JP2006224198A - Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material - Google Patents

Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material Download PDF

Info

Publication number
JP2006224198A
JP2006224198A JP2005037440A JP2005037440A JP2006224198A JP 2006224198 A JP2006224198 A JP 2006224198A JP 2005037440 A JP2005037440 A JP 2005037440A JP 2005037440 A JP2005037440 A JP 2005037440A JP 2006224198 A JP2006224198 A JP 2006224198A
Authority
JP
Japan
Prior art keywords
layer
cutting
hard coating
work material
coating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037440A
Other languages
Japanese (ja)
Other versions
JP4771198B2 (en
Inventor
Akihiro Kondou
暁裕 近藤
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005037440A priority Critical patent/JP4771198B2/en
Publication of JP2006224198A publication Critical patent/JP2006224198A/en
Application granted granted Critical
Publication of JP4771198B2 publication Critical patent/JP4771198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool made of surface coated cemented carbide alloy a hard coating layer of which displays excellent abrasion resistance in high speed cutting work of a highly reactive work material. <P>SOLUTION: This cutting tool is made by forming the hard coating layer, on the surface of a carbide substrate by vapor deposition, which is constituted of: (a) an upper layer and a lower layer both of which are made of (Ti, Al, Ta)N, the upper layer has layer thickness of 0.5 to 1.5μm and the lower layer has layer thickness of 2 to 6μm respectively; (b) the upper layer has an alternately laminated structure of a thin layer A and a thin layer B both of which have layer thickness of 5 to 20 nm (nanometer), the thin layer A is made of a (Ti, Al, Ta)N layer to satisfy a specific composition formula, [Ti<SB>1-(A+B)</SB>Al<SB>A</SB>Ta<SB>B</SB>]N, the thin layer B is made of a (Ti, Al, Ta)N layer to satisfy a specific composition formula, [Ti<SB>1-(C+D)</SB>Al<SB>C</SB>Ta<SB>D</SB>]; and (c) the lower layer having a single phase structure and made of a (Ti, Al, Ta)N layer to satisfy a specific composition formula, [Ti<SB>1-(E+F)</SB>Al<SB>E</SB>Ta<SB>F</SB>]N. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工に用いた場合にも、硬質被覆層が前記高反応性被削材に対してきわめて低い反応性を示し、この結果すぐれた耐摩耗性を長期に亘って発揮するようになる表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention is particularly suitable for high-speed cutting with high heat generation of highly reactive work materials such as Ti alloys, high Si-containing Al alloys, and free-cutting steels, and the hard coating layer is highly reactive. For surface-coated cemented carbide cutting tools (hereinafter referred to as coated cemented carbide tools) that exhibit extremely low reactivity to porous work materials and as a result, exhibit excellent wear resistance over a long period of time It is.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:[Ti1-(X+Y) AlX Ta]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.09を示す)、
を満足するTiとAlとTaの複合窒化物[以下、(Ti,Al,Ta)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,Ta)N層は、構成成分であるAlによって高温硬さおよび耐熱性、同Tiによって高温強度が向上し、さらに同Taによって被削材との間に反応抑止効果を発揮するようになることも知られている。
In addition, as a coated carbide tool, a single-phase structure is formed on the surface of a cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. Have and
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from 0.50 to .65, Y represents a 0.01 to 0.09),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and Ta [hereinafter referred to as (Ti, Al, Ta) N] satisfying the above conditions with an average layer thickness of 2 to 8 μm The (Ti, Al, Ta) N layer has a high temperature hardness and heat resistance by Al as a constituent component, and a high temperature strength is improved by the Ti, and further between the work material by the Ta. It is also known to exert a reaction deterrent effect.

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Ta合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第3351054号明細書
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—Ta alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Ti, Al, Ta) N layer.
Japanese Patent No. 3351054

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の切削加工を、高熱発生を伴なう高速切削加工条件で行うのに用いた場合には、特に硬質被覆層と前記高反応性被削材との反応が、高熱発生に伴って促進されることと相俟って、急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, when used to cut carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions, there is no problem with normal cutting performance. Especially when used to cut extremely reactive work materials such as alloys, high Si content Al alloys and free-cutting steel under high-speed cutting conditions with high heat generation. The reaction between the layer and the highly reactive work material is accelerated in conjunction with the generation of high heat, resulting in rapid progress, resulting in a wear time in a relatively short time. Currently.

そこで、本発明者等は、上述のような観点から、特に上記高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,Ta)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Ta)N層において、Ta成分の含有割合を多くすればするほど高反応性被削材との反応性は低下するようになるが、上記の従来(Ti,Al,Ta)N層における1〜9原子%程度のTa含有割合では、前記高反応性被削材との反応を、高熱発生を伴う高速切削加工で満足に抑制することはできず、高速切削加工で前記高反応性被削材との反応を満足抑制するには前記1〜9原子%をはるかに越えた50〜70原子%のTa含有が必要であり、一方50〜70原子%のTa成分を含有した(Ti,Al,Ta)N層を硬質被覆層として実用に供するには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合は著しく低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
In view of the above, the present inventors have developed the above-mentioned coated carbide tool exhibiting excellent wear resistance with a hard coating layer particularly in high-speed cutting of the highly reactive work material. As a result of conducting research by paying attention to the (Ti, Al, Ta) N layer that constitutes the hard coating layer of conventional coated carbide tools,
(A) In the (Ti, Al, Ta) N layer constituting the hard coating layer, the reactivity with the highly reactive work material decreases as the content ratio of the Ta component increases. In the conventional (Ti, Al, Ta) N layer, the Ta content ratio of about 1 to 9 atomic% can satisfactorily suppress the reaction with the highly reactive work material by high-speed cutting with high heat generation. In order to satisfactorily suppress the reaction with the highly reactive work material by high-speed cutting, it is necessary to contain 50 to 70 atomic% of Ta far exceeding the above 1 to 9 atomic%, while 50 to 70%. In order to use a (Ti, Al, Ta) N layer containing 70 atomic% Ta component as a hard coating layer, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high temperature strength. In this case, the content ratio of the Al component is unavoidably low. Results hot hardness and shall become that heat resistance of very low.

(b)組成式:(Ti1-(A+B)AlTa)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する、Ta含有割合が50〜70原子%の(Ti,Al,Ta)N層と、
組成式:(Ti1-(C+D)AlTa)N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足する、相対的にAl成分の含有割合を多くし、一方所定量のTi成分を含有させて高温強度を確保するためにTa成分の含有割合を相対的に低くした(Ti,Al,Ta)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,Ta)N層は、薄層の交互積層構造によって、上記の高Ta含有の(Ti,Al,Ta)N層(以下、薄層Aという)のもつすぐれた被削材反応抑制効果と、前記薄層Aに比して相対的にTa含有割合を低く、かつAl含有割合を高くした(Ti,Al,Ta)N層(以下、薄層Bという)のもつ相対的に高い高温硬さおよび耐熱性とを具備するようになるので、硬質被覆層として実用に供することができるようになること。
(B) Composition formula: (Ti 1− (A + B) Al A Ta B ) N (provided that atomic ratio is 0.01 to 0.10 and B is 0.50 to 0.70) A (Ti, Al, Ta) N layer having a Ta content ratio of 50 to 70 atomic%;
Composition formula: (Ti 1− (C + D) Al C Ta D ) N (wherein, C is 0.30 to 0.45 and D is 0.20 to 0.35 in atomic ratio), relative In particular, the content ratio of the Al component is increased, while the content ratio of the Ta component is relatively lowered in order to ensure a high temperature strength by containing a predetermined amount of the Ti component (Ti, Al, Ta) N layer,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and the resulting (Ti, Al, Ta) N layer has a thin layer of alternately laminated structure, The above-mentioned high Ta content (Ti, Al, Ta) N layer (hereinafter referred to as the thin layer A) has an excellent work material reaction suppressing effect, and the Ta content ratio is relatively higher than that of the thin layer A. The hard coating layer has a relatively high high temperature hardness and heat resistance of the (Ti, Al, Ta) N layer (hereinafter referred to as the thin layer B) having a low and high Al content. To be able to be put to practical use.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Ta)N層は、高反応性被削材の高速切削加工で要求される、被削材反応抑制効果を有するものの、十分満足な高温硬さおよび耐熱性を有するものではないので、これを硬質被覆層の上部層として設け、一方同下部層として、被削材反応抑制効果は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Ta)N層、すなわち、
組成式:[Ti1-(E+F)AlTa]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する、単一相構造の(Ti,Al,Ta)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた被削材反応抑制効果に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の高反応性被削材の高い高熱発生を伴う高速切削加工でも、前記高反応性被削材と硬質被覆層との反応摩耗が著しく抑制された状態で切削が行われるので、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Ta) N layer having the alternately laminated structure of the thin layer A and the thin layer B of (b) is a work material required for high-speed cutting of a highly reactive work material. Although it has a reaction suppressing effect, it does not have a sufficiently satisfactory high-temperature hardness and heat resistance, so it is provided as an upper layer of the hard coating layer, while the lower layer is insufficient in the work material reaction suppressing effect. (Ti, Al, Ta) N layer having a composition corresponding to the above-mentioned conventional hard coating layer having a relatively high Al component content and excellent high-temperature hardness and heat resistance,
Compositional formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in terms of atomic ratio) (Ti, Al, Ta) N layer of single phase structure,
With this structure, the hard coating layer has high temperature hardness and heat resistance, as well as high temperature strength, in addition to the excellent work material reaction suppression effect. In the coated carbide tool formed by vapor deposition, the reactive wear between the highly reactive work material and the hard coating layer is remarkably suppressed even in the high-speed cutting with high heat generation of the highly reactive work material. Since cutting is performed in a state, it has excellent wear resistance for a long time without occurrence of chipping.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)いずれも(Ti,Al,Ta)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlTa]N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する(Ti,Al,Ta)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlTa]N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足する(Ti,Al,Ta)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlTa]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する(Ti,Al,Ta)N層、
からなる硬質被覆層を蒸着形成してなる、高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Ta) N, the upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Ta B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) satisfies (Ti , Al, Ta) N layer,
The thin layer B is
Formula: [Ti 1- (C + D ) Al C Ta D] N ( provided that an atomic ratio, C is 0.30 to 0.45, D represents a 0.20 to 0.35) satisfies (Ti , Al, Ta) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) (Ti , Al, Ta) N layer,
It is characterized by a coated carbide tool that exhibits excellent wear resistance in high-speed cutting of a highly reactive work material formed by vapor-depositing a hard coating layer made of

つぎに、この発明の被覆超硬工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Ta)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同Ta成分には特に被削材との反応性を著しく低減させる作用があり、下部層ではAl成分の含有割合を全体的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとTaとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、高速切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Taの割合を示すF値がTiとAlとの合量に占める割合で、0.01未満では、所定の被削材反応抑制効果を確保することができず、一方同F値が0.09を超えると、高温強度が急激に低下するようになることから、F値を0.01〜0.09と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, Ta) N layer constituting the hard coating layer improves high-temperature hardness and heat resistance, while the Ti component Has the effect of significantly reducing the reactivity with the work material, especially the Ta component, and in the lower layer, the overall content of the Al component is increased in the lower layer to achieve high high temperature hardness and heat resistance. However, if the E value indicating the content ratio of Al is less than 0.50 in terms of the total amount of Ti and Ta (atomic ratio, the same shall apply hereinafter), the proportion of Ti is relatively high and high-speed cutting is performed. The excellent high-temperature hardness and heat resistance required for processing cannot be secured, and the progress of wear is rapidly promoted. On the other hand, if the E value indicating the Al ratio exceeds 0.65, In particular, the ratio of Ti is too low and the high temperature strength is sudden As a result, chipping (slight chipping) or the like is likely to occur, so the E value was set to 0.50 to 0.65.
Further, if the F value indicating the proportion of Ta is a proportion of the total amount of Ti and Al, and less than 0.01, a predetermined work material reaction suppression effect cannot be ensured, while the F value is 0. If it exceeds 0.09, the high-temperature strength suddenly decreases, so the F value was determined to be 0.01 to 0.09.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while if the layer thickness exceeds 6 μm Since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Ta)NにおけるTa成分は、上記の通りその含有割合をできるだけ高くして、被削材反応抑制効果を一段と向上させ、もって高熱発生を伴う高反応性被削材の高速切削加工での反応摩耗低減を図る目的で含有するものであり、したがってB値が0.50未満では所望のすぐれた被削材反応抑制効果を確保することができず、一方B値が0.70を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなくなることから、B値を0.50〜0.70と定めた。
また、Alの割合を示すA値がTiとTaとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度が低下するようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A The Ta component in (Ti, Al, Ta) N of the upper layer thin layer A is made as high as possible to reduce the reaction of the work material as described above. Is included for the purpose of reducing reactive wear in high-speed cutting of high-reactive work materials with high heat generation, and therefore, if the B value is less than 0.50, desired excellent work can be obtained. The material reaction suppression effect cannot be ensured. On the other hand, when the B value exceeds 0.70, the content ratio of the Ti component is relatively decreased, and the high temperature strength that the layer itself should have can be ensured. The B value was determined to be 0.50 to 0.70 because it was not possible.
In addition, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Ta, and if it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, leading to accelerated wear. On the other hand, if the A value exceeds 0.10, the high-temperature strength decreases, causing chipping. Therefore, the A value was set to 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してTa成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた被削材反応抑制効果と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.30未満になると、所定の高温硬さおよび耐熱性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.45を越えると、上部層全体の高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.30〜0.45と定めた。
また、Taの割合を示すD値がTiとAlとの合量に占める割合で、0.20未満では、上部層全体の被削材反応抑制効果の低下が避けられず、一方同D値が0.35を超えると、上部層全体の高温強度が急激に低下するようになることから、D値を0.20〜0.35と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the Ta component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having a relatively high high-temperature hardness and heat resistance of the thin layer B is formed, and the C value indicating the Al content in the composition formula is If it is less than 0.30, the predetermined high temperature hardness and heat resistance cannot be ensured, and the progress of wear is promoted. On the other hand, if the C value exceeds 0.45, the high temperature strength of the entire upper layer is increased. Decrease is unavoidable and causes chipping. .30 to 0.45.
Further, the D value indicating the ratio of Ta is the ratio of the total amount of Ti and Al. If the D value is less than 0.20, the reduction in the work material reaction suppression effect of the entire upper layer is unavoidable, while the D value is If it exceeds 0.35, the high-temperature strength of the entire upper layer suddenly decreases, so the D value was set to 0.20 to 0.35.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた被削材反応抑制効果、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば被削材反応抑制効果不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent work material reaction suppressing effect, and it becomes impossible to ensure a predetermined high temperature hardness and heat resistance, and if each layer thickness exceeds 20 nm, each thin layer has a defect, that is, if it is a thin layer A Insufficient high-temperature hardness and heat resistance, and thin layer B, the lack of work material reaction suppression effect appears locally in the layer, which makes it easier for chipping to occur and promotes the progress of wear. Each layer thickness was determined to be 5 to 20 nm.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた被削材反応抑制効果および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, it is impossible to provide the hard coating layer with long-lasting work material reaction suppressing effect and predetermined high-temperature hardness and heat resistance, The tool life is short-lived. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆超硬工具は、硬質被覆層が(Ti,Al,Ta)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた被削材反応抑制効果を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと耐熱性を有することから、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工でも、前記硬質被覆層の反応摩耗が著しく抑制されるようになり、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated carbide tool of the present invention, the hard coating layer is composed of a (Ti, Al, Ta) N layer. The upper layer of the hard coating layer has an alternate laminated structure of thin layers A and thin layers B. In particular, since the lower layer of the single-phase structure has relatively high high temperature hardness and heat resistance while maintaining the high temperature hardness and heat resistance of Even in high-speed cutting with high heat generation of extremely reactive work materials such as alloys, high-Si content Al alloys, and free-cutting steel, the reactive wear of the hard coating layer is remarkably suppressed, which is excellent. It exhibits wear resistance over a long period of time.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, all are TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Ta合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Ta合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Ta合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−Ta合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Ta合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Ta合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Ti-Al-Ta alloy for forming the thin layer A having the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. A Ti-Al-Ta alloy for forming a thin layer B as an upper layer is disposed opposite to the rotary table, and a cathode is formed along the rotary table at a position shifted by 90 degrees from both the Ti-Al-Ta alloys. Electrode (evaporation source) The Ti-Al-Ta alloy for the lower layer formed attached to,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the Ti-Al-Ta alloy for forming the lower layer and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate is Ti-Al- Bombard cleaning with Ta alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the layer-forming Ti—Al—Ta alloy and the anode electrode, and the target composition and target layer thickness shown in Tables 3 and 4 are formed on the surface of the cemented carbide substrate. (Ti, Al, Ta) N layer having a single phase structure is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to a carbide substrate rotating while rotating on the rotary table, A predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer A to generate arc discharge, and the surface of the carbide substrate is predetermined. After the formation of the thin layer A, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer B, 50 to 200 A The arc discharge is generated by flowing a predetermined current within the range of forming a thin layer B having a predetermined layer thickness, and then the arc discharge is stopped (in this case, the formation of the thin layer B may be started) Again, the thin layer A forming Ti- Formation of thin layer A by arc discharge between the cathode electrode and anode electrode of l-Ta alloy, and formation of thin layer B by arc discharge between the cathode electrode and anode electrode of the Ti-Al-Ta alloy for forming thin layer B The upper layer is formed by alternately laminating the thin layer A and the thin layer B having the target composition and the target layer thickness shown in Tables 3 and 4 along the layer thickness direction on the surface of the cemented carbide substrate. Are formed by vapor deposition with the overall target layer thicknesses shown in Tables 3 and 4, so that the surface coated carbide throwaway tip of the present invention as the coated carbide tool of the present invention (hereinafter referred to as the coated carbide chip of the present invention) is used. 1 to 16 were produced.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−Ta合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−Ta合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Ta合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti—Al—Ta alloy having a component composition corresponding to the target composition shown in Table 5 was mounted as a cathode electrode (evaporation source) as a cathode electrode (evaporation source). The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 1 Pa or less, and then a −1000 V DC bias voltage was applied to the carbide substrate, and the Ti—Al—Ta alloy and anode of the cathode electrode were applied. An arc discharge is generated by passing a current of 100 A between the electrodes, and the carbide substrate surface is bombarded with the Ti—Al—Ta alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas. and a bias voltage applied to the cemented carbide substrate is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Ta alloy, thereby (Ti, Al, Ta) N layer having a single phase structure with a target composition and target layer thickness shown in Table 5 on each surface of hard substrates A-1 to A-10 and B-1 to B-6 A comparative surface-coated carbide throw-away tip (hereinafter referred to as a comparative coated carbide tip) 1-16 as a comparative coated carbide tool corresponding to a conventional coated carbide tool is formed by vapor-depositing a hard coating layer made of Were manufactured respectively.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・60種(組成、質量%で、Ti−6%Al−4%V)の丸棒、
切削速度:100m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件(切削条件A)でのTi合金の乾式連続高速切削加工試験(通常の切削速度は40m/min.)、
被削材:JIS・AC9B(組成、質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1mm、
送り:0.1mm/rev.、
切削時間:10分、
の条件(切削条件B)での高Si含有Al合金の乾式断続高速切削加工試験(通常の切削速度は150m/min.)、
被削材:JIS・SUM22(組成、質量%で、Fe−1%Mn−0.3%S−0.1%P)の丸棒、
切削速度:400m/min.、
切り込み:1.5mm、
送り:0.3mm/rev.、
切削時間:10分、
の条件(切削条件C)での快削鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide tips 1 to 16 of the present invention and the comparative coated carbide tips 1 to 16 of the present invention are screwed to the tip of the tool steel tool with a fixing jig. about,
Work material: JIS / 60 type (composition, mass%, Ti-6% Al-4% V) round bar,
Cutting speed: 100 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of Ti alloy under the conditions (cutting condition A) (normal cutting speed is 40 m / min.),
Work material: JIS / AC9B (composition, mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) in the longitudinal direction at equal intervals, 4 longitudinally round bars.
Cutting speed: 300 m / min. ,
Cutting depth: 1mm,
Feed: 0.1 mm / rev. ,
Cutting time: 10 minutes,
Dry interrupted high-speed cutting test (normal cutting speed is 150 m / min.) Of a high Si content Al alloy under the conditions (Cutting condition B)
Work material: JIS / SUM22 (composition, mass%, Fe-1% Mn-0.3% S-0.1% P) round bar,
Cutting speed: 400 m / min. ,
Incision: 1.5mm,
Feed: 0.3 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed was 200 m / min.) Of free-cutting steel under the above conditions (cutting condition C) was performed, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a lower layer composed of a (Ti, Al, Ta) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 8 is also shown along the layer thickness direction. A coated carbide tool of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of thin layers A and B having a target composition shown in FIG. The present invention surface-coated carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. Then, a hard coating layer composed of a (Ti, Al, Ta) N layer having a single-phase structure having the target composition and target layer thickness shown in Table 9 is deposited under the same conditions as in Example 1 above. Thus, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 as comparative coated carbide tools corresponding to conventional coated carbide tools were produced, respectively.

つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Fe−1%Mn−0.3%S−0.1%P)のJIS・SUM22の板材、
切削速度:200m/min.、
溝深さ(切り込み):2mm、
テーブル送り:800mm/分、
の条件での快削鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)、本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ti−6%Al−4%V)のJIS・60種の板材、
切削速度:100m/min.、
溝深さ(切り込み):3.5mm、
テーブル送り:500mm/分、
の条件でのTi合金の乾式高速溝切削加工試験(通常の切削速度は40m/min.)、本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)のJIS・AC9Bの板材、
切削速度:200m/min.、
溝深さ(切り込み):8mm、
テーブル送り:480mm/分、
の条件での高Si含有Al合金の乾式高速溝切削加工試験(通常の切削速度は100m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3 are as follows:
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / SUM22 plate material with the above composition (mass%, Fe-1% Mn-0.3% S-0.1% P) ,
Cutting speed: 200 m / min. ,
Groove depth (cut): 2 mm,
Table feed: 800mm / min,
With respect to the dry high-speed grooving test of free-cutting steel under the following conditions (normal cutting speed is 100 m / min.), The coated carbide end mills 4 to 6 and the comparative coated carbide end mills 4 to 6 of the present invention,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS 60 type plate material of the above composition (mass%, Ti-6% Al-4% V),
Cutting speed: 100 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 500 mm / min,
With respect to the dry high-speed grooving test of Ti alloy under the following conditions (the normal cutting speed is 40 m / min.), The coated carbide end mills 7 and 8 and the comparative coated carbide end mills 7 and 8 of the present invention,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / AC9B plate material of the above composition (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) ,
Cutting speed: 200 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 480 mm / min,
A dry high-speed grooving test (normal cutting speed is 100 m / min.) Of a high Si-containing Al alloy under the above conditions was performed. The cutting groove length up to 0.1 mm, which is a guide for the service life, was measured. The measurement results are shown in Tables 8 and 9, respectively.

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. A lower layer composed of a (Ti, Al, Ta) N layer having a single phase structure with the target composition and target layer thickness shown in Table 10 under the same conditions as in Example 1 and the same layer By vapor-depositing an upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 10 and a single target layer thickness along the thickness direction, with the overall target layer thickness also shown in Table 10, The surface coated carbide drills (hereinafter referred to as the present invention coated carbide drills) 1 to 8 as the present invention coated carbide tools were produced, respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard material comprising a (Ti, Al, Ta) N layer having a single-phase structure with the target composition and target layer thickness similarly shown in Table 11 under the same conditions as in Example 1 above, charged in the ion plating apparatus By vapor-depositing the coating layer, comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1 to 8 as comparative coated carbide tools corresponding to conventional coated carbide tools were produced, respectively.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもった上記組成(質量%で、Fe−1%Mn−0.3%S−0.1%P)のJIS・SUM22の板材、
切削速度:100m/min.、
送り:0.2mm/rev、
穴深さ:6mm、
の条件での快削鋼の湿式高速穴あけ切削加工試験(通常の切削速度は45m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Ti−6%Al−4%V)のJIS・60種の板材、
切削速度:55m/min.、
送り:0.1mm/rev、
穴深さ:10mm、
の条件でのTi合金の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもった上記組成(質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)のJIS・AC9Bの板材、
切削速度:150m/min.、
送り:0.3mm/rev、
穴深さ:20mm、
の条件での高Si含有Al合金の湿式高速穴あけ切削加工試験(通常の切削速度は70m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8, for the present invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-Plane: 100 mm × 250, thickness: 50 mm JIS / SUM22 plate with the above composition (mass%, Fe-1% Mn-0.3% S-0.1% P) ,
Cutting speed: 100 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 6mm,
The wet high speed drilling test of free cutting steel under the conditions (normal cutting speed is 45 m / min.), The present invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS 60 type plate material of the above composition (mass%, Ti-6% Al-4% V),
Cutting speed: 55 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 10mm,
With regard to the Ti alloy wet high-speed drilling machining test under the conditions (normal cutting speed is 25 m / min.), The present invention coated carbide drills 7 and 8 and the comparative coated carbide drills 7 and 8,
Work material-plane: 100 mm x 250 mm, thickness: 50 mm JIS / AC9B plate material of the above composition (mass%, Al-19% Si-1% Cu-1% Mg-1% Ni) ,
Cutting speed: 150 m / min. ,
Feed: 0.3mm / rev,
Hole depth: 20mm,
Wet high speed drilling test of high Si content Al alloy under normal conditions (normal cutting speed is 70m / min.), And any wet high speed drilling test (using water soluble cutting oil) The number of drilling processes until the flank wear width of the blade surface reached 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2006224198
Figure 2006224198

Figure 2006224198
Figure 2006224198

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8の(Ti,Al,Ta)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆超硬工具に相当する比較被覆超硬工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8の(Ti,Al,Ta)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   The resulting coated carbide tips 1-16 of the present invention, the coated carbide end mills 1-8 of the present invention, and the coated carbide drills 1-8 of the present invention (Ti, Al, Ta). ) Comparison of coated carbide tip 1 as a comparative coated carbide tool equivalent to the conventional coated carbide tool, and the composition of the lower layer A and thin layer B constituting the hard coating layer made of N and the lower layer. ˜16, comparative coated carbide end mills 1-8, and comparative coated carbide drills 1-8, the composition of the hard coating layer made of (Ti, Al, Ta) N is an energy dispersion type using a transmission electron microscope When measured by X-ray analysis, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,Ta)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さおよび耐熱性、さらに前記上部層がすぐれた被削材反応抑制効果を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、特にTi合金や高Si含有Al合金、さらに快削鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速切削加工に用いた場合にも、前記硬質被覆層と高反応性被削材との間で反応摩耗が著しく抑制された状態で切削が行われるので、すぐれた耐摩耗性を発揮するの対して、硬質被覆層が単一相構造の(Ti,Al,Ta)N層からなる比較被覆超硬工具は、前記高反応性被削材の高速切削加工では、特に前記硬質被覆層と高反応性被削材との間の反応摩耗が著しく、この結果比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 11, the coated carbide tool of the present invention has a single-phase structure lower layer composed of (Ti, Al, Ta) N, each of which has a hard coating layer having a different composition, and a layer thickness. Is composed of an upper layer having an alternating laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high-temperature hardness and heat resistance, and the upper layer has excellent work material reaction suppression. Since the hard coating layer has these excellent characteristics, the heat generation of highly reactive work materials such as Ti alloy, high Si content Al alloy, and free-cutting steel is particularly high. Even when used in high-speed cutting, the cutting is performed in a state where the reactive wear is remarkably suppressed between the hard coating layer and the highly reactive work material, so that it exhibits excellent wear resistance. On the other hand, the hard coating layer has a single phase structure (Ti, A , Ta) N comparative coated carbide tools, particularly in high-speed cutting of the highly reactive work material, the reactive wear between the hard coated layer and the highly reactive work material is particularly significant. It is clear that the service life is reached in a relatively short time.

上述のように、この発明の被覆超硬工具は、特に各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に上記の高反応性被削材の高熱発生を伴なう高速切削加工でもすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cemented carbide tool of the present invention is not only for cutting under high-speed cutting conditions such as various types of carbon steel, low alloy steel, and ordinary cast iron, and particularly for the above highly reactive work material. It exhibits excellent wear resistance even in high-speed cutting with high heat generation, exhibits excellent cutting performance over a long period of time, and is versatile for work materials. It can cope with labor saving, energy saving and cost reduction of processing sufficiently satisfactorily.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)いずれもTiとAlとTaの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlTa]N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足するTiとAlとTaの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlTa]N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足するTiとAlとTaの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlTa]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足するTiとAlとTaの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、高反応性被削材の高速切削加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Ta. The upper layer has a thickness of 0.5 to 1.5 μm, and the lower layer has a thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Ta B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) and Ti which satisfies A composite nitride layer of Al and Ta,
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (C + D) Al C Ta D ] N (wherein C is 0.30 to 0.45 and D is 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and Ta,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) A composite nitride layer of Al and Ta,
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed cutting of a highly reactive work material formed by vapor-depositing a hard coating layer made of
JP2005037440A 2005-02-15 2005-02-15 Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials Expired - Fee Related JP4771198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037440A JP4771198B2 (en) 2005-02-15 2005-02-15 Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037440A JP4771198B2 (en) 2005-02-15 2005-02-15 Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials

Publications (2)

Publication Number Publication Date
JP2006224198A true JP2006224198A (en) 2006-08-31
JP4771198B2 JP4771198B2 (en) 2011-09-14

Family

ID=36986000

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037440A Expired - Fee Related JP4771198B2 (en) 2005-02-15 2005-02-15 Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials

Country Status (1)

Country Link
JP (1) JP4771198B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255848A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp Cutting tool and cutting method for low carbon free-cutting steel
EP3396015A4 (en) * 2016-03-18 2019-09-11 Northeastern University Composite functional cutter coating for cutting titanium alloy and preparation method therefor
US11534836B2 (en) * 2018-03-19 2022-12-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002137120A (en) * 2000-10-31 2002-05-14 Mmc Kobelco Tool Kk Surface covered high speed tool steel gear cutting tool having hard covered layer having excellent chip lubrication property
JP2004042170A (en) * 2002-07-10 2004-02-12 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JP2002137120A (en) * 2000-10-31 2002-05-14 Mmc Kobelco Tool Kk Surface covered high speed tool steel gear cutting tool having hard covered layer having excellent chip lubrication property
JP2004042170A (en) * 2002-07-10 2004-02-12 Mitsubishi Materials Kobe Tools Corp Surface-coated cemented carbide cutting tool having hard coating layer for exhibiting superior chipping resistance under high speed double cutting condition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006255848A (en) * 2005-03-18 2006-09-28 Nippon Steel Corp Cutting tool and cutting method for low carbon free-cutting steel
EP3396015A4 (en) * 2016-03-18 2019-09-11 Northeastern University Composite functional cutter coating for cutting titanium alloy and preparation method therefor
US11534836B2 (en) * 2018-03-19 2022-12-27 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool

Also Published As

Publication number Publication date
JP4771198B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP5344129B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP4697661B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2007152456A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting high-hardness steel
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP2011224671A (en) Surface-coated cutting tool
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4645820B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP4645819B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP5077743B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to hard coating layer
JP2007152458A (en) Surface coated cutting tool having hard coating layer having excellent chipping resistance in high-speed cutting material hard to machine
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2007105843A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for highly reactive material to be cut
JP4771200B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771198

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees