JP4522285B2 - Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating - Google Patents

Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating Download PDF

Info

Publication number
JP4522285B2
JP4522285B2 JP2005039948A JP2005039948A JP4522285B2 JP 4522285 B2 JP4522285 B2 JP 4522285B2 JP 2005039948 A JP2005039948 A JP 2005039948A JP 2005039948 A JP2005039948 A JP 2005039948A JP 4522285 B2 JP4522285 B2 JP 4522285B2
Authority
JP
Japan
Prior art keywords
wear
atomic
resistant
resistant film
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005039948A
Other languages
Japanese (ja)
Other versions
JP2006225708A (en
Inventor
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005039948A priority Critical patent/JP4522285B2/en
Publication of JP2006225708A publication Critical patent/JP2006225708A/en
Application granted granted Critical
Publication of JP4522285B2 publication Critical patent/JP4522285B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本願発明は、超硬合金、高速度鋼、ダイス鋼等に被覆する耐摩耗性、密着性及び耐高温酸化特性に優れた耐摩耗皮膜及び耐摩耗皮膜の製造方法に関する。特に切削工具、金型、軸受け、ダイス、ロール等、高硬度が要求される耐摩耗部材や内燃機関部品等の耐熱部材の表面に被覆する耐摩耗皮膜である。本願発明は耐摩耗皮膜を被覆した被覆切削工具に関する。切削工具としては、例えばエンドミル、ドリル、リーマ、ブローチ、ホブ、カッター、マイクロドリル、ルーター、ミーリングインサート、ターニングインサート等が挙げられる。   The present invention relates to a wear-resistant film excellent in wear resistance, adhesion, and high-temperature oxidation characteristics coated on cemented carbide, high-speed steel, die steel, and the like, and a method for producing the wear-resistant film. In particular, it is a wear-resistant film that covers the surface of heat-resistant members such as cutting tools, dies, bearings, dies, and rolls that require high hardness and heat-resistant members such as internal combustion engine parts. The present invention relates to a coated cutting tool coated with a wear-resistant coating. Examples of the cutting tool include an end mill, a drill, a reamer, a broach, a hob, a cutter, a micro drill, a router, a milling insert, and a turning insert.

モノ作りの低コスト化に伴い、切削加工の高速化、被加工物の高硬度化、高精度加工、乾式加工等が要望されている。これらの要求に伴い、切削工具にはより苛酷な切削環境が強いられている。皮膜の高硬度化、耐熱性を改善することを目的として、耐摩耗皮膜にSiを添加する検討が以下の特許文献1から7に開示されている。
特許文献1は、Siを含有した硬質皮膜においてSiの含有濃度が相対的に高い結晶粒と相対的に低い結晶粒とを含有する組成偏析多結晶体で構成した事例を開示している。
特許文献2は、4a、5a、6a族元素及びAlからなる群のなかから選択される1種以上の元素の窒化物または炭窒化物を主成分とする耐摩耗皮膜中に、SiC、SiN(X=0.5から1.33)等の超微粒化合物を含む切削工具が開示されている。
特許文献3は、(MSi )の窒化物、炭窒化物、酸窒化物または炭酸窒化物からなり、MはTi、Al、Cr、Zr、V、Hf、Nb、Mo、W、Taのなかから選ばれた少なくとも1種以上の成分で構成され、0.1≦y≦0.8、x+y=1であり、かつ表面被覆膜の硬度が基材側から表面側にかけて連続的または段階的に変化する被覆硬質工具が開示されている。
特許文献4は、Si以外の金属MがTi、V、Cr、Zr、Nb、Mo、Hf、Ta、W、Alの1種以上の成分で構成されるSi(0原子%≦x≦80原子%、x+y=100原子%)の窒化物、炭窒化物、窒酸化物、炭窒酸化物からなる表面被覆膜が基材上に形成され、該表面被覆膜中のSi量が表面被覆中で1原子%以上80原子%未満の範囲で連続的に変化する表面被覆切削工具が開示されている。
特許文献5は、4a、5a、6a族金属及びAlの1種以上より選択された元素とSi元素を含み、非金属元素としてN、C、O、Sのうち1種以上より選択された元素とB元素を含有する皮膜を少なくとも1層以上被覆し、該Si、B含有皮膜の結晶形態は、結晶質層と非晶質相とからなり、該結晶質相内に含まれる結晶粒子を、粒子断面の面積を円の面積として置き換えた場合の直径である等価円直径として求めた場合に、最小結晶粒径が0.5nm以上、20nm未満である被覆切削工具が開示されている。
特許文献6は、WC基超硬合金基体表面に、(Ti1−xSi)(C1−y)z、但し、0.01≦x≦0.45、0.01≦y≦1.0、0.5≦z≦1.34からなる組成のTiとSiの複合炭窒化物単一硬質層或いは複合窒化物単一硬質層を、アーク放電式イオンプレーティング法、マグネトロンスパッタリング法により被覆した硬質層被覆切削工具が開示されている。
特許文献7は、WC基超硬合金基体表面に、(Ti1−xSi)(C1−y)z、但し、0.55≦x≦0.99、0.01≦y≦1.0、0.5≦z≦1.34からなる組成のTiとSiの複合炭窒化物単一硬質層或いは複合窒化物単一硬質層をアーク放電式イオンプレーティング法、マグネトロンスパッタリング法により被覆した硬質層被覆切削工具が開示されている。
Along with the cost reduction of manufacturing, there is a demand for higher speed of cutting, higher hardness of workpieces, high-precision machining, dry machining, and the like. With these demands, cutting tools are forced to have a more severe cutting environment. For the purpose of increasing the hardness and heat resistance of the film, studies on adding Si to the wear-resistant film are disclosed in Patent Documents 1 to 7 below.
Patent Document 1 discloses an example in which a hard coating film containing Si is composed of a composition segregated polycrystal containing a crystal grain having a relatively high Si content and a crystal grain having a relatively low content.
Patent Document 2 discloses SiC, SiN X in a wear-resistant film mainly composed of a nitride or carbonitride of one or more elements selected from the group consisting of Group 4a, 5a, and 6a elements and Al. Cutting tools containing ultrafine compounds such as (X = 0.5 to 1.33) are disclosed.
Patent Document 3 is made of a nitride, carbonitride, oxynitride, or carbonitride of (M X Si Y ), where M is Ti, Al, Cr, Zr, V, Hf, Nb, Mo, W, Ta Or at least one component selected from among them, 0.1 ≦ y ≦ 0.8, x + y = 1, and the hardness of the surface coating film is continuous from the substrate side to the surface side or A gradually changing coated hard tool is disclosed.
Patent Document 4 describes that Si x M y (0 atomic% ≦ x) in which a metal M other than Si is composed of one or more components of Ti, V, Cr, Zr, Nb, Mo, Hf, Ta, W, and Al. ≦ 80 atomic%, x + y = 100 atomic%), a surface coating film made of nitride, carbonitride, nitride oxide, carbonitride oxide is formed on the substrate, and the amount of Si in the surface coating film Discloses a surface-coated cutting tool that continuously changes in a range of 1 atomic percent or more and less than 80 atomic percent in the surface coating.
Patent Document 5 includes an element selected from one or more of Group 4a, 5a, and 6a metals and Al and an Si element, and an element selected from one or more of N, C, O, and S as non-metallic elements And a coating containing at least one layer containing B element, and the crystalline form of the Si, B-containing coating consists of a crystalline layer and an amorphous phase, and the crystalline particles contained in the crystalline phase are: A coated cutting tool having a minimum crystal grain size of 0.5 nm or more and less than 20 nm when it is obtained as an equivalent circle diameter, which is the diameter when the area of the particle cross section is replaced with the area of a circle, is disclosed.
Patent Document 6, the WC-based cemented carbide substrate surface, (Ti 1-x Si x ) (C 1-y N y) z, where, 0.01 ≦ x ≦ 0.45,0.01 ≦ y ≦ Ti and Si composite carbonitride single hard layer or composite nitride single hard layer having a composition of 1.0, 0.5 ≦ z ≦ 1.34, arc discharge ion plating method, magnetron sputtering method A hard layer coated cutting tool coated with the above is disclosed.
Patent Document 7, the WC-based cemented carbide substrate surface, (Ti 1-x Si x ) (C 1-y N y) z, where, 0.55 ≦ x ≦ 0.99,0.01 ≦ y ≦ Ti and Si composite carbonitride single hard layer or composite nitride single hard layer having a composition of 1.0, 0.5 ≦ z ≦ 1.34 is obtained by arc discharge ion plating method or magnetron sputtering method. A coated hard layer coated cutting tool is disclosed.

特開2003−25113号公報JP 2003-25113 A 特開2001−293601号公報JP 2001-293601 A 特開2004−74361号公報JP 2004-74361 A 特開2004−66361号公報JP 2004-66361 A 特開2004−34186号公報JP 2004-34186 A 特開平08−118106号公報JP 08-118106 A 特開平08−126902号公報Japanese Patent Laid-Open No. 08-126902

本願発明の目的は、温度上昇や被加工物の高硬度化による摩耗増大を抑制することのできる最適な耐摩耗皮膜及び耐摩耗皮膜を被覆した被覆切削工具及び耐摩耗皮膜の製造方法を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide an optimum wear-resistant coating capable of suppressing an increase in wear due to temperature rise and increased hardness of a workpiece, a coated cutting tool coated with the wear-resistant coating, and a method for producing the wear-resistant coating. That is.

本願発明の第1の発明は、基体に少なくとも1層以上を被覆した耐摩耗皮膜であって、該耐摩耗皮膜の金属成分が(Si 100−x)、但し、xの値は金属成分のみの原子比の和を1とした場合の原子%で表し、15原子%以上、25原子%以下であり、Mは、Cr、Al、Nb、Mo、Y、Cu、Niから選択される1種以上であり、非金属成分が(N 100−y)、但し、yの値は非金属成分のみの原子比の和を1とした場合の原子%で表し、10原子%以上、99.9原子%以下であり、GはC、O、B、Cl、S、P、H、Fから選択される1種以上であり、該耐摩耗皮膜は、該x値が10原子%未満のSiを含む結晶粒子と該x値が10原子%以上の非晶質相とが存在していることを特徴とする耐摩耗皮膜である。
本願発明の第2の発明は耐摩耗皮膜の製造方法である。該耐摩耗皮膜はx値が10原子%未満の結晶粒子と、x値が10原子%以上の非晶質相が存在する皮膜構造を有する。該皮膜構造をスパッタリング法、プラズマ化学蒸着法、フィルター方式アークイオンプレーティング法の何れか又はこれらの組合せにより形成することを特徴とする耐摩耗皮膜の製造方法である。上記の構成を採用することにより、温度上昇や被加工物の高硬度化による摩耗増大を著しく抑制することができる耐摩耗皮膜及び被覆切削工具、更に耐摩耗皮膜の製造方法を提供することが可能となる。ここで、基体はCo含有量3重量%以上、12重量%未満からなる超硬合金又はサーメット、又は高速度鋼の何れかである。
A first invention of the present invention is an abrasion-resistant film in which at least one layer is coated on a substrate, and the metal component of the abrasion-resistant film is (Si x M 100 -x ), where the value of x is a metal It is expressed in atomic% when the sum of atomic ratios of only components is 1, and is 15 atomic% or more and 25 atomic% or less, and M is selected from Cr, Al, Nb, Mo, Y, Cu, and Ni. is at least one, non-metal component (N y G 100 -y), where the value of y represents the sum of the atomic ratio of only non-metallic components in atomic% in the case of a 1, 10 atomic% or more , 99.9 atomic% or less, G is at least one selected from C, O, B, Cl, S, P, H, F, and the wear-resistant film has an x value of 10 atomic% A wear-resistant film characterized by comprising crystal grains containing less than Si and an amorphous phase having an x value of 10 atomic% or more. The
The second invention of the present invention is a method for producing an abrasion-resistant film. Resistant wear coating x value has a less than 10 atomic% the crystal grains, a coating structure that x value is present 10 atomic% or more of an amorphous phase. A method for producing an abrasion-resistant film, wherein the film structure is formed by any one of a sputtering method, a plasma chemical vapor deposition method, a filter type arc ion plating method, or a combination thereof. By adopting the above configuration, it is possible to provide a wear-resistant coating and a coated cutting tool that can remarkably suppress an increase in wear due to a temperature rise and a high hardness of the workpiece, and a method for manufacturing the wear-resistant coating. It becomes. Here, the substrate is either a cemented carbide or cermet having a Co content of 3 wt% or more and less than 12 wt%, or high speed steel.

本願発明の耐摩耗皮膜は、X線光電子分光分析において、少なくともSi−N、Si−O及び金属Siの結合エネルギーを有し、Si−Nに相当する結合エネルギーの強度をI(Si−N)、Si−Oに相当する結合エネルギーの強度をI(Si−O)及び金属Siに相当する結合エネルギーの強度をI(Si)とした時、I(Si−N)>I(Si)、I(Si−N)>I(Si−O)を満足し、I(Si−N)の比率が50%以上、95%以下であること、x値が膜厚方向に異なることが好ましい。耐摩耗皮膜は、押込み硬さ測定法により算出される皮膜硬度が30GPa以上、80GPa以下であること、更に同測定法により算出される弾性回復率が32%以上、50%未満であることが好ましい。耐摩耗皮膜は最表層に被覆されること、最表面から膜厚方向に500nm以内で、N以外の非金属成分の元素濃度が最大となることが好ましい。耐摩耗皮膜の金属成分が、SiCr、SiAl、SiCrAl、SiCu、SiNi、SiYの何れかであることが特に好ましい。
該耐摩耗皮膜とは別の耐摩耗皮膜が少なくとも1層あり、該別の耐摩耗皮膜の金属成分が、Ti、Cr、Al、Si、Nb、Moの1種以上からなり、非金属成分が、N、C、O、Bの1種以上からなる耐摩耗皮膜との積層膜から構成される場合が特に好ましい。耐摩耗皮膜を切削工具に適用した場合、その効果が発揮され好ましい。耐摩耗皮膜を被覆した被覆切削工具の最表面に、SiO、AlO、CrO、AlN、BN、CN、SiNの何れかを被覆することにより、耐摩耗性に優れた被覆切削工具が得られ好ましい。
The wear-resistant film of the present invention has a binding energy of at least Si—N, Si—O, and metallic Si in X-ray photoelectron spectroscopy analysis, and the strength of the binding energy corresponding to Si—N is I (Si—N). , I (Si-N)> I (Si), where I (Si-O) is the bond energy intensity corresponding to Si-O and I (Si) is the bond energy intensity corresponding to metal Si. It is preferable that (Si—N)> I (Si—O) is satisfied, the ratio of I (Si—N) is 50% or more and 95% or less, and the x value is different in the film thickness direction. The wear resistant film preferably has a film hardness calculated by an indentation hardness measurement method of 30 GPa or more and 80 GPa or less, and an elastic recovery rate calculated by the measurement method of 32% or more and less than 50%. . It is preferable that the abrasion-resistant film is coated on the outermost layer, and the element concentration of nonmetallic components other than N is maximized within 500 nm from the outermost surface in the film thickness direction. It is particularly preferable that the metal component of the wear-resistant film is any one of SiCr, SiAl, SiCrAl, SiCu, SiNi, and SiY.
There is at least one layer of an abrasion-resistant film different from the abrasion-resistant film, and the metal component of the other abrasion-resistant film is composed of one or more of Ti, Cr, Al, Si, Nb, and Mo, and the non-metallic component is , N, C, O, and B are particularly preferable in the case of being composed of a laminated film with an abrasion-resistant film composed of one or more kinds. When an abrasion-resistant film is applied to a cutting tool, the effect is exhibited and preferable. It is preferable that a coated cutting tool having excellent wear resistance is obtained by coating any one of SiO, AlO, CrO, AlN, BN, CN, and SiN on the outermost surface of the coated cutting tool coated with the wear resistant film.

本願発明の耐摩耗皮膜及び該耐摩耗皮膜を被覆した被覆切削工具は、高速切削や被加工物の高硬度化により切削温度が上昇する環境において、摩耗増大を著しく抑制することを可能とし、例えば切削加工の高速化や高硬度材の直彫り加工の能率を向上させることができ、生産性向上並びにコスト低減に極めて有効である。また、本願発明の耐摩耗皮膜の製造方法は、上記の特徴を有する皮膜を被覆するための好適な方法である。   The wear-resistant coating of the present invention and the coated cutting tool coated with the wear-resistant coating make it possible to remarkably suppress an increase in wear in an environment where the cutting temperature rises due to high-speed cutting or increased hardness of the workpiece, The cutting speed can be increased and the efficiency of direct engraving of hard materials can be improved, which is extremely effective for improving productivity and reducing costs. Moreover, the manufacturing method of the abrasion-resistant film of this invention is a suitable method for coat | covering the film | membrane which has said characteristic.

本願発明は、高速切削や被加工物の高硬度化により温度が上昇するような摩耗環境下において、基体表面に適切な耐摩耗皮膜を被覆することによって課題を解決した。本願発明の耐摩耗皮膜の金属成分は、(Si 100−x)で示される。ここで、Mは、Cr、Al、Nb、Zr、Mo、Y、Cu、Niから選択される1種以上である。またx値は金属成分のみの原子比の和を1とした場合の原子%で表し、15%以上、25%以下である。これにより本願発明の成膜手段との相乗効果が得られる。即ち、耐摩耗皮膜の結晶粒径の不明瞭化、耐熱性並びに皮膜硬度が最適となるためである。X値が15%未満又は25%を超える場合は、結晶粒界が明瞭となり十分な耐酸化特性が得られない。
本願発明の耐摩耗皮膜の非金属成分は(N 100−y)で示される。ここでGは、C、O、B、Cl、S、P、H、Fのうちの少なくとも1種以上である。また値は、非金属成分のみの原子比の和を1とした場合の原子%で表し、10%以上、99.9%以下である。これにより本願発明の成膜手段との相乗効果が得られる。即ち、本願発明の耐摩耗皮膜の結晶粒径の不明瞭化、耐熱性並びに皮膜硬度が最適となるためである。値が10%未満の場合、皮膜の硬度が十分ではなく、耐摩耗性に乏しくなる。一方、値が99.9原子%を超える場合は、皮膜の結晶粒界が鮮明となり、耐熱性に劣り、密着強度に乏しくなる。これら耐摩耗皮膜の組成における金属成分と非金属成分との比は、1:1であることを意味するものではない。好ましくは、金属成分に対する非金属成分の比率が1以上である。
本願発明の耐摩耗皮膜は、x値が10%未満の結晶粒子とx値が10原子%以上の非晶質相とが存在するように構成する。これにより、皮膜硬度が大幅に向上し、皮膜の機械的特性が向上する。x値が10原子%未満の結晶粒子は、x値の増加に伴い微細化する傾向にあり、皮膜硬度を向上させる。x値が10原子%以上の非晶質相は、x値が10原子%未満の結晶粒子成長を抑制し、微細化させるとともに、結晶粒界をより不明瞭にする効果を発揮する。皮膜にx値が10原子%未満の結晶粒子と、x値が10原子%以上の非晶質相が存在することにより、皮膜硬度と耐酸化性を改善させることができる。非晶質相のx値は、10%以上から皮膜全体のx値よりも多い。上記の様に本願発明の耐摩耗皮膜は、x値が10原子%以上の非晶質相の存在によって耐酸化性の改善に有効である。また、x値が10原子%未満の結晶粒子の存在によって皮膜硬度の改善に有効である。この両者の有効な点を考慮し、両者の存在割合を制御して耐酸化性と皮膜硬度とを同時に改善させることができる。
皮膜断面の面積割合について該非晶質相の存在割合をA%とし、該結晶粒子の存在割合をB%とした時、両者の存在割合を比B/Aとして、B/A≦1とすることが好ましい形態である。この理由は、皮膜の構成において該非晶質相の存在割合が多くなるように制御し、耐酸化性の改善に重点をおく事は、苛酷な摩耗環境下において優先事項となるからである。但し、B/A値の上限については、B/A≦1.5までの範囲であれば、本願発明の期待する効果を得ることができる。ここで、耐摩耗皮膜の結晶粒子と非晶質相は、透過電子顕微鏡(以下、TEMと記す。)を用い、組織観察、格子像観察、φ1nm程度の微小部の電子線回折等により同定することができる。組成は、電子プローブマイクロアナライザ(以下、EPMAと記す。)分析及びオージェ電子分光(以下、AESと記す。)分析により解析することができる。皮膜断面の面積割合は、上記の解析結果を参照して、観察倍率5万倍程度で略1μm×1μmの矩形視野内の夫々の面積割合からB/A値を算出することができる。
本願発明の耐摩耗皮膜を被覆する基体は、Co含有量3重量%以上、12重量%未満からなる超硬合金又はサーメット、又は高速度鋼の何れかである。本願発明の耐摩耗皮膜はこれらの基体との組合せによって密着強度に優れる。超硬合金のCo含有量が3重量%未満では、皮膜の密着強度が十分でなく好ましくない。一方、Co含有量が12重量%以上では、本願発明の耐摩耗皮膜の効果が確認されないため好ましくない。
以上のように本願発明の耐摩耗皮膜は、上記の構成を満足することによって苛酷な摩耗環境下における耐摩耗性の改善が計られる。
The present invention has solved the problem by coating an appropriate wear-resistant film on the surface of a substrate in a wear environment in which the temperature rises due to high-speed cutting or increased hardness of the workpiece. The metal component of the abrasion-resistant film of the present invention is represented by (Si x M 100 -x ). Here, M is at least one selected from Cr, Al, Nb, Zr, Mo, Y, Cu, and Ni. The x value is expressed in atomic% in the case of a 1 the sum of atomic ratios of only the metal component, at least 15%, 25% or less. Thereby, a synergistic effect with the film forming means of the present invention can be obtained. That is , the crystal grain size of the wear-resistant film is obscured, heat resistance and film hardness are optimized. When the X value is less than 15% or exceeds 25% , the crystal grain boundary becomes clear and sufficient oxidation resistance characteristics cannot be obtained.
The nonmetallic component of the abrasion resistant film of the present invention is represented by (N y G 100 -y ). Here, G is at least one of C, O, B, Cl, S, P, H, and F. The y value is expressed in atomic%, where the sum of atomic ratios of only nonmetallic components is 1, and is 10% or more and 99.9% or less. Thereby, a synergistic effect with the film forming means of the present invention can be obtained. That is , the crystal grain size of the wear-resistant coating of the present invention is obscured, heat resistance and coating hardness are optimized. When the y value is less than 10%, the hardness of the film is not sufficient and the wear resistance is poor. On the other hand, when the y value exceeds 99.9 atomic%, the crystal grain boundary of the film becomes clear, heat resistance is poor, and adhesion strength is poor. The ratio of the metal component to the non-metal component in the composition of these wear resistant coatings does not mean 1: 1. Preferably, the ratio of the nonmetallic component to the metallic component is 1 or more.
Wear coating of the present invention, x value crystal grains and x values of less than 10% is configured such that there is a 10 atomic% or more of an amorphous phase. Thereby, the film hardness is greatly improved, and the mechanical properties of the film are improved. crystal grains of the x value is less than 10 atomic%, tend to miniaturization with increasing x values, improving the film hardness. An amorphous phase having an x value of 10 atomic% or more exhibits the effect of suppressing the growth of crystal grains having an x value of less than 10 atomic%, making them finer, and making the grain boundaries more unclear. And crystal grains x value is less than 10 atomic% in the film, by the x value is present 10 atomic% or more of an amorphous phase, it is possible to improve the film hardness and oxidation resistance. The x value of the amorphous phase is 10% or more and more than the x value of the entire film. As described above, the abrasion-resistant film of the present invention is effective in improving oxidation resistance due to the presence of an amorphous phase having an x value of 10 atomic% or more. Further, the presence of crystal grains having an x value of less than 10 atomic% is effective in improving the film hardness. Considering the effective point of both, it is possible to improve the oxidation resistance and the film hardness at the same time by controlling the ratio of both.
Regarding the area ratio of the cross section of the film, when the existence ratio of the amorphous phase is A% and the existence ratio of the crystal particles is B%, the existence ratio of both is B / A, and B / A ≦ 1 Is a preferred form. The reason for this is that controlling the increase in the proportion of the amorphous phase in the coating composition and emphasizing improvement in oxidation resistance is a priority in a severe wear environment. However, with respect to the upper limit of the B / A value, the effect expected by the present invention can be obtained as long as B / A ≦ 1.5. Here, the crystal particles and the amorphous phase of the wear-resistant film are identified by using a transmission electron microscope (hereinafter referred to as TEM) by structure observation, lattice image observation, electron beam diffraction of a minute portion of about φ1 nm, and the like. be able to. The composition can be analyzed by electron probe microanalyzer (hereinafter referred to as EPMA) analysis and Auger electron spectroscopy (hereinafter referred to as AES) analysis. With respect to the area ratio of the film cross section, the B / A value can be calculated from each area ratio in a rectangular field of view of approximately 1 μm × 1 μm at an observation magnification of about 50,000 with reference to the above analysis result.
The substrate on which the wear-resistant film of the present invention is coated is either a cemented carbide or cermet having a Co content of 3% by weight or more and less than 12% by weight, or high-speed steel. The abrasion-resistant film of the present invention is excellent in adhesion strength when combined with these substrates. When the Co content of the cemented carbide is less than 3% by weight, the adhesion strength of the film is not sufficient, which is not preferable. On the other hand, if the Co content is 12% by weight or more, the effect of the abrasion-resistant film of the present invention is not confirmed, which is not preferable.
As described above, the wear resistant film of the present invention can improve the wear resistance in a severe wear environment by satisfying the above configuration.

本願発明の耐摩耗皮膜の製造方法は、スパッタリング(以下、SPと記す。)法、プラズマ化学蒸着(以下、PCVDと記す。)法、フィルター方式アークイオンプレーティング(以下、FAIPと記す)法の何れか又はこれらの組合せによる耐摩耗皮膜の製造方法である。この成膜手法によって、本願発明の耐摩耗皮膜の特徴である皮膜構造、即ち、x値が10原子%未満の結晶粒子と、x値が10原子%以上の非晶質相が存在する皮膜構造を得ることができる。また、この成膜手法によって、皮膜に混入するマクロパーティクルを皆無又は著しく低減させることができ、皮膜の結晶粒及び組織制御に最も有効な手段である。耐摩耗皮膜の結晶粒界を不明瞭にする手段として、皮膜の金属成分及び非金属成分を限定し、これらをSP法、PCVD法、FAIP法の何れかもしくはその組合せにより被覆することが極めて効果的である。耐摩耗皮膜の結晶粒界を制御する理由は、皮膜は結晶粒界を介して酸化し、著しく耐摩耗性を劣化させるからである。例えば、アーク式イオンプレーティング(以下、AIPと記す。)法における耐摩耗皮膜は、結晶粒界が極めて明瞭になり、その結晶粒界を介して酸化が進行し易く耐摩耗性を劣化させる。更に、AIP法においては、成膜過程で不可避的にマクロパーティクルが皮膜中に混入する。苛酷な摩耗環境下においては、マクロパーティクルやマクロパーティクルが脱落した部分を介して酸化摩耗が進行し、耐摩耗性を劣化させている。従って、本願発明の耐摩耗皮膜の製造方法は、苛酷な摩耗環境下においても特に優れた耐酸化特性を示し、耐摩耗性の著しい改善を可能にした。
SP法は、スパッタリング電源として直流電源もしくは高周波電源もしくはパルス電源を用いることができる。またバイアス電源としても、直流電源、高周波電源又はパルス電源を使用することができる。特に本願発明の耐摩耗皮膜の電気抵抗からすると、スパッタリング電源、バイアス電源に高周波電源又はパルス電源を用いることが好ましい。
PCVD法は、金属成分をガスとして添加し、プラズマ中でイオン化する手法であるが、本手法においても、イオン化を促進する手段として、バイアス電源としては、高周波電源又はパルス電源が好ましい。ガスをイオン化するためにホロカソード電極を基体近傍に配置することにより、導入するガスのイオン化が更に促進され、皮膜の結晶粒径を比較的容易に制御することができ好ましい。FAIP法は、アーク蒸発源に設置された金属ターゲット表面と、平面基体の場合における基体表面とのなす角が40度以上、90度以下が好ましい。磁場とバイアス電源により誘導される距離はできるだけ長いことが好ましい。またその時の磁場強度はできるだけ強いことが、マクロパーティクルの低減に有効であり、本願発明の耐摩耗皮膜の形成に好都合である。
本願発明の耐摩耗皮膜の製造方法を採用した場合の密着強度を維持するために、皮膜として最適な非金属成分を選定した。非金属成分は、窒素以外に、C、O、B、Cl、S、P、H、Fのうちの少なくとも1種以上を、非金属成分のみの原子比の和を1とした場合の原子%で表し、10%以上、99.9%以下で含有するように構成している。この範囲によって、耐摩耗皮膜の残留応力を低減させることができ、十分な密着強度が得られる。
The manufacturing method of the abrasion-resistant film of the present invention includes a sputtering (hereinafter referred to as SP) method, a plasma chemical vapor deposition (hereinafter referred to as PCVD) method, and a filter type arc ion plating (hereinafter referred to as FAIP) method . Or a combination thereof. This deposition technique is characteristic coating structure of the wear coating of the present invention, i.e., the crystal grains of the x value is less than 10 atomic%, the film x value is present 10 atomic% or more of an amorphous phase structure Can be obtained. In addition, this film formation technique can eliminate or remarkably reduce macro particles mixed in the film, and is the most effective means for controlling the crystal grains and texture of the film. As a means to obscure the crystal grain boundaries of the wear-resistant coating , it is extremely effective to limit the metallic and non-metallic components of the coating and coat them by SP method, PCVD method, FAIP method or a combination thereof. Is. The reason for controlling the grain boundaries of the wear-resistant coating is that the coating oxidizes through the grain boundaries and significantly deteriorates the wear resistance. For example, a wear-resistant film in the arc type ion plating (hereinafter referred to as AIP) method has a crystal grain boundary that becomes very clear, and oxidation is likely to proceed through the crystal grain boundary, thereby degrading the wear resistance. Further, in the AIP method, macro particles are inevitably mixed in the film during the film forming process. In a severe wear environment, the oxidation wear proceeds through the macro particles and the portions where the macro particles have fallen, thereby degrading the wear resistance. Therefore, the method for producing a wear-resistant film according to the present invention exhibits particularly excellent oxidation resistance even in a severe wear environment, and enables a marked improvement in wear resistance.
In the SP method, a DC power source, a high frequency power source, or a pulse power source can be used as a sputtering power source. As the bias power source, a DC power source, a high frequency power source, or a pulse power source can be used. In particular, from the viewpoint of the electrical resistance of the wear-resistant coating of the present invention, it is preferable to use a high-frequency power source or a pulse power source for the sputtering power source and bias power source.
The PCVD method is a method in which a metal component is added as a gas and ionized in plasma. In this method as well, as a means for promoting ionization, a high frequency power source or a pulse power source is preferable as a bias power source. By disposing the holocathode electrode in the vicinity of the substrate in order to ionize the gas, ionization of the introduced gas is further promoted, and the crystal grain size of the coating can be controlled relatively easily. In the FAIP method, the angle formed by the surface of the metal target installed in the arc evaporation source and the surface of the substrate in the case of a flat substrate is preferably 40 ° or more and 90 ° or less. The distance induced by the magnetic field and the bias power source is preferably as long as possible. In addition, it is effective for the reduction of macro particles that the magnetic field strength at that time is as strong as possible, which is convenient for the formation of the wear-resistant film of the present invention.
In order to maintain the adhesion strength when the method for producing an abrasion-resistant film of the present invention is employed, an optimum nonmetallic component was selected as the film. In addition to nitrogen, the nonmetallic component is at least one of C, O, B, Cl, S, P, H, F, and atomic% when the sum of atomic ratios of only the nonmetallic component is 1. It is comprised so that it may contain by 10 to 99.9%. By this range, the residual stress of the abrasion-resistant film can be reduced, and sufficient adhesion strength can be obtained.

本願発明の耐摩耗皮膜は、X線光電子分光分析により、少なくともSi−N、Si−O及び金属Siの結合エネルギーを有し、Si−Nに相当する結合エネルギーの強度をI(Si−N)、Si−Oに相当する結合エネルギーの強度をI(Si−O)及び金属Siに相当する結合エネルギーの強度をI(Si)とした時、I(Si−N)>I(Si)、I(Si−N)>I(Si−O)を満足し、I(Si−N)の比率が50%以上、95%以下であることが特に好ましい。I(Si−N)の強度比を50%以上、95%以下に制御することにより、皮膜硬度及び耐酸化を改善することができる。I(Si−N)の強度比率が50%未満となる場合、皮膜の硬度が低くなり、耐摩耗性に乏しくなる。一方、I(Si−N)の強度比率が95%を超える場合、十分な密着強度が得られない。
X線光電子分光分析による、I(Si−N)、I(Si)、I(Si−O)の算出方法及び被覆条件との関係について述べる。被覆基体は鏡面加工したCo含有量8重量%の微粒超硬合金を用いた。X線光電子分光分析は、PHI社製1600S型X線光電子分光分析装置を用い、X線源はMgKαを用い400Wとし、分析領域を直径0.4mmの円内部を分析した。分析前に、十分にアセトン中で脱脂洗浄を行い、更に分析部の皮膜表面に付着した汚染物質等を除去するために5分間Arイオンガンを用いてエッチングした後、Si2pに相当するスペクトルを測定した。ArイオンガンによるエッチングレートはSiO2換算で1.9nm/分であった。ピーク分離については、Si−N成分のピーク位置を101.2±0.2eV、Si−O成分のピーク位置を103.3±0.2eV、Si(金属)成分のピーク位置を99.3±0.2eVとして、ピークフィッティング法によって行った。
本願発明の耐摩耗皮膜は、膜厚方向にx値が異なることが好ましい。具体的には、膜厚方向に基体から表面に向けてx値が増加する場合と、膜厚方向に基体から表面に向けてx値が減少する場合とがある。前者の場合は、特に耐酸化性が重視される場合に好ましく、後者の場合は、特に皮膜硬度が重視される場合に好ましい。必要に応じ選択される。
本願発明の耐摩耗皮膜は、押込み硬さ測定法により算出される皮膜硬度が30GPa以上、80GPa以下であることが好ましい。押込み硬さ測定法により算出される皮膜硬度は、ナノインデンテーションによる硬度測定法により求められる。この硬度測定法は、次の論文に開示されている。(W.C.Oliver and、G.m.Pharr:J.Mater.Res.、Vol.7、No.6、June1992、pp.1564−1583)。本願発明の耐摩耗皮膜は、皮膜硬度が30GPa未満の場合、耐摩耗性の改善効果が確認されない。一方、80GPaを超える場合は、基体との密着強度に乏しく不都合である。より好ましい皮膜硬度は、40GPa以上、65GPa以下である。
本願発明の耐摩耗皮膜は、押込み硬さ測定法により算出される弾性回復率が32%以上、50%未満であることが好ましい。押込み硬さ測定法により算出される弾性回復率は、ナノインデンテーションによる硬度測定法により求められる。弾性回復率は100−[(接触深さ)/(最大荷重時の最大変位量)]により算出される。ここで、接触深さ及び最大荷重時の最大変位量はナノインデンテーション法により求められる。弾性回復率が32%未満の場合は、耐摩耗性に乏しい。一方、弾性回復率が50%以上の場合は基体との密着強度に乏しく不都合である。
本願発明の該耐摩耗皮膜は、耐摩耗皮膜の最表層に被覆されていることが好ましい。特に耐酸化特性が要求される摩耗環境下において、摩耗抑制効果が発揮され易く、効果的に作用する。
更に、耐摩耗皮膜の最表面から膜厚方向に500nm以内で、N以外の非金属成分の元素濃度が最大となる場合、特に結晶粒界が不明瞭に構成され、皮膜表面からの酸素の内向拡散抑制に効果を発揮する。
本願発明の耐摩耗皮膜における金属成分の組合せは、SiTi、SiCr、SiAl、SiCrAl、SiTiAl、SiCu、SiNi、SiYが好ましい。この組合せは最も効果的に酸化を抑制し、耐摩耗性の改善に特に有効である。
本願発明の耐摩耗皮膜の特性を更に引き出すために、本願発明の耐摩耗皮膜とは別の耐摩耗皮膜が少なくとも1層あり、該別の耐摩耗皮膜の金属成分が、Ti、Cr、Al、Si、Nb、Moの1種以上からなり、非金属成分がN、C、O、Bの1種以上からなる耐摩耗皮膜との積層構造にすることが好ましい。この場合、例えば耐剥離性や耐塑性変形性を更に引き出すことができ、結果として耐摩耗効果を発揮することができる。
The wear-resistant film of the present invention has a binding energy of at least Si—N, Si—O, and metal Si by X-ray photoelectron spectroscopy, and the strength of the binding energy corresponding to Si—N is I (Si—N). , I (Si-N)> I (Si), where I (Si-O) is the bond energy intensity corresponding to Si-O and I (Si) is the bond energy intensity corresponding to metal Si. It is particularly preferable that (Si—N)> I (Si—O) is satisfied, and the ratio of I (Si—N) is 50% or more and 95% or less. By controlling the strength ratio of I (Si—N) to 50% or more and 95% or less, film hardness and oxidation resistance can be improved. When the strength ratio of I (Si—N) is less than 50%, the hardness of the film is lowered and the wear resistance is poor. On the other hand, when the strength ratio of I (Si—N) exceeds 95%, sufficient adhesion strength cannot be obtained.
The relationship between the calculation method of I (Si—N), I (Si), and I (Si—O) by X-ray photoelectron spectroscopy and the coating conditions will be described. The coated substrate was a mirror-finished fine-grain cemented carbide with a Co content of 8% by weight. The X-ray photoelectron spectroscopic analysis was carried out using a 1600S type X-ray photoelectron spectroscopic analyzer manufactured by PHI, the X-ray source was set to 400 W using MgKα, and the inside of a circle having a diameter of 0.4 mm was analyzed. Prior to analysis, the sample was thoroughly degreased and washed in acetone, and after etching using an Ar ion gun for 5 minutes in order to remove contaminants and the like adhering to the film surface of the analysis part, a spectrum corresponding to Si2p was measured. . The etching rate by Ar ion gun was 1.9 nm / min in terms of SiO2. For peak separation, the peak position of the Si—N component is 101.2 ± 0.2 eV, the peak position of the Si—O component is 103.3 ± 0.2 eV, and the peak position of the Si (metal) component is 99.3 ±. The peak fitting method was performed at 0.2 eV.
The wear resistant coating of the present invention preferably has different x values in the film thickness direction. Specifically, there are a case where the x value increases from the substrate to the surface in the film thickness direction and a case where the x value decreases from the substrate to the surface in the film thickness direction. The former case is particularly preferred when oxidation resistance is important, and the latter case is particularly preferred when film hardness is particularly important. Selected as needed.
The wear resistant film of the present invention preferably has a film hardness calculated by an indentation hardness measurement method of 30 GPa or more and 80 GPa or less. The film hardness calculated by the indentation hardness measurement method is obtained by a hardness measurement method by nanoindentation. This hardness measurement method is disclosed in the following paper. (W. C. Oliver and, G. Pharr: J. Mater. Res., Vol. 7, No. 6, June 1992, pp. 1564-1583). When the film hardness is less than 30 GPa, the wear resistance improving effect of the present invention is not confirmed. On the other hand, when it exceeds 80 GPa, the adhesion strength with the substrate is poor, which is inconvenient. More preferable film hardness is 40 GPa or more and 65 GPa or less.
The abrasion resistant film of the present invention preferably has an elastic recovery rate calculated by an indentation hardness measurement method of 32% or more and less than 50%. The elastic recovery rate calculated by the indentation hardness measurement method is obtained by the hardness measurement method by nanoindentation. The elastic recovery rate is calculated by 100 − [(contact depth) / (maximum displacement at maximum load)]. Here, the contact depth and the maximum displacement at the maximum load are obtained by the nanoindentation method. When the elastic recovery rate is less than 32%, the wear resistance is poor. On the other hand, when the elastic recovery rate is 50% or more, the adhesion strength with the substrate is poor, which is inconvenient.
The wear-resistant film of the present invention is preferably coated on the outermost layer of the wear-resistant film. In particular, in a wear environment where oxidation resistance is required, the wear suppression effect is easily exerted and works effectively.
Furthermore, when the element concentration of non-metallic components other than N is maximum within 500 nm in the film thickness direction from the outermost surface of the wear-resistant film, the grain boundary is particularly unclear, and oxygen inward from the film surface Effective for suppressing diffusion.
The combination of metal components in the wear resistant coating of the present invention is preferably SiTi, SiCr, SiAl, SiCrAl, SiTiAl, SiCu, SiNi, or SiY. This combination most effectively suppresses oxidation and is particularly effective in improving wear resistance.
In order to further draw out the characteristics of the wear-resistant film of the present invention, there is at least one layer of wear-resistant film different from the wear-resistant film of the present invention, and the metal components of the other wear-resistant film are Ti, Cr, Al, It is preferable to have a laminated structure composed of one or more of Si, Nb, and Mo and a non-metallic component composed of one or more of N, C, O, and B. In this case, for example, peeling resistance and plastic deformation resistance can be further extracted, and as a result, an abrasion resistance effect can be exhibited.

本願発明の耐摩耗皮膜を切削工具に適用した場合、その効果が特に発揮され易く、苛酷な摩耗環境下においても耐摩耗性を改善する。更に、本願発明の該耐摩耗皮膜の最表面にSiO、AlO、CrO、AlN、BN、CN、SiNの何れかを被覆することにより、耐摩耗性を改善する。これらの皮膜は本願発明の耐摩耗皮膜と特に密着強度に優れる。また酸素の内向拡散を抑制し、耐摩耗性を改善する。更にこれらの皮膜は、成膜後に形成されていなくとも、使用環境化において形成される場合もある。以下、本願発明を実施例に基づいて説明するが、本願発明は下記実施例に限定されるものではなく、使用分野により適宜変更することができる。   When the wear-resistant film of the present invention is applied to a cutting tool, the effect is particularly easily exhibited, and the wear resistance is improved even in a severe wear environment. Furthermore, the wear resistance is improved by coating any one of SiO, AlO, CrO, AlN, BN, CN, and SiN on the outermost surface of the wear-resistant film of the present invention. These films are particularly excellent in adhesion strength with the wear-resistant film of the present invention. It also suppresses the inward diffusion of oxygen and improves wear resistance. Furthermore, even if these films are not formed after the film formation, they may be formed in a use environment. Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to the following Example, It can change suitably with a use field.

本願発明の耐摩耗皮膜の被覆方法を述べる。基体は、Co含有量8重量%の超微粒子超硬合金製のテストピース及び耐摩耗性の評価に用いる2枚刃ボールエンドミルを用いた。脱脂洗浄を十分に実施し、スパッタリング装置の容器内の冶具に配置した。冶具は5回転/分で自公転する。基体の温度は550℃となるよう加熱及び排気を行った。Arを容器内に導入し、容器内に設けられたカソード電極とアノード電極の間で放電によってArのイオン化を行った。同時に基体にパルス状のバイアス電圧を印加した。このパルス状のバイアス電圧は、負バイアス電圧が500V−90%、正バイアス電圧が20V−10%、周期は20kHzとした。イオン化されたArは基体に衝突し、基体のクリーニング及び活性化処理を行う。このとき、基体のクリーニング効率や活性度をより高めるためにKrやHを用いることも有効である。Arと反応ガスとして窒素を容器内に導入し、全体の圧力を0.1Pa、バイアス電圧を−50Vに設定した。容器内に複数配置したスパッタリング蒸発源に設置された耐摩耗皮膜の金属成分となるターゲット1に250W、12.7W/cmの電力を供給し、ターゲット上でプラズマ放電を行い、皮膜の形成を開始した。このとき必要に応じて最下層を形成し、その直上に本願発明の耐摩耗皮膜の形成を行い、必要に応じ最表層の形成を行った。最下層、耐摩耗皮膜の組成、評価結果を表1、2に示す。 A method for coating the abrasion-resistant film of the present invention will be described. As the substrate, a test piece made of an ultrafine particle cemented carbide having a Co content of 8% by weight and a two-blade ball end mill used for evaluation of wear resistance were used. Degreasing and cleaning were sufficiently performed and placed on a jig in the container of the sputtering apparatus. The jig revolves at 5 rev / min. The substrate was heated and evacuated so that the temperature of the substrate was 550 ° C. Ar was introduced into the container, and Ar was ionized by discharge between the cathode electrode and the anode electrode provided in the container. At the same time, a pulsed bias voltage was applied to the substrate. The pulsed bias voltage was set such that the negative bias voltage was 500V-90%, the positive bias voltage was 20V-10%, and the cycle was 20 kHz. The ionized Ar collides with the substrate, and the substrate is cleaned and activated. At this time, it is also effective to use Kr or H 2 in order to further increase the cleaning efficiency and activity of the substrate. Ni was introduced into the container as Ar and a reaction gas, the whole pressure was set to 0.1 Pa, and the bias voltage was set to -50V. A 250 W, 12.7 W / cm 2 electric power is supplied to the target 1 which is a metal component of the wear resistant film installed in the sputtering evaporation source arranged in the container, and plasma discharge is performed on the target to form the film. Started. At this time, the lowermost layer was formed as needed, the abrasion-resistant film of the present invention was formed immediately above, and the outermost layer was formed as needed. Tables 1 and 2 show the composition of the lowermost layer and the abrasion-resistant film and the evaluation results.

Figure 0004522285
Figure 0004522285

Figure 0004522285
Figure 0004522285

皮膜形成後、被覆基体の温度が200℃以下になるまで冷却し、容器から取り出して皮膜の評価を行った。得られたテストピースの、最下層及び耐摩耗皮膜の組成分析は、EPMA分析及びAES分析により決定した。また、テストピースの断面から概略の膜厚を測定した。組織観察をTEMにより実施した。組織観察に用いる試料準備の方法は、試料とダミー基板とをエポキシ樹脂を用いて接着し、切断、補強リング接着、研磨、ディンプリング、Arイオンミーリングを行った。試料厚さが原子層厚さになる領域において、組織観察、格子像観察、φ1nm程度の微小部の電子線回折等を行い、組織構造を決定した。分析装置は、日本電子製JEM−2010F型の電解放射型透過型電子顕微鏡(以下、FE−TEMと記す。)を用い、加速電圧200kVで組織観察を行った。微小部の電子線回折は、カメラ長を50cm、ビーム径をφ1nmに収束させ、耐摩耗皮膜の結晶質相と非晶質相を同定した。組織構造を表2に併記した。表2中の本発明例に関し、非晶質/結晶質と記載しているものは、x値が10原子%未満の結晶粒子と10原子%以上の非晶質相が夫々確認されたことを示す。
耐摩耗皮膜のSi結合状態を解析するためにX線光電子分光分析により、Si−N、Si−O、金属Siの各結合エネルギーを認知し、Si−Nに相当する結合エネルギーの強度をI(Si−N)、Si−Oに相当する結合エネルギーの強度をI(Si−O)、金属Siに相当する結合エネルギーの強度をI(Si)とした時、I(Si−N)>I(Si)、I(Si−N)>I(Si−O)を満足することを確認した。I(Si−N)の強度比率を算出し、表2に示した。図1はX線光電子分光分析により得られた本発明例の例を示す。図1はSipに相当するスペクトルを示し、図から夫々の面積強度は、I(Si−N)=3629、I(Si)=472、I(Si−O)=515であり、全体に占めるI(Si−N)の強度比率は79%となった。全体に占めるI(Si−N)の強度比は成膜方法、被覆条件及び皮膜組成によって総合的に決定されるものである。被覆条件に関して検討した結果、I(Si−N)が50以上、95以下になる好ましい被覆条件は、本願発明の耐磨耗性皮膜の組成範囲では、反応圧が0.01〜2.0Pa、バイアス電圧は−20〜−500V、被覆基体温度が300〜600度であった。
押込み硬さの測定は、測定誤差をできるだけ低減させるために、試料表面を平滑にする目的でダイヤモンド粒子を含有したバフにより、5秒間平滑化処理したものを用いた。ナノインデンテーションにより、最大押込み荷重9.8mN、最大荷重保持時間1sec、荷重除去/荷重負荷0.98mNの条件で10点測定し、その平均値を示した。得られた荷重歪み曲線から、弾性回復率を算出し、表2に併記した。表1中の成膜方法に関して、SPはスパッタリング法、FAIPはフィルター方式アークイオンプレーティング法、PCVDはプラズマ化学蒸着法であることを示す。特に記載がない限り上記に示す成膜方法で耐摩耗皮膜の形成を行った。
After the coating was formed, the coated substrate was cooled until the temperature reached 200 ° C. or less, taken out from the container, and the coating was evaluated. The composition analysis of the lowermost layer and the abrasion-resistant film of the obtained test piece was determined by EPMA analysis and AES analysis. Moreover, the approximate film thickness was measured from the cross section of the test piece. Tissue observation was performed by TEM. As a sample preparation method used for tissue observation, a sample and a dummy substrate were bonded using an epoxy resin, and cutting, reinforcing ring bonding, polishing, dimple ringing, and Ar ion milling were performed. In the region where the sample thickness becomes the atomic layer thickness, the structure structure was determined by performing structure observation, lattice image observation, electron beam diffraction of a minute portion of about φ1 nm, and the like. The analyzer used JEM-2010F type electrolytic emission transmission electron microscope (hereinafter referred to as FE-TEM) manufactured by JEOL, and observed the structure at an acceleration voltage of 200 kV. The electron beam diffraction of the minute portion converged the camera length to 50 cm and the beam diameter to 1 nm, and identified the crystalline phase and the amorphous phase of the wear-resistant coating. The organizational structure is also shown in Table 2. Regarding the examples of the present invention in Table 2, what is described as “amorphous / crystalline” means that x particles of less than 10 atomic% and amorphous phases of 10 atomic% or more were confirmed. Show.
In order to analyze the Si bond state of the wear-resistant coating, each bond energy of Si—N, Si—O, and metal Si is recognized by X-ray photoelectron spectroscopy, and the strength of the bond energy corresponding to Si—N is expressed as I ( When the strength of the bond energy corresponding to Si-N) and Si-O is I (Si-O), and the strength of the bond energy corresponding to metal Si is I (Si), I (Si-N)> I ( It was confirmed that Si), I (Si—N)> I (Si—O) was satisfied. The intensity ratio of I (Si—N) was calculated and shown in Table 2. FIG. 1 shows an example of the present invention obtained by X-ray photoelectron spectroscopy. FIG. 1 shows a spectrum corresponding to Si 2 p. From the figure, the respective area intensities are I (Si—N) = 3629, I (Si) = 472, I (Si—O) = 515, The intensity ratio of occupied I (Si—N) was 79%. The intensity ratio of I (Si—N) occupying the whole is comprehensively determined by the film forming method, the coating conditions, and the film composition. As a result of examining the coating conditions, the preferable coating conditions in which I (Si—N) is 50 or more and 95 or less are 0.01 to 2.0 Pa in reaction pressure in the composition range of the wear-resistant film of the present invention, The bias voltage was -20 to -500 V, and the coated substrate temperature was 300 to 600 degrees.
In order to reduce the measurement error as much as possible, the indentation hardness was measured by smoothing for 5 seconds with a buff containing diamond particles for the purpose of smoothing the sample surface. Ten points were measured by nanoindentation under the conditions of a maximum indentation load of 9.8 mN, a maximum load holding time of 1 sec, and load removal / load load of 0.98 mN, and the average value was shown. The elastic recovery rate was calculated from the obtained load strain curve and listed in Table 2. Regarding the film forming method in Table 1, SP indicates a sputtering method, FAIP indicates a filter type arc ion plating method, and PCVD indicates a plasma chemical vapor deposition method. Unless otherwise specified, an abrasion-resistant film was formed by the film forming method described above.

次に、耐摩耗性を評価するために、切削評価を実施した。切削評価条件を以下に示す。切削評価結果は、逃げ面摩耗幅が0.1mmに達した切削長もしくは著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ、焼け等などの状態に達した切削長を切削寿命として表2に示した。また、10m未満の切削寿命は切り捨てて表記した。
(切削条件)
工具 :2枚刃ボールエンドミル(φ6−3R)
切削方法 :底面超高速仕上げ加工
被削材 :粉末高速度鋼、HRC67
切り込み :軸方向、0.05mm、径方向、0.2mm
主軸回転数 :50kmin−1、接触最外径における切削速度は171m/min
テーブル送り:8m/min
切削油 :無し、ドライ切削
表2に本発明例、比較例、表3に従来例の評価結果を示した。
Next, cutting evaluation was performed in order to evaluate wear resistance. The cutting evaluation conditions are shown below. The result of cutting evaluation is the cutting length when the flank wear width has reached 0.1 mm or the cutting length that has reached a state that is extremely unstable, such as the occurrence of sparks, abnormal noise, flaking of the work surface, or burning. The cutting life is shown in Table 2. Moreover, the cutting life of less than 10 m was rounded down.
(Cutting conditions)
Tool: 2-flute ball end mill (φ6-3R)
Cutting method: Ultra-high speed bottom finish Work material: Powdered high speed steel, HRC67
Cutting depth: axial direction, 0.05 mm, radial direction, 0.2 mm
Spindle speed: 50 kmin −1 , cutting speed at the outermost contact diameter is 171 m / min
Table feed: 8m / min
Cutting oil: None, dry cutting Table 2 shows the results of the present invention, comparative examples, and Table 3 shows the evaluation results of the conventional examples.

Figure 0004522285
Figure 0004522285

表2に示す本発明例は、AIP法で被覆した比較例10、従来例20に比べ、格段に切削寿命が長く、優れていた。本願発明のSP法が密着強度の改善に極めて有効であることを示した。これは単純に皮膜硬度のみの差ではない。比較例11から比較例13と比較し、x値が極めて重要であることを示した。
本発明例1から本発明例4は、SiとCr、Nb、Al、Cuの組合せの場合を示す。本発明例4は、皮膜組織に結晶粒子と非晶質相が認めらたものの、B/A値が0.05であり、非晶質相の割合が多く見られた。結晶粒子と非晶質相から適切な割合で構成される場合が、切削寿命の関係からより好ましい。
本発明例5、6及び本発明例7は、耐摩耗皮膜において、Siと2種の金属元素から構成される場合を示す。本発明例8、9は、非金属成分として、NとB、NとBとC、NとCを含有する場合を示す。B添加手段としては、硼化物ターゲットをスパッタすることによっても得られるが、ガスとして添加することも可能である。この場合B含有ガスをイオン化するための手段が別途必要である。C添加手段としては、炭化物ターゲットをスパッタすることによっても得られるが、炭化水素系を添加することも可能である。
The inventive examples shown in Table 2 were superior in comparison with Comparative Example 10 and Conventional Example 20 coated with the AIP method, with a significantly longer cutting life. It was shown that the SP method of the present invention is extremely effective in improving the adhesion strength. This is not simply a difference in film hardness. Compared with Comparative Example 11 to Comparative Example 13 , it was shown that the x value was extremely important.
Invention Example 1 to Invention Example 4 show a combination of Si and Cr, Nb, Al, and Cu. In Invention Example 4, although crystal particles and an amorphous phase were observed in the film structure, the B / A value was 0.05, and a large proportion of the amorphous phase was observed. It is more preferable that the crystal grains and the amorphous phase are configured in an appropriate ratio in terms of cutting life.
Invention Examples 5 and 6 and Invention Example 7 show cases where the wear-resistant coating is composed of Si and two metal elements. Invention Examples 8 and 9 show cases where N and B, N and B and C, and N and C are contained as non-metallic components. The B addition means can be obtained by sputtering a boride target, but it can also be added as a gas. In this case, a means for ionizing the B-containing gas is required separately. The C addition means can be obtained by sputtering a carbide target, but it is also possible to add a hydrocarbon system.

表2の比較例10は成膜手段がAIP法の場合を示す。本願発明の皮膜組成から構成されるが、従来例に比べ耐摩耗性の改善には至らなかった。比較例11から比較例13は、耐摩耗皮膜内のSiが、本願発明範囲外の場合を示す。比較例14は、基体のCo含有量が13.5重量%の超硬合金の場合を示す。これらの耐摩耗性の改善効果は小さかった。
表3の従来例15は最下層がTiN、その上層に(TiAl)N系皮膜を被覆した場合、従来例16は(TiAl)N系皮膜を被覆した場合、従来例17は(AlTiSi)N系皮膜を被覆した場合、従来例18は(AlCrSi)N系皮膜を被覆した場合、従来例19は(TiSi)N系皮膜を被覆した場合、従来例20は最下層が(AlTi)N、その上層に(TiSiN)を被覆した場合を示す。切削寿命はいずれの場合も短寿命であった。
Comparative Example 10 in Table 2 shows the case where the film forming means is the AIP method. Although composed of the coating composition of the present invention, the wear resistance was not improved as compared with the conventional example. Comparative Examples 11 to 13 show the case where Si in the wear-resistant coating is outside the scope of the present invention. Comparative Example 14 shows a case of a cemented carbide having a Co content of 13.5% by weight. These improvements in wear resistance were small.
Conventional example 15 in Table 3 is TiN as the lowermost layer, and (TiAl) N-based film is coated on the upper layer, Conventional example 16 is coated with (TiAl) N-based film, and Conventional example 17 is (AlTiSi) N-based. When the film is coated, Conventional Example 18 is coated with an (AlCrSi) N-based film, Conventional Example 19 is coated with a (TiSi) N-based film, and Conventional Example 20 has a lowermost layer of (AlTi) N and its upper layer. The case where (TiSiN) is coated is shown. The cutting life was short in all cases.

図1は、本発明例のX線光電子分光分析結果を示す。FIG. 1 shows the results of X-ray photoelectron spectroscopy analysis of the example of the present invention.

Claims (12)

基体に少なくとも1層以上を被覆した耐摩耗皮膜であって、該耐摩耗皮膜の金属成分が(Si 100−x)、但し、xの値は金属成分のみの原子比の和を1とした場合の原子%で表し、15原子%以上、25原子%以下であり、Mは、Cr、Al、Nb、Mo、Y、Cu、Niから選択される1種以上であり、非金属成分が(N 100−y)、但し、yの値は非金属成分のみの原子比の和を1とした場合の原子%で表し、10原子%以上、99.9原子%以下であり、GはC、O、B、Cl、S、P、H、Fから選択される1種以上であり、該耐摩耗皮膜は、該x値が10原子%未満のSiを含む結晶粒子と該x値が10原子%以上の非晶質相とが存在していることを特徴とする耐摩耗皮膜。 A wear-resistant coating coated over at least one layer to the substrate, the metal component of resistant wear coating (Si x M 100 -x), where the value of x, the sum of the atomic ratio of only the metal component 1 The atomic% is 15 atomic% or more and 25 atomic% or less, and M is one or more selected from Cr, Al, Nb, Mo, Y, Cu, and Ni, and is a nonmetallic component. There (N y G 100 -y), where the value of y represents the sum of the atomic ratio of only non-metallic components in atomic% in the case of a 1, 10 atomic% or more, be 99.9 atomic% or less , G is at least one selected from C, O, B, Cl, S, P, H, F, and the wear-resistant coating comprises crystal grains containing Si having an x value of less than 10 atomic% and A wear-resistant coating film characterized by the presence of an amorphous phase having an x value of 10 atomic% or more. 請求項1記載の耐摩耗皮膜において、該耐摩耗皮膜はX線光電子分光分析により、少なくともSi−N、Si−O及び金属Siの結合エネルギーを有し、Si−Nに相当する結合エネルギーの強度をI(Si−N)、Si−Oに相当する結合エネルギーの強度をI(Si−O)及び金属Siに相当する結合エネルギーの強度をI(Si)とした時、I(Si−N)>I(Si)、I(Si−N)>I(Si−O)を満足し、I(Si−N)の比率が50%以上、95%以下であることを特徴とする耐摩耗皮膜。 2. The wear-resistant film according to claim 1, wherein the wear-resistant film has a bond energy of at least Si—N, Si—O, and metal Si by X-ray photoelectron spectroscopy, and has a bond energy strength corresponding to Si—N. Where I (Si-N), the bond energy strength corresponding to Si-O is I (Si-O), and the bond energy strength corresponding to metal Si is I (Si). A wear-resistant film characterized by satisfying> I (Si), I (Si-N)> I (Si-O), and a ratio of I (Si-N) being 50% or more and 95% or less. 請求項1又は2記載の耐摩耗皮膜において、該耐摩耗皮膜の膜厚方向の該x値が異なることを特徴とする耐摩耗皮膜。 The wear-resistant film according to claim 1 or 2, wherein the x value in the film thickness direction of the wear-resistant film is different. 請求項1乃至3いずれかに記載の耐摩耗皮膜において、該耐摩耗皮膜の皮膜硬度が30GPa以上、80GPa以下であることを特徴とする耐摩耗皮膜。 In the wear coating according to any one of claims 1 to 3, resistant film hardness of the wear coating is more than 30 GPa, the wear coating that equal to or less than 80 GPa. 請求項1乃至4いずれかに記載の耐摩耗皮膜において、該耐摩耗皮膜の弾性回復率が32%以上、50%未満であることを特徴とする耐摩耗皮膜。 5. The wear-resistant film according to claim 1, wherein an elastic recovery rate of the wear-resistant film is 32% or more and less than 50%. 請求項1乃至5いずれかに記載の耐摩耗皮膜において、該耐摩耗皮膜が最表層に被覆されていることを特徴とする耐摩耗皮膜。 6. The wear-resistant film according to claim 1, wherein the wear-resistant film is coated on the outermost layer. 請求項6記載の耐摩耗皮膜において、該耐摩耗皮膜の最表面から膜厚方向に500nm以内で、N以外の非金属成分の元素濃度が最大となることを特徴とする耐摩耗皮膜。 The wear-resistant film according to claim 6, wherein the element concentration of nonmetallic components other than N is maximum within 500 nm in the film thickness direction from the outermost surface of the wear-resistant film. 請求項1乃至6いずれかに記載の耐摩耗皮膜において、該耐摩耗皮膜の金属成分が、SiCr、SiAl、SiCrAl、SiCu、SiNi、SiYの何れかであることを特徴とする耐摩耗皮膜。 The wear-resistant film according to any one of claims 1 to 6, wherein the metal component of the wear-resistant film is any one of SiCr, SiAl, SiCrAl, SiCu, SiNi, and SiY. 請求項1乃至8いずれかに記載の耐摩耗皮膜において、該耐摩耗皮膜とは別の耐摩耗皮膜が少なくとも1層あり、該別の耐摩耗皮膜の金属成分が、Ti、Cr、Al、Si、Nb、Moの1種以上からなり、非金属成分が、N、C、O、Bの1種以上からなることを特徴とする耐摩耗皮膜。 The wear-resistant film according to any one of claims 1 to 8, wherein there is at least one wear-resistant film different from the wear-resistant film, and the metal component of the other wear-resistant film is Ti, Cr, Al, Si. A wear-resistant film comprising one or more of N, Nb, and Mo, and the nonmetallic component comprising one or more of N, C, O, and B. 請求項1乃至9いずれかに記載の耐摩耗皮膜を被覆したことを特徴とする耐摩耗皮膜被覆切削工具。 A wear-resistant coating-coated cutting tool, which is coated with the wear-resistant coating according to any one of claims 1 to 9. 請求項10記載の耐摩耗皮膜を被覆した切削工具において、該耐摩耗皮膜の最表面の組成が、SiO、AlO、CrO、AlN、BN、CN、SiNから選択される1種であることを特徴とする耐摩耗皮膜被覆切削工具。 The cutting tool coated with the wear-resistant film according to claim 10, wherein the composition of the outermost surface of the wear-resistant film is one selected from SiO, AlO, CrO, AlN, BN, CN, and SiN. Wear-resistant coating coated cutting tool. 基体に少なくとも1層以上を被覆した耐摩耗皮膜において、該耐摩耗皮膜の金属成分が(Si 100−x)、但し、xの値は金属成分のみの原子比の和を1とした場合の原子%で表し、15原子%以上、25原子%以下であり、Mは、Cr、Al、Nb、Mo、Y、Cu、Niから選択される1種以上であり、非金属成分が(N 100−y)、但し、yの値は非金属成分のみの原子比の和を1とした場合の原子%で表し、10原子%以上、99.9原子%以下であり、GはC、O、B、Cl、S、P、H、Fから選択される1種以上であり、該耐摩耗皮膜は、該x値が10原子%未満のSiを含む結晶粒子と該x値が10原子%以上の非晶質相が存在し、該皮膜構造はスパッタリング法、プラズマ化学蒸着法、フィルター方式アークイオンプレーティング法の何れか又はこれらの組合せにより形成することを特徴とする耐摩耗皮膜の製造方法。 In the wear coating coated over at least one layer to the substrate, the metal component of resistant wear coating (Si x M 100 -x), where the value of x was 1 the sum of atomic ratios of only the metal component In the case of atomic%, it is 15 atomic% or more and 25 atomic% or less, M is at least one selected from Cr, Al, Nb, Mo, Y, Cu, and Ni, and the nonmetallic component is ( N y G 100 -y), where the value of y represents the sum of the atomic ratio of only non-metallic components in atomic% in the case of a 1, 10 atomic% or more and less 99.9 atomic%, G is C, O, B, Cl, and the S, P, H, 1 or more selected from F, resistant wear coating, crystal grains and the x value the x value containing Si of less than 10 atomic% Exists in an amorphous phase of 10 atomic% or more, and the film structure is formed by sputtering, plasma chemical vapor deposition, filter A method for producing a wear-resistant coating film, which is formed by any one of a system arc ion plating method or a combination thereof.
JP2005039948A 2005-02-17 2005-02-17 Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating Active JP4522285B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039948A JP4522285B2 (en) 2005-02-17 2005-02-17 Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039948A JP4522285B2 (en) 2005-02-17 2005-02-17 Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating

Publications (2)

Publication Number Publication Date
JP2006225708A JP2006225708A (en) 2006-08-31
JP4522285B2 true JP4522285B2 (en) 2010-08-11

Family

ID=36987331

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039948A Active JP4522285B2 (en) 2005-02-17 2005-02-17 Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating

Country Status (1)

Country Link
JP (1) JP4522285B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5096715B2 (en) * 2006-09-21 2012-12-12 株式会社神戸製鋼所 Hard coating and hard coating tool
WO2008050384A1 (en) * 2006-10-23 2008-05-02 Osg Corporation Hard laminated coating, tool covered with hard laminated coating, and method of forming coating
JP2008279563A (en) * 2007-05-11 2008-11-20 Sumitomo Electric Ind Ltd Surface-coated cutting tool
JP5234516B2 (en) * 2009-03-04 2013-07-10 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that provides excellent fracture resistance and wear resistance
SE533884C2 (en) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminated coated cutting tool
SE533883C2 (en) * 2009-06-01 2011-02-22 Seco Tools Ab Nanolaminated coated cutting tool
JP2011005575A (en) * 2009-06-24 2011-01-13 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and method of manufacturing the same
US8409695B2 (en) * 2010-05-28 2013-04-02 Kennametal Inc. Multilayer nitride hard coatings
JP6319568B2 (en) * 2014-05-16 2018-05-09 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
JP6394939B2 (en) * 2014-05-16 2018-09-26 三菱マテリアル株式会社 THERMISTOR, MANUFACTURING METHOD THEREOF, AND FILM TYPE THERMISTOR SENSOR
JP6319566B2 (en) * 2014-05-16 2018-05-09 三菱マテリアル株式会社 Metal nitride material for thermistor, manufacturing method thereof, and film type thermistor sensor
DE102015112919B4 (en) 2015-08-06 2019-12-24 Infineon Technologies Ag Semiconductor components, a semiconductor diode and a method for forming a semiconductor component
KR102001877B1 (en) * 2017-08-11 2019-07-22 주식회사 와이지-원 Method for Forming Coating Layers which are made of Distributed Amorphous and Nanocrystalline Alloy on a Cutting Tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034186A (en) * 2002-07-01 2004-02-05 Hitachi Tool Engineering Ltd Coated cutting tool, and method for coating the same
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
JP2004292835A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd Hard coating

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004034186A (en) * 2002-07-01 2004-02-05 Hitachi Tool Engineering Ltd Coated cutting tool, and method for coating the same
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2004268250A (en) * 2003-02-17 2004-09-30 Hitachi Tool Engineering Ltd Coating end mill and target for coating
JP2004292835A (en) * 2003-03-25 2004-10-21 Kobe Steel Ltd Hard coating

Also Published As

Publication number Publication date
JP2006225708A (en) 2006-08-31

Similar Documents

Publication Publication Date Title
JP4522285B2 (en) Abrasion-resistant coating, wear-resistant coating-coated cutting tool, and method for producing abrasion-resistant coating
JP3934136B2 (en) Hard film coating member and coating method thereof
JP6481983B2 (en) Surface coating tool
JP4373897B2 (en) Hard film coating member and coating method thereof
JP5662680B2 (en) Surface coated cutting tool
JP6486885B2 (en) Coated cutting tools
JP4441494B2 (en) Hard coating coated member
KR102523236B1 (en) surface coating cutting tools
KR20150045425A (en) Surface-coated cutting tool
JP4707541B2 (en) Hard coating coated member
CN110691662B (en) Coated cutting tool
KR102198744B1 (en) Surface covering cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP2018094669A (en) Surface-coated cubic boron nitride sintered tool which satisfies both abrasion resistance and defect resistance
JP2017154200A (en) Surface-coated cutting tool
WO2020184352A1 (en) Surface-coated cutting tool
JP4645944B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP2019171483A (en) Surface-coated cutting tool
JP2012206222A (en) Surface coating cutting tool having excellent oxidation resistance in full hard coating layer
JP5835305B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP4649946B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2007307652A (en) Coated tool and manufacturing method thereof
JP2006088229A (en) Small-diameter coated tool and method of coating the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091002

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100524

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100525

R150 Certificate of patent or registration of utility model

Ref document number: 4522285

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130604

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350