JP2006255848A - Cutting tool and cutting method for low carbon free-cutting steel - Google Patents

Cutting tool and cutting method for low carbon free-cutting steel Download PDF

Info

Publication number
JP2006255848A
JP2006255848A JP2005078960A JP2005078960A JP2006255848A JP 2006255848 A JP2006255848 A JP 2006255848A JP 2005078960 A JP2005078960 A JP 2005078960A JP 2005078960 A JP2005078960 A JP 2005078960A JP 2006255848 A JP2006255848 A JP 2006255848A
Authority
JP
Japan
Prior art keywords
cutting
tool
steel
cutting edge
free
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005078960A
Other languages
Japanese (ja)
Inventor
Masayuki Hashimura
雅之 橋村
Atsushi Mizuno
水野  淳
Kei Miyanishi
慶 宮西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005078960A priority Critical patent/JP2006255848A/en
Publication of JP2006255848A publication Critical patent/JP2006255848A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a cutting tool improved in the quality of a cut surfce in cutting low carbon non-lead free-cutting steel and improved in quality exceeding a level achieved in the conventional low carbon free-cutting steel. <P>SOLUTION: In this cutting tool, the cutting edge roundness of one or both of a main cutting edge and a sub-cutting edge has a radius of 50 μm or less, the partial or whole surface layer of the surface coming into contact with a material to be cut is coated with a hard film. The hard film contains N: 40 to 60% in atom % and Ti: 40 to 60% in atom %. The hard film further contains 40% or less one or two kinds of Al and Zr in atom %. When the cutting tool is used in cutting low-carbon non-lead free-cutting steel, since the steel is hard to cohere to the cutting edge, a built-up edge is hardly formed, and the cutting edge roundness has a radius of 50 μm or less, whereby good surface roughness not obtained in the past can be achieved and the breakage of the cutting edge is hardly caused to obtain an extremely favorable tool life. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低炭快削鋼、特に低炭非鉛快削鋼の切削において切削表面粗さを良好にする切削工具及び切削方法に関するものである。   The present invention relates to a cutting tool and a cutting method for improving the cutting surface roughness in cutting low-carbon free-cutting steel, particularly low-carbon lead-free free-cutting steel.

切削加工の合理化、高能率化および部品の仕上げ精度の向上はますます強く要求されており、切削工具の改良とあわせて性能の高い快削鋼の採用が進んでいる。低炭快削鋼は、炭素濃度が0.2%以下であり、低炭素で削られやすい鋼である。被削性、即ち切り屑を出して鋼を加工する切削容易性を通常の鋼よりも高めるため化学成分的な工夫を施した鋼である。切削工具寿命が高いだけでなく、切削面の表面粗さなどの切削面の品質や切り屑処理性で他の鋼より優れた性能を有する。   There is an increasing demand for streamlined cutting, higher efficiency, and improved part finishing accuracy, and along with improvements in cutting tools, high-performance free-cutting steel is being adopted. Low-carbon free-cutting steel has a carbon concentration of 0.2% or less, and is low-carbon steel that can be easily cut. It is a steel that has been devised in terms of chemical composition in order to improve machinability, that is, the ease of cutting by machining chips by removing chips. Not only has a long cutting tool life, it has superior performance to other steels in terms of cutting surface quality such as surface roughness and chip disposal.

現在、JISに規定されている低炭快削鋼は、硫黄および硫黄−鉛複合快削鋼である。具体的には、JIS G 4804に規定されるSUM22、SUM23、SUM24L、SUM25などが一般的である。   Currently, the low-carbon free-cutting steel specified in JIS is sulfur and sulfur-lead composite free-cutting steel. Specifically, SUM22, SUM23, SUM24L, SUM25, etc. defined in JIS G 4804 are common.

硫黄快削鋼は、最も古い快削鋼であり、Sを0.08〜0.35%含有している。鉛快削鋼は、鋼中にPbを微細均一に分布させたもので、Pbは通常0.10〜0.35%の範囲で含有されている。硫黄快削鋼のMnSが圧延方向に伸びるのに対し、鉛快削鋼のPbはMnSが周囲に付着するか、微細な粒状で単独に分布するため、機械的性質の異方性は比較的少なく、熱処理特性も基本鋼とほとんど差がない。また、工具表面でのPb薄膜による潤滑効果と切り欠き効果により、切削力を減じ、切り屑破砕性が向上する。従来の低炭快削鋼としては、鉛を含有する低炭鉛快削鋼が主に用いられていた。   Sulfur free-cutting steel is the oldest free-cutting steel and contains 0.08 to 0.35% of S. Lead free-cutting steel is obtained by finely and uniformly distributing Pb in steel, and Pb is usually contained in a range of 0.10 to 0.35%. MnS of sulfur free-cutting steel extends in the rolling direction, whereas Pb of lead free-cutting steel has MnS adhering to the surroundings or is distributed in a fine granular form, so the anisotropy of mechanical properties is relatively The heat treatment characteristics are almost the same as the basic steel. Moreover, the cutting force is reduced and the chip crushability is improved by the lubrication effect and the notch effect of the Pb thin film on the tool surface. As conventional low-carbon free-cutting steel, lead-containing low-carbon lead free-cutting steel has been mainly used.

低炭快削鋼を切削する際に用いる切削工具として、主として高速度鋼工具、あるいはWCをCoで焼結した超硬合金工具などが使用されていた。アルミナセラミックスや、TiCをNiで焼結したサーメットなども使用されることがある。   As a cutting tool used when cutting low-carbon free-cutting steel, a high-speed steel tool or a cemented carbide tool obtained by sintering WC with Co has been mainly used. Alumina ceramics or cermet obtained by sintering TiC with Ni may also be used.

高速度鋼は工具摩耗しやすく、摩耗部に構成刃先が生成しやすくなるため、表面粗さと寸法精度を維持するためには頻繁な工具交換/再研磨が必要であった。   High-speed steel easily wears tools, and it is easy to generate a component edge in the worn part. Therefore, frequent tool change / repolishing is necessary to maintain surface roughness and dimensional accuracy.

JIS B 4053−1996に表示されるK01〜K30(いわゆるK種)相当またはV10〜V30(V種)相当の超硬合金の焼結工具は、鉛快削鋼に対しては耐摩耗性に優れるため、良好な表面や寸法精度を得ることができ、加工面品質、工具寿命など切削性能と工具費用を含めたコストの面で優れ、鉛快削鋼(例えばSUM24L、SAE12L14相当)の切削に適している。   A cemented carbide sintered tool equivalent to K01 to K30 (so-called K type) or V10 to V30 (V type) shown in JIS B 4053-1996 is excellent in wear resistance for lead free cutting steel. Therefore, good surface and dimensional accuracy can be obtained, and it is excellent in terms of cost including cutting performance and tool cost such as machined surface quality and tool life, and suitable for cutting of lead free cutting steel (e.g. SUM24L, SAE12L14 equivalent) ing.

特許文献1においては、WCとCoを主成分とする超硬合金に、さらに鋼中に介在するマンガン硫化物のSと化学的親和性の強いZrを含有させることにより、工具面上にマンガン硫化物皮膜を形成させ、このマンガン硫化物皮膜をして鋼と工具との凝着を抑制させることにより、構成刃先生成を抑制して優れた切削仕上げ面を形成する発明が記載されている。ただし、特許文献1に記載のものは、Zrを含有する焼結体工具であり、工具の欠損特性などの安定性に問題があり、工具形状の自由度が小さいために広い範囲での切削には不向きであった。   In Patent Document 1, manganese carbide sulfide on the tool surface is obtained by adding a cemented carbide mainly composed of WC and Co to Zr having a strong chemical affinity with S of manganese sulfide interposed in steel. An invention is described in which an excellent coating finish is formed by suppressing the formation of the constituent edge by forming an object film and suppressing the adhesion between the steel and the tool by using this manganese sulfide film. However, what is described in Patent Document 1 is a sintered body tool containing Zr, which has a problem in stability such as the chipping property of the tool, and has a small degree of freedom in the tool shape, so it can be used for cutting in a wide range. Was unsuitable.

超硬合金、高速度鋼、あるいは特殊鋼などからなる工具基体の表面に、単層又は多層の硬質被膜を施した被覆工具が知られている。一般に、被覆工具の硬質被膜としては、耐摩耗性及び靭性に優れることが要求されるため、周期律表4、5、6族金属の炭化物、窒化物、又は炭窒化物からなる膜が用いられており、また耐酸化性に優れる酸化アルミニウム膜も用いられている。これら硬質被膜は、CVD法あるいはPVD法により成膜される。切削加工時に刃先が比較的高い温度まで昇温する旋削工具等の被膜としては、CVD法で成膜されたTiC、TiN、TiCN、Al23膜などが実用化されている。 A coated tool is known in which a single-layered or multilayered hard coating is applied to the surface of a tool base made of cemented carbide, high-speed steel, or special steel. Generally, a hard film of a coated tool is required to have excellent wear resistance and toughness, and therefore a film made of a carbide, nitride, or carbonitride of Periodic Tables 4, 5, and 6 metals is used. In addition, an aluminum oxide film having excellent oxidation resistance is also used. These hard coatings are formed by a CVD method or a PVD method. TiC, TiN, TiCN, Al 2 O 3 films, etc., which have been formed by the CVD method, have been put to practical use as coatings for turning tools and the like whose temperature increases to a relatively high temperature during cutting.

上記のような被覆工具は、鉛快削鋼を切削する場合においては、鋼との凝着の程度が通常の超硬合金工具よりも悪いために切削面の表面粗さがかえって悪化する。また被覆工具は従来工具に比較して高価であるため、鉛快削鋼の切削工具としてはあまり普及していない。   When cutting a lead free-cutting steel as described above, the degree of adhesion with the steel is worse than that of a normal cemented carbide tool, so the surface roughness of the cutting surface is deteriorated. Further, since the coated tool is more expensive than the conventional tool, it is not very popular as a cutting tool for lead free cutting steel.

低炭快削鋼の切削においては、切削面の表面粗さが良好であることが要求される。一般に、切れ刃の刃先丸みを小さくして刃先を鋭利にすることにより、切削面の表面粗さを改善することができる。しかし、刃先丸みを半径で50μm以下まで小さくしても表面粗さの改善程度には限度がある。構成刃先が形成されるためと考えられる。一方で、超硬合金工具のように脆い材料では、刃先丸みを半径で50μm以下まで小さくすると、刃先が欠けやすくなり、工具使用回数が少ない段階で欠けが発生し、かえって切削面の表面粗さが悪化するために工具寿命が短くなるという弊害さえ存する。そのため、低炭鉛快削鋼の切削に超硬合金工具などを用いる場合において、従来は切れ刃の刃先丸みを半径で100μm程度とするか、あるいはチャンファーと呼ばれる先端に負のすくい角をつけるなど、故意に刃先を鈍くして欠損を避ける手法がとられている。そのような形状では十分に良好な粗さが得られなかった。また刃先先端を鋭くすると被覆工具の場合、表面の硬質被膜が剥離しやすくなるため、故意に刃先を丸くする場合も多い。たとえば市販の被覆工具では刃先丸みは100μm程度、チャンファ−の場合、刃先を局部的に−45゜程度のすくい角にするものも多い。これにより、切削面の表面粗さと工具寿命とのバランスを保っていた。従来、低炭鉛快削鋼を用いた場合の切削面の表面粗さは、品質要求に対して十分に良好なレベルには至っていなかった。   In cutting low-carbon free-cutting steel, it is required that the surface roughness of the cutting surface be good. Generally, the surface roughness of the cutting surface can be improved by reducing the cutting edge roundness of the cutting edge and sharpening the cutting edge. However, even if the cutting edge roundness is reduced to 50 μm or less in radius, there is a limit to the degree of improvement in surface roughness. This is thought to be due to the formation of the component cutting edge. On the other hand, in brittle materials such as cemented carbide tools, if the cutting edge roundness is reduced to 50 μm or less in radius, the cutting edge tends to be chipped, and chipping occurs at a stage where the tool is used less frequently. There is even an adverse effect that the tool life is shortened due to the deterioration of the tool. Therefore, in the case of using a cemented carbide tool or the like for cutting low-carbon lead free-cutting steel, conventionally, the cutting edge of the cutting edge has a radius of about 100 μm, or a tip called a chamfer has a negative rake angle. For example, a technique that intentionally blunts the blade edge to avoid defects is used. With such a shape, a sufficiently good roughness could not be obtained. In addition, when the cutting edge tip is sharpened, in the case of a coated tool, the hard coating on the surface tends to be peeled off, so the cutting edge is often intentionally rounded. For example, commercially available coated tools often have a cutting edge radius of about 100 μm, and in the case of a chamfer, the cutting edge is locally set to a rake angle of about −45 °. Thereby, the balance between the surface roughness of the cutting surface and the tool life was maintained. Conventionally, the surface roughness of the cut surface when using low-carbon lead free-cutting steel has not reached a sufficiently good level for quality requirements.

近年、鉛の人体や生物への有害性が懸念され、近年ではシュレッダーダストとして処理された場合にも残存すると考えられ、リサイクルなど、製品のライフサイクルを考えた環境負荷を低減するという考えから、鋼中に含まれるわずかなPbについても規制が検討されている。そのため、鉛快削鋼に含まれるPbについても環境に対して懸念がもたれるにいたり、最近は低炭鉛快削鋼から鉛を含有しない低炭非鉛快削鋼に転換することが要請されている。   In recent years, there is concern about the harmfulness of lead to human bodies and organisms, and in recent years it is thought that it will remain even if it is treated as shredder dust, and from the idea of reducing the environmental burden considering the product life cycle, such as recycling, Regulations are also being considered for the slight amount of Pb contained in steel. Therefore, as Pb contained in lead free-cutting steel is also concerned about the environment, it has recently been requested to switch from low-carbon lead free-cutting steel to low-carbon non-lead free-cutting steel that does not contain lead. Yes.

このような鋼中鉛廃止の動きが高まる中で、被削材の非鉛化に対応した切削工具が求められている。   With such a trend to abolish lead in steel, cutting tools corresponding to lead-free work materials are being demanded.

特開昭62−152614号公報Japanese Patent Laid-Open No. Sho 62-152614

超硬合金工具を鉛快削鋼の切削に用いると、そこそこ好適な表面粗さを実現できるものの、決して十分に良好であるとはいえなかった。また、超硬合金工具を低炭非鉛快削鋼の切削に用いると、表面粗さが劣化し、切削面の品質として十分に良好な表面粗さを得られないという問題が生じる。   When a cemented carbide tool is used for cutting lead-free-cutting steel, a suitable surface roughness can be achieved, but it has never been sufficiently good. Moreover, when a cemented carbide tool is used for cutting low-carbon non-lead free-cutting steel, the surface roughness deteriorates, and there arises a problem that a sufficiently good surface roughness cannot be obtained as the quality of the cut surface.

本発明は、低炭非鉛快削鋼の切削に用いることのできる切削工具であって、切削面の品質を向上することのできる切削工具を提供することを目的とする。さらに本発明は、低炭非鉛快削鋼の切削面品質を、従来の低炭鉛快削鋼で実現できていたレベルを超えて良好な品質にすることのできる切削工具を提供することを目的とする。   An object of the present invention is to provide a cutting tool that can be used for cutting low-carbon lead-free free-cutting steel and that can improve the quality of a cutting surface. Furthermore, the present invention provides a cutting tool capable of making the cutting surface quality of low-carbon non-lead free-cutting steel better than the level achieved with conventional low-carbon lead-free cutting steel. Objective.

鉛快削鋼の切削に超硬合金工具が好適に用いられた理由は、鉛快削鋼に含まれるPbが工具表面でPb薄膜を形成して潤滑性を確保するためであった。これに対し、非鉛快削鋼の切削に超硬合金工具を用いた場合には、Pbによる潤滑効果が得られず、工具表面に鋼が凝着しやすくなり、これがために工具表面に構成刃先が形成され、切削面の表面粗さを悪化させる原因になっていた。   The reason why the cemented carbide tool was suitably used for cutting lead free-cutting steel was that Pb contained in the lead free-cutting steel formed a Pb thin film on the tool surface to ensure lubricity. On the other hand, when a cemented carbide tool is used for cutting lead-free free-cutting steel, the lubrication effect due to Pb cannot be obtained, and the steel tends to adhere to the tool surface, which is why the tool surface is configured. A cutting edge was formed, which caused the surface roughness of the cutting surface to deteriorate.

工具の被削材と接する面がTiNを含んだTi−Al−Zr系窒化物を主体とする材料であった場合、被削材がPbを含有しない非鉛快削鋼であっても、工具表面への鋼の凝着を防止することができることが明らかになった。   When the surface of the tool in contact with the work material is a material mainly composed of Ti—Al—Zr-based nitride containing TiN, the work material is a lead-free free-cutting steel containing no Pb. It became clear that the adhesion of steel to the surface could be prevented.

さらに、低炭非鉛快削鋼とTi−Al−Zr系窒化物系工具とを組み合わせた場合、その凝着しにくさの度合は、低炭鉛快削鋼と超硬合金工具との組み合わせの場合よりも良好であることが明らかになった。   Furthermore, when combining low-carbon lead-free free-cutting steel and Ti-Al-Zr-based nitride tools, the degree of difficulty of adhesion is a combination of low-carbon lead-free cutting steel and cemented carbide tools. It became clear that it was better than the case of.

低炭非鉛快削鋼とTi−Al−Zr系窒化物系工具とを組み合わせた場合、鋼が刃先に凝着しにくいために構成刃先が生成しづらく、工具切れ刃の刃先丸みを小さくすればするほど表面粗さが改善され、刃先丸みを半径で50μm以下とすることによって従来にない良好な表面粗さを実現できることがわかった。さらに、鋼が刃先に凝着しにくいため、刃先丸みを半径で50μm以下としても、刃先の欠けが発生しづらく、十分に良好な工具寿命を実現できることがわかった。   When combining low-carbon lead-free free-cutting steel and Ti-Al-Zr-based nitride-based tools, the steel is difficult to adhere to the cutting edge, making it difficult to generate the cutting edge, and reducing the cutting edge roundness of the tool cutting edge. It has been found that the surface roughness is improved as the surface roughness is improved, and that the surface roughness is 50 μm or less in radius, so that an unprecedented surface roughness can be realized. Furthermore, it was found that since steel is less likely to adhere to the cutting edge, even when the cutting edge is rounded to a radius of 50 μm or less, chipping of the cutting edge is difficult to occur, and a sufficiently good tool life can be realized.

本発明は上記知見に基づいてなされたものであり、その要旨とするところは以下のとおりである。
(1)主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されてなり、該硬質被膜は、原子%でN:40〜60%、Ti:40〜60%を含み、残部は実質的に不可避不純物からなることを特徴とする切削工具。
(2)主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されてなり、該硬質被膜は、原子%でN:40〜60%、Ti:10%以上60%未満に加え、Al又はZrの1種又は2種の合計を原子%で50%以下の範囲で含み、残部は実質的に不可避不純物からなることを特徴とする切削工具。
(3)主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることを特徴とする上記(1)又は(2)に記載の切削工具。
(4)硬質被膜の内部に配置された基材が、工具鋼、超硬合金、サーメット、セラミックスのいずれかであることを特徴とする上記(3)に記載の切削工具。
(5)主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、少なくとも被削材と接触する面の一部又は全部の表層が、Tiを含む炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を50質量%以上と、Tiを含まないTa、Nb、W炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を30質量%以下と、Co又はNiの1種又は2種を合計で20質量%以下とを含み、残部は実質的に不可避不純物からなる焼結材で構成されてなることを特徴とする切削工具。
(6)主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることを特徴とする上記(5)に記載の切削工具。
(7)低炭非鉛快削鋼の切削用であることを特徴とする上記(1)乃至(6)のいずれかに記載の切削工具。
(8)上記(1)乃至(6)のいずれかに記載の切削工具を用い、被削材として低炭快削鋼を用い、切削速度1〜400m/minで切削することを特徴とする低炭快削鋼の切削方法。
(9)上記(7)に記載の切削工具を用い、被削材として低炭非鉛快削鋼を用い、切削速度1〜400m/minで切削することを特徴とする低炭非鉛快削鋼の切削方法。
This invention is made | formed based on the said knowledge, The place made into the summary is as follows.
(1) Either one or both of the main cutting edge and the auxiliary cutting edge have a radius of 50 μm or less, and a part or all of the surface layer in contact with the work material is coated with a hard coating, The hard coating includes N: 40 to 60% and Ti: 40 to 60% in atomic%, and the balance is substantially made of inevitable impurities.
(2) Either one or both of the main cutting edge and the auxiliary cutting edge have a radius of 50 μm or less, and a part or all of the surface layer in contact with the work material is coated with a hard coating, The hard film contains N: 40 to 60% in atomic%, Ti: 10% or more and less than 60%, and includes one or two of Al or Zr in a range of 50% or less in atomic%, and the balance A cutting tool comprising substantially inevitable impurities.
(3) The rake angle of either one or both of the main cutting edge and the auxiliary cutting edge is in the range of −10 to 30 °, and the clearance angle is 2 to 15 °, (1) or ( The cutting tool according to 2).
(4) The cutting tool according to (3) above, wherein the base material disposed inside the hard coating is any one of tool steel, cemented carbide, cermet, and ceramics.
(5) One or both of the main cutting edge and the auxiliary cutting edge have a radius of cutting edge of 50 μm or less, and at least part or all of the surface layer in contact with the work material contains Ti-containing carbide, carbonitriding 50% by mass or more of the hard phase of the nitride, nitride and their composites, and 30% by mass or less of the hard phase of Ta, Nb, W carbide, carbonitride, nitride and their composites not containing Ti A cutting tool comprising: one or two of Co or Ni in a total of 20% by mass or less, and the balance being made of a sintered material substantially composed of inevitable impurities.
(6) The rake angle of one or both of the main cutting edge and the auxiliary cutting edge is in the range of −10 to 30 °, and the clearance angle is 2 to 15 °, as described in (5) above Cutting tools.
(7) The cutting tool according to any one of (1) to (6) above, which is for cutting low-carbon non-lead free-cutting steel.
(8) Using the cutting tool according to any one of (1) to (6) above, using low-carbon free-cutting steel as a work material, and cutting at a cutting speed of 1 to 400 m / min. Cutting method of charcoal free cutting steel.
(9) Low-carbon lead-free free cutting using the cutting tool described in (7) above, using low-carbon non-lead free-cutting steel as a work material, and cutting at a cutting speed of 1 to 400 m / min. Steel cutting method.

本発明の切削工具は、切れ刃の刃先丸みが半径50μm以下であり、被削材と接触する工具面の組成についてTiNを主成分とすることにより、低炭非鉛快削鋼の切削に用いたときに、切削面の表面粗さを向上することができ、同時に工具寿命を通常と同等に維持することができる。   The cutting tool of the present invention has a cutting edge with a radius of 50 μm or less, and is used for cutting low-carbon non-lead free-cutting steel by using TiN as a main component for the composition of the tool surface in contact with the work material. The surface roughness of the cutting surface can be improved and the tool life can be maintained at the same level as usual.

本発明の切削工具は、低炭非鉛快削鋼の切削に用いたときに特に優れた効果を発揮する。ここではまず低炭非鉛快削鋼について説明する。   The cutting tool of the present invention exhibits particularly excellent effects when used for cutting low-carbon non-lead free-cutting steel. Here, first, low-carbon non-lead free-cutting steel will be described.

低炭非鉛快削鋼とは比較的低炭素で、被削性(切り屑を出して鋼を加工する“しやすさ”)を通常の鋼より高めるため化学成分的な工夫を施したもの低炭快削鋼の中で、Pbを含有しない鋼をさす。つまり低炭素で「削られやすい鋼」の中でPbを含まない鋼のことである。   Low-carbon lead-free free-cutting steel is relatively low-carbon, and has been devised in terms of chemical composition to improve machinability (“easy to process steel by removing chips”) than ordinary steel. Among low-carbon free-cutting steel, it refers to steel that does not contain Pb. In other words, it is a steel that does not contain Pb among “low-carbon steel that can be easily cut”.

具体的にはJIS G 4804に規定されるSUM22,SUM23,SUM25を挙げることができる。また、JIS規定外であっても、C≦0.15%、Mn:0.1〜2.0%、P:0.001〜0.2%、S:0.001〜0.7%、N:0.001〜0.025%に、Cr:0.1〜3.0%、Nb:0.01〜0.3%、Ti:0.01〜0.3%、B:0.0002〜0.02%、V:0.05〜0.5%、Mo:0.05〜0.5%、W:0.05〜0.5%、Co:0.05〜0.5%、Cu:0.01〜0.5%、Ni:0.01〜0.5%、Te:0.0002〜0.05%のうち1種または2種以上を含み、さらにMg:0.0002〜0.005%、Al:0.002〜0.04%、Ca:0.0001〜0.01%、Zr:0.0001〜0.01%、Si≦0.1%の1種または2種以上を含み、残部がFeと不可避的不純物からなり、Pb≦0.01%に制限した鋼であって、快削性に優れた鋼を用いることもできる。   Specific examples include SUM22, SUM23, and SUM25 defined in JIS G 4804. Moreover, even if it is outside JIS regulations, C ≦ 0.15%, Mn: 0.1 to 2.0%, P: 0.001 to 0.2%, S: 0.001 to 0.7%, N: 0.001 to 0.025%, Cr: 0.1 to 3.0%, Nb: 0.01 to 0.3%, Ti: 0.01 to 0.3%, B: 0.0002 -0.02%, V: 0.05-0.5%, Mo: 0.05-0.5%, W: 0.05-0.5%, Co: 0.05-0.5%, Cu: 0.01 to 0.5%, Ni: 0.01 to 0.5%, Te: One or more of 0.0002 to 0.05%, Mg: 0.0002 to One or two of 0.005%, Al: 0.002-0.04%, Ca: 0.0001-0.01%, Zr: 0.0001-0.01%, Si ≦ 0.1% Including the above, the remainder is impossible with Fe Manner consists impurities, a steel is limited to Pb ≦ 0.01%, it is also possible to use a steel excellent in free-cutting.

本発明の第1の特徴は、上記低炭非鉛快削鋼を切削するための切削工具として、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されてなり、該硬質被膜は、原子%でN:40〜60%、Ti:40〜60%を含み、残部は実質的に不可避不純物からなることを特徴とする切削工具を用いる点にある。前記硬質被膜はまた、原子%でN:40〜60%、Ti:10%以上60%未満、AlまたはZrの1種または2種の合計を50%以下の範囲で含み、残部は実質的に不可避不純物からなることが好ましい。この硬質被膜を、以下「TiN含有硬質被膜」と呼ぶこともある。   The first feature of the present invention is that a cutting tool for cutting the low-carbon non-lead free-cutting steel has a part or all of the surface layer in contact with the work material coated with a hard coating, The hard coating is characterized in that it uses a cutting tool characterized by containing N: 40 to 60% and Ti: 40 to 60% in atomic%, and the balance being substantially made of inevitable impurities. The hard coating also includes N: 40 to 60% in atomic%, Ti: 10% or more and less than 60%, and a total of one or two of Al or Zr in a range of 50% or less, and the balance is substantially It is preferable to consist of inevitable impurities. Hereinafter, this hard coating may be referred to as “TiN-containing hard coating”.

鉛快削鋼を切削する場合においては、鉛快削鋼中のPbが工具表面でPb薄膜を形成し、切削工具としてWCをCoで焼結した超硬合金工具を用いた場合でも、良好な潤滑特性を示し、工具すくい面での鋼凝着が少なくそこそこの切削面表面粗さを実現していた。   In the case of cutting lead free-cutting steel, Pb in lead free-cutting steel forms a Pb thin film on the tool surface, and even when a cemented carbide tool in which WC is sintered with Co is used as a cutting tool, it is good. It showed lubrication properties and realized a moderate surface roughness of the cutting surface with less steel adhesion on the tool rake face.

ところが、非鉛快削鋼の切削に上記超硬合金工具を用いると、被削材と接する工具表面にFeが凝着し、工具表面に構成刃先の成長が促進され、結果として切削面の表面粗さが非常に悪化するという結果を招くこととなる。   However, when the above cemented carbide tool is used for cutting lead-free free-cutting steel, Fe adheres to the tool surface in contact with the work material, and the growth of the component cutting edge is promoted on the tool surface, resulting in the surface of the cutting surface. The result is that the roughness is very worse.

これに対し、低炭非鉛快削鋼の切削に本発明のTiN含有硬質被膜を有する工具を用いると、被削材と接する工具表面にはFeがほとんど凝着せず、MnとSの凝着が見られる。快削鋼のマンガン硫化物系介在物が凝着したものと考えられる。凝着物がFeではないので、切り屑と工具との間の凝着力も小さくなり、構成刃先の生成が抑制される。この傾向は、被削材の低炭非鉛快削鋼が硫黄を含有しているときに顕著であるが、低炭非鉛快削鋼が硫黄を含有していない場合においても、被削材と接する工具表面へのFeの凝着が極めて僅かであるという特徴を有する。   On the other hand, when the tool having the TiN-containing hard coating of the present invention is used for cutting low-carbon non-lead free-cutting steel, Fe hardly adheres to the tool surface in contact with the work material, and Mn and S adhere. Is seen. It is thought that manganese sulfide inclusions in free-cutting steel adhered. Since the adhered material is not Fe, the adhesion force between the chips and the tool is also reduced, and the generation of the constituent cutting edge is suppressed. This tendency is remarkable when the low-carbon lead-free free-cutting steel of the work material contains sulfur, but even when the low-carbon lead-free free-cutting steel does not contain sulfur, the work material The adhesion of Fe to the tool surface in contact with is extremely small.

低炭非鉛快削鋼と本発明のTiN含有硬質被膜を有する切削工具との組み合わせは、その凝着のしにくさにおいて、鉛快削鋼と超硬合金工具との組み合わせよりも良好な結果を得ることができる。それに反し、低炭非鉛快削鋼と超硬合金工具との組み合わせは、凝着のしにくさの観点で最も成績が悪いという結果となった。   The combination of the low-carbon lead-free free cutting steel and the cutting tool having the hard coating containing TiN of the present invention is better than the combination of the lead free-cutting steel and the cemented carbide tool in the difficulty of adhesion. Can be obtained. On the other hand, the combination of low-carbon lead-free free-cutting steel and cemented carbide tool resulted in the worst results in terms of difficulty in adhesion.

低炭非鉛快削鋼と本発明のTiN含有硬質被膜を有する切削工具との組み合わせは、工具表面への凝着が非常に少ないという特徴を有することに起因して、もうひとつの本発明の特徴を導き出すこととなった。即ち、切れ刃の刃先丸みを減らして刃先を尖鋭化していったとき、従来の限界を超え、刃先丸みの半径が50μm以下の領域においても尖鋭化するに従って切削面の表面粗さが向上し続け、従来実現することのできなかった極めて良好な表面粗さを実現することが可能となった。さらに、凝着が非常に少ないことと相俟って、刃先丸みの半径を50μm以下としても刃先の欠けが発生せず、良好な工具寿命を維持することができる。   The combination of the low-carbon lead-free free-cutting steel and the cutting tool having the TiN-containing hard coating of the present invention has the feature that adhesion to the tool surface is very low, The characteristic was derived. That is, when the cutting edge of the cutting edge is reduced to sharpen the cutting edge, the surface roughness of the cutting surface continues to improve as the cutting edge is sharpened even in the region where the radius of the cutting edge is 50 μm or less, exceeding the conventional limit. Thus, it has become possible to realize extremely good surface roughness that could not be realized in the past. Furthermore, coupled with the fact that the adhesion is very small, even if the radius of the cutting edge roundness is 50 μm or less, chipping of the cutting edge does not occur, and a good tool life can be maintained.

従来の鉛快削鋼と超硬合金工具との組み合わせでは、刃先丸みの半径が50μm程度で表面粗さの改善が飽和し、それよりも尖鋭化しても表面粗さの改善はわずかであった。その一方で、刃先丸みの半径が50μm以下となると、刃先の欠けの発生が激しくなって工具寿命の劣化をきたすこととなっていた。鉛快削鋼とTiN含有硬質被膜を有する切削工具の組み合わせでも同様である。従って、本発明の良好な表面粗さを実現するためには、被削材の鉛含有量が少ないことが重要である。   With the combination of conventional lead free-cutting steel and cemented carbide tool, the improvement in surface roughness is saturated when the radius of the cutting edge is about 50 μm, and even when sharpened, the improvement in surface roughness is slight. . On the other hand, when the radius of the cutting edge roundness is 50 μm or less, the generation of chipping of the cutting edge becomes severe and the tool life is deteriorated. The same applies to a combination of a cutting tool having a lead free cutting steel and a hard coating containing TiN. Therefore, in order to realize the good surface roughness of the present invention, it is important that the work material has a low lead content.

本発明の切削工具は、主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、その結果として、低炭非鉛快削鋼を切削したときに極めて良好な切削表面粗さを実現することができる。刃先丸みの半径を30μm以下とするとより好ましい。刃先丸みの半径を20μm以下とするとさらに好ましい。   The cutting tool of the present invention has a radius of 50 μm or less in either or both of the main cutting edge and the auxiliary cutting edge, and as a result, extremely good cutting when cutting low-carbon non-lead free cutting steel. Surface roughness can be realized. More preferably, the radius of the rounded edge is 30 μm or less. More preferably, the radius of the cutting edge roundness is 20 μm or less.

これまで切削面の表面粗さを改善するには工具形状や切削条件を工夫することで改善されることが多かった。たとえば工具の刃先を鋭利にする(具体的には刃先丸みを小さくし、すくい角を大きくする)と仕上げ面粗さが改善される。しかし刃先が鋭利な工具は形状的に欠損を生じやすくなる。比較的軟質な低炭快削鋼でも凝着力が大きく、工具と被削材の接触面積が大きくなると、先端に欠損を生じやすくなるため、工具寿命と表面性状を両立させるために、一般には刃先を円弧形状に丸めたり、チャンファーやネガランドと呼ばれるすくい角を局部的に鈍角にすることが一般的で、表面粗さを低下させざるを得なかった。   In the past, in order to improve the surface roughness of the cutting surface, it was often improved by devising the tool shape and cutting conditions. For example, if the cutting edge of the tool is sharpened (specifically, the cutting edge roundness is reduced and the rake angle is increased), the finished surface roughness is improved. However, a tool with a sharp edge tends to be damaged in shape. Even relatively soft, low-carbon free-cutting steel has a large adhesion force, and if the contact area between the tool and work material increases, the tip tends to be damaged, so in order to achieve both tool life and surface properties, the cutting edge is generally used. Is generally rounded, or the rake angle called chamfer or negative land is locally obtuse, and the surface roughness has to be reduced.

一方、本発明では被削材の鋼とそれに接する工具材質の組み合わせを設計することで切削時の工具−被削材(鋼)間に生じる凝着力や摩擦力を低下させることができる。その結果、切削抵抗は従来工具よりも低減できるので、本発明のような脆い工具材種でも刃先を鋭利に仕上げて切削可能であり、さらにそのことが切削表面粗さを向上させることを可能にしている。   On the other hand, in the present invention, it is possible to reduce the adhesion force and friction force generated between the tool and the work material (steel) at the time of cutting by designing a combination of the work material steel and the tool material in contact therewith. As a result, the cutting resistance can be reduced as compared with conventional tools, so that even a fragile tool grade like the present invention can be cut with a sharp cutting edge, which can improve the cutting surface roughness. ing.

本発明に示された発明工具は特にPbを含まない低炭快削鋼の切削において凝着力や摩擦力を低下させる効果が大きいため、工具刃先丸みを小さくすることができ、その結果、工具寿命を維持しつつ表面粗さ向上効果も大きい。   The inventive tool shown in the present invention is particularly effective in reducing the adhesion force and frictional force when cutting low-carbon free-cutting steel that does not contain Pb, so that the tool edge roundness can be reduced, resulting in tool life. The effect of improving the surface roughness is also large while maintaining the above.

ここで、切削工具形状について説明する。図1(a)に旋盤のプランジ切削工具1で切削された被削材11の形状、(b)にプランジ切削における切れ刃と仕上げ面の関係、(c)にプランジ切削用工具1の形状および(d)に切断面23の工具断面を示す。問題となる表面粗さは図中主切れ刃2による仕上げ面21および副切れ刃3による仕上げ面22である。その断面において、一般に刃先部には刃先丸み7やチャンファーなどをつけることが一般的である。   Here, the cutting tool shape will be described. FIG. 1 (a) shows the shape of the work material 11 cut by the plunge cutting tool 1 of the lathe, (b) shows the relationship between the cutting edge and the finished surface in plunge cutting, and (c) shows the shape of the plunge cutting tool 1 and (D) shows a tool cross section of the cut surface 23. The surface roughness in question is a finished surface 21 by the main cutting edge 2 and a finished surface 22 by the sub-cutting edge 3 in the figure. In the cross section, the cutting edge portion is generally provided with a cutting edge roundness 7 or a chamfer.

図2(a)に旋盤の長手旋削で切削された被削材11の形状、(b)に長手旋削における切れ刃と仕上げ面の関係、(c)に切削用工具1の形状および(d)に切断面23a、23bの工具断面を示す。問題となる表面粗さは、主切れ刃は図中主切れ刃2による仕上げ面21および副切れ刃3による仕上げ面22である。その断面において、プランジ切削用工具と同様、長手旋削工具においても一般に刃先部には刃先丸み7やチャンファーなどをつけることが一般的である。プランジ切削工具よりも旋削の場合、副切れ刃3が表面粗さへの影響が大きくなる特徴がある。   FIG. 2A shows the shape of the work material 11 cut by the longitudinal turning of the lathe, FIG. 2B shows the relationship between the cutting edge and the finished surface in the longitudinal turning, FIG. 2C shows the shape of the cutting tool 1, and FIG. Shows a tool cross section of the cut surfaces 23a and 23b. As for the surface roughness which becomes a problem, the main cutting edge is the finishing surface 21 by the main cutting edge 2 and the finishing surface 22 by the sub cutting edge 3 in the figure. In the cross section, in the same way as the plunge cutting tool, in the case of the longitudinal turning tool, generally, the cutting edge portion is generally provided with a cutting edge roundness 7 or a chamfer. In the case of turning rather than the plunge cutting tool, the secondary cutting edge 3 has a feature that the influence on the surface roughness is increased.

本発明において切削面の表面粗さを改善するため、通常は主切れ刃2が重要である。一方、副切れ刃3についても仕上げ面性状が重要視される場合がある。図1または2に示したとおり、図1(a)のようにプランジ切削でも溝12の側壁が重要な場合には副切れ刃の形状に注意を払う必要がある。また図2(b)のように長手旋削では円筒面の切削面13が仕上げ面であり、直接接触する切れ刃は副切れ刃3である。従って、円筒面の精度が重要な場合には副切れ刃3の形状も重要である。このような理由から、製品で重要視される切削面と接触する切れ刃の形状が重要であり、主切れ刃によって創成された面が重要な場合、主切れ刃の刃先丸みを半径50μm以下に調整する必要があり、同様に副切れ刃による創成面が重要であれば、副切れ刃の刃先丸みを半径50μm以下に調整する必要がある。   In order to improve the surface roughness of the cutting surface in the present invention, the main cutting edge 2 is usually important. On the other hand, finishing surface properties may be regarded as important for the auxiliary cutting edge 3 as well. As shown in FIG. 1 or 2, when the side wall of the groove 12 is important even in plunge cutting as shown in FIG. Further, as shown in FIG. 2B, in the longitudinal turning, the cylindrical cutting surface 13 is a finished surface, and the cutting edge that directly contacts is the secondary cutting edge 3. Therefore, when the accuracy of the cylindrical surface is important, the shape of the secondary cutting edge 3 is also important. For these reasons, the shape of the cutting edge that comes into contact with the cutting surface, which is regarded as important in the product, is important. When the surface created by the main cutting edge is important, the radius of the cutting edge of the main cutting edge should be 50 μm or less. If it is necessary to adjust, and similarly the generation surface by the secondary cutting edge is important, it is necessary to adjust the roundness of the cutting edge of the secondary cutting edge to a radius of 50 μm or less.

本発明のTiN含有硬質被膜の好ましい性状について説明する。   The preferred properties of the TiN-containing hard coating of the present invention will be described.

具体的には工具表面の被膜の場合、原子%でN:40〜60%、Ti含有量は40〜60%を含み、残部は実質的に不可避不純物からなる組成である。さらにAlまたはZrの1種または2種を含む場合、これらの元素はTiと置き換わるため、Tiの含有量はそれらの含有量に応じて、減じても良い。すなわち原子%でN:40〜60%、Ti:10%以上60%未満を含み、さらにAlまたはZrの1種または2種の合計を50%以下含み、残部は実質的に不可避不純物からなる組成の硬質被膜である。Al又はZrを含有する場合、TiNまたはTiの一部がAlまたはZrに置換された、HV1000以上の硬質被膜を形成したものをさす。他に不可避的な不純物として酸素を5%以下含んでも硬質被膜の特性は何ら問題はない。   Specifically, in the case of a coating on the tool surface, N: 40 to 60% in atomic%, Ti content includes 40 to 60%, and the balance is substantially composed of inevitable impurities. Further, when one or two of Al or Zr are included, these elements are replaced with Ti, and therefore the Ti content may be reduced depending on the content thereof. That is, N: 40 to 60% in atomic%, Ti: 10% or more and less than 60%, further including 50% or less of the total of one or two of Al or Zr, with the balance being substantially composed of inevitable impurities It is a hard film. When Al or Zr is contained, it refers to a hard film of HV1000 or more in which a part of TiN or Ti is substituted with Al or Zr. In addition, even if oxygen is contained as an unavoidable impurity by 5% or less, there is no problem with the characteristics of the hard coating.

AlとZrのいずれも含まない場合、Tiの含有量が40%未満では十分な硬度や密着性が得られない。60%超になるとTi過剰になりNとの比率が崩れ切削の過酷な環境に耐えるだけの硬質被膜は得られない。一方、AlまたはZrの1種または2種を含む場合、Tiが10%未満では十分な硬度や被膜の場合には密着性が得られない。またTiが60%以上ではTi過剰になり、Nとの比率が崩れ、切削の過酷な環境に耐えるだけの硬質被膜が得られない。そのため、本発明はTi含有量の範囲を10%以上60%未満とした。   When neither Al nor Zr is contained, sufficient hardness and adhesion cannot be obtained if the Ti content is less than 40%. If it exceeds 60%, Ti will be excessive and the ratio of N will collapse, and a hard coating that can withstand the severe environment of cutting will not be obtained. On the other hand, when one or two of Al or Zr are included, if Ti is less than 10%, sufficient hardness or coating cannot be obtained. If Ti is 60% or more, Ti is excessive, the ratio with N is lost, and a hard coating that can withstand the severe environment of cutting cannot be obtained. Therefore, in the present invention, the range of Ti content is set to 10% or more and less than 60%.

Nは40%未満であるとTi、Al、Zrの窒化物としての硬さが不足し、耐磨耗性や凝着特性が低下し、良好な表面粗さを得られない。60%超であると硬質膜としての硬さは飽和し、過剰なNは膜の靭性を劣化させ、基材との密着性を低下させる。そのため、本発明はN含有量の範囲を40〜60%とした。   When N is less than 40%, the hardness of nitrides of Ti, Al, and Zr is insufficient, wear resistance and adhesion characteristics are lowered, and good surface roughness cannot be obtained. If it exceeds 60%, the hardness of the hard film is saturated, and excessive N deteriorates the toughness of the film and decreases the adhesion to the substrate. Therefore, in the present invention, the range of N content is set to 40 to 60%.

本発明の硬質被膜は上述のとおり、Tiの一部を置換してAl又はZrの1種又は2種の合計を原子%で50%以下の範囲で含むこととすると好ましい。これら硬質被膜中のAlおよびZrは含有されなくとも良好な表面粗さを得られることもあるが、耐磨耗性や基材との密着性を確保するとともに、被削材である低炭非鉛快削鋼との凝着を抑制する上でも含有させることが好ましく、その含有量はAlとZrの合計で10%以上であることが好ましい。   As described above, it is preferable that the hard coating of the present invention substitutes a part of Ti to contain one or two of Al or Zr in a range of 50% or less in atomic percent. Even if Al and Zr in these hard coatings are not contained, good surface roughness may be obtained. However, while ensuring the wear resistance and adhesion to the base material, the work material is low charcoal non-carbonized. It is preferable to contain it also in order to suppress adhesion with lead free-cutting steel, and the content is preferably 10% or more in total of Al and Zr.

Alが50%を超えると相対的に硬質被膜中のTi量が減少し、耐磨耗性や凝着特性が低下し、良好な表面粗さを得られないので、上限を50%とする。   If Al exceeds 50%, the amount of Ti in the hard coating is relatively reduced, wear resistance and adhesion characteristics are lowered, and good surface roughness cannot be obtained, so the upper limit is made 50%.

同様にZrが50%を超えると硬質被膜中のTi量が減少し、耐磨耗性や凝着特性が低下し、良好な表面粗さを得られないので、上限を50%とする。   Similarly, if Zr exceeds 50%, the amount of Ti in the hard coating decreases, wear resistance and adhesion characteristics deteriorate, and good surface roughness cannot be obtained, so the upper limit is made 50%.

これらは被膜として硬質基材の上に生成することが一般的であり、CVD処理などでも成膜可能であるが、イオンプレーティングなどいわゆるPVD処理によって1μm以上の被膜を成膜することが好ましい。特に基材との密着性を増すために基材と被膜の界面にはTi、Zrなどの金属をわずかに成膜しておくことが好ましい。   These are generally formed as a film on a hard substrate, and can be formed by a CVD process or the like, but it is preferable to form a film of 1 μm or more by a so-called PVD process such as ion plating. In particular, in order to increase the adhesion to the substrate, it is preferable to deposit a slight amount of metal such as Ti or Zr at the interface between the substrate and the coating.

上記本発明の硬質被膜は、切削工具の表層であって被削材と接触する面の一部又は全部の表層に被覆する。被削材と接触する面のうち、すくい面に被覆することが重要である。すくい面全体である必要はなく、刃先から被削材および切り屑と接触する場所に被覆してあればよい。さらに切削工具の逃げ面に被覆することも有効であり、切削では被削材は弾性変形の影響などで、逃げ面でも接触しているため、逃げ面の凝着を抑制できるため、磨耗と切削抵抗を抑制する効果がある。被覆工具を再研摩した場合には逃げ面またはすくい面のいずれか一方にしか被膜が残らない場合もあるが、いずれかに被膜が残れば被削材との凝着を抑制でき、被覆の効果がみられる。特にすくい面に被膜が残留した方が、その効果は大きい。ただし、逃げ面への被覆は必須ではない。   The hard coating of the present invention covers a surface layer of a cutting tool and a part or all of the surface layer in contact with the work material. It is important to cover the rake face among the surfaces in contact with the work material. It is not necessary to cover the entire rake face, as long as it covers the place where the cutting edge comes into contact with the work material and chips. It is also effective to cover the flank of the cutting tool. In cutting, since the work material is also in contact with the flank due to the effect of elastic deformation, adhesion of the flank can be suppressed. There is an effect of suppressing resistance. When the coated tool is re-polished, the film may remain only on either the flank or rake face, but if any of the film remains, adhesion to the work material can be suppressed, and the effect of the coating Is seen. In particular, the effect is greater when the film remains on the rake face. However, it is not essential to cover the flank.

次に、刃先形状のうち、図1(d)、図2(d)に示すすくい角8と逃げ角9について説明する。   Next, the rake angle 8 and clearance angle 9 shown in FIGS. 1D and 2D among the cutting edge shapes will be described.

前述のとおり、切削工具形状のうち、主切れ刃と副切れ刃の形状が重要な役割りを有している。製品で重要視される切削面と接触する切れ刃の形状が重要であり、主切れ刃によって創成された面が重要な場合、主切れ刃の形状が重要であり、同様に副切れ刃による創成面が重要であれば、副切れ刃の形状が重要になる。本発明においては、主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることが好ましい。   As described above, the shape of the main cutting edge and the auxiliary cutting edge among the cutting tool shapes has an important role. The shape of the cutting edge that comes into contact with the cutting surface, which is regarded as important in the product, is important. When the surface created by the main cutting edge is important, the shape of the main cutting edge is important, as well as the creation by the secondary cutting edge. If the surface is important, the shape of the secondary cutting edge becomes important. In the present invention, it is preferable that the rake angle of one or both of the main cutting edge and the auxiliary cutting edge is in the range of −10 to 30 °, and the clearance angle is 2 to 15 °.

すくい角が30゜を超えると欠損を生じやすくなるため、これを上限とした。すくい角−10゜より小さくなると切削抵抗が増し、工具寿命が低下すると共に表面粗さが低下するため、これを下限とした。旋削やフライス切削を中心とした切削に適したすくい角は−10〜30゜であり、表面粗さと工具寿命をバランスよく確保できる。表面粗さをさらに改善するにはすくい角は大きいほうが良好で、すくい角3゜以上が好ましく、さらにはすくい角10゜以上が好ましい。   If the rake angle exceeds 30 °, defects tend to occur, so this was set as the upper limit. When the rake angle is smaller than -10 °, the cutting resistance increases, the tool life decreases and the surface roughness decreases. The rake angle suitable for cutting centering on turning and milling is -10 to 30 °, and the surface roughness and tool life can be secured in a well-balanced manner. In order to further improve the surface roughness, a larger rake angle is better, a rake angle of 3 ° or more is preferable, and a rake angle of 10 ° or more is more preferable.

工具形状において、チャンファーと呼ばれる平面を形成する場合があるが、本発明の切削工具においては、鋼と工具とが凝着しにくいため、このチャンファーを小さくすることができる。またチャンファ−は刃先のすくい角を鈍角にするため、チャンファーをつける場合でもすくい角αを本発明の規定−10〜30゜の範囲に調整する必要がある。   In the tool shape, a plane called a chamfer may be formed. However, in the cutting tool of the present invention, the steel and the tool hardly adhere to each other, so that this chamfer can be made small. In addition, since the chamfer makes the rake angle of the blade edge an obtuse angle, it is necessary to adjust the rake angle α within the range of −10 to 30 ° of the present invention even when the chamfer is attached.

逃げ角は2゜以下では被削材との接触面積が大きくなりすぎ、抵抗を増加させ工具磨耗を促進する。また15゜を超えると刃先が鋭利になり容易に工具磨耗を生じやすくなる。そこで逃げ角は2〜15゜とした。切れ刃形状があまり鋭利な場合、欠けを生じやすくなる場合もあるため、逃げ角は10゜以下であることが好ましい。5゜程度を用いることが好ましい。   If the clearance angle is 2 ° or less, the contact area with the work material becomes too large, increasing the resistance and promoting tool wear. If it exceeds 15 °, the cutting edge becomes sharp and tool wear easily occurs. Therefore, the clearance angle was set to 2 to 15 °. If the cutting edge shape is too sharp, chipping may occur easily, so the clearance angle is preferably 10 ° or less. It is preferable to use about 5 °.

これらの工具形状の詳細は被削材の性質、工具素材の欠損性、被覆工具の場合には被膜剥離性、切削品の完成精度(表面粗さや寸法精度)、加工機械能力(剛性や主軸出力など)によって精密に調整されるべきである。   The details of these tool shapes are the nature of the work material, the chipping property of the tool material, the coating peelability in the case of a coated tool, the finished product accuracy (surface roughness and dimensional accuracy), and the processing machine capability (rigidity and spindle output). Etc.) should be adjusted precisely.

本発明の切削工具であって、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されている切削工具においては、硬質皮膜の内側部分は基材によって構成される。基材については、たとえ表面が硬質被膜で覆われていても切削熱などの影響をうけ、高温強度を維持する必要があること、被膜が局部的に損耗や剥離を生じても安定した切削を工具交換までの時間続行するためには基材も一般的な工具用材料であることが好ましい。また表層被膜との密着性が良いほうが基材として好ましい。すなわち高速度鋼を含む工具鋼、超硬合金、サーメットおよびセラミックスのいずれかが良く、特に超硬合金、サーメット、高速度鋼は適している。   In the cutting tool of the present invention, in the cutting tool in which a part or all of the surface layer in contact with the work material is coated with a hard coating, the inner portion of the hard coating is constituted by a base material. For base materials, even if the surface is covered with a hard coating, it is affected by cutting heat, etc., and it is necessary to maintain high-temperature strength, and stable cutting is possible even if the coating is locally worn or peeled off. In order to continue the time until the tool change, the base material is also preferably a general tool material. Further, it is preferable as the base material that the adhesiveness with the surface layer film is good. That is, any of tool steel, cemented carbide, cermet and ceramics including high speed steel is good, and cemented carbide, cermet and high speed steel are particularly suitable.

ここでいう基材の工具鋼、超硬合金、サーメットおよびセラミックスとは、一般的に切削工具として使用する材質であり、工具鋼:JIS G 4401・4403等で規定される材質、超硬合金:JIS B 4104等で規定される材質である。サーメットは、炭化チタン(TiC)・窒化チタン(TiN)・炭窒化チタン(TiCN)を主成分とし、これらをCoやNi等の金属で焼結したものである。またセラミックスは、基本成分が金属酸化物・炭化物等で、高温での熱処理によって焼結したものを示す。   The tool steel, cemented carbide, cermet, and ceramic of the base material here are materials generally used as a cutting tool, and tool steel: a material specified by JIS G 4401/4403, cemented carbide: It is a material specified by JIS B 4104 or the like. The cermet is composed of titanium carbide (TiC), titanium nitride (TiN), and titanium carbonitride (TiCN) as the main components, and these are sintered with a metal such as Co or Ni. Ceramics are those in which the basic components are metal oxides, carbides, etc., sintered by heat treatment at high temperature.

以上、本発明の切削工具として、被削材と接触する面にTiN含有硬質被膜を形成してなる切削工具について説明を行った。本発明においては、表面に硬質被膜を有する切削工具のみならず、表面に硬質被膜を有しない焼結セラミックスそのものを工具として用いることもできる。   As described above, the cutting tool in which the TiN-containing hard coating is formed on the surface in contact with the work material has been described as the cutting tool of the present invention. In the present invention, not only a cutting tool having a hard coating on its surface but also a sintered ceramic itself having no hard coating on its surface can be used as a tool.

焼結セラミックスそのものを本発明の切削工具とする場合、少なくとも被削材と接触する面の一部又は全部の表層が、Tiを含む炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を50質量%以上と、Tiを含まないTa、Nb、W炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を30質量%以下と、Co又はNiの1種又は2種を合計で20質量%以下とを含み、残部は実質的に不可避不純物からなる焼結材で構成を用いる。   When the sintered ceramic itself is used as the cutting tool of the present invention, at least a part of or the entire surface layer in contact with the work material has a hard phase of carbide, carbonitride, nitride, and a composite thereof containing Ti. 50% by mass or more, Ta, Nb, W carbides, carbonitrides, nitrides and composites thereof containing no Ti, 30% by mass or less, and one or two of Co or Ni in total The balance is 20% by mass or less, and the balance is made of a sintered material substantially composed of inevitable impurities.

Tiを含む炭化物、炭窒化物、窒化物およびそれらの複合硬質相が質量%で50%未満であると、工具としての硬さが不足し、耐磨耗性が低下するとともに、被削材との凝着が抑制できないために良好な表面粗さが得られなかったり、刃先先端の欠損を誘発する。ここでいう硬質相とはJIS B 4053−1996 P8 参考表1〜4に示す硬質相を指す。以下同様である。   When the carbide, carbonitride, nitride and their composite hard phase containing Ti are less than 50% by mass, the hardness as a tool is insufficient, wear resistance decreases, and the work material Since the adhesion of the surface cannot be suppressed, good surface roughness cannot be obtained, or the tip of the blade edge is damaged. The hard phase here refers to the hard phase shown in JIS B 4053-1996 P8 Reference Tables 1-4. The same applies hereinafter.

Tiを含まないTa、Nb、W炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を含有することにより、硬度と靭性のバランスを調整できる。その含有量は0%でも良いが、5%以上であると好ましい。ただし30%を超えるとTiを含む硬質相の含有率を抑制せざるを得なくなり、凝着特性が低下し、良好な表面粗さが得られなくなる。また耐磨耗性も低下し、工具としての硬度と靭性のバランスを取り難くなる。   By containing the hard phase of Ta, Nb, W carbide, carbonitride, nitride and their composites that do not contain Ti, the balance between hardness and toughness can be adjusted. The content may be 0%, but is preferably 5% or more. However, if it exceeds 30%, the content of the hard phase containing Ti must be suppressed, the adhesion characteristics are lowered, and good surface roughness cannot be obtained. In addition, wear resistance is reduced, making it difficult to balance the hardness and toughness of the tool.

バインダーとしてCoまたはNiの1種または2種を含有させる。含有量は2%以上であると好ましい。ただし20%を超えるとTi、Ta,Nbの炭化物、炭窒化物、窒化物およびそれらの複合硬質相が相対的に減少するため、硬度が不足したり、耐磨耗性や凝着特性が低下する。   One or two kinds of Co or Ni are contained as a binder. The content is preferably 2% or more. However, if it exceeds 20%, Ti, Ta, Nb carbides, carbonitrides, nitrides and their composite hard phases are relatively reduced, so that the hardness is insufficient, and the wear resistance and adhesion properties are reduced. To do.

本発明の焼結工具の工具形状としては、主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下である点を含め、上記本発明の被覆工具が具備すべき形状条件と同様である。従って、主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることとすると好ましい。その理由についても被覆工具について述べた理由と同様である。   As the tool shape of the sintered tool of the present invention, the shape condition that the coated tool of the present invention should have, including the point that the radius of the cutting edge of one or both of the main cutting edge and the auxiliary cutting edge is 50 μm or less is included. It is the same. Therefore, it is preferable that the rake angle of one or both of the main cutting edge and the auxiliary cutting edge is in the range of −10 to 30 °, and the clearance angle is 2 to 15 °. The reason is the same as the reason described for the coated tool.

本発明の切削工具は、低炭非鉛快削鋼の切削用として用いるときに特に優れた効果を発揮する。低炭非鉛快削鋼の切削に本発明の切削工具を用いた場合、鋼と工具との間の凝着が特に起きにくく、切れ刃の刃先丸みを半径50μm以下とすることと相まって、極めて優れた切削面表面粗さを実現することができるからである。   The cutting tool of the present invention exhibits particularly excellent effects when used for cutting low-carbon non-lead free-cutting steel. When the cutting tool of the present invention is used for cutting low-carbon non-lead free-cutting steel, adhesion between the steel and the tool is particularly difficult to occur, coupled with the cutting edge roundness of the cutting edge being 50 μm or less, This is because excellent surface roughness of the cutting surface can be realized.

即ち、低炭快削鋼の中で、Pbを含有しない低炭非鉛快削鋼に対して、特に表面粗さ改善効果が大きく、工具寿命と表面粗さを両立させ、工業的に良質の切削が可能になる。この低炭非鉛快削鋼は他の鋼種に比べ、切削工具寿命と表面粗さに優れ、切り屑も処理しやすいように短く分断しやすくなっている。   That is, among the low-carbon free-cutting steels, the low-carbon lead-free free-cutting steels that do not contain Pb are particularly effective in improving the surface roughness, achieving both tool life and surface roughness, and industrially high quality. Cutting becomes possible. This low-carbon lead-free free-cutting steel is superior in cutting tool life and surface roughness compared to other steel types, and is easy to cut short and easy to cut.

特にこのPb含有量の制限が重要である。鋼にPbが添加されると被削性が向上することは良く知られているが、その原因はPbの潤滑効果といわれている。従来のK種相当の超硬合金工具材種ではPbを添加しないと工具との凝着力が大きくなり、良好な加工面を得られない。   In particular, the limitation of the Pb content is important. It is well known that machinability is improved when Pb is added to steel, but the cause is said to be the lubrication effect of Pb. In the conventional hard metal tool material equivalent to K type, unless Pb is added, the adhesion force with the tool is increased, and a good machined surface cannot be obtained.

逆に低炭非鉛快削鋼に適した凝着特性を有する本発明の切削工具でPbを含有した低炭快削鋼を切削すると、低炭非鉛快削鋼を切削した場合と比べて、良好な切削面を得ることは困難になり、たとえ工具を通常より鋭利にして良好な切削面を得ることができても、凝着力が大きいため、工具形状に変更による表面粗さ改善効果が小さかったり、工具寿命が得られなかったりする。そのため、良好な切削面を得るためには被削材のPbを制限することが好ましく、非常に重要である。   Conversely, when cutting low-carbon free-cutting steel containing Pb with the cutting tool of the present invention having adhesion characteristics suitable for low-carbon non-lead free-cutting steel, compared to cutting low-carbon non-lead free-cutting steel Therefore, it is difficult to obtain a good cutting surface, and even if the tool is sharper than usual and a good cutting surface can be obtained, the adhesion force is large, so the effect of improving the surface roughness by changing the tool shape The tool life is small or the tool life cannot be obtained. Therefore, in order to obtain a good cutting surface, it is preferable to limit Pb of the work material, which is very important.

次に、本発明の切削工具を用いた低炭快削鋼の切削方法について説明する。   Next, a method for cutting low-carbon free-cutting steel using the cutting tool of the present invention will be described.

本発明の低炭快削鋼の切削方法においては、上記本発明の切削工具を用い、被削材として低炭快削鋼を用い、切削速度1〜400m/minで切削すると好ましい。一般に切削速度が大きくなれば構成刃先が生じ難くなるため、表面粗さが改善されるとされているが、切削速度が速くなると工具寿命も低下するので、工具寿命と切削面の粗さや精度をバランスさせた条件で切削することが良い。具体的には高速度鋼を基材とした被覆工具では10〜100m/minが好ましく、超硬合金やサーメットを基材とした被覆工具および焼結体工具の場合は10〜300m/minであり、可能であれば30m/min以上が好ましく、工具寿命優先の場合には250m/min以下にすることが好ましい。   In the cutting method of the low-carbon free-cutting steel of the present invention, it is preferable that the cutting tool of the present invention is used, low-carbon free-cutting steel is used as a work material, and cutting is performed at a cutting speed of 1 to 400 m / min. In general, it is said that the surface roughness is improved because the cutting edge is less likely to be generated when the cutting speed is increased. However, the tool life and the roughness and accuracy of the cutting surface are reduced because the tool life decreases as the cutting speed increases. It is better to cut under balanced conditions. Specifically, it is preferably 10 to 100 m / min for a coated tool based on high-speed steel, and 10 to 300 m / min for a coated tool or sintered body tool based on cemented carbide or cermet. If possible, 30 m / min or more is preferable, and when the tool life is given priority, 250 m / min or less is preferable.

その他の切削条件は切削方法や形状によって、規定が複雑ではあるが、プランジ切削(突切切削)では切削幅5mm以下の場合では半径方向への工具送り量0.005〜0.1mm/rev程度、切削幅がさらに広い場合には半径方向への工具送り量を0.001〜0.01mm/rev程度に抑制することが好ましい。   The other cutting conditions are complicated depending on the cutting method and shape, but in the case of a plunge cutting (cut-off cutting) when the cutting width is 5 mm or less, the tool feed amount in the radial direction is about 0.005 to 0.1 mm / rev, When the cutting width is wider, the tool feed amount in the radial direction is preferably suppressed to about 0.001 to 0.01 mm / rev.

さらに長手旋削では切込量0.005〜1.0mm、長手方向への送り量は0.005〜0.7mm/rev程度であり、切込量が大きければ送り量を小さくすべきであり、逆に送り量が大きければ切込量を小さく抑制すべきである。   Furthermore, in longitudinal turning, the cut amount is 0.005 to 1.0 mm, the feed amount in the longitudinal direction is about 0.005 to 0.7 mm / rev, and if the cut amount is large, the feed amount should be small, Conversely, if the feed amount is large, the cutting amount should be suppressed small.

幾何的に下記式から計算される工具/被削材の接触面積で示されるSの値が0.001〜1程度であれば良く、0.01〜0.5程度が好ましく、切削能率と良好な仕上げ面を確保できる。
プランジ切削の場合
S=[刃幅w(mm)]×[被削材1回転あたりの送り量f(mm/rev)]
長手旋削の場合
S=[切込み量d(mm)]×[被削材1回転あたりの送り量f(mm/rev)]
The value of S indicated by the contact area of the tool / work material geometrically calculated from the following formula may be about 0.001-1, preferably about 0.01-0.5, and cutting efficiency and good Can ensure a smooth surface.
In the case of plunge cutting, S = [blade width w (mm)] × [feed amount per rotation of work material f (mm / rev)]
In the case of longitudinal turning, S = [cutting amount d (mm)] × [feed amount per rotation of work material f (mm / rev)]

上記本発明の低炭快削鋼の切削方法は、もちろん低炭非鉛快削鋼の切削に適用したときに最大の効果を発揮することができる。   The cutting method of the low-carbon free-cutting steel of the present invention can, of course, exhibit the maximum effect when applied to cutting low-carbon non-lead free-cutting steel.

本発明の切削工具を用いて低炭快削鋼を切削した結果を以下に示す。   The result of cutting low-carbon free-cutting steel using the cutting tool of the present invention is shown below.

本発明のTiN含有硬質膜を有する切削工具(以下「被覆工具」ともいう。)として、表1に示すものを用いた。表1に示す基材に同じく表1に示す表層材料を厚さ2μmとなるように被覆し、切削工具とした。本発明の焼結切削工具については、以下の各実施例においてその成分を示す。比較材としてのK種超硬合金工具には、被覆のないJIS B 4053−1996 P8 参考表1 K10種相当(WC:94.5%、Co:5.5%)の工具を用いた。   The cutting tools having the TiN-containing hard film of the present invention (hereinafter also referred to as “coated tools”) shown in Table 1 were used. Similarly, the base material shown in Table 1 was coated with the surface layer material shown in Table 1 to a thickness of 2 μm to obtain a cutting tool. About the sintered cutting tool of this invention, the component is shown in each following example. A JIS B 4053-1996 P8 reference table 1 equivalent to K10 type (WC: 94.5%, Co: 5.5%) without coating was used as a K-type cemented carbide tool as a comparative material.

被削材の低炭非鉛快削鋼として、表2に示す鋼を用いた。ここで、表中の非鉛快削鋼−1とはJIS G 4808に示す硫黄快削鋼SUM23相当鋼のS量を0.4%まで増量するとともにB,Nをそれぞれ0.009%、0.01%添加した鋼でである。またSUM23とはJIS G 4808に示す硫黄快削鋼SUM23相当鋼である。表2に記載の成分以外の鋼については、各実施例においてその成分を示す。   Steels shown in Table 2 were used as low-carbon, lead-free free cutting steels for work materials. Here, the lead-free free-cutting steel-1 in the table means that the sulfur content of sulfur free-cutting steel SUM23 equivalent steel shown in JIS G 4808 is increased to 0.4% and B and N are 0.009% and 0, respectively. .01% added steel. SUM23 is sulfur free-cutting steel SUM23 equivalent steel shown in JIS G 4808. About steel other than the component of Table 2, the component is shown in each Example.

低炭快削鋼の工具寿命は構造用鋼の工具の場合と異なり、たとえ工具が切削に耐えうる状態であっても十分な表面粗さを得られない場合には工具寿命と判定され、交換されることが一般的である。そのため本実施例において、被削鋼が低炭非鉛快削鋼−1の場合には表面粗さRyが7μmを超えたとき、被削鋼がSUM23の場合には表面粗さRyが20μmを超えたときの工具による切削数をもって、工具寿命を示すものとする。   The tool life of low-carbon free-cutting steel is different from that of structural steel tools, and even when the tool can withstand cutting, if the surface roughness is not sufficient, the tool life is judged and replaced. It is common to be done. Therefore, in this example, when the work steel is low-carbon non-lead free-cutting steel-1, the surface roughness Ry exceeds 7 μm, and when the work steel is SUM23, the surface roughness Ry is 20 μm. The tool life is indicated by the number of cuts by the tool when exceeding the limit.

具体的には、切削開始から20個目、50個目の粗さを測定し、その後、100個目、150個目と50個加工ごとの粗さを測定した。その粗さが被削鋼毎に上記基準を超えた場合に、工具寿命に達したと判定した。その際、600個まで加工し、その粗さが劣化していなければ工具寿命に達していないとして、加工数>600とした。   Specifically, the 20th and 50th roughnesses from the start of cutting were measured, and then the 100th, 150th and 50th roughnesses were measured. When the roughness exceeded the above standard for each work steel, it was determined that the tool life had been reached. At that time, machining was performed up to 600 pieces, and if the roughness was not deteriorated, the tool life was not reached, and the number of machining was set to> 600.

(実施例1)
プランジ切削において、本発明の被覆工具を用いた場合に、切り刃の刃先丸みの大きさをはじめとする切削工具の形状が、切削面の表面粗さに及ぼす影響について比較を行った。切削条件、使用工具、被削材については表3に示すとおりである。表3において、本発明範囲から外れる数値にはアンダーラインを付している。表4以下についても同様である。
Example 1
In the plunge cutting, when the coated tool of the present invention was used, the effect of the shape of the cutting tool including the size of the cutting edge roundness of the cutting edge on the surface roughness of the cutting surface was compared. The cutting conditions, tools used, and work material are as shown in Table 3. In Table 3, numbers outside the scope of the present invention are underlined. The same applies to Table 4 and below.

使用工具は表1に示す被覆工具のうち、基材をK種超硬合金としたものである。基本となる工具形状は突切切削用工具であり、切削幅5mm、主切れ刃すくい角15゜、逃げ角6゜である。被削材は表2に示すものを用いている。   Among the coated tools shown in Table 1, the tool used is a K-type cemented carbide base material. The basic tool shape is a parting-off cutting tool having a cutting width of 5 mm, a main cutting edge rake angle of 15 °, and a clearance angle of 6 °. The work material shown in Table 2 is used.

図3に切削方法の概要を示す。被削材は鉛の添加されていない快削鋼で被削材直径φ50mmの丸棒を旋盤に取り付けてプランジ切削(溝入れ切削)した。1回の溝入れ切削(0.3sec切削)を20回繰り返し、その溝底部の切削面を触針式粗さ計で評価した。その他切削条件は切削速度80m/min、送り0.05mm/rev、油性切削油剤を使用した湿式切削である。   FIG. 3 shows an outline of the cutting method. The work material was free-cutting steel to which lead was not added, and a round bar having a work material diameter of φ50 mm was attached to a lathe and plunge-cut (grooved). One grooving cut (0.3 sec cut) was repeated 20 times, and the cut surface at the bottom of the groove was evaluated with a stylus roughness meter. Other cutting conditions are a cutting speed of 80 m / min, a feed of 0.05 mm / rev, and wet cutting using an oil-based cutting fluid.

表3から明らかなように、刃先丸み半径が50μm以下の実施例については、いずれも良好な粗さRyを実現している。それに対し、刃先半径が50μmを超える、あるいはすくい角が−10°未満となるなど工具刃先の形状が規定範囲から外れると各被削材とも極端に表面粗さが低下する。   As is clear from Table 3, all of the examples having a cutting edge radius of 50 μm or less achieve a good roughness Ry. On the other hand, when the shape of the tool edge is out of the specified range, such as when the edge radius exceeds 50 μm or the rake angle is less than −10 °, the surface roughness of each work material extremely decreases.

被削材2品種それぞれでの成績を比較すると、SUM23における粗さRyは非鉛快削鋼−1の粗さRyの値に比較してやや大きな値となっている。一方、それぞれの品種で刃先丸み半径が50μm超の比較例と50μm以下の本発明例を対比すると、いずれの品種でも、刃先丸み半径を50μm以下とすることによって粗さが改善されており、低炭非鉛快削鋼のいずれの品種でも刃先丸み半径を50μm以下とすることによる本発明効果が発揮されている。   Comparing the results of the two types of work materials, the roughness Ry in SUM23 is slightly larger than the value of the roughness Ry of non-lead free cutting steel-1. On the other hand, when comparing the comparative example having a cutting edge radius of more than 50 μm and the present invention example having a cutting edge radius of 50 μm or less in each type, the roughness is improved by setting the cutting edge radius to 50 μm or less in all types. The effect of the present invention is exhibited by setting the cutting edge radius to 50 μm or less in any type of carbon-free free-cutting steel.

刃先丸み半径5μm以下を含み、すべての条件において工具寿命600回以上を達成し、良好な工具寿命を実現した。   A tool life of 600 times or more was achieved under all conditions including a cutting edge radius of 5 μm or less, and a good tool life was realized.

(実施例2)
長手切削において、本発明の被覆工具を用いた場合に、切り刃の刃先丸みの大きさをはじめとする切削工具の形状が、切削面の表面粗さに及ぼす影響について比較を行った。切削条件、使用工具、被削材については表4に示すとおりである。それ以外の条件については、上記実施例1と同様としている。
(Example 2)
In the longitudinal cutting, when the coated tool of the present invention was used, the influence of the shape of the cutting tool including the size of the cutting edge roundness on the surface roughness of the cutting surface was compared. The cutting conditions, tools used, and work material are as shown in Table 4. Other conditions are the same as in the first embodiment.

図4に切削方法の概要を示す。被削材は直径10mmの伸線材であり、先端から10mmを外周切削し、それを1本として、20本切削後の工具観察および表面粗さを評価した。   FIG. 4 shows an outline of the cutting method. The work material was a wire drawing material having a diameter of 10 mm, and the outer periphery was cut 10 mm from the tip, and the tool was observed and surface roughness was evaluated after cutting 20 pieces.

工具形状は外周切削用工具である。工具形状は主切れ刃すくい角5゜、逃げ角5゜、副切れ刃すくい角5゜、逃げ角5゜、図5の詳細に示すように前切れ刃角を先端の2mmだけ被削材回転軸と平行にした、いわゆる前切れ刃角を0゜にした工具である。切削条件は切削速度:60m/min、切込み量1mm、送り量0.05mm/rev湿式(水溶性切削油)である。   The tool shape is a peripheral cutting tool. The tool shape is the main cutting edge rake angle 5 °, clearance angle 5 °, secondary cutting edge rake angle 5 °, clearance angle 5 °, as shown in detail in Fig. 5, the front cutting edge angle is rotated by 2mm at the tip. This tool is parallel to the axis and has a so-called front cutting edge angle of 0 °. Cutting conditions are cutting speed: 60 m / min, cutting depth 1 mm, feed amount 0.05 mm / rev wet (water-soluble cutting oil).

表4から明らかなように、刃先丸み半径が50μm以下の実施例については、いずれも良好な粗さRyを実現している。それに対し、刃先半径やすくい角が規定外の範囲では良好な表面を得られない。   As can be seen from Table 4, all of the examples having a cutting edge radius of 50 μm or less achieve a good roughness Ry. On the other hand, a good surface cannot be obtained when the angle where the edge of the blade edge is easy is outside the specified range.

刃先丸み半径5μm以下を含み、すべての条件において工具寿命600回以上を達成し、良好な工具寿命を実現した。   A tool life of 600 times or more was achieved under all conditions including a cutting edge radius of 5 μm or less, and a good tool life was realized.

(実施例3)
プランジ切削において、本発明の焼結工具を用いた場合に、切り刃の刃先丸みの大きさをはじめとする切削工具の形状が、切削面の表面粗さに及ぼす影響について比較を行った。切削条件、使用工具、被削材については表5に示すとおりである。
(Example 3)
In the plunge cutting, when the sintered tool of the present invention was used, the influence of the shape of the cutting tool including the size of the cutting edge roundness of the cutting edge on the surface roughness of the cutting surface was compared. The cutting conditions, tools used, and work material are as shown in Table 5.

表3に焼結工具の形状の影響を評価した結果を示す。規定の材質に調整した焼結工具の形状を変化させ、図3に示すプランジ切削試験を行い、溝面の表面粗さを評価した。切削条件等は切削速度80m/min、送り0.05mm/rev、油性切削油剤を使用した湿式切削である。   Table 3 shows the results of evaluating the influence of the shape of the sintered tool. The shape of the sintered tool adjusted to the specified material was changed, and the plunge cutting test shown in FIG. 3 was performed to evaluate the surface roughness of the groove surface. Cutting conditions and the like are a cutting speed of 80 m / min, a feed of 0.05 mm / rev, and wet cutting using an oil-based cutting fluid.

表5に示すように焼結工具の場合でも被覆工具と同様に形状が不備であれば良好な表面粗さを得られない。   As shown in Table 5, even in the case of a sintered tool, a good surface roughness cannot be obtained if the shape is insufficient as in the case of a coated tool.

刃先丸み半径5μm以下を含み、すべての条件において工具寿命600回以上を達成し、良好な工具寿命を実現した。   A tool life of 600 times or more was achieved under all conditions including a cutting edge radius of 5 μm or less, and a good tool life was realized.

(実施例4)
長手切削において、本発明の焼結工具を用いた場合に、切り刃の刃先丸みの大きさをはじめとする切削工具の形状が、切削面の表面粗さに及ぼす影響について比較を行った。切削条件、使用工具、被削材については表6に示すとおりである。
Example 4
In longitudinal cutting, when the sintered tool of the present invention was used, the effect of the shape of the cutting tool including the size of the cutting edge roundness on the surface roughness of the cutting surface was compared. The cutting conditions, tools used, and work material are as shown in Table 6.

表6に焼結工具の形状の影響を評価した結果を示す。規定の材質に調整した焼結工具の形状を変化させ、図4に示す長手切削試験を行った。   Table 6 shows the results of evaluating the influence of the shape of the sintered tool. The shape of the sintered tool adjusted to the specified material was changed, and the longitudinal cutting test shown in FIG. 4 was performed.

工具形状は主切れ刃すくい角5゜、逃げ角5゜、副切れ刃すくい角5゜、逃げ角5゜、図5の詳細に示すように前切れ刃4を設け、前切れ刃角を先端の2mmだけ被削材回転軸と平行にした、いわゆる前切れ刃角を0゜にした工具である。切削条件は切削速度:60m/min、切込み量1mm、送り量0.05mm/rev湿式(水溶性切削油)である。   Tool shape is main cutting edge rake angle 5 °, clearance angle 5 °, secondary cutting edge rake angle 5 °, clearance angle 5 °, front cutting edge 4 is provided as shown in detail in FIG. This is a tool with a so-called front cutting edge angle of 0 °, which is parallel to the workpiece rotation axis by 2 mm. Cutting conditions are cutting speed: 60 m / min, cutting depth 1 mm, feed amount 0.05 mm / rev wet (water-soluble cutting oil).

表6に示すように刃先半径やすくい角が規定外の範囲では良好な表面を得られない。   As shown in Table 6, a good surface cannot be obtained if the angle of the edge of the blade is easily outside the specified range.

刃先丸み半径5μm以下を含み、すべての条件において工具寿命600回以上を達成し、良好な工具寿命を実現した。   A tool life of 600 times or more was achieved under all conditions including a cutting edge radius of 5 μm or less, and a good tool life was realized.

(実施例5)
被削材として鉛快削鋼を含む種々の成分の材料を用い、切削工具として従来の超硬合金工具および本発明の被覆工具を用い、切削面の表面粗さについて比較を行った。被削材、切削工具については表7に示すとおりである。表7のNo.54〜59がプランジ切削、No.60〜65が長手旋削であり、それぞれ図3および図4に示すものと同様である。
(Example 5)
The materials of various components including lead free cutting steel were used as the work material, the conventional cemented carbide tool and the coated tool of the present invention were used as the cutting tool, and the surface roughness of the cutting surface was compared. The work material and cutting tool are as shown in Table 7. No. in Table 7 Nos. 54 to 59 are plunge cutting, No. Reference numerals 60 to 65 denote longitudinal turning, which are the same as those shown in FIGS. 3 and 4, respectively.

すなわち長手旋削については、工具形状は主切れ刃の刃先丸み半径5μm以下、すくい角5゜、逃げ角5゜、副切れ刃の刃先丸み半径5μm以下、すくい角5゜、逃げ角5゜、図5の詳細に示すように前切れ刃角を先端の2mmだけ被削材回転軸と平行にした、いわゆる前切れ刃角を0゜にした工具である。切削条件は切削速度:60m/min、切込み量1mm、送り量0.05mm/rev湿式(水溶性切削油)である。   That is, for longitudinal turning, the tool shape is a cutting edge radius of the main cutting edge of 5 μm or less, a rake angle of 5 °, a clearance angle of 5 °, a cutting edge radius of the secondary cutting edge of 5 μm or less, a rake angle of 5 °, a clearance angle of 5 °, As shown in detail in FIG. 5, the tool has a so-called front cutting edge angle of 0 ° in which the front cutting edge angle is parallel to the workpiece rotation axis by 2 mm at the tip. Cutting conditions are cutting speed: 60 m / min, cutting depth 1 mm, feed amount 0.05 mm / rev wet (water-soluble cutting oil).

またプランジ切削については、工具形状は主切れ刃の刃先丸み半径5μm以下、すくい角15゜、逃げ角6゜である。切削条件は切削速度80m/min、送り0.05mm/rev、油性切削油剤を使用した湿式切削である。   For plunge cutting, the tool shape is a radius of the cutting edge of the main cutting edge of 5 μm or less, a rake angle of 15 °, and a clearance angle of 6 °. Cutting conditions are a cutting speed of 80 m / min, a feed of 0.05 mm / rev, and wet cutting using an oil-based cutting fluid.

表7のNo.54〜57、60〜63は低炭非鉛快削鋼であり、No.58、59、64、65は低炭鉛快削鋼である。さらに具体的にいうと、 No.54、60はSUM23相当鋼であり、No.55〜57、61〜63は鉛を含まず、SUM23にS,Cr,B等を加えたいわゆる低炭非鉛快削鋼である。またNo.58,59,64,65はいずれも鉛を含むSUM24L相当鋼である。   No. in Table 7 Nos. 54 to 57 and 60 to 63 are low-carbon non-lead free cutting steels. 58, 59, 64 and 65 are low-carbon lead free cutting steels. More specifically, no. Nos. 54 and 60 are SUM23 equivalent steel. 55-57 and 61-63 are so-called low-carbon non-lead free-cutting steel in which S, Cr, B, etc. are added to SUM23 without containing lead. No. 58, 59, 64 and 65 are all SUM24L equivalent steel containing lead.

表7中従来工具の「WC(K種)」とは工具刃先丸みを50μm以下に仕上げたTi系硬質粒子を含まないK種超硬合金工具であり、本発明工具中TiAlN−1、TiZrN−1、TiN−1は表1に示す工具を使用した。   In Table 7, “WC (K type)” of the conventional tool is a K type cemented carbide tool containing no Ti-based hard particles with a tool edge rounded to 50 μm or less, and TiAlN-1 and TiZrN— in the tool of the present invention. 1. TiN-1 used the tool shown in Table 1.

表7において、Ryは切削面表面粗さを示す。またΔRyは、本発明工具のRyと従来工具のRyとの差を示す。   In Table 7, Ry represents the surface roughness of the cut surface. ΔRy represents the difference between Ry of the tool of the present invention and Ry of the conventional tool.

本発明工具と従来工具を本発明で対象とするPbを添加しない非鉛快削鋼とPbを添加した鉛快削鋼で比較すると、非鉛快削鋼では従来工具から本発明工具に工具材種を変化させると、表面粗さは大きく改善されるが、Pbを含む鉛快削鋼の場合、表面粗さはほとんど変化しない。すなわち対象とする被削材の成分を規定すべきことが分かる。   When comparing the present invention tool and the conventional tool between the lead-free free cutting steel to which Pb is not added and the lead free-cutting steel to which Pb is added, the tool material is changed from the conventional tool to the tool of the present invention. When the seed is changed, the surface roughness is greatly improved, but in the case of lead free cutting steel containing Pb, the surface roughness hardly changes. That is, it is understood that the component of the target work material should be specified.

また、低炭非鉛快削鋼の品種別にRyの挙動を観察すると、品種毎にRyのレベルに差がある一方、低炭非鉛快削鋼のいずれの品種においても、従来工具のRyに対して本発明工具のRyは小さな値であり、ΔRyが大きな値となっている。即ち、低炭非鉛快削鋼を被削材とした場合において、本発明工具の優位性が明らかである。   In addition, when observing the behavior of Ry for each type of low-carbon non-lead free-cutting steel, there is a difference in the level of Ry for each type. On the other hand, Ry of the tool of the present invention is a small value, and ΔRy is a large value. That is, the superiority of the tool of the present invention is obvious when low-carbon non-lead free-cutting steel is used as the work material.

本実施例において、工具寿命は切削開始から20個目、50個目の粗さを測定し、その後、100個目、150個目と50個加工ごとの粗さを測定した。実施例54、57、60、63についてはRyが20μmを超えると工具寿命と判定した。またその他の表7記載の実施例ではRyが7μmを超えると工具寿命と判定した。その結果、比較例で従来工具を用いた場合にはいずれも加工数300個以内に工具寿命に至り、早いものでは最初の20個目でも良好な表面粗さを得られなかった。また発明工具で従来の鉛快削鋼を削った場合でも表面粗さの改善はそれほど見られず、600個を超える工具寿命を得たものは見られなかった。一方、発明例で発明工具を使用した場合にはいずれも加工数600個を超えても寿命に至らず、良好な表面粗さを維持できた。   In this example, the tool life was measured for the 20th and 50th roughnesses from the start of cutting, and then the 100th, 150th and 50th roughnesses were measured. In Examples 54, 57, 60, and 63, when Ry exceeded 20 μm, the tool life was determined. In the other examples shown in Table 7, the tool life was determined when Ry exceeded 7 μm. As a result, when the conventional tool was used in the comparative example, the tool life was reached within 300 machining, and good surface roughness could not be obtained even with the first 20 tools. Further, even when the conventional lead free-cutting steel was cut with the inventive tool, the surface roughness was not so much improved, and no tool with a tool life exceeding 600 was found. On the other hand, in the case where the inventive tool was used in the invention example, the life was not reached even when the number of processing exceeded 600, and good surface roughness could be maintained.

(実施例6)
低炭非鉛快削鋼を切削するプランジ切削において、被覆工具、焼結工具の各成分条件が及ぼす影響について評価した。被削材として表2に示す2種類の成分材料を用いた。
(Example 6)
In the plunge cutting for cutting low-carbon lead-free free-cutting steel, the effect of each component condition of the coated tool and sintered tool was evaluated. Two kinds of component materials shown in Table 2 were used as work materials.

表8のNo.66〜77は被覆工具、No.78は被覆を有しないK種超硬合金工具(比較例)である。被覆層成分を変化させ、被削材毎に切削面粗さを評価した。No.76、77は被覆層の成分が本発明範囲を外れる比較例である。表9は焼結工具であり、No.79、80は本発明例、No.81、82はTi炭化物の成分が本発明範囲を外れる比較例である。表8、9に表面粗さに及ぼす工具材種の影響を示す。工具形状はプランジ切削(突切切削用)工具であり、切削幅5mm、主切れ刃の刃先丸み半径5μm以下、すくい角15゜、逃げ角6゜である。その他切削条件は切削速度80m/min、送り0.05mm/rev、油性切削油剤を使用した湿式切削である。   No. in Table 8 Nos. 66 to 77 are coated tools. Reference numeral 78 denotes a K-type cemented carbide tool (comparative example) having no coating. The coating layer component was changed, and the cutting surface roughness was evaluated for each work material. No. 76 and 77 are comparative examples in which the components of the coating layer are outside the scope of the present invention. Table 9 shows sintered tools. 79 and 80 are examples of the present invention. 81 and 82 are comparative examples in which the Ti carbide component is outside the scope of the present invention. Tables 8 and 9 show the effect of the tool material type on the surface roughness. The tool shape is a plunge cutting (for parting off) tool, which has a cutting width of 5 mm, a radius of cutting edge of the main cutting edge of 5 μm or less, a rake angle of 15 °, and a clearance angle of 6 °. Other cutting conditions are a cutting speed of 80 m / min, a feed of 0.05 mm / rev, and wet cutting using an oil-based cutting fluid.

いずれの場合も工具表層の材料成分の規定が本発明の範囲外であれば良好な表面粗さを得られない。また被覆工具の場合、範囲外では良好な表面粗さを得られない場合だけでなく、被膜が剥離し、十分な工具寿命を得られない場合もある。比較例83のように高速度鋼工具では非鉛快削鋼−1では良好な表面でもSUM23では良好な性能が得られない場合もある。   In any case, if the specification of the material component of the tool surface layer is outside the range of the present invention, good surface roughness cannot be obtained. Further, in the case of a coated tool, not only the case where good surface roughness cannot be obtained outside the range, but also the coating may be peeled off and a sufficient tool life may not be obtained. As in Comparative Example 83, in the case of a high-speed steel tool, even if the lead-free free-cutting steel-1 has a good surface, SUM23 may not provide good performance.

このような凝着特性は工具と切り屑の接触面積を測定することで評価できる。またこの接触域は被削材と工具の両者の成分、材質によって異なる。さらにプランジ切削での各種鋼材とさまざまな工具材種の接触域を図6に示す。従来の一般的な組み合わせK種超硬合金工具とPb添加材の組み合わせではK種超硬合金工具は適した工具であるものの、本発明の規定工具では逆に接触幅18が広がる場合も認められた。一方、非鉛快削鋼ではK種超硬合金以外の本発明規定工具ではK種超硬合金に比べ、小さな接触幅になっていることが分かる。これらの接触幅は最終的には表面粗さに反映され、実施例の表3〜9に示すとおりである。   Such adhesion characteristics can be evaluated by measuring the contact area between the tool and the chips. The contact area varies depending on the components and materials of both the work material and the tool. Furthermore, the contact area of various steel materials and various tool material types in plunge cutting is shown in FIG. In the conventional combination K-type cemented carbide tool and Pb additive, the K-type cemented carbide tool is a suitable tool. However, in the specified tool of the present invention, the contact width 18 may be increased. It was. On the other hand, it can be seen that the lead-free free-cutting steel has a smaller contact width than the K-type cemented carbide in the invention-specified tools other than the K-type cemented carbide. These contact widths are finally reflected in the surface roughness, as shown in Tables 3 to 9 of the examples.

工具寿命についてみると、本発明例No.66〜75、79、80はいずれも寿命が600回を超え、良好な結果であった。比較例No.76、77は使用初期に被膜の剥離が発生したために表面粗さが劣化した。また、比較例No.78、81〜83はいずれも寿命が600回に満たなかった。   As for the tool life, Example No. of the present invention. 66 to 75, 79, and 80 all had good results with a lifetime exceeding 600 times. Comparative Example No. Nos. 76 and 77 were deteriorated in surface roughness because peeling of the coating occurred in the initial stage of use. Comparative Example No. 78 and 81 to 83 all had a lifetime of less than 600 times.

(実施例7)
表10に表面粗さに及ぼす切削方法の影響を示す。低炭非鉛快削鋼を被削材とし、表10に示す本発明の被覆工具、焼結工具を用い、切削条件は表に示すとおりで、湿式長手旋削を行った。主切れ刃の刃先丸み半径5μm以下、すくい角15゜、逃げ角6゜である。切削条件として、切削速度が大きく影響するため、各工具材種に対して切削速度を大きく変化させて評価した。被削材は表2に示す非鉛快削鋼−1およびSUM23であり、工具形状は長手旋削に用いた図5と同様の形状である。なお、No.82の工具は材質にサーメットを用いた焼結工具である。サーメットはJIS B 4053−1996 P8の下段の参考表2に示したTi,Ta,Nbを主成分とした炭化物、炭窒化物、窒化物またはこれらの複合体の硬質粒子をNi,Coを主体としたバインダーでつないで焼結した材料である。したがって表層はTiを含む本発明の焼結工具を構成している。
(Example 7)
Table 10 shows the influence of the cutting method on the surface roughness. Using low-carbon lead-free free-cutting steel as a work material, the coated tool and sintered tool of the present invention shown in Table 10 were used, the cutting conditions were as shown in the table, and wet longitudinal turning was performed. The cutting edge radius of the main cutting edge is 5 μm or less, the rake angle is 15 °, and the clearance angle is 6 °. As the cutting condition, the cutting speed has a great influence, and therefore, the cutting speed was greatly changed for each tool material type. The work materials are non-lead free-cutting steel-1 and SUM23 shown in Table 2, and the tool shape is the same as that of FIG. 5 used for the longitudinal turning. In addition, No. A tool 82 is a sintered tool using cermet as a material. Cermet is composed mainly of carbides, carbonitrides, nitrides or composites of Ti, Ta, and Nb shown in Reference Table 2 in the lower part of JIS B 4053-1996 P8. It is a material sintered by connecting with a binder. Therefore, the surface layer constitutes the sintered tool of the present invention containing Ti.

被削材は高速度で切削するためにφ80mmで熱間鍛造または圧延した後、920℃×1hr→放冷のいわゆる低炭素鋼の焼準を行った。   The work material was hot forged or rolled at φ80 mm in order to cut at a high speed, and then subjected to so-called low carbon steel normalization at 920 ° C. × 1 hr → cooling.

その結果、表10に示すとおり、本発明のNo.78〜84は良好な表面粗さを実現できた。比較例No.85〜87は切削速度が400m/minを超えており、ほとんど切削できなかった。   As a result, as shown in Table 10, No. 1 of the present invention. 78-84 was able to realize good surface roughness. Comparative Example No. In 85-87, the cutting speed exceeded 400 m / min, and almost no cutting was possible.

(実施例8)
被削材に低炭鉛快削鋼を用い、切削工具としてK種超硬合金工具(実施例5で用いたと同様のもの)を用い、刃先丸みを半径50μm超とした従来の切削方法を用いて切削を行った。刃先丸み半径以外の切削条件については、上記実施例5と同様とした。
(Example 8)
Using a conventional cutting method that uses low-carbide free-cutting steel as the work material, uses a K-type cemented carbide tool (the same as that used in Example 5) as the cutting tool, and has a radius of cutting edge exceeding 50 μm. And cut. Cutting conditions other than the cutting edge radius were the same as in Example 5 above.

切削方法別に、被削材の成分、刃先丸み半径、切削面粗さ実績Ryを表11に示す。表11から明らかなように、切削面粗さは上記本発明の実施例と対比して良くない結果となっている。一方、工具寿命については、刃先丸み半径を大きくした結果として、寿命600回を超える結果となった。   Table 11 shows the components of the work material, the cutting edge radius, and the cutting surface roughness results Ry for each cutting method. As is apparent from Table 11, the cutting surface roughness is not good as compared with the above-described embodiment of the present invention. On the other hand, the tool life exceeded 600 times as a result of increasing the cutting edge radius.

プランジ切削における仕上げ面と工具形状の関係を示す図であり、(a)はプランジ切削状況を示す斜視図、(b)はプランジ切削における切れ刃と仕上げ面の関係を示す図、(c)はプランジ切削用工具詳細を示す斜視図、(d)は切れ刃断面形状を示す図である。It is a figure which shows the relationship between the finished surface and tool shape in plunge cutting, (a) is a perspective view which shows the plunge cutting situation, (b) is a figure which shows the relationship between the cutting edge and finished surface in plunge cutting, (c) is The perspective view which shows the detail of the tool for plunge cutting, (d) is a figure which shows cutting-edge cross-sectional shape. 長手旋削における仕上げ面と工具形状の関係を示す図であり、(a)は長手旋削状況を示す斜視図、(b)は長手旋削における切れ刃と仕上げ面の関係を示す図、(c)は長手旋削用工具詳細を示す斜視図、(d)は切れ刃断面形状を示す図である。It is a figure which shows the relationship between the finishing surface and tool shape in longitudinal turning, (a) is a perspective view which shows a longitudinal turning situation, (b) is a figure which shows the relationship between the cutting edge and finishing surface in longitudinal turning, (c) is The perspective view which shows the tool for longitudinal turning details, (d) is a figure which shows cutting-edge cross-sectional shape. プランジ切削と評価面を示す図であり、(a)はプランジ切削状況を示す斜視図、(b)は評価面である。It is a figure which shows a plunge cutting and an evaluation surface, (a) is a perspective view which shows a plunge cutting situation, (b) is an evaluation surface. 長手旋削と評価面を示す図であり、(a)は長手旋削状況を示す斜視図、(b)は評価面である。It is a figure which shows a longitudinal turning and an evaluation surface, (a) is a perspective view which shows a longitudinal turning situation, (b) is an evaluation surface. 長手旋削工具を示す図であり、(a)は概略図、(b)は詳細図である。It is a figure which shows a longitudinal turning tool, (a) is a schematic diagram, (b) is a detailed figure. 切削におけるすくい面の接触幅観察例を示す図であり、(a)は工具刃先近傍の切り屑生成部の概要を示す断面図、(b)は切削における工具すくい面の接触幅を測定するための顕微鏡写真を示す図である。It is a figure which shows the contact width observation example of the rake face in cutting, (a) is sectional drawing which shows the outline | summary of the chip | tip production | generation part near a tool blade edge, (b) is for measuring the contact width of the tool rake face in cutting FIG.

符号の説明Explanation of symbols

1 切削工具
2 主切れ刃
3 副切れ刃
4 前切れ刃
5 すくい面
6 横逃げ面
7 刃先丸み
8 すくい角
9 逃げ
10 ノーズ半径
11 被削材
12 溝
13 切削面
14 送り方向
15 被削材送り方向
16 切り屑
17 構成刃先
18 すくい面の接触幅
21 主切れ刃による仕上げ面
22 副切れ刃による仕上げ面
23 切断面
24 評価面
DESCRIPTION OF SYMBOLS 1 Cutting tool 2 Main cutting edge 3 Sub cutting edge 4 Front cutting edge 5 Rake face 6 Side relief face 7 Cutting edge roundness 8 Rake angle 9 Relief 10 Nose radius 11 Work material 12 Groove 13 Cutting face 14 Feed direction 15 Work material feed Direction 16 Chip 17 Component edge 18 Contact width 21 of rake face Finished surface 22 with main cutting edge Finished face 23 with minor cutting edge Cutting face 24 Evaluation surface

Claims (9)

主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されてなり、該硬質被膜は、原子%でN:40〜60%、Ti:40〜60%を含み、残部は実質的に不可避不純物からなることを特徴とする切削工具。   Either one or both of the main cutting edge and the auxiliary cutting edge have a radius of 50 μm or less, and a part or all of the surface layer in contact with the work material is coated with a hard coating, A cutting tool comprising: N: 40 to 60% and Ti: 40 to 60% in atomic%, and the balance substantially consisting of inevitable impurities. 主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、被削材と接触する面の一部又は全部の表層が硬質被膜で被覆されてなり、該硬質被膜は、原子%でN:40〜60%、Ti:10%以上60%未満に加え、Al又はZrの1種又は2種の合計を原子%で50%以下の範囲で含み、残部は実質的に不可避不純物からなることを特徴とする切削工具。   Either one or both of the main cutting edge and the auxiliary cutting edge have a radius of 50 μm or less, and a part or all of the surface layer in contact with the work material is coated with a hard coating, In addition to N: 40 to 60% in atomic%, Ti: 10% or more and less than 60%, a total of one or two of Al or Zr is included in a range of 50% or less in atomic%, and the balance is substantially A cutting tool comprising inevitable impurities. 主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることを特徴とする請求項1又は2に記載の切削工具。   Cutting according to claim 1 or 2, wherein the rake angle of either or both of the main cutting edge and the auxiliary cutting edge is in the range of -10 to 30 °, and the clearance angle is 2 to 15 °. tool. 前記硬質被膜の内部に配置された基材が、工具鋼、超硬合金、サーメット、セラミックスのいずれかであることを特徴とする請求項3に記載の切削工具。   The cutting tool according to claim 3, wherein the base material disposed inside the hard coating is one of tool steel, cemented carbide, cermet, and ceramics. 主切れ刃と副切れ刃のいずれか一方又は両方の刃先丸みが半径50μm以下であり、少なくとも被削材と接触する面の一部又は全部の表層が、Tiを含む炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を50質量%以上と、Tiを含まないTa、Nb、W炭化物、炭窒化物、窒化物およびそれらの複合物の硬質相を30質量%以下と、Co又はNiの1種又は2種を合計で20質量%以下とを含み、残部は実質的に不可避不純物からなる焼結材で構成されてなることを特徴とする切削工具。   One or both of the main cutting edge and the auxiliary cutting edge have a radius of cutting edge of 50 μm or less, and at least a part or all of the surface layer in contact with the work material has carbide, carbonitride, nitridation containing Ti And a hard phase of Ta, Nb, W carbide, carbonitride, nitride and their composites containing no Ti, and 30% by mass or less of Co, A cutting tool comprising one or two kinds of Ni in a total of 20% by mass or less, and the balance being made of a sintered material substantially composed of inevitable impurities. 主切れ刃と副切れ刃のいずれか一方又は両方のすくい角が−10〜30°の範囲であり、逃げ角が2〜15°であることを特徴とする請求項5に記載の切削工具。   6. The cutting tool according to claim 5, wherein the rake angle of one or both of the main cutting edge and the auxiliary cutting edge is in the range of −10 to 30 °, and the clearance angle is 2 to 15 °. 低炭非鉛快削鋼の切削用であることを特徴とする請求項1乃至6のいずれかに記載の切削工具。   The cutting tool according to any one of claims 1 to 6, wherein the cutting tool is for cutting low-carbon non-lead free-cutting steel. 請求項1乃至6のいずれかに記載の切削工具を用い、被削材として低炭快削鋼を用い、切削速度1〜400m/minで切削することを特徴とする低炭快削鋼の切削方法。   Cutting of low-carbon free-cutting steel using the cutting tool according to any one of claims 1 to 6, using low-carbon free-cutting steel as a work material, and cutting at a cutting speed of 1 to 400 m / min. Method. 請求項7に記載の切削工具を用い、被削材として低炭非鉛快削鋼を用い、切削速度1〜400m/minで切削することを特徴とする低炭非鉛快削鋼の切削方法。   A cutting method for low-carbon non-lead free-cutting steel, characterized by using the cutting tool according to claim 7 and using low-carbon non-lead free-cutting steel as a work material and cutting at a cutting speed of 1 to 400 m / min. .
JP2005078960A 2005-03-18 2005-03-18 Cutting tool and cutting method for low carbon free-cutting steel Pending JP2006255848A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005078960A JP2006255848A (en) 2005-03-18 2005-03-18 Cutting tool and cutting method for low carbon free-cutting steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005078960A JP2006255848A (en) 2005-03-18 2005-03-18 Cutting tool and cutting method for low carbon free-cutting steel

Publications (1)

Publication Number Publication Date
JP2006255848A true JP2006255848A (en) 2006-09-28

Family

ID=37095604

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005078960A Pending JP2006255848A (en) 2005-03-18 2005-03-18 Cutting tool and cutting method for low carbon free-cutting steel

Country Status (1)

Country Link
JP (1) JP2006255848A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030330A (en) * 2014-07-29 2016-03-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and method of producing coated cutting tool
KR20180121782A (en) 2016-03-31 2018-11-08 가부시끼가이샤 후지세이사쿠쇼 Blade part structure and its surface treatment method of machining tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277004A (en) * 2000-03-30 2001-10-09 Ngk Spark Plug Co Ltd Throw-away tip and cutting tool with the tip set on holder
JP2002160108A (en) * 2000-11-27 2002-06-04 Kyocera Corp Cutting tool for precise machining and its manufacturing method
JP2004176175A (en) * 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability and manufacturing method therefor
JP2005007531A (en) * 2003-06-19 2005-01-13 Kyocera Corp Throw away tip and manufacturing method thereof
JP2005054227A (en) * 2003-08-01 2005-03-03 Sumitomo Metal Ind Ltd Low carbon free cutting steel
JP2006224198A (en) * 2005-02-15 2006-08-31 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001277004A (en) * 2000-03-30 2001-10-09 Ngk Spark Plug Co Ltd Throw-away tip and cutting tool with the tip set on holder
JP2002160108A (en) * 2000-11-27 2002-06-04 Kyocera Corp Cutting tool for precise machining and its manufacturing method
JP2004176175A (en) * 2002-11-15 2004-06-24 Nippon Steel Corp Steel superior in machinability and manufacturing method therefor
JP2005007531A (en) * 2003-06-19 2005-01-13 Kyocera Corp Throw away tip and manufacturing method thereof
JP2005054227A (en) * 2003-08-01 2005-03-03 Sumitomo Metal Ind Ltd Low carbon free cutting steel
JP2006224198A (en) * 2005-02-15 2006-08-31 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016030330A (en) * 2014-07-29 2016-03-07 サンドビック インテレクチュアル プロパティー アクティエボラーグ Coated cutting tool and method of producing coated cutting tool
KR20180121782A (en) 2016-03-31 2018-11-08 가부시끼가이샤 후지세이사쿠쇼 Blade part structure and its surface treatment method of machining tool

Similar Documents

Publication Publication Date Title
JP4739235B2 (en) Surface coated cutting tool
WO2007039955A1 (en) cBN SINTERED BODY FOR HIGH-QUALITY SURFACE ASPECT MACHINING AND CUTTING TOOL OF cBN SINTERED BODY
WO2007039944A1 (en) Cutting tool for high quality and high efficiency machining and cutting method using the cutting tool
JPWO2005105348A1 (en) Surface-coated cubic boron nitride sintered body tool and its manufacturing method
JPH06218613A (en) Solid ball nose tool
JP3952209B2 (en) WC-base cemented carbide member
JP4443177B2 (en) Throwaway tip
JP2006082209A (en) Surface coated cutting tool
JP2006255848A (en) Cutting tool and cutting method for low carbon free-cutting steel
JP2006239792A (en) Hard film coated cemented carbide member
JP2019155570A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2019155569A (en) Surface-coated cutting tool having hard coating layer exerting excellent oxidation resistance and deposition resistance
JP2815533B2 (en) Cutting equipment for milling
JP2011251368A (en) Surface-coated cutting tool made of cemented carbide
JP2007331107A (en) Surface coated cubic boron nitride sintered body tool
WO2012124559A1 (en) Cutting edge-replaceable cutting tool
CN109576670B (en) Hard coating film for cutting tool
JP2959065B2 (en) Sintered hard alloy drill
JP2006082208A (en) Surface coated cutting tool
JP2001020029A (en) Cemented carbide material for hob
JP7216916B2 (en) Diamond-coated cemented carbide tools
JP2007038355A (en) Small-diameter member and manufacturing method of small-diameter member
JPH10140330A (en) Coated hard alloy
JP2006123022A (en) Throwaway insert
JP2006326690A (en) Broach made of coated cemented carbide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100819

A131 Notification of reasons for refusal

Effective date: 20100831

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Effective date: 20101027

Free format text: JAPANESE INTERMEDIATE CODE: A523

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101027

A131 Notification of reasons for refusal

Effective date: 20101221

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110202

A02 Decision of refusal

Effective date: 20110329

Free format text: JAPANESE INTERMEDIATE CODE: A02