JP2007038355A - Small-diameter member and manufacturing method of small-diameter member - Google Patents

Small-diameter member and manufacturing method of small-diameter member Download PDF

Info

Publication number
JP2007038355A
JP2007038355A JP2005226098A JP2005226098A JP2007038355A JP 2007038355 A JP2007038355 A JP 2007038355A JP 2005226098 A JP2005226098 A JP 2005226098A JP 2005226098 A JP2005226098 A JP 2005226098A JP 2007038355 A JP2007038355 A JP 2007038355A
Authority
JP
Japan
Prior art keywords
small
hard material
diameter member
coated
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005226098A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Masamichi Sano
稚通 左野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005226098A priority Critical patent/JP2007038355A/en
Publication of JP2007038355A publication Critical patent/JP2007038355A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To maintain adhesion and to improve wear resistance of a small-diameter member by avoiding defect and damage of a coating hard material at an edge due to plasma generated in a formation process of the coating hard material. <P>SOLUTION: The small-diameter member is formed of a bar-like body, wherein the tip of the bar-like body is provided with the coated hard material, and the coating hard material has a blade part. The defect and damage of the coated hard material at the edge part due to plasma generated in the formation process of the coated hard material are avoided to maintain the sharp edge of the blade part. The tip of the small-diameter member is formed of the coated hard material, and the small-diameter member with the blade part is provided. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本願発明は、小径部材及びその製造方法に関する。   The present invention relates to a small diameter member and a manufacturing method thereof.

小径部材には、部材本体に切れ刃稜線、刃溝等を加工した後、硬質皮膜を被覆する例が特許文献1に、更に、被覆後に皮膜を研削等で一部除去する例が特許文献2に記載されている。   An example in which a small-diameter member is processed with a cutting edge ridge line, a blade groove, and the like on a member main body and then coated with a hard film is disclosed in Patent Document 1, and further, an example in which the film is partially removed by grinding or the like after coating. It is described in.

特開2004−82301号公報Japanese Patent Laid-Open No. 2004-82301 特開平9−11050号公報JP-A-9-11050

本願発明は、被覆硬質材の形成プロセスで発生するプラズマによるエッジ部での被覆硬質材の欠陥やダメージを回避し、シャープエッジの刃部を維持し、小径部材の耐摩耗性を改善することである。本願発明では、最終形状の工具に被覆硬質材を形成するよりも、むしろ被覆硬質材を形成した後に、刃部を形成した方が有効であり、被覆前に切れ刃稜線、刃溝を設けると、それらの形状、特に凹凸形状に倣って被覆硬質材が成長するため、被覆硬質材の構造欠陥を生じてしまい、特に、エッジ部では被覆硬質材の成長速度差に起因する構造欠陥を引き起こすことが多く、工具として用いたときに被覆硬質材の剥離・脱落の原因となっている。   The present invention avoids defects and damage of the coated hard material at the edge due to the plasma generated in the process of forming the coated hard material, maintains the sharp edge blade, and improves the wear resistance of the small diameter member. is there. In the present invention, rather than forming the coated hard material on the final shaped tool, it is more effective to form the blade portion after forming the coated hard material, and when the cutting edge ridge and the groove are provided before coating Because the hard coated material grows according to their shape, especially the uneven shape, structural defects of the hard coated material occur, and in particular, the edge causes structural defects due to the growth rate difference of the hard coated material. In many cases, when used as a tool, it causes peeling and dropping of the coated hard material.

小径部材は棒状体からなり、該棒状体の先端部に被覆硬質部材を有し、該被覆硬質部材は刃部を有していることを特徴とする小径部材である。上記構成を採用することによって、被覆硬質材の形成プロセスで発生するプラズマによるエッジ部での被覆硬質材の欠陥やダメージを回避し、シャープエッジの刃部を維持できる。そして小径部材の先端部が被覆硬質材から構成され、これで刃部が形成された小径部材を提供することができる。本明細書における棒状とは、軸方向に若干のテーパを含む円筒状をした形状、楕円筒状をした形状、あるいは多角柱状をした形状であることを示している。また、被覆硬質材とは、物理蒸着法や化学蒸着法によって形成された硬質材料であることを示す。   The small-diameter member is a small-diameter member made of a rod-shaped body, having a coated hard member at the tip of the rod-shaped body, and the coated hard member having a blade portion. By adopting the above-described configuration, it is possible to avoid the defects and damage of the coated hard material at the edge portion due to the plasma generated in the process of forming the coated hard material, and to maintain the sharp edge blade portion. And the front-end | tip part of a small diameter member is comprised from the covering hard material, and the small diameter member by which the blade part was formed by this can be provided. The rod shape in the present specification indicates a cylindrical shape including a slight taper in the axial direction, an elliptical cylindrical shape, or a polygonal column shape. Further, the coated hard material indicates a hard material formed by physical vapor deposition or chemical vapor deposition.

本願発明によって、小径部材における被覆硬質材の形成プロセスで発生するプラズマによるエッジ部での被覆硬質材の欠陥やダメージを回避し、シャープエッジの刃部を維持し、小径部材の耐摩耗性を改善することができた。また、そのその製造方法を提供することができた。   The invention of the present application avoids defects and damage of the coated hard material at the edge due to the plasma generated in the process of forming the coated hard material on the small diameter member, maintains the sharp edge blade, and improves the wear resistance of the small diameter member We were able to. Moreover, the manufacturing method was able to be provided.

本願発明の小径部材の形態を図1、図2に示す。図1は小径部材において、棒状体1の小径側の先端部に被覆硬質材2を有している。該棒状体は大径部3と小径部4からなる。図2は該小径部を拡大した図であり、小径部の先端部に被覆硬質材を有する。ここで、該先端部における被覆硬質材は物理蒸着法や化学蒸着法によって被覆形成された硬質材料であるために、界面部での高い密着強度が得られる。棒状体からなる該小径部は被覆後に機械加工を施すことから、小径部の左側面図は例えば図3から図7に示すような形状をとることが可能である。小径部が図3の様に円筒状からなる円形である場合はその直径をDとし、図4の様に楕円筒状からなる楕円形である場合はその短径をDとし、また図5から図7の様に多角柱状からなる多角形である場合は、その内接円の直径をDとする。このとき、特に本発明の小径部材の小径部が図4から図7の様な棒状体からなることによって、棒状体のねじれ剛性を向上することができる。これは、図3の円筒状である場合よりも軸直角方向の断面積を広くすることができるからである。ねじれ剛性の改善は、例えば、小径部材を回転工具として使用した場合に、加工精度の向上に有効である。刃部は図3から図7の様に、刃部の加工後の形状によって切削工具、プレス金型等の用途にも適用可能である。
また、棒状体の小径部本体の径であるA値は、600μm以下であることが好ましい。これは、A値が600μm以下の場合に耐摩耗性などの小径部材としての特性が十分に発揮されるからである。一方、D値が5μm未満になると、被覆硬質材を形成する前工程におけるプラズマクリーニング工程におけるイオンボンバード処理によって、部材先端の小径部の変形、或いは消滅の可能性があるため、5μm以上が好ましい。該小径部に被覆硬質材を形成した後、該被覆硬質材に機械加工等を施すことにより適切な形状の刃部を形成する。これにより被覆硬質材の形成プロセスで発生するプラズマによるエッジ部での被覆硬質材の欠陥やダメージを取り除き、表面の凹凸が極めて少なく、シャープエッジの刃部を有する小径部材が得られる。
The form of the small diameter member of the present invention is shown in FIGS. FIG. 1 shows a small-diameter member having a coated hard material 2 at the tip of the rod-like body 1 on the small-diameter side. The rod-shaped body includes a large diameter portion 3 and a small diameter portion 4. FIG. 2 is an enlarged view of the small-diameter portion, and a coating hard material is provided at the tip of the small-diameter portion. Here, since the coated hard material at the tip portion is a hard material coated and formed by physical vapor deposition or chemical vapor deposition, high adhesion strength at the interface can be obtained. Since the small-diameter portion made of a rod-like body is machined after coating, the left side view of the small-diameter portion can take a shape as shown in FIGS. 3 to 7, for example. When the small-diameter portion is a circular shape having a cylindrical shape as shown in FIG. 3, the diameter is D, and when the small-diameter portion is an elliptic shape having an elliptical cylindrical shape as shown in FIG. If the polygon is a polygonal column as shown in FIG. At this time, in particular, the torsional rigidity of the rod-shaped body can be improved by forming the small-diameter portion of the small-diameter member of the present invention from the rod-shaped body as shown in FIGS. This is because the cross-sectional area in the direction perpendicular to the axis can be made wider than in the case of the cylindrical shape in FIG. The improvement in torsional rigidity is effective in improving the machining accuracy when, for example, a small diameter member is used as a rotary tool. As shown in FIGS. 3 to 7, the blade portion can be applied to applications such as a cutting tool and a press die depending on the shape of the blade portion after processing.
Moreover, it is preferable that A value which is a diameter of the small diameter part main body of a rod-shaped body is 600 micrometers or less. This is because the characteristics as a small diameter member such as wear resistance are sufficiently exhibited when the A value is 600 μm or less. On the other hand, when the D value is less than 5 μm, there is a possibility that the small-diameter portion at the tip of the member may be deformed or disappeared by the ion bombardment process in the plasma cleaning process in the previous process for forming the coated hard material. After forming the coated hard material on the small diameter portion, the coated hard material is subjected to machining or the like to form a blade portion having an appropriate shape. As a result, defects and damage of the coated hard material at the edge due to the plasma generated in the process of forming the coated hard material are eliminated, and a small-diameter member having a sharp edge blade with very little surface irregularities.

本発明での小径部材の刃部は、外周逃げ面とすくい面が交差するエッジ部に切れ刃稜線を形成する。本発明の小径部材は、切れ刃部の少なくとも1部が被覆硬質材で構成されることによって、逃げ面では耐摩耗性の改善効果が得られ、すくい面では被加工物の溶着、凝着等の低減効果が得られる。従って、加工後の被加工物面の精度を向上させることができる。本発明における小径部材の製造方法は、該小径部の先端に被覆硬質材を形成する工程と、機械的加工手段によって該被覆硬質材に刃部を形成する工程とからなることを特徴とする小径部材の製造方法である。被覆硬質材の欠陥を生ぜず、硬質材本来の耐摩耗性、耐熱性が発揮される。更に、切れ刃等の形状もシャープエッジで形成することができ、加工性能も改善することができる。   The blade portion of the small diameter member in the present invention forms a cutting edge ridge line at an edge portion where the outer peripheral flank and the rake face intersect. In the small diameter member of the present invention, at least one part of the cutting edge portion is made of a coated hard material, so that the effect of improving the wear resistance is obtained on the flank surface, and the work piece is welded or adhered on the rake surface. Can be reduced. Therefore, the accuracy of the workpiece surface after processing can be improved. The method for producing a small-diameter member in the present invention comprises a step of forming a coated hard material at the tip of the small-diameter portion and a step of forming a blade portion on the coated hard material by mechanical processing means. It is a manufacturing method of a member. It does not cause defects in the coated hard material, and demonstrates the original wear resistance and heat resistance of the hard material. Furthermore, the shape of a cutting edge or the like can be formed with a sharp edge, and the processing performance can be improved.

本願発明の被覆硬質材の少なくとも1層は、硬質炭素材であることが好ましい。被覆硬質材が硬質炭素材である場合、該硬質炭素材の有する固体潤滑材としての特性が被加工物との間に潤滑層を形成し、部材本体の耐摩耗性の改善に寄与するからである。更に、刃部を加工する際の加工性に優れ、シャープエッジの刃部を形成することができる。硬質炭素材は、水素含有非晶質硬質炭素材、水素非含有非晶質硬質炭素材、水素及び金属含有非晶質硬質炭素材、SP3結合の割合が30%から90%の硬質炭素材、実質的にSP3結合のみからなるダイヤモンド材等を含む。一方、硬質炭素材は硬質炭素材を主体とするものであってもよい。即ち、上記の硬質炭素材からなり、全体の30原子%未満を他の元素で置換されたものであっても良い。ここで他の元素としては、Si、W、Cr、Ti、Al、Mo、F、Cl、O、S等が挙げられる。これらの元素との置換によって、耐チッピング性が向上する効果が得られ、好ましい。また、硬質炭素材と棒状体との密着性を維持する目的で、金属層等の密着強化層を組合せることもできる。更に、耐摩耗性を強化し、補強するために、Ti、Cr、Al、Si、Nb、Zr、Ta、V、Mo、W、Hf、Fe、より選択される1種以上の窒化物、炭化物、硼化物、酸化物、硫化物から選択される1種以上の固溶体又は混合物からなる耐摩耗性層を組合せることもできる。例えば(TiSi)N、(AlCrSi)N、TiN、CrN、(CrSi)N、(AlCr)N、(TiAl)N、SiC、TaN、WC、BN、AlN、AlO、SiO、MoS、HfN等が挙げられる。窒化硼素、或いは窒化硼素を主体とした被覆硬質材であっても良い。   At least one layer of the coated hard material of the present invention is preferably a hard carbon material. When the hard coating material is a hard carbon material, the properties of the solid carbon material as a solid lubricant form a lubrication layer with the workpiece and contribute to improving the wear resistance of the member body. is there. Furthermore, it is excellent in workability at the time of processing the blade portion, and a sharp edge blade portion can be formed. The hard carbon material includes a hydrogen-containing amorphous hard carbon material, a hydrogen-free amorphous hard carbon material, a hydrogen and metal-containing amorphous hard carbon material, a hard carbon material having a SP3 bond ratio of 30% to 90%, The diamond material etc. which consist only of SP3 bond substantially are included. On the other hand, the hard carbon material may be mainly composed of a hard carbon material. That is, it may be made of the above hard carbon material and less than 30 atomic% of the whole is substituted with other elements. Examples of other elements include Si, W, Cr, Ti, Al, Mo, F, Cl, O, and S. Substitution with these elements is preferable because an effect of improving chipping resistance is obtained. Further, in order to maintain the adhesion between the hard carbon material and the rod-shaped body, an adhesion reinforcing layer such as a metal layer can be combined. Furthermore, in order to reinforce and reinforce the wear resistance, one or more nitrides and carbides selected from Ti, Cr, Al, Si, Nb, Zr, Ta, V, Mo, W, Hf, and Fe are selected. It is also possible to combine a wear-resistant layer comprising one or more solid solutions or mixtures selected from borides, oxides and sulfides. Examples include (TiSi) N, (AlCrSi) N, TiN, CrN, (CrSi) N, (AlCr) N, (TiAl) N, SiC, TaN, WC, BN, AlN, AlO, SiO, MoS, and HfN. It is done. Boron nitride or a hard coating material mainly composed of boron nitride may be used.

部材本体は、Fe基合金、Ni基合金、Co基合金、Ti基合金、超硬合金、サーメット、窒化硼素焼結体の何れかであることが好ましい。被覆硬質材との組合せを適切に選択することによって、耐摩耗性と耐折損性のバランスが好適である。部材本体は、Fe基合金としては炭素鋼、ステンレス鋼、高速度鋼が挙げられる。超硬合金のCo含有量としては、3重量パーセントから20重量パーセントの範囲で各種用途に応じて選択することができる。用途は回転工具に適用し、例えばエンドミル、ドリル、リーマで優れた耐摩耗効果を発揮することができる。以下、本発明を実施例に基づいて説明する。   The member body is preferably any one of an Fe-based alloy, Ni-based alloy, Co-based alloy, Ti-based alloy, cemented carbide, cermet, and boron nitride sintered body. By appropriately selecting the combination with the hard coating material, a balance between wear resistance and breakage resistance is suitable. For the member main body, examples of the Fe-based alloy include carbon steel, stainless steel, and high-speed steel. The Co content of the cemented carbide can be selected in the range of 3 weight percent to 20 weight percent according to various applications. The application can be applied to a rotary tool, and an excellent wear resistance effect can be exhibited by, for example, an end mill, a drill, and a reamer. Hereinafter, the present invention will be described based on examples.

棒状体からなる部材本体は、Co含有量が7重量%、WC平均粒径が0.3μm〜0.6μmの超硬合金を使用した。棒状体は大径部と小径部とを備えている。最も径の大きい大径部はシャンク部となり、最も径の小さい小径部が刃部を有する。実施例は、シャンク直径を4mmとした。被覆硬質材をアークイオンプレーティング(以下、AIPと記す。)法、スパッタリング(以下、SPと記す。)法、あるいは化学蒸着(以下、CVDと記す。)法により小径部に被覆した。例えばAIP法でTiターゲットを用いた場合、小径部の表面にTiN材を被覆した。その後、小径部の直径が目的値となるように研削加工を実施した。図8より、本発明例5の模式図で、逃げ面6とすくい面7が交差する切れ刃稜線となるエッジ部8を形成し、心厚がB、刃部の直径がDの2枚刃エンドミルに近似の工具形状を作成した。表1に小径部材について本発明例1から35を示した。また比較例も併記した。比較例は予め超硬合金の棒状体に切れ刃稜線と刃溝を形成した2枚刃エンドミル形状に研削加工し、その後硬質皮膜を約1μm被覆したものを用いた。   The member main body made of a rod-shaped body was made of cemented carbide having a Co content of 7% by weight and a WC average particle size of 0.3 μm to 0.6 μm. The rod-shaped body has a large diameter portion and a small diameter portion. The large diameter part with the largest diameter becomes the shank part, and the small diameter part with the smallest diameter has the blade part. In the example, the shank diameter was 4 mm. The coated hard material was coated on the small diameter portion by an arc ion plating (hereinafter referred to as AIP) method, a sputtering (hereinafter referred to as SP) method, or a chemical vapor deposition (hereinafter referred to as CVD) method. For example, when a Ti target is used in the AIP method, the surface of the small diameter portion is coated with a TiN material. Thereafter, grinding was carried out so that the diameter of the small diameter portion became a target value. FIG. 8 is a schematic diagram of Example 5 of the present invention, in which an edge portion 8 is formed as a cutting edge ridge line where the flank face 6 and the rake face 7 intersect, and a two-blade blade having a core thickness B and a blade diameter D An approximate tool shape was created for the end mill. Table 1 shows Invention Examples 1 to 35 for small diameter members. Comparative examples are also shown. In the comparative example, a cemented carbide rod-shaped body was previously ground into a two-blade end mill shape in which a cutting edge ridge and a groove were formed, and then a hard film was coated with about 1 μm.

Figure 2007038355
Figure 2007038355

小径部材の断面積の測定には、刃部の軸直角断面を鏡面加工し、走査型電子顕微鏡(以下、SEMと言う。)により実測した。測定誤差は、機械的に軸直角断面切断し鏡面加工していること、さらに表面の凹凸等による測定誤差を考慮すると、少なくとも±2μmの測定誤差が生じると考えられる。表1内でAIP+SPは、AIP法とSP法の同時稼動を示す。CVDは熱CVD示し、PCVDはプラズマCVDを示し、EBは電子ビームを用いたイオンプレーティング法を示す。超硬合金は、特に断りのない限り前述の組成を有する超硬合金である。切削評価には下記に示す切削条件を用いた。条件は被削材にアルミ合金ダイカストであるADC12材を使用した。切削寿命の評価は、同一試料で3本加工し、切削長さの平均値を折損寿命として示した。
(切削条件)
工具:2枚刃エンドミル
切削方法:側面仕上げ切削加工
切り込み:軸方向、5μm、径方向、1μm
切削速度:6m/min
送り:1μm/刃
切削油:なし
To measure the cross-sectional area of the small-diameter member, the cross section perpendicular to the axis of the blade portion was mirror-finished and measured with a scanning electron microscope (hereinafter referred to as SEM). The measurement error is considered to be a measurement error of at least ± 2 μm, taking into account the fact that the surface is mechanically cut and mirror-finished and the measurement error due to surface irregularities is taken into account. In Table 1, AIP + SP indicates the simultaneous operation of the AIP method and the SP method. CVD indicates thermal CVD, PCVD indicates plasma CVD, and EB indicates an ion plating method using an electron beam. A cemented carbide is a cemented carbide having the above-described composition unless otherwise specified. The cutting conditions shown below were used for the cutting evaluation. The condition was that ADC12 material, which is an aluminum alloy die casting, was used as a work material. For the evaluation of the cutting life, three pieces were processed with the same sample, and the average value of the cutting length was shown as the broken life.
(Cutting conditions)
Tool: Two-flute end mill Cutting method: Side finish cutting Cutting: Axial direction, 5 μm, radial direction, 1 μm
Cutting speed: 6m / min
Feed: 1 μm / blade Cutting oil: None

表1に示す様に本発明例1から26は、比較例27、28に対して安定した折損寿命が得られ、本発明の効果が確認された。本発明例1から16、及び19から26は、同様な超硬合金の棒状体上に、異なる種類の被覆硬質材を用いた場合を示す。
本発明例1から3は被覆硬質材が硬質炭素材、本発明例4はダイヤモンド材の場合を示す。ここでは刃部に被削材の溶着現象が見られず、また潤滑特性の効果も現れ、優れた折損寿命が得られた。
また表1には、棒状体の軸直角断面の形状を併記した。形状については、本発明例5と6、本発明例7と8、本発明例9と10、本発明例25と26、の組合せを比較することによって、その効果を確認することができる。即ち、小径部における棒状体の断面形状が、円形より多角形状や楕円形状やある場合にねじれ剛性が高くなり、より優れた折損寿命が得られた。本発明例16及び本発明例19から21は、被覆硬質材からなる刃部の軸直角断面積であるS値が異なる場合を示す。S値のより大きい方が工具寿命は長く、好ましい結果であった。一方、比較例27、28は、被覆硬質材の剥離や、刃部に早期欠損が発生し、異常摩耗から工具の折損に至る結果となった。これは、予め刃部が形成されていた基体に被覆したことにより、凹凸面や切れ刃稜線部に被覆硬質材の構造欠陥が生じてしまったことが原因と考えられる。
As shown in Table 1, in Examples 1 to 26 of the present invention, a stable breakage life was obtained compared to Comparative Examples 27 and 28, and the effects of the present invention were confirmed. Invention Examples 1 to 16 and 19 to 26 show cases in which different types of coated hard materials are used on the same cemented carbide rod-like body.
Invention Examples 1 to 3 show the case where the hard coating material is a hard carbon material, and Invention Example 4 is a diamond material. Here, the welding phenomenon of the work material was not seen at the blade part, and the effect of the lubrication characteristics also appeared, and an excellent breakage life was obtained.
Table 1 also shows the shape of the rod-shaped cross section perpendicular to the axis. As for the shape, the effects can be confirmed by comparing the combinations of Invention Examples 5 and 6, Invention Examples 7 and 8, Invention Examples 9 and 10, and Invention Examples 25 and 26. That is, when the cross-sectional shape of the rod-shaped body in the small-diameter portion is a polygonal shape or an elliptical shape rather than a circular shape, the torsional rigidity is increased, and a better breakage life is obtained. Invention Example 16 and Invention Examples 19 to 21 show cases where the S values, which are cross-sectional areas perpendicular to the axis of the blade portion made of the coated hard material, are different. A tool with a larger S value has a longer tool life, which is a favorable result. On the other hand, in Comparative Examples 27 and 28, the coated hard material was peeled off or the blade part was damaged early, resulting in a tool breakage from abnormal wear. This is considered to be because a structural defect of the coated hard material was generated on the uneven surface or the cutting edge ridge line portion by covering the base on which the blade portion was previously formed.

図1は、被覆小径部材の正面図を示す。FIG. 1 shows a front view of a coated small diameter member. 図2は、図1の小径部の拡大図を示す。FIG. 2 shows an enlarged view of the small diameter portion of FIG. 図3は、図2の小径部の左側面図を示す。FIG. 3 shows a left side view of the small diameter portion of FIG. 図4は、刃部を形成した後の左側面図を示す。FIG. 4 shows a left side view after forming the blade portion. 図5は、刃部を形成した後の左側面図を示す。FIG. 5 shows a left side view after forming the blade portion. 図6は、刃部を形成した後の左側面図を示す。FIG. 6 shows a left side view after forming the blade portion. 図7は、刃部を形成した後の左側面図を示す。FIG. 7 shows a left side view after forming the blade portion. 図8は、本発明例5の小径部の断面模式図を示す。FIG. 8 shows a schematic cross-sectional view of the small diameter portion of Example 5 of the present invention.

符号の説明Explanation of symbols

1:棒状体
2:被覆硬質材
3:大径部
4:小径部
5:刃部
6:逃げ面
7:すくい面
8:切れ刃稜線のエッジ部
A:部材本体の直径
B:心厚
D:刃部の直径
S:刃部の軸直角方向の断面積
1: Rod-shaped body 2: Covered hard material 3: Large diameter part 4: Small diameter part 5: Blade part 6: Flank 7: Rake face 8: Edge part of cutting edge ridge line A: Diameter of member body B: Core thickness D: Blade diameter S: Cross-sectional area perpendicular to the axis of the blade

Claims (4)

小径部材は棒状体からなり、該棒状体の先端部に被覆硬質材を有し、該被覆硬質材は刃部を有していることを特徴とする小径部材。 A small-diameter member comprising a rod-shaped body, having a coated hard material at a tip portion of the rod-shaped body, and the coated hard material having a blade portion. 請求項1に記載の小径部材において、該刃部は切れ刃稜線、刃溝を有することを特徴とする小径部材。 The small diameter member according to claim 1, wherein the blade portion has a cutting edge ridge line and a blade groove. 請求項1又は2に記載の小径部材において、該被覆硬質材の少なくとも1層は、硬質炭素材であることを特徴とする小径部材。 The small diameter member according to claim 1 or 2, wherein at least one layer of the hard coating material is a hard carbon material. 請求項1に記載の小径部材の製造方法において、該棒状体の先端に被覆硬質材を形成する工程と、機械的加工手段によって該被覆硬質材に刃部を形成する工程とからなることを特徴とする小径部材の製造方法。
The method for producing a small-diameter member according to claim 1, comprising a step of forming a coated hard material at the tip of the rod-shaped body and a step of forming a blade portion on the coated hard material by a mechanical processing means. A manufacturing method of a small diameter member.
JP2005226098A 2005-08-04 2005-08-04 Small-diameter member and manufacturing method of small-diameter member Pending JP2007038355A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005226098A JP2007038355A (en) 2005-08-04 2005-08-04 Small-diameter member and manufacturing method of small-diameter member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226098A JP2007038355A (en) 2005-08-04 2005-08-04 Small-diameter member and manufacturing method of small-diameter member

Publications (1)

Publication Number Publication Date
JP2007038355A true JP2007038355A (en) 2007-02-15

Family

ID=37796800

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226098A Pending JP2007038355A (en) 2005-08-04 2005-08-04 Small-diameter member and manufacturing method of small-diameter member

Country Status (1)

Country Link
JP (1) JP2007038355A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148398A (en) * 2010-12-26 2012-08-09 Mitsubishi Materials Corp Carbon film-coated end mill and manufacturing method therefor
WO2014129517A1 (en) * 2013-02-19 2014-08-28 株式会社ソディック Rotating tool

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012148398A (en) * 2010-12-26 2012-08-09 Mitsubishi Materials Corp Carbon film-coated end mill and manufacturing method therefor
WO2014129517A1 (en) * 2013-02-19 2014-08-28 株式会社ソディック Rotating tool
JP2014159050A (en) * 2013-02-19 2014-09-04 Sodick Co Ltd Cutting tool

Similar Documents

Publication Publication Date Title
JP4874911B2 (en) Coating tool with long useful life
JP4738974B2 (en) Surface coated cutting tool
JP5038303B2 (en) Surface coating tool and method for machining workpiece
JP4522285B2 (en) Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating
JPWO2006070730A1 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP6421934B2 (en) Surface coated cutting tool with excellent abnormal damage resistance and wear resistance
WO2019035220A1 (en) Coated cutting tool
JP4991244B2 (en) Surface coated cutting tool
JP5315526B2 (en) Surface coated cutting tool
JP5315527B2 (en) Surface coated cutting tool
JP5835306B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP4443177B2 (en) Throwaway tip
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2007038355A (en) Small-diameter member and manufacturing method of small-diameter member
JP5995091B2 (en) Surface coated cutting tool with excellent adhesion strength and chipping resistance
JP4653789B2 (en) Surface coated cubic boron nitride sintered body tool
JP6959578B2 (en) Surface coating cutting tool
JP6959577B2 (en) Surface coating cutting tool
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2018030206A (en) Surface coated cutting tool and method for manufacturing the same
JP6028374B2 (en) Target and hard coating coated cutting tool
JP4908767B2 (en) Surface covering member and cutting tool
KR20210118093A (en) hard film cutting tool
JP2021088039A (en) Surface coating-cutting tool
JP2007021700A (en) Small-diameter member and manufacturing method of small-diameter member