JP2011251368A - Surface-coated cutting tool made of cemented carbide - Google Patents

Surface-coated cutting tool made of cemented carbide Download PDF

Info

Publication number
JP2011251368A
JP2011251368A JP2010126494A JP2010126494A JP2011251368A JP 2011251368 A JP2011251368 A JP 2011251368A JP 2010126494 A JP2010126494 A JP 2010126494A JP 2010126494 A JP2010126494 A JP 2010126494A JP 2011251368 A JP2011251368 A JP 2011251368A
Authority
JP
Japan
Prior art keywords
cemented carbide
cutting
layer
tool
cutting edge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010126494A
Other languages
Japanese (ja)
Inventor
Hisashi Honma
尚志 本間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010126494A priority Critical patent/JP2011251368A/en
Publication of JP2011251368A publication Critical patent/JP2011251368A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool formed of cemented carbide which exerts excellent chipping resistance and abrasion resistance in high-speed intermittent cutting work for steel and cast iron.SOLUTION: In the surface-coated cutting tool formed of the cemented carbide, a tough layer composed of a β-free layer is formed along a ridge line of a cutting edge in an area with a depth of 5-50 μm in a normal direction of a cutting face and an area with a depth of 30-200 μm in a normal direction of a flank in a cemented-carbide tool base; and the cemented carbide has a substantially uniform composition in an area except for the tough layer.

Description

本発明は、高熱発生を伴うとともに、切刃部に対して衝撃的な負荷が繰り返し作用する鋼や鋳鉄等の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を示し、かつ、すぐれたすくい面摩耗性を発揮する表面被覆超硬合金製切削工具に関するものである。   The present invention exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting of steel, cast iron, etc., which is accompanied by high heat generation and repeatedly receives an impact load on the cutting edge, and is excellent. The present invention relates to a cutting tool made of a surface-coated cemented carbide that exhibits rake face wear resistance.

従来、鋼や鋳鉄の旋削用切削工具としては、超硬合金製工具基体に硬質被覆層を形成した表面被覆超硬合金製切削工具が広く知られており、特に、切れ刃の耐チッピング性を向上させるために、超硬合金の最表面に、結合成分の含有割合が基体内部に比して多い結合相富化層を形成した浸炭型の表面被覆超硬合金製切削工具(例えば、特許文献1)や、超硬合金の最表面に、WCとCoのみからなる脱β層を形成した真空焼結型の表面被覆超硬合金製切削工具(例えば、特許文献2)が知られている。
さらに、この結合相富化層や脱β層が、切刃近傍では形成されにくいという欠点を補うため、ホーニング後に再焼結を行うことによって、エッジを2等分する線に沿った結合相含有量が、エッジ先端に進むに従って増大するようにした表面被覆超硬合金製切削工具(例えば、特許文献3)も知られている。
Conventionally, as a cutting tool for turning steel or cast iron, a surface-coated cemented carbide cutting tool in which a hard coating layer is formed on a cemented carbide tool base is widely known. In order to improve, a carburized surface-coated cemented carbide cutting tool in which a binder phase-enriched layer is formed on the outermost surface of the cemented carbide, compared with the inside of the substrate. 1) and a vacuum-sintered surface-coated cemented carbide cutting tool (for example, Patent Document 2) in which a de-β layer made of only WC and Co is formed on the outermost surface of the cemented carbide is known.
Furthermore, in order to compensate for the disadvantage that this binder phase enriched layer or de-β layer is difficult to form near the cutting edge, re-sintering after honing makes it possible to contain the binder phase along the line that bisects the edge. There is also known a surface-coated cemented carbide cutting tool whose amount increases as it goes to the edge tip (for example, Patent Document 3).

特開昭62−105628号公報JP-A-62-2105628 特公昭59−4498号公報Japanese Patent Publication No.59-4498 特許3611853号明細書Japanese Patent No. 3611853

しかし、従来の表面強靭層を有する表面被覆超硬合金製切削工具は、鋼や鋳鉄の切削加工に使用した場合には、その表面強靭層は被削材との親和性が高いため、超硬合金製工具基体へのβ相添加による鉄との反応性抑制効果が十分でなく、特にすくい面摩耗が大きく発達する高速切削加工では、十分な耐摩耗性が発揮されないという問題があった。加えて、前記特許文献3にも示されるように、超硬合金と気相との成分濃度勾配を利用した表面強靭層の形成では、切れ刃周辺における安定的な濃度勾配の維持が難しいため、表面強靭化効果を安定して付与することも困難であった。
一方、表面強靭層を備えない表面被覆超硬合金製切削工具では、十分な刃先靭性を有さないため、これを断続切削加工に使用した場合には、チッピング、欠損の発生等により工具寿命が非常に短いという問題があった。
したがって、高熱発生を伴うとともに、切れ刃に対して、衝撃的負荷が断続的に繰り返し作用する鋼や鋳鉄の高速断続切削加工においても、すぐれた靭性および耐摩耗性を発揮する表面被覆超硬合金製切削工具の開発が望まれている。
However, when a conventional surface-coated cemented carbide cutting tool having a surface tough layer is used for cutting steel or cast iron, the surface tough layer has a high affinity with the work material. The effect of suppressing the reactivity with iron due to the addition of the β phase to the alloy tool base is not sufficient, and there is a problem that sufficient wear resistance is not exhibited particularly in high-speed cutting work in which rake face wear develops greatly. In addition, as shown in Patent Document 3, in the formation of the surface tough layer using the component concentration gradient of the cemented carbide and the gas phase, it is difficult to maintain a stable concentration gradient around the cutting edge. It was also difficult to stably impart the surface toughening effect.
On the other hand, a surface-coated cemented carbide cutting tool that does not have a surface tough layer does not have sufficient cutting edge toughness, so when it is used for intermittent cutting, the tool life is reduced due to chipping, chipping, etc. There was a problem of being very short.
Therefore, a surface-coated cemented carbide that exhibits excellent toughness and wear resistance even in high-speed intermittent cutting of steel and cast iron that is accompanied by high heat generation and impact loads are intermittently applied to the cutting edge. Development of a cutting tool for manufacturing is desired.

本発明者らは、上記の課題に応えるため、表面被覆超硬合金製切削工具の工具基体の組織について鋭意研究したところ、以下の知見を得た。   In order to respond to the above-mentioned problems, the present inventors have earnestly studied the structure of the tool base of the surface-coated cemented carbide cutting tool, and obtained the following knowledge.

すなわち、表面被覆超硬合金製切削工具の高速断続切削加工における耐チッピング性の向上は、脱β層からなる強靭層が切れ刃稜線近傍に存在すれば、その効果を十分に発揮することができ、また、耐摩耗性、特に、耐すくい面摩耗性、については、すくい面摩耗が顕著に発達するのは、切れ刃稜線から250μm程度離れたすくい面であることから、この領域のすくい面を鋼との反応性の低いβ相を含有する超硬合金で構成することによって、すくい面摩耗の発達を十分に抑制することができる、という知見を得たのである。   In other words, the improvement in chipping resistance in high-speed intermittent cutting of a surface-coated cemented carbide cutting tool can fully demonstrate its effect if a tough layer composed of a de-β layer exists in the vicinity of the cutting edge ridgeline. Also, with regard to wear resistance, particularly rake face wear resistance, rake face wear develops notably in the rake face that is about 250 μm away from the edge of the cutting edge. It has been found that the development of rake face wear can be sufficiently suppressed by using a cemented carbide containing a β-phase having low reactivity with steel.

本発明は、上記知見に基づいてなされたものであって、
「炭化タングステン基超硬合金を工具基体とし、この上に硬質被覆層を被覆した表面被覆超硬合金製切削工具において、
超硬合金の逃げ面とすくい面との交線からなる切れ刃稜線を基準として、工具基体内部側であって、すくい面の法線方向に5〜50μmの深さ領域、かつ、逃げ面の法線方向に30〜200μmの深さ領域に、上記切れ刃稜線に沿って脱β層からなる強靭層が形成されており、一方、上記強靭層以外の領域では、超硬合金は、実質的に均一組成であることを特徴とする表面被覆超硬合金製切削工具。」
を特徴とするものである。
The present invention has been made based on the above findings,
“In a surface-coated cemented carbide cutting tool in which a tungsten carbide-based cemented carbide is used as a tool base and a hard coating layer is coated thereon,
With reference to the cutting edge ridge line formed by the intersection of the flank and rake face of the cemented carbide, a depth region of 5 to 50 μm in the normal direction of the rake face inside the tool base, and the flank face A tough layer composed of a de-β layer is formed along the cutting edge ridge line in a depth region of 30 to 200 μm in the normal direction. On the other hand, in regions other than the tough layer, the cemented carbide is substantially A surface-coated cemented carbide cutting tool characterized by having a uniform composition. "
It is characterized by.

本発明の構成について、以下に説明する。   The configuration of the present invention will be described below.

通常、脱β層を形成する超硬合金を焼結した場合、脱β層は基材表層に均一な厚みで形成されることが知られている。この脱β層は、Coリッチの靭性に富んだ層であり、切削時に被削材との間に生じる衝撃を吸収し、チッピング、欠損の発生を抑制する機能を果たしているが、脱β層が厚すぎるような場合には、硬度の低下が生じるばかりか、熱塑性変形を起こし、偏摩耗の発生等により耐摩耗性を低下させる。
しかし、脱β層からなる強靭層を、切れ刃稜線近傍のみに形成し、それ以外の領域、特に、すくい面摩耗の発達しやすい領域、は、脱β層を形成せずにβ相を含有した超硬合金組成のままにしておくことによって、チッピング、欠損等の発生を防止し得るとともに、すくい面摩耗による耐摩耗性の低下を抑えることができる。
そこで、本発明では、超硬合金の逃げ面とすくい面との交線からなる切れ刃稜線を基準として、工具基体内部側であって、すくい面の法線方向に5〜50μmの深さ領域、かつ、逃げ面の法線方向に30〜200μmの深さ領域のみに脱β層を形成し、この領域以外の領域には脱β層を形成しないこととした。
Usually, when a cemented carbide forming a de-β layer is sintered, it is known that the de-β layer is formed with a uniform thickness on the surface of the substrate. This de-β layer is a layer rich in Co-rich toughness and absorbs the impact generated between the workpiece and the workpiece during cutting, and functions to suppress chipping and chipping. If it is too thick, not only will the hardness be reduced, but it will also be thermoplastically deformed, resulting in reduced wear resistance due to the occurrence of uneven wear.
However, a tough layer composed of a de-β layer is formed only in the vicinity of the edge of the cutting edge, and other regions, particularly regions where rake face wear is likely to develop, contain a β phase without forming a de-β layer. By keeping the cemented carbide composition as it is, it is possible to prevent the occurrence of chipping, chipping, etc., and to suppress the decrease in wear resistance due to rake face wear.
Therefore, in the present invention, with reference to the cutting edge ridge line formed by the intersection of the flank and rake face of the cemented carbide, the depth region is 5 to 50 μm in the normal direction of the rake face inside the tool base. In addition, the de-β layer is formed only in a region having a depth of 30 to 200 μm in the normal direction of the flank, and no de-β layer is formed in a region other than this region.

脱β層からなる強靭層を設ける領域を、すくい面の法線方向に5〜50μmの深さ領域としたのは、すくい面の法線方向に50μm以上の深さの領域に脱β相を形成すると、逃げ面摩耗の主な発達域である切刃稜線から50〜300μm幅の逃げ面に、相対的に硬さの低い脱β相が形成されることとなり、十分な耐摩耗性が得られなくなってしまう。また、すくい面の法線方向に5μm以内の浅い位置に脱β層を形成しても、表面強靭層の形成による耐チッピング性の向上効果がほとんど得られないという理由からであり、また、逃げ面の法線方向に30〜200μmの深さ領域としたのは、逃げ面の法線方向に200μmを超えた(例えば、250μm)位置のすくい面領域に脱β相を形成すると、切れ刃部の耐チッピング性は改善されるものの、工具のすくい面上において、すくい面摩耗が顕著に発達し工具寿命を短くし、また、逃げ面の法線方向に30μm以内の浅い位置に脱β層を形成しても、切れ刃のホーニング加工によって、脱β層がほとんど除去されてしまい、切削加工時に強靭層として機能しなくなるからである。
したがって、この発明では、すくい面の法線方向に5〜50μmの深さ領域であって、かつ、逃げ面の法線方向に30〜200μmの深さ領域のみに脱β層からなる強靭層を形成することとした。
The region where the tough layer made of the de-β layer is provided is a region having a depth of 5 to 50 μm in the normal direction of the rake surface. The de β phase is formed in a region having a depth of 50 μm or more in the normal direction of the rake surface. When formed, a de-beta phase with relatively low hardness is formed on the flank face having a width of 50 to 300 μm from the cutting edge ridge line, which is the main development area of flank face wear, and sufficient wear resistance is obtained. It will not be possible. Moreover, even if a de-β layer is formed at a shallow position within 5 μm in the normal direction of the rake face, the effect of improving the chipping resistance due to the formation of the surface tough layer is hardly obtained. The depth region of 30 to 200 μm in the normal direction of the surface is that when the deβ phase is formed in the rake face region at a position exceeding 200 μm (for example, 250 μm) in the normal direction of the flank surface, Although chipping resistance of the tool is improved, wear on the rake face is remarkably developed on the rake face of the tool, shortening the tool life, and a de-β layer is formed at a shallow position within 30 μm in the normal direction of the flank face. Even if it is formed, the de-β layer is almost removed by the honing process of the cutting edge, and it does not function as a tough layer during the cutting process.
Therefore, in the present invention, a tough layer composed of a de-β layer is formed in a depth region of 5 to 50 μm in the normal direction of the rake face and only in a depth region of 30 to 200 μm in the normal direction of the flank surface. It was decided to form.

上記のごとき特定の領域のみに強靭層を形成する方法は、例えば、以下のようにして行うことができる。
通常、超硬合金製切削工具(例えば、インサート)は、原料粉末として、所定粒径のWC粉末、Co粉末、Cr粉末等を所定割合に配合し、さらにバインダーと溶剤を加えて混合し、これを乾燥後、所定圧力で所定形状の圧粉体にプレス成形し、この圧粉体を、所定の焼結条件で焼結して超硬合金製切削工具の素材を製造し、これを研削して、所定インサート形状およびホーニング量に加工することによって得ている。
この発明によれば、焼結に際し、脱β層の厚みが通常よりも厚くなるように焼結条件を調整して素材を製造し、その後の研削あるいは仕上げ研削において、工具素材のすくい面および逃げ面となる面の研削量を増加し、すくい面および逃げ面に形成されていた脱β層を研削により除去し、切れ刃稜線部にのみ脱β層を形成残存させることによって、切れ刃稜線近傍の特定の領域のみに強靭層を形成することができる。
The method of forming a tough layer only in a specific region as described above can be performed, for example, as follows.
Normally, a cemented carbide cutting tool (for example, an insert) is a raw material powder containing WC powder, Co powder, Cr 3 C 2 powder, etc. having a predetermined particle size in a predetermined ratio, and further mixed with a binder and a solvent. Then, after drying this, it is press-molded into a green compact of a predetermined shape at a predetermined pressure, and this green compact is sintered under a predetermined sintering condition to produce a cemented carbide cutting tool material. Is processed into a predetermined insert shape and honing amount.
According to the present invention, during sintering, the material is manufactured by adjusting the sintering conditions so that the thickness of the de-β layer becomes thicker than usual, and in the subsequent grinding or finish grinding, the rake face and clearance of the tool material are produced. Near the cutting edge ridgeline by increasing the amount of grinding of the surface to be removed, removing the de-β layer formed on the rake face and flank surface by grinding, and leaving the de-β layer remaining only on the cutting edge ridge line portion A tough layer can be formed only in a specific region.

上記の切れ刃稜線近傍の特定の領域のみに強靭層を形成した超硬合金製切削工具は、それ自体でも切削工具として使用することは可能である。
しかし、この発明では、耐摩耗性、耐チッピング性、仕上げ精度、工具寿命等の切削工具特性をより向上させるという観点から、工具基体の表面に、例えば、CVD法、PVD法等により、硬質被覆層を被覆形成し、表面被覆超硬合金製切削工具として使用する。
硬質被覆層としては、例えば、TiC、TiN、TiCN等各種のチタン化合物層を下部層あるいは中間層として3〜20μmの厚さで形成し、この上に上部層として1〜15μmの厚さで酸化アルミニウム層等を形成したものがよく知られているが、これに限らず、あらゆる種類の硬質被覆層を被覆形成することができる。
The cemented carbide cutting tool in which the tough layer is formed only in a specific region near the cutting edge ridge line can be used as a cutting tool itself.
However, in this invention, from the viewpoint of further improving the cutting tool characteristics such as wear resistance, chipping resistance, finishing accuracy, tool life, etc., the surface of the tool base is hard-coated by, for example, CVD method, PVD method, etc. The layer is coated and used as a surface coated cemented carbide cutting tool.
As the hard coating layer, for example, various titanium compound layers such as TiC, TiN, and TiCN are formed as a lower layer or an intermediate layer with a thickness of 3 to 20 μm, and an upper layer is oxidized thereon with a thickness of 1 to 15 μm. Although what formed the aluminum layer etc. is known well, not only this but a hard coating layer of all kinds can be coated.

本発明の表面被覆超硬合金製切削工具によれば、切れ刃稜線部近傍の特定領域のみに脱β層からなる強靭層が形成されていることから、高熱発生を伴うとともに、切刃部に対して衝撃的な負荷が繰り返し作用する鋼や鋳鉄等の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を発揮すると同時に、すくい面摩耗の発達が抑制され、その結果として、長期間の使用にわたってすぐれた切削性能を維持することができる。   According to the surface-coated cemented carbide cutting tool of the present invention, a tough layer composed of a de-β layer is formed only in a specific region near the cutting edge ridge line portion. On the other hand, in high-speed intermittent cutting such as steel and cast iron where impact loads repeatedly act, the hard coating layer exhibits excellent chipping resistance, and at the same time, the development of rake face wear is suppressed, resulting in long-term Excellent cutting performance can be maintained over the course of use.

本発明の表面被覆超硬合金製切削工具の縦断面の模式図である。It is a schematic diagram of the longitudinal cross-section of the surface-coated cemented carbide cutting tool of the present invention.

次に、本発明の表面被覆超硬合金製切削工具について、実施例により具体的に説明する。   Next, the surface-coated cemented carbide cutting tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも0.5〜8μmの範囲内の所定の平均粒径を有するWC粉末、Co粉末、Cr粉末、TiN粉末、TaC粉末、NbC粉末、TiC粉末およびZrC粉末を、表1に示される割合に配合し、さらにバインダーと溶剤を加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の圧粉体にプレス成形した。
このプレス成形により得た圧粉体を、表2に示す焼結条件で焼結し、本発明の超硬合金素材1〜10を製造した。
As raw material powders, WC powder, Co powder, Cr 3 C 2 powder, TiN powder, TaC powder, NbC powder, TiC powder and ZrC powder all having a predetermined average particle diameter in the range of 0.5 to 8 μm are used. It mix | blended in the ratio shown in Table 1, and also, the binder and the solvent were added, and the ball mill mixing was carried out in acetone for 24 hours, and it dried under reduced pressure, Then, it press-molded to the compact of the predetermined shape with the pressure of 100 MPa.
The green compact obtained by this press molding was sintered under the sintering conditions shown in Table 2 to produce cemented carbide materials 1 to 10 of the present invention.

これらの超硬合金素材から研削にて、それぞれのインサート形状およびホーニング量に加工する際に、表3に示される条件ですくい面および逃げ面の研削を行うことにより、本発明の超硬合金製工具基体1〜10を製造した。
参考のために、上記本発明の超硬合金製工具基体1〜10について、それぞれの切れ刃稜線部近傍、すくい面、逃げ面に形成された脱β層の存在する領域およびその厚さを、切刃稜線に対して直角な面となるように、ダイヤモンド砥石にて、研磨面を切刃先端から約1mmの位置に作製し、その研磨面に対してKOHaq.等のアルカリ液で3V,20sec程度の電解エッチングを行い、エッチングがほとんど見られない領域を脱β層と判断し、光学顕微鏡にて測定した。
それぞれの値を表6に示す。
When grinding from these cemented carbide materials to the respective insert shapes and honing amounts, grinding the rake face and flank surface under the conditions shown in Table 3 makes it possible to produce the cemented carbide alloy of the present invention. Tool substrates 1 to 10 were produced.
For reference, for the cemented carbide tool bases 1 to 10 according to the present invention, the vicinity of each cutting edge ridge line portion, the rake face, the region where the de-β layer formed on the flank face, and the thickness thereof, A polished surface is produced at a position of about 1 mm from the tip of the cutting edge with a diamond grindstone so as to be a surface perpendicular to the cutting edge ridge line, and KOHaq. Electrolytic etching of about 3V and 20 seconds was performed with an alkaline solution such as the above, and a region in which almost no etching was observed was determined as a β-free layer and measured with an optical microscope.
The respective values are shown in Table 6.

さらに、上記本発明の超硬合金製工具基体1〜10の表面に、硬質被覆層を化学蒸着で形成し、表7に示す本発明の表面被覆超硬合金製切削インサート1〜10以下、実施例1〜10というを製造した。
実施例1〜10の表面被覆超硬合金製切削インサートについて、前記と同様に、それぞれの切れ刃稜線部近傍、すくい面、逃げ面に形成された脱β層の存在する領域およびその厚さを、切刃稜線に対して直角な面となるように、ダイヤモンド砥石にて、研磨面を切刃先端から約1mmの位置に作製し、その研磨面に対してKOHaq.等のアルカリ液で3V,20sec程度の電解エッチングを行い、エッチングがほとんど見られない領域を脱β層と判断し、光学顕微鏡にて測定した。
それぞれの値を表8に示す。
Further, a hard coating layer is formed by chemical vapor deposition on the surfaces of the cemented carbide tool bases 1 to 10 of the present invention, and the surface-coated cemented carbide cutting inserts 1 to 10 or less of the present invention shown in Table 7 are carried out. Examples 1-10 were prepared.
For the surface-coated cemented carbide cutting inserts of Examples 1 to 10, in the same manner as described above, the vicinity of each cutting edge ridge line portion, the rake face, the region where the de-β layer formed on the flank face, and the thickness thereof are set. The polishing surface is made at a position of about 1 mm from the tip of the cutting edge with a diamond grindstone so that the surface is perpendicular to the ridge line of the cutting edge, and KOHaq. Electrolytic etching of about 3V and 20 seconds was performed with an alkaline solution such as the above, and a region in which almost no etching was observed was determined as a β-free layer and measured with an optical microscope.
Each value is shown in Table 8.

比較のため、前記のプレス成形により得た圧粉体を、表4に示す焼結条件で焼結し、比較例の超硬合金素材1〜10を製造し、さらに、それぞれのインサート形状およびホーニング量に加工する際に、表5に示される条件ですくい面および逃げ面の研削を行うことにより、比較例の超硬合金製工具基体1〜10を製造した。
さらに、上記比較例の超硬合金製工具基体1〜10について、それぞれの切れ刃稜線部近傍、すくい面、逃げ面に形成された脱β層の存在する領域およびその厚さを、切刃稜線に対して直角な面となるように、ダイヤモンド砥石にて、研磨面を切刃先端から約1mmの位置に作製し、その研磨面に対してKOHaq.等のアルカリ液で3V,20sec程度の電解エッチングを行い、エッチングがほとんど見られない領域を脱β層と判断し、光学顕微鏡にて測定した。
それぞれの値を表6に示す。
For comparison, the green compacts obtained by the above press molding were sintered under the sintering conditions shown in Table 4 to produce the cemented carbide materials 1 to 10 of the comparative examples. When machining into a quantity, grinding of the rake face and flank face under the conditions shown in Table 5 produced the cemented carbide tool bases 1 to 10 of the comparative example.
Further, for the cemented carbide tool bases 1 to 10 of the comparative example, the vicinity of each cutting edge ridge line portion, the rake face, the region where the de-β layer formed on the flank face and the thickness thereof are expressed as follows. A polishing surface is prepared at a position about 1 mm from the tip of the cutting edge with a diamond grindstone so that the surface is perpendicular to the surface of the cutting edge, and KOHaq. Electrolytic etching of about 3V and 20 seconds was performed with an alkaline solution such as the above, and a region in which almost no etching was observed was determined as a β-free layer and measured with an optical microscope.
The respective values are shown in Table 6.

さらに、上記比較例の超硬合金製工具基体1〜10の表面に硬質被覆層を化学蒸着で形成し、表7に示す比較例の表面被覆超硬合金製切削インサート1〜10以下、比較例1〜10というを製造した。   Further, a hard coating layer is formed on the surfaces of the cemented carbide tool bases 1 to 10 of the comparative example by chemical vapor deposition, and the surface-coated cemented carbide cutting inserts 1 to 10 or less of the comparative examples shown in Table 7 are comparative examples. 1-10 were produced.

比較例1〜10の表面被覆超硬合金製切削インサートについても、同様に、それぞれの切れ刃稜線部近傍、すくい面、逃げ面に形成された脱β層の存在する領域およびその厚さを、切刃稜線に対して直角な面となるように、ダイヤモンド砥石にて、研磨面を切刃先端から約1mmの位置に作製し、その研磨面に対してKOHaq.等のアルカリ液で3V,20sec程度の電解エッチングを行い、エッチングがほとんど見られない領域を脱β層と判断し、光学顕微鏡にて測定した。
それぞれの値を表8に示す。
For the surface-coated cemented carbide cutting inserts of Comparative Examples 1 to 10, similarly, the vicinity of each cutting edge ridge line portion, the rake face, the region where the de-β layer formed on the flank face, and the thickness thereof, A polished surface is produced at a position of about 1 mm from the tip of the cutting edge with a diamond grindstone so as to be a surface perpendicular to the cutting edge ridge line, and KOHaq. Electrolytic etching of about 3V and 20 seconds was performed with an alkaline solution such as the above, and a region in which almost no etching was observed was determined as a β-free layer and measured with an optical microscope.
Each value is shown in Table 8.

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

Figure 2011251368
Figure 2011251368

つぎに、上記の実施例1〜10および比較例1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM415の4本溝入り丸棒(直径:200mm)、
切削速度: 420 m/min.、
切り込み: 1.5 mm、
送り: 0.25 mm/rev.、
切削時間: 8 分、
の条件(以下、切削条件1という)での合金鋼の乾式高速断続切削加工試験、および、
同じく、上記の実施例1〜10および比較例1〜10について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・FCD600の4本溝入り丸棒(直径:200mm)、
切削速度: 380 m/min.、
切り込み: 2 mm、
送り: 0.35 mm/rev.、
切削時間: 8 分、
の条件(以下、切削条件2という)でダクタイル鋳鉄の乾式高速断続切削加工試験を行い、
いずれの切削試験でも切刃の逃げ面摩耗幅を測定した。
これらの切削加工試験結果を表9に示した。
Next, for the above Examples 1-10 and Comparative Examples 1-10, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / SCM415 4-slotted round bar (diameter: 200 mm),
Cutting speed: 420 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 8 minutes,
Dry high-speed intermittent cutting test of alloy steel under the following conditions (hereinafter referred to as cutting condition 1), and
Similarly, for the above Examples 1 to 10 and Comparative Examples 1 to 10, both are screwed to the tip of the tool steel tool with a fixing jig,
Work material: JIS / FCD600 round bar with four grooves (diameter: 200mm),
Cutting speed: 380 m / min. ,
Incision: 2 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 8 minutes,
We conducted a dry high-speed intermittent cutting test of ductile cast iron under the following conditions (hereinafter referred to as cutting condition 2),
In any cutting test, the flank wear width of the cutting edge was measured.
These cutting test results are shown in Table 9.

Figure 2011251368
Figure 2011251368

表6、8、9の結果からみて、本発明の表面被覆超硬合金製切削工具によれば、切れ刃稜線部近傍の特定領域のみに脱β層からなる強靭層が形成されていることによって、高熱発生を伴うとともに、切刃部に対して衝撃的な負荷が繰り返し作用する鋼や鋳鉄等の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を発揮すると同時に、すくい面摩耗の発達が抑制され、その結果として、長期間の使用にわたってすぐれた切削性能を維持することができるのに対して、比較例の表面被覆超硬合金製切削工具では、チッピングの発生あるいはすくい面摩耗によって、短時間で工具い寿命に至ることは明らかである。   According to the results of Tables 6, 8, and 9, according to the surface-coated cemented carbide cutting tool of the present invention, the tough layer composed of the β-free layer is formed only in the specific region near the cutting edge ridge line portion. In the high-speed intermittent cutting of steel and cast iron that is accompanied by high heat generation and impact load on the cutting edge part repeatedly, the hard coating layer exhibits excellent chipping resistance and at the same time wears the rake face. Development is suppressed, and as a result, excellent cutting performance can be maintained over a long period of use. On the other hand, with the surface-coated cemented carbide cutting tool of the comparative example, chipping or rake face wear is caused. It is clear that tool life is reached in a short time.

本発明の表面被覆超硬合金製切削工具は、高速断続切削加工に用いられた場合、長期間の使用にわたってすぐれた切削性能を維持することができるばかりでなく、工具寿命の延命化も図られ、また、耐チッピング性および耐摩耗性が求められる各種被削材の切削工具として用いることが可能であることから、切削加工の省エネ化、低コスト化に十分満足に対応することができるものである。   When the surface-coated cemented carbide cutting tool of the present invention is used for high-speed interrupted cutting, not only can excellent cutting performance be maintained over a long period of use, but also the life of the tool can be extended. In addition, since it can be used as a cutting tool for various work materials that require chipping resistance and wear resistance, it can sufficiently satisfy energy saving and cost reduction of cutting work. is there.

Claims (1)

炭化タングステン基超硬合金を工具基体とし、この上に硬質被覆層を被覆した表面被覆超硬合金製切削工具において、
超硬合金の逃げ面とすくい面との交線からなる切れ刃稜線を基準として、工具基体内部側であって、すくい面の法線方向に5〜50μmの深さ領域、かつ、逃げ面の法線方向に30〜200μmの深さ領域に、上記切れ刃稜線に沿って脱β層からなる強靭層が形成されており、一方、上記強靭層以外の領域では、超硬合金は、実質的に均一組成であることを特徴とする表面被覆超硬合金製切削工具。
In a surface-coated cemented carbide cutting tool in which a tungsten carbide based cemented carbide is used as a tool base and a hard coating layer is coated thereon,
With reference to the cutting edge ridge line formed by the intersection of the flank and rake face of the cemented carbide, a depth region of 5 to 50 μm in the normal direction of the rake face inside the tool base, and the flank face A tough layer composed of a de-β layer is formed along the cutting edge ridge line in a depth region of 30 to 200 μm in the normal direction. On the other hand, in regions other than the tough layer, the cemented carbide is substantially A surface-coated cemented carbide cutting tool characterized by having a uniform composition.
JP2010126494A 2010-06-02 2010-06-02 Surface-coated cutting tool made of cemented carbide Withdrawn JP2011251368A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010126494A JP2011251368A (en) 2010-06-02 2010-06-02 Surface-coated cutting tool made of cemented carbide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010126494A JP2011251368A (en) 2010-06-02 2010-06-02 Surface-coated cutting tool made of cemented carbide

Publications (1)

Publication Number Publication Date
JP2011251368A true JP2011251368A (en) 2011-12-15

Family

ID=45415737

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010126494A Withdrawn JP2011251368A (en) 2010-06-02 2010-06-02 Surface-coated cutting tool made of cemented carbide

Country Status (1)

Country Link
JP (1) JP2011251368A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same
WO2023189127A1 (en) * 2022-03-28 2023-10-05 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same
WO2024069383A1 (en) * 2022-09-28 2024-04-04 武汉苏泊尔炊具有限公司 Knife and method for manufacturing knife

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019162702A (en) * 2018-03-20 2019-09-26 京セラ株式会社 Tool and cutting tool comprising the same
WO2023189127A1 (en) * 2022-03-28 2023-10-05 京セラ株式会社 Cemented carbide, and coated tool and cutting tool using same
WO2024069383A1 (en) * 2022-09-28 2024-04-04 武汉苏泊尔炊具有限公司 Knife and method for manufacturing knife

Similar Documents

Publication Publication Date Title
JP5866650B2 (en) Surface coated cutting tool
JP4739235B2 (en) Surface coated cutting tool
US20090214306A1 (en) Coated Cutting Tool Insert
US6406224B1 (en) Coated milling insert
EP1614773A2 (en) Insert for metal cutting
JP2011251368A (en) Surface-coated cutting tool made of cemented carbide
JP2017164859A (en) Surface coated cutting tool whose hard coating layer exerts excellent chipping resistance and peeling resistance
US20080224344A1 (en) Method of making a cemented carbide body
JP2008137129A (en) Surface coated cutting tool
KR20120055026A (en) Cemented carbide having good wear resistance and chipping resistance
JP5561607B2 (en) Surface-coated WC-based cemented carbide insert
JP5517100B2 (en) Surface-coated WC-based cemented carbide insert
JP2008149390A (en) Surface coated cutting tool
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2011195846A (en) Surface-coated cutting tool made from wc-base cemented carbide
JP5613888B2 (en) Surface-coated WC-based cemented carbide insert
JP2009090398A (en) Diamond-coated cutting tool having excellent lubricity and machining accuracy
JP2007118155A (en) Surface-coated cermet throwaway cutting tip having hard coating layer exhibiting excellent chipping resistance in high speed cutting
JP2008137130A (en) Surface coated cutting tool
JP4888762B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP4888759B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2006326690A (en) Broach made of coated cemented carbide
JP4888688B2 (en) Surface polishing method for cutting throwaway tip made of surface-covered cermet whose hard coating layer exhibits excellent chipping resistance in high-speed cutting
JP2005288639A (en) Machining tool made of surface-covered thermet with its hard covering layer exerting excellent anti-chipping performance in high-speed intermittent machining of hard-to-machine material
JP5561522B2 (en) Surface-coated WC-based cemented carbide insert

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806