,Si,Mo,Sの合量に占める割合(原子比)で、それぞれ、0.25〜0.40、0.40〜0.55と定めた。
つまり、Mo含有割合(Q値)が0.40を超えると、あるいは、S含有割合(R値)が0.55を超えると、(Al,Cr,Si,Mo,S)N層中のAl、Cr、Si成分の含有量が減少し、その結果、高温硬さ、耐酸化性、高温強度、耐熱性が不十分となり、一方、Mo含有割合(Q値)が0.25未満になると、あるいは、S含有割合(R値)が0.40未満になると、(Al,Cr,Si,Mo,S)N層中のMo、Sの含有割合が少なくなり過ぎて、潤滑性改善効果を期待できなくなることから、Moの含有割合(Q値)を0.25〜0.40と、また、Sの含有割合(R値)を、0.40〜0.55(いずれも、原子比)に定めた。
なお、Mo−S最高含有点におけるAl成分の含有割合(X値)、Cr成分の含有割合(Y値)およびSi成分の含有割合(Z値)は、耐熱合金の高速重切削で最低限必要とされる高温硬さ、耐酸化性、高温強度、耐熱性を備えるという点から、0.05≦X≦0.20、0.05≦Y≦0.20、0.001≦Z≦0.03の範囲とすることが必要であり、しかも、X、Y、Z、Q、Rは、X+Y+Z+Q+R=1を満たす数値でなければならない。
(C) Mo and S content ratio of Mo-S highest content point in upper layer (composition change (Al, Cr, Si, Mo, S) N layer) Composition change ( The Al, Cr, Si, Mo, S) N layer has excellent lubricity, but the hard coating layer has not only these properties but also high temperature hardness, oxidation resistance, Since it is necessary to provide high-temperature strength and heat resistance as a matter of course, the Mo content (Q value) and S content (R value) at the Mo-S highest content point are the total amount of Al, Cr, Si, Mo, and S. The ratios (atomic ratios) of 0.25 to 0.40 and 0.40 to 0.55 were determined respectively.
That is, when the Mo content (Q value) exceeds 0.40 or the S content (R value) exceeds 0.55, the Al in the (Al, Cr, Si, Mo, S) N layer , Cr, Si component content decreases, as a result, high-temperature hardness, oxidation resistance, high-temperature strength, heat resistance becomes insufficient, while Mo content (Q value) is less than 0.25, Alternatively, when the S content ratio (R value) is less than 0.40, the content ratio of Mo and S in the (Al, Cr, Si, Mo, S) N layer is too small, and an improvement in lubricity is expected. The Mo content (Q value) is 0.25 to 0.40, and the S content (R value) is 0.40 to 0.55 (both atomic ratios). Determined.
In addition, the Al component content ratio (X value), Cr component content ratio (Y value), and Si component content ratio (Z value) at the Mo-S highest content point are the minimum required for high-speed heavy cutting of heat-resistant alloys. 0.05 ≦ X ≦ 0.20, 0.05 ≦ Y ≦ 0.20, 0.001 ≦ Z ≦ 0... From the viewpoint of having high-temperature hardness, oxidation resistance, high-temperature strength, and heat resistance. The range of 03 is required, and X, Y, Z, Q, and R must be numerical values satisfying X + Y + Z + Q + R = 1.

(d)Al−Cr−Si最高含有点とMo−S最高含有点間の間隔
この発明の硬質被覆層の上部層は、その層厚方向に亘って、窒化物を構成する成分の濃度が、Al−Cr−Si最高含有点からMo−S最高含有点へと、また、Mo−S最高含有点からAl−Cr−Si最高含有点へと連続的に変化するものであるため、例えば、成分濃度が不連続な変化をする複数層の積層構造からなる硬質被覆層に比べれば、上部層の各層間での剥離等の恐れは無いが、Al−Cr−Si最高含有点とMo−S最高含有点間の間隔が0.03μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果それぞれの層に所望の高温硬さ、高温強度、耐熱性、耐酸化性および潤滑性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちMo−S最高含有点であれば高温硬さ、高温強度、耐酸化性および耐熱性の不足、また、Al−Cr−Si最高含有点であれば潤滑性の不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、また、摩耗進行が促進されるようになることから、その間隔は0.03〜0.1μmと定めた。
なお、Al−Cr−Si最高含有点とMo−S最高含有点間の間隔は、(Al,Cr,Si)N蒸着用アークイオンプレーティング(AIP)装置とMo−S蒸着用マグネトロンスパッタリング(SP)装置を併設した蒸着装置を用い、アークイオンプレーティングとスパッタリングを同時に行って蒸着膜を形成する際に、例えば、工具基体を装着した回転テーブルの回転速度を制御することによって調整することができるので、回転テーブルの回転速度を適宜に設定することにより、Al−Cr−Si最高含有点とMo−S最高含有点間の間隔が上記数値範囲内の所望の値となる組成変化(Al,Cr,Si,Mo,S)N層を容易に形成することができる。
また、組成変化(Al,Cr,Si,Mo,S)N層からなる上部層は、(Al,Cr,Si)N層からなる下部層との密着性にすぐれ接合強度も大であり、さらに、工具基体に対する下部層の密着性・接合強度も大であることから、本発明の被覆工具は、硬質被覆層の工具基体に対する接合強度が非常に強固なものとなっている。
(D) Spacing between Al-Cr-Si highest content point and Mo-S highest content point The upper layer of the hard coating layer of the present invention has a concentration of components constituting nitrides in the layer thickness direction. Since it changes continuously from the Al-Cr-Si highest content point to the Mo-S highest content point and from the Mo-S highest content point to the Al-Cr-Si highest content point, Compared to a hard coating layer composed of a multi-layered structure in which the concentration changes discontinuously, there is no risk of delamination between the upper layers, but the Al-Cr-Si highest content point and Mo-S highest If the interval between contained points is less than 0.03 μm, it is difficult to clearly form each point with the above composition. As a result, each layer has a desired high temperature hardness, high temperature strength, heat resistance, and oxidation resistance. In addition, the lubricity cannot be ensured, and the interval is 0. If it exceeds 1 μm, the disadvantage of each point, that is, if the Mo-S maximum content point is insufficient high temperature hardness, high temperature strength, oxidation resistance and heat resistance, and if the Al-Cr-Si maximum content point Insufficient lubricity appears locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear. It was set to 1 μm.
In addition, the space | interval between the Al-Cr-Si highest content point and the Mo-S highest content point is the arc ion plating (AIP) apparatus for (Al, Cr, Si) N vapor deposition, and the magnetron sputtering (SP) for Mo-S vapor deposition. ) When forming a vapor deposition film by performing arc ion plating and sputtering at the same time using a vapor deposition apparatus provided with an apparatus, for example, it can be adjusted by controlling the rotational speed of a rotary table equipped with a tool base. Therefore, by appropriately setting the rotation speed of the turntable, the composition change (Al, Cr) in which the interval between the Al-Cr-Si highest content point and the Mo-S highest content point becomes a desired value within the above numerical range. , Si, Mo, S) N layers can be easily formed.
Further, the upper layer made of the composition change (Al, Cr, Si, Mo, S) N layer has excellent adhesion to the lower layer made of the (Al, Cr, Si) N layer, and has a high bonding strength. Since the adhesion and bonding strength of the lower layer to the tool base are also large, the coated tool of the present invention has a very strong bonding strength of the hard coating layer to the tool base.

(e)上部層の平均層厚
組成変化(Al,Cr,Si,Mo,S)N層からなる上部層の平均層厚が1μm未満では、硬質被覆層が所望の高温硬さ、高温強度、耐熱性、耐酸化性および潤滑性を長期に亘って確保することができず、その結果、耐熱合金の高速重切削における耐チッピング性、耐摩耗性の向上を期待することができず、一方、その平均層厚が8μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜8μmと定めた。
(E) Average layer thickness of upper layer If the average layer thickness of the upper layer composed of composition change (Al, Cr, Si, Mo, S) N layer is less than 1 μm, the hard coating layer has a desired high-temperature hardness, high-temperature strength, Heat resistance, oxidation resistance and lubricity cannot be ensured over a long period of time, and as a result, improvement in chipping resistance and wear resistance in high speed heavy cutting of heat resistant alloys cannot be expected. If the average layer thickness exceeds 8 μm, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 1 to 8 μm.

この発明の被覆工具は、硬質被覆層の下部層を構成する(Al,Cr,Si)N層がすぐれた高温硬さ、高温強度、耐熱性、耐酸化性を有し、さらに、硬質被覆層の上部層を構成する組成変化(Al,Cr,Si,Mo,S)N層が、すぐれた高温硬さ、高温強度、耐熱性、耐酸化性に加えて、すぐれた潤滑性を具備し、さらに、硬質被覆層と工具基体の接合強度が非常に強固なものであることから、Ti基合金、Ni基合金、Co基合金等の耐熱合金を、大きな発熱を伴いかつ切刃に対して大きな負荷がかかる高速重切削条件で加工した場合であっても、溶着・偏摩耗等を生じることなく長期に亘ってすぐれた耐チッピング性と耐摩耗性を発揮するものである。   In the coated tool of the present invention, the (Al, Cr, Si) N layer constituting the lower layer of the hard coating layer has excellent high-temperature hardness, high-temperature strength, heat resistance, and oxidation resistance. The composition change (Al, Cr, Si, Mo, S) N layer constituting the upper layer of the material has excellent lubricity in addition to excellent high temperature hardness, high temperature strength, heat resistance, and oxidation resistance, Furthermore, since the bonding strength between the hard coating layer and the tool base is very strong, heat-resistant alloys such as Ti-base alloys, Ni-base alloys, and Co-base alloys are accompanied by a large amount of heat and are large relative to the cutting edge. Even when processing is performed under high-speed heavy cutting conditions where a load is applied, excellent chipping resistance and wear resistance are exhibited over a long period of time without causing welding or partial wear.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to meet ISO standards / Tool bases B-1 to B-6 made of TiCN base cermet having a chip shape of CNMG120408 were formed.

(a)上記の工具基体A1〜A10およびB1〜B6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置内の回転テーブル上に外周部に沿って装着し、一方側の前記アークイオンプレーティング装置のカソード電極(蒸発源)として、種々の成分組成をもったAl−Cr−Si合金、他方側のマグネトロンスパッタリング装置のターゲット(蒸発源)としてMoSを装着し、またボンバード洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をTiボンバード洗浄し、
(b)つぎに、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させ、工具基体の表面に、表3,4に示される目標組成、目標層厚の(Al,Cr,Si)N層からなる下部層を蒸着形成し、
(c)ついで、装置内を2Paの窒素ガス雰囲気に維持したままで、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加して、カソード電極とアノード電極との間に90Aの電流を流してアーク放電を発生させると同時に、MoSターゲットにパルス電源から3kWのパルス電力を印加してMoSをスパッタし、
(d)前記回転テーブル上で自転しながら回転する工具基体の表面に、表3,4に示される目標組成のAl−Cr−Si最高含有点とMo−S最高含有点とが交互に、同じく表3、表4に示される目標間隔で繰り返し存在し、また、前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Mo、Sの含有割合が連続的に変化する成分濃度分布構造を有し、さらに、同じく表3、表4に示される目標層厚の組成変化(Al,Cr,Si,Mo,S)N層からなる上部層を蒸着形成することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具1〜16をそれぞれ製造した。
なお、上記実施例では、Al−Cr−Si最高含有点とMo−S最高含有点との目標間隔は、回転テーブルの回転速度を0.5〜10rpmの範囲内で変化させることにより、所定の目標間隔値となるように調整した。
(A) The above-mentioned tool bases A1 to A10 and B1 to B6 are each ultrasonically cleaned in acetone and dried, and the vapor deposition apparatus provided with the arc ion plating apparatus and the magnetron sputtering apparatus shown in FIG. An Al—Cr—Si alloy having various composition as a cathode electrode (evaporation source) of the arc ion plating apparatus on one side and a magnetron on the other side. MoS 2 is mounted as a target (evaporation source) for the sputtering apparatus, and metal Ti for bombard cleaning is also mounted. First, the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the apparatus is heated to 500 ° C. After applying heating, a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. In addition, a current of 100 A is passed between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, thereby cleaning the tool base surface with Ti bombardment,
(B) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, An arc discharge is generated by passing a current of 90 A between the cathode electrode and the anode electrode, and an (Al, Cr, Si) N layer having the target composition and target layer thickness shown in Tables 3 and 4 is formed on the surface of the tool base. A lower layer consisting of
(C) Next, a DC bias voltage of −100 V is applied to the rotating tool base while rotating on the rotary table while the apparatus is maintained in a 2 Pa nitrogen gas atmosphere, and the cathode electrode and the anode electrode are At the same time, a current of 90 A is passed to generate an arc discharge, and at the same time, a pulse power of 3 kW is applied from a pulse power source to the MoS 2 target to sputter MoS 2 .
(D) Al-Cr-Si highest content point and Mo-S highest content point of the target composition shown in Tables 3 and 4 alternately on the surface of the tool base rotating while rotating on the rotary table, It exists repeatedly at the target intervals shown in Tables 3 and 4, and from the Al-Cr-Si highest content point to the Mo-S highest content point, from the Mo-S highest content point to the Al-Cr-Si highest It has a component concentration distribution structure in which the content ratios of Al, Cr, Si, Mo, and S continuously change to the content point, and the compositional change of the target layer thickness (Al , Cr, Si, Mo, S) By depositing an upper layer composed of an N layer, the inventive coated tools 1 to 16 having a throwaway tip shape defined in ISO · CNMG120408 were produced.
In addition, in the said Example, the target space | interval of the Al-Cr-Si highest content point and Mo-S highest content point is predetermined | prescribed by changing the rotational speed of a rotary table within the range of 0.5-10 rpm. The target interval value was adjusted.

また、比較の目的で、これら工具基体A1〜A10およびB1〜B6を、アセトン中で超音波洗浄し、乾燥した状態で、
図2に概略示されるアークイオンプレーティング装置に上記の工具基体を装入し、ヒータで装置内を、約500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Cr−Siカソード電極(蒸発源)との間に、電流:約90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、約2Paの反応雰囲気とし、一方上記工具基体には、約−100Vのバイアス電圧を印加した条件で、工具基体の表面に、表5,6に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si)N層からなる硬質被覆層を蒸着することにより、スローアウエイチップ形状の従来被覆工具1〜16をそれぞれ製造した。
For comparison purposes, these tool bases A1 to A10 and B1 to B6 are ultrasonically cleaned in acetone and dried.
The above-mentioned tool base is inserted into the arc ion plating apparatus schematically shown in FIG. 2, and the inside of the apparatus is heated to a temperature of about 500 ° C. with a heater, and the Al—Cr—Si having a predetermined composition with the anode electrode An arc discharge is generated between the cathode electrode (evaporation source) and a current of about 90 A. Simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of about 2 Pa. Is a compositionally uniform (Al, Cr, Si) N layer having the target composition and target layer thickness shown in Tables 5 and 6 on the surface of the tool base under the condition that a bias voltage of about −100 V is applied. The conventional coated tools 1 to 16 having a throwaway tip shape were produced by vapor-depositing a hard coating layer made of

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜16および従来被覆チップ1〜16について、
被削材:質量%で、Co−20%Cr−15%W−10%Ni−1.5%Mn−1%Si−1%Fe−0.12%Cの組成を有するCo基合金の丸棒、
切削速度: 60 m/min.、
切り込み: 1.5 mm、
送り: 0.45 mm/rev.、
切削時間: 10 分、
の条件(切削条件A)でのCo基合金の乾式高速高送り連続切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.25mm/rev.)、
被削材:質量%で、Ti−3%Al−2.5%Vの組成を有するTi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 65 m/min.、
切り込み: 1.2 mm、
送り: 0.50 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのTi基合金の乾式高速高送り断続切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.25mm/rev.)、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Alの組成を有するNi基合金の丸棒、
切削速度: 70 m/min.、
切り込み: 1.4 mm、
送り: 0.30 mm/rev.、
切削時間: 10 分、
の条件(切削条件C)でのNi基合金の乾式高速高送り連続切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.20mm/rev.)、を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
Next, in the state where each of the above-mentioned various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1-16 and the conventional coated chips 1-16,
Work material: Co-based alloy circle having a composition of Co-20% Cr-15% W-10% Ni-1.5% Mn-1% Si-1% Fe-0.12% C in mass%. rod,
Cutting speed: 60 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.45 mm / rev. ,
Cutting time: 10 minutes,
Dry-type high-speed high-feed continuous cutting test of the Co-based alloy under the conditions (cutting conditions A) (normal cutting speed and feed are 30 m / min. And 0.25 mm / rev., Respectively),
Work material: Round bar with four longitudinal grooves at equal intervals in the longitudinal direction of a Ti-based alloy having a composition of Ti-3% Al-2.5% V in mass%,
Cutting speed: 65 m / min. ,
Cutting depth: 1.2 mm,
Feed: 0.50 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed high-feed intermittent cutting test of a Ti-based alloy under the following conditions (cutting condition B) (normal cutting speed and feed are 35 m / min. And 0.25 mm / rev., Respectively),
Work material: Ni having a composition of Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al in mass%. Base alloy round bar,
Cutting speed: 70 m / min. ,
Cutting depth: 1.4 mm,
Feed: 0.30 mm / rev. ,
Cutting time: 10 minutes,
A dry high-speed, high-feed continuous cutting test (normal cutting speed and feed are 35 m / min. And 0.20 mm / rev., Respectively) of the Ni-based alloy under the above conditions (cutting conditions C) In the cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 7.

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の工具基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 μm Co powder, mix these raw material powders with the composition shown in Table 8, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Then, three types of round rod sintered bodies for forming a tool base having diameters of 8 mm, 13 mm, and 26 mm are formed, and further, the three types of round bar sintered bodies are ground and are shown in Table 7. In combination, the diameter x length of the cutting edge is 6 mm x 13 mm, 10 mm x 22 mm, and 20 mm x 45 mm, respectively, and each is made of a WC-based cemented carbide with a 4-flute square shape with a twist angle of 45 degrees Tool bases (end mills) C-1 to C-8 were produced.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、まず、表9に示される目標組成、目標層厚の(Al,Cr,Si)N層からなる下部層を蒸着形成し、その後、層厚方向に沿って同じく表9に示される目標組成のAl−Cr−Si最高含有点とMo−S最高含有点とが交互に、同じく表9に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Mo、Sの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表9に示される目標層厚の組成変化(Al,Cr,Si,Mo,S)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus and magnetron sputtering apparatus shown in FIG. 1 were also provided. First, a lower layer composed of an (Al, Cr, Si) N layer having a target composition and a target layer thickness shown in Table 9 was formed by vapor deposition under the same conditions as in Example 1 above. The Al-Cr-Si highest content point and Mo-S highest content point of the target composition also shown in Table 9 along the layer thickness direction are alternately present at the target interval also shown in Table 9, and From the Al-Cr-Si highest content point to the Mo-S highest content point, from the Mo-S highest content point to the Al-Cr-Si highest content point, the content ratio of Al, Cr, Si, Mo, S Changes continuously The coated tool of the present invention is formed by vapor-depositing a hard coating layer having a component concentration distribution structure and comprising a target layer thickness composition change (Al, Cr, Si, Mo, S) N layer also shown in Table 9 The present invention coated end mills 1 to 8 were produced respectively.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−8の表面に、表10に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆エンドミル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the surface of the tool base (end mill) C-1 to C-8 has a compositional uniformity (Al, having the target composition and target layer thickness shown in Table 10). Conventional coating end mills 1 to 8 as conventional coating tools were manufactured by vapor-depositing a hard coating layer composed of a Cr, Si) N layer, respectively.

つぎに、上記本発明被覆エンドミル1〜8および従来被覆エンドミル1〜8のうち、
本発明被覆エンドミル1〜3および従来被覆エンドミル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ti−6%Al−4%Vの組成を有するTi基合金の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 3.0 mm、
テーブル送り: 650 mm/分、
の条件でのTi基合金の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、30m/min.、400mm/分)、
本発明被覆エンドミル4〜6および従来被覆エンドミル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si―0.4%Cの組成を有するCo基合金の板材、
切削速度: 65 m/min.、
溝深さ(切り込み): 4.0 mm、
テーブル送り: 550 mm/分、
の条件でのCo基合金の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、350mm/分)、
本発明被覆エンドミル7,8および従来被覆エンドミル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Alの組成を有するNi基合金の板材、
切削速度: 70 m/min.、
溝深さ(切り込み): 5.5 mm、
テーブル送り: 550 mm/分、
の条件でのNi基合金の乾式高速高送り溝切削加工試験(通常の切削速度およびテーブル送りは、それぞれ、35m/min.、350mm/分)
をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9,10にそれぞれ示した。
Next, of the present invention coated end mills 1-8 and the conventional coated end mills 1-8,
About this invention coated end mills 1-3 and conventional coated end mills 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, and a Ti-based alloy plate material having a composition of Ti-6% Al-4% V in mass%,
Cutting speed: 60 m / min. ,
Groove depth (cut): 3.0 mm,
Table feed: 650 mm / min,
Ti-base alloy dry high-speed high-feed groove cutting test (normal cutting speed and table feed are 30 m / min. And 400 mm / min, respectively),
About this invention coated end mills 4-6 and conventional coated end mills 4-6,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C A Co-base alloy plate having the composition:
Cutting speed: 65 m / min. ,
Groove depth (cut): 4.0 mm,
Table feed: 550 mm / min,
Co-base alloy dry high-speed high-feed grooving test (normal cutting speed and table feed are 35 m / min. And 350 mm / min, respectively),
For the coated end mills 7 and 8 of the present invention and the conventional coated end mills 7 and 8,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-base alloy plate material having a composition of% Ti-0.5% Al,
Cutting speed: 70 m / min. ,
Groove depth (cut): 5.5 mm,
Table feed: 550 mm / min,
Ni-base alloy dry high-speed high-feed groove cutting test under normal conditions (normal cutting speed and table feed are 35 m / min. And 350 mm / min, respectively)
In each groove cutting test, the cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

上記の実施例2で製造した直径が8mm(工具基体C−1〜C−3形成用)、13mm(工具基体C−4〜C−6形成用)、および26mm(工具基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(工具基体D−1〜D−3)、8mm×22mm(工具基体D−4〜D−6)、および16mm×45mm(工具基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming the tool bases C-1 to C-3), 13 mm (for forming the tool bases C-4 to C-6), and 26 mm (tool bases C-7 and C). -8 for forming), and from these three types of round bar sintered bodies, the diameter x length of the groove forming part is 4 mm x 13 mm (tool base D) by grinding. −1 to D-3), 8 mm × 22 mm (tool base D-4 to D-6), and 16 mm × 45 mm (tool bases D-7 and D-8), and all having a twist angle of 30 degrees 2 WC-base cemented carbide tool bases (drills) D-1 to D-8 having a single-blade shape were produced, respectively.

ついで、これらの工具基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置に装入し、上記実施例1と同一の条件で、まず、表11に示される目標組成、目標層厚の(Al,Cr,Si)N層からなる下部層を蒸着形成し、その後、層厚方向に沿って表11に示される目標組成のAl−Cr−Si最高含有点とMo−S最高含有点とが交互に、同じく表11に示される目標間隔で繰り返し存在し、かつ前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Mo、Sの含有割合が連続的に変化する成分濃度分布構造を有し、かつ同じく表11に示される目標層厚の組成変化(Al,Cr,Si,Mo,S)N層からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Then, the cutting edges of these tool bases (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ion plating apparatus shown in FIG. A lower layer composed of an (Al, Cr, Si) N layer having a target composition and a target layer thickness shown in Table 11 under the same conditions as in Example 1 above. After that, the Al-Cr-Si highest content point and the Mo-S highest content point of the target composition shown in Table 11 are alternately arranged along the layer thickness direction at the target interval also shown in Table 11. Al, Cr, Si, Mo, repeatedly present and from the highest Al-Cr-Si content point to the highest Mo-S content point, from the highest Mo-S content point to the highest Al-Cr-Si content point , S content ratio By vapor-depositing a hard coating layer having a continuously varying component concentration distribution structure and comprising a target layer thickness composition change (Al, Cr, Si, Mo, S) N layer also shown in Table 11 The inventive coated drills 1 to 8 as the inventive coated tool were produced, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、アークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−8の表面に、表12に示される目標組成および目標層厚をもった組成的に均一の(Al,Cr,Si)N層からなる硬質被覆層を蒸着することにより、従来被覆工具としての従来被覆ドリル1〜8をそれぞれ製造した。   In addition, for the purpose of comparison, honing is performed on the surfaces of the above-mentioned tool bases (drills) D-1 to D-8, ultrasonic cleaning is performed in acetone, and the surfaces are loaded into an arc ion plating apparatus Then, under the same conditions as in Example 1 above, the surfaces of the tool bases (drills) D-1 to D-8 have a compositional uniformity (Al, having the target composition and target layer thickness shown in Table 12). Conventional coating drills 1 to 8 as conventional coating tools were manufactured by vapor-depositing a hard coating layer composed of a Cr, Si) N layer.

つぎに、上記本発明被覆ドリル1〜8および従来被覆ドリル1〜8のうち、
本発明被覆ドリル1〜3および従来被覆ドリル1〜3については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ti−6%Al−4%Vの組成を有するTi基合金の板材、
切削速度: 60 m/min.、
送り: 0.35 mm/rev、
穴深さ: 6 mm、
の条件でのTi基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.2mm/rev.)、
本発明被覆ドリル4〜6および従来被覆ドリル4〜6については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Co−20%Cr−20%Ni−4%Mn−4%W−4%Cd−3%Fe−1.5%Mn−0.7%Si−0.38%Cの組成を有するCo基合金の板材、
切削速度: 65 m/min.、
送り: 0.45 mm/rev、
穴深さ: 15 mm、
の条件でのCo基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、30m/min.、0.25mm/rev.)、
本発明被覆ドリル7,8および従来被覆ドリル7,8については、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 70 m/min.、
送り: 0.4 mm/rev、
穴深さ: 20 mm、
の条件でのNi基合金の湿式高速高送り穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、40m/min.、0.25mm/rev.)、
をそれぞれ行い、いずれの湿式高速高送り穴あけ切削加工試験(水溶性切削油使用)でも、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表11,12にそれぞれ示した。
Next, among the above-mentioned present invention coated drills 1-8 and conventional coated drills 1-8,
About this invention coated drill 1-3 and conventional coated drill 1-3,
Work material-planar dimensions: 100 mm × 250 mm, thickness: 50 mm, and a Ti-based alloy plate material having a composition of Ti-6% Al-4% V in mass%,
Cutting speed: 60 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 6 mm,
Wet high-speed high-feed drilling test of Ti-based alloy under the conditions of (normal cutting speed and feed are 35 m / min. And 0.2 mm / rev., Respectively),
About this invention coated drill 4-6 and conventional coated drills 4-6,
Work Material-Planar Dimensions: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Co-20% Cr-20% Ni-4% Mn-4% W-4% Cd-3% Fe-1.5 Co-base alloy plate material having a composition of% Mn-0.7% Si-0.38% C,
Cutting speed: 65 m / min. ,
Feed: 0.45 mm / rev,
Hole depth: 15 mm,
Wet high-speed high-feed drilling test of a Co-based alloy under the conditions (normal cutting speed and feed are 30 m / min. And 0.25 mm / rev., Respectively),
About this invention covering drills 7 and 8 and conventional covering drills 7 and 8,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-base alloy plate material having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 70 m / min. ,
Feed: 0.4 mm / rev,
Hole depth: 20 mm,
Wet high-speed high-feed drilling test of Ni-based alloy under the conditions of (normal cutting speed and feed are 40 m / min. And 0.25 mm / rev., Respectively),
In each wet high-speed high-feed drilling cutting test (using water-soluble cutting oil), the number of drilling operations until the flank wear width of the tip cutting edge surface reached 0.3 mm was measured. The measurement results are shown in Tables 11 and 12, respectively.

Figure 2008173756
Figure 2008173756

Figure 2008173756
Figure 2008173756

この結果得られた本発明被覆工具としての本発明被覆チップ1〜16、本発明被覆エンドミル1〜8、および本発明被覆ドリル1〜8の硬質被覆層の下部層を構成する(Al,Cr,Si)N層および上部層を構成する組成変化(Al,Cr,Si,Mo,S)N層のAl−Cr−Si最高含有点およびMo−S最高含有点の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれの目標組成と実質的に同じ組成を示した。また、従来被覆工具としての従来被覆チップ1〜16、従来被覆エンドミル1〜8、および従来被覆ドリル1〜8の硬質被覆層を構成する組成的に均一な(Al,Cr,Si)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result, the coated chips 1 to 16 of the present invention, the coated end mills 1 to 8 of the present invention and the lower layers of the hard coated layers of the coated drills 1 to 8 are obtained (Al, Cr, Si) composition of the N layer and the upper layer (Al, Cr, Si, Mo, S) The composition of the Al-Cr-Si highest content point and Mo-S highest content point of the N layer was measured using a transmission electron microscope. When measured by the energy dispersive X-ray analysis method used, it showed substantially the same composition as each target composition. Moreover, the compositionally uniform (Al, Cr, Si) N layer constituting the hard coating layers of the conventional coated chips 1 to 16, the conventional coated end mills 1 to 8, and the conventional coated drills 1 to 8 as conventional coated tools. When the composition was measured by energy dispersive X-ray analysis using a transmission electron microscope, it showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表7、9〜12に示される結果から、本発明被覆工具は、Ti基合金、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴いかつ切刃に対して大きな負荷がかかる高速重切削条件下での切削加工に用いた場合であっても、硬質被覆層の下部層を構成する(Al,Cr,Si)N層および上部層を構成する組成変化(Al,Cr,Si,Mo,S)N層が、全体として、すぐれた高温硬さ、耐酸化性、高温強度、耐熱性とすぐれた潤滑性を備え、かつ、硬質被覆層が工具基体と強固な接合強度を有していることによって、溶着、偏摩耗の発生もなく、長期に亘ってすぐれた耐チッピング性と耐摩耗性を発揮するのに対して、硬質被覆層が組成的に均一な(Al,Cr,Si)N層で構成された従来被覆工具においては、高速重切削加工で高熱発生を伴うことにより、溶着・偏摩耗が発生し、これが原因で比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 7 and 9 to 12, the coated tool of the present invention is a high-speed heavy load that involves high heat generation of a heat-resistant alloy such as a Ti-base alloy, a Ni-base alloy, and a Co-base alloy and that places a large load on the cutting blade. Even when used for cutting under cutting conditions, the composition change (Al, Cr, Si, Mo) constituting the lower layer (Al, Cr, Si) N layer and the upper layer of the hard coating layer , S) The N layer as a whole has excellent high temperature hardness, oxidation resistance, high temperature strength, heat resistance and excellent lubricity, and the hard coating layer has strong bonding strength with the tool base. As a result, there is no occurrence of welding and uneven wear, while excellent chipping resistance and wear resistance are exhibited over a long period of time, while the hard coating layer is compositionally uniform (Al, Cr, Si) In the conventional coated tool composed of N layers, high heat is applied by high speed heavy cutting. By involving raw, welding, uneven wear occurs and this is apparent that lead to a relatively short time service life due.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴いかつ切刃に対して大きな負荷がかかるTi基合金、Ni基合金、Co基合金等の耐熱合金の高速重切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性とすぐれた耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for cutting of general steel, ordinary cast iron, etc., as well as Ti-based alloys, Ni-based alloys, and Co-based materials that generate high heat and impose a heavy load on the cutting blade. Even when used for high-speed heavy cutting of heat-resistant alloys such as alloys, it exhibits excellent chipping resistance and excellent wear resistance over a long period of time, and exhibits excellent cutting performance. It can be used satisfactorily for FA, labor saving and energy saving of cutting, and cost reduction.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置とマグネトロンスパッタリング装置を併設した蒸着装置を示し、(a)は概略平面図、(b)は概略正面図である。The vapor deposition apparatus which used together the arc ion plating apparatus and magnetron sputtering apparatus which were used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. It is. 従来被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used in forming the hard coating layer which comprises a conventional coating tool.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体を、一方にカソード電極としてAl−Cr−Si合金を設け、また、他方にMoSターゲットを設けた蒸着装置の回転テーブル上に載置し、前記工具基体を回転テーブルで回転させながら、Al−Cr−Si合金カソード電極側でのアークイオンプレーティングと、MoSターゲット側でのスパッタリングにより、工具基体表面に下部層と上部層からなる硬質被覆層を蒸着形成した表面被覆切削工具において、
下部層は、上記アークイオンプレーティングで蒸着形成された1〜3μmの平均層厚を有し、かつ、Al成分、Cr成分、Si成分の含有割合(ただし、原子比)を、それぞれα、β、γで表したときに、αは0.30〜0.65、βは0.30〜0.65、γは0.01〜0.10で、かつ、α+β+γ=1を満足するAlとCrとSiの複合窒化物層、
また、上部層は、上記アークイオンプレーティングと上記スパッタリングの同時蒸着により形成された1〜8μmの平均層厚を有するAlとCrとSiとMoとSの複合窒化物層であって、しかも、上記上部層は、
(a)上部層の層厚方向に沿って、前記Al−Cr−Si合金カソード電極近傍で形成されるAl−Cr−Si最高含有点と前記MoSターゲット近傍で形成されるMo−S最高含有点とが0.03〜0.1μmの間隔をおいて交互に繰り返し存在し、
(b)前記Al−Cr−Si最高含有点から前記Mo−S最高含有点、前記Mo−S最高含有点から前記Al−Cr−Si最高含有点へと、Al、Cr、Si、Mo、Sの含有割合がそれぞれ連続的に変化する成分濃度分布構造を有し、
(c)前記Al−Cr−Si合金カソード電極近傍で形成される前記Al−Cr−Si最高含有点におけるAl成分、Cr成分、Si成分、Mo成分およびS成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.40〜0.60、Yは0.30〜0.50、Zは0.05〜0.10、Qは0.01〜0.10、Rは0.01〜0.10で、かつ、X+Y+Z+Q+R=1を満足し、
(d)前記MoSターゲット近傍で形成される前記Mo−S最高含有点におけるAl成分、Cr成分、Si成分、Mo成分およびS成分は、その含有割合(ただし、原子比)を、それぞれX、Y、Z、Q、Rで表したときに、Xは0.05〜0.20、Yは0.05〜0.20、Zは0.001〜0.03、Qは0.25〜0.40、Rは0.40〜0.55で、かつ、X+Y+Z+Q+R=1を満足するAlとCrとSiとMoとSの複合窒化物層である、
ことを特徴とする耐熱合金の高速重切削加工で硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具。
On a rotary table of a vapor deposition apparatus in which a tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is provided with an Al—Cr—Si alloy as a cathode electrode on one side and a MoS 2 target on the other side A lower layer and an upper layer are formed on the surface of the tool base by arc ion plating on the Al-Cr-Si alloy cathode electrode side and sputtering on the MoS 2 target side while rotating the tool base on a rotary table. In a surface-coated cutting tool in which a hard coating layer consisting of layers is formed by vapor deposition,
The lower layer has an average layer thickness of 1 to 3 μm deposited by arc ion plating, and the content ratios (however, the atomic ratio) of the Al component, Cr component, and Si component are α, β, respectively. Al and Cr satisfying α + β + γ = 1 when α is 0.30 to 0.65, β is 0.30 to 0.65, γ is 0.01 to 0.10, and And Si composite nitride layer,
The upper layer is a composite nitride layer of Al, Cr, Si, Mo, and S having an average layer thickness of 1 to 8 μm formed by simultaneous vapor deposition of the arc ion plating and the sputtering, The upper layer is
(A) Along the layer thickness direction of the upper layer, the Al—Cr—Si highest content point formed in the vicinity of the Al—Cr—Si alloy cathode electrode and the Mo—S highest content formed in the vicinity of the MoS 2 target And dots are alternately present at intervals of 0.03 to 0.1 μm,
(B) From the highest Al-Cr-Si content point to the highest Mo-S content point, from the highest Mo-S content point to the highest Al-Cr-Si content point, Al, Cr, Si, Mo, S Have a component concentration distribution structure in which the content ratio of each continuously changes,
(C) Al component, Cr component, Si component, Mo component and S component at the highest Al-Cr-Si content point formed in the vicinity of the Al-Cr-Si alloy cathode electrode, the content ratio (however, atom Ratio) is represented by X, Y, Z, Q, and R, respectively, X is 0.40 to 0.60, Y is 0.30 to 0.50, Z is 0.05 to 0.10, Q is 0.01 to 0.10, R is 0.01 to 0.10, and X + Y + Z + Q + R = 1 is satisfied,
(D) The Al component, Cr component, Si component, Mo component and S component at the Mo-S highest content point formed in the vicinity of the MoS 2 target have their content ratios (however, the atomic ratio) set to X, When represented by Y, Z, Q, and R, X is 0.05 to 0.20, Y is 0.05 to 0.20, Z is 0.001 to 0.03, and Q is 0.25 to 0. .40, R is 0.40 to 0.55, and is a composite nitride layer of Al, Cr, Si, Mo, and S that satisfies X + Y + Z + Q + R = 1.
A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in a high-speed heavy cutting of a heat-resistant alloy.
JP2007012047A 2007-01-22 2007-01-22 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy Withdrawn JP2008173756A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007012047A JP2008173756A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007012047A JP2008173756A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy

Publications (1)

Publication Number Publication Date
JP2008173756A true JP2008173756A (en) 2008-07-31

Family

ID=39701157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007012047A Withdrawn JP2008173756A (en) 2007-01-22 2007-01-22 Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy

Country Status (1)

Country Link
JP (1) JP2008173756A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145233A1 (en) * 2012-03-29 2013-10-03 オーエスジー株式会社 Hard coating for cutting tool and cutting tool coated with hard coating
WO2020026391A1 (en) * 2018-08-01 2020-02-06 オーエスジー株式会社 Hard coating and hard coating-coated member
KR20210025642A (en) * 2018-08-01 2021-03-09 오에스지 가부시키가이샤 Hard film and hard film covering member
US11447855B2 (en) * 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013145233A1 (en) * 2012-03-29 2013-10-03 オーエスジー株式会社 Hard coating for cutting tool and cutting tool coated with hard coating
WO2020026391A1 (en) * 2018-08-01 2020-02-06 オーエスジー株式会社 Hard coating and hard coating-coated member
KR20210025641A (en) * 2018-08-01 2021-03-09 오에스지 가부시키가이샤 Hard film and hard film covering member
KR20210025642A (en) * 2018-08-01 2021-03-09 오에스지 가부시키가이샤 Hard film and hard film covering member
JPWO2020026391A1 (en) * 2018-08-01 2021-08-12 オーエスジー株式会社 Hard coating and hard coating covering member
JP6995202B2 (en) 2018-08-01 2022-01-14 オーエスジー株式会社 Hard coating and hard coating covering member
US11447875B2 (en) 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member
US11447855B2 (en) * 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member
KR102519788B1 (en) 2018-08-01 2023-04-10 오에스지 가부시키가이샤 Hard-coated and hard-coated members
KR102520304B1 (en) 2018-08-01 2023-04-10 오에스지 가부시키가이샤 Hard-coated and hard-coated members

Similar Documents

Publication Publication Date Title
JP4844880B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2008049454A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP2007307691A (en) Surface coated cutting tool with hard coated layer exhibiting excellent abrasion resistance in high speed cutting work
JP2006224198A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material
JP4621973B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2008049455A (en) Surface coated cutting tool having hard coating layer showing superior chipping resistance and wear resistance
JP2008173755A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JP4697390B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4697391B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2008173753A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP2008087113A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP4621974B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2006051594A (en) Surface coated cemented carbide cutting tool having hard coating layer displaying excellent chipping resistance in high speed heavy cutting of heat resistant alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20100406