JP2007307652A - Coated tool and manufacturing method thereof - Google Patents

Coated tool and manufacturing method thereof Download PDF

Info

Publication number
JP2007307652A
JP2007307652A JP2006138464A JP2006138464A JP2007307652A JP 2007307652 A JP2007307652 A JP 2007307652A JP 2006138464 A JP2006138464 A JP 2006138464A JP 2006138464 A JP2006138464 A JP 2006138464A JP 2007307652 A JP2007307652 A JP 2007307652A
Authority
JP
Japan
Prior art keywords
film
coated tool
coated
hard
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006138464A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2006138464A priority Critical patent/JP2007307652A/en
Publication of JP2007307652A publication Critical patent/JP2007307652A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated tool excellent in surface smoothness, which is improved in peeling resistance by exhibiting high hardness and heat resistance of a film including Si and enhancing its toughness. <P>SOLUTION: In the coated tool with the film coated on the surface of a base material, at least one layer of the film is a hard nitride film including Si, and the hard film includes Kr. Preferably, the Kr content of the hard film is not less than 0.01 and not more than 0.6 by atomic%. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本願発明は、硬質皮膜を被覆した耐摩耗性を必要とする被覆工具、及びその製造方法に関する。   The present invention relates to a coated tool that requires a wear resistance coated with a hard coating, and a method for manufacturing the same.

皮膜の高硬度化、耐熱性を改善することを目的として、Siを含有した被覆工具が以下の特許文献1から3に、特許文献4には、Krを含有した皮膜が開示されている。   For the purpose of improving the hardness and heat resistance of the coating, Patent Documents 1 to 3 below describe Si-containing coated tools, and Patent Document 4 discloses a coating containing Kr.

特開平8−118106号公報JP-A-8-118106 特開2002−337006号公報JP 2002-337006 A 特開2005−344148号公報JP-A-2005-344148 特開2000−80473号公報JP 2000-80473 A

特許文献1は、高速連続切削に対して優れた切削性能を示す硬質層被覆切削工具として、TiとSiの硬質層を被覆した硬質層被覆切削工具が開示されている。しかし、この硬質層はSi含有により圧縮残留応力が多大になり、皮膜が著しく脆い欠点がある。特許文献2、3は、Si含有皮膜特有の高硬度及び耐酸化性を更に改善し、高靭性で耐チッピング性に優れ、高速切削加工に最適である被覆切削工具が開示されている。しかし、Si含有皮膜の脆性を大幅に改善されたものの、耐剥離性が十分ではない。特許文献4は、被膜中に、He、Ne、Ar、Kr、Xeから選ばれる少なくとも1種の原子を含有させた炭素系被膜が開示されている。しかし、窒化物の硬質皮膜に関しては、具体的検討は行われていない。また、炭素系被膜であることから、耐酸化性に乏しく、耐酸化性は全く検討されていない。
そこで、本願発明の目的は、Siを含有する皮膜の高硬度を活かし、靭性を高めることにより耐剥離性を改善し、更に耐酸化性及び表面平滑性に優れる被覆工具及びその製造方法を提供することである。
Patent Document 1 discloses a hard layer-coated cutting tool in which a hard layer of Ti and Si is coated as a hard layer-coated cutting tool that exhibits excellent cutting performance for high-speed continuous cutting. However, this hard layer has a drawback that the compressive residual stress becomes large due to the Si content, and the coating is extremely brittle. Patent Documents 2 and 3 disclose a coated cutting tool that further improves the high hardness and oxidation resistance unique to a Si-containing film, has high toughness and excellent chipping resistance, and is optimal for high-speed cutting. However, although the brittleness of the Si-containing film is greatly improved, the peel resistance is not sufficient. Patent Document 4 discloses a carbon-based film in which at least one atom selected from He, Ne, Ar, Kr, and Xe is contained in the film. However, no specific study has been conducted on the hard nitride film. Moreover, since it is a carbon-type film, oxidation resistance is scarce and oxidation resistance is not examined at all.
Accordingly, an object of the present invention is to provide a coated tool that improves the peel resistance by increasing the toughness by utilizing the high hardness of a coating film containing Si, and further provides a coated tool excellent in oxidation resistance and surface smoothness, and a method for producing the same. That is.

本願発明の被覆工具は、基材表面に皮膜を被覆した被覆工具において、該皮膜の少なくとも1層は、Siを含有した窒化物の硬質皮膜であり、該硬質皮膜はKrを含有することを特徴とする被覆工具である。本構成を採用することにより、Siを含有する皮膜の高硬度を活かし、靭性を高めることにより耐剥離性を改善し、更に耐酸化性、及び表面平滑性に優れ、摩耗環境下において、チッピングや膜剥離が発生し難く、長時間安定して使用可能な、優れた寿命を有する被覆工具を実現できる。   The coated tool of the present invention is a coated tool in which a film is coated on the surface of a base material, wherein at least one layer of the film is a hard film of nitride containing Si, and the hard film contains Kr. This is a coated tool. By adopting this configuration, taking advantage of the high hardness of the coating film containing Si, improving the toughness, improving the peel resistance, further excellent in oxidation resistance and surface smoothness, in the wear environment, chipping and It is possible to realize a coated tool having an excellent life that does not easily cause film peeling and can be used stably for a long time.

本願発明の被覆工具は、硬質皮膜のKr含有量が原子%で、0.01以上、0.6以下であることが好ましい。硬質皮膜は、Siの1部を、Ti、Cr、Nb、Al、Zr、Y、V、W、Moから選択される1種以上の金属元素で置換し、Nの1部を、C、O、B、Sから選択される1種以上の非金属元素で置換することが好ましい。硬質皮膜のX線回折における回折ピークのうち、面心立方構造の(200)から算出される半価幅が2θで1度以上であることが好ましい。   In the coated tool of the present invention, the Kr content of the hard coating is preferably at least 0.01 and not more than 0.6 in atomic%. In the hard coating, 1 part of Si is replaced with one or more metal elements selected from Ti, Cr, Nb, Al, Zr, Y, V, W, and Mo, and 1 part of N is replaced with C, O Substitution with one or more non-metallic elements selected from B, S is preferable. Of the diffraction peaks in X-ray diffraction of the hard coating, the half width calculated from (200) of the face-centered cubic structure is preferably 1 ° or more at 2θ.

本願発明の被覆方法は、少なくともSiを含有した固体蒸発源を用いた物理蒸着法であり、気体成分としてKr及びNを含有した減圧雰囲気で、窒化物の硬質皮膜を被覆する被覆工具の製造方法であって、窒素ガスに対するKrガスの流量体積比率Rが、0.2≦R≦4であることが好ましい。   The coating method of the present invention is a physical vapor deposition method using a solid evaporation source containing at least Si, and a method for producing a coated tool for coating a hard nitride film in a reduced pressure atmosphere containing Kr and N as gas components And it is preferable that the flow volume ratio R of Kr gas with respect to nitrogen gas is 0.2 <= R <= 4.

本願発明により、Siを含有する皮膜の高硬度を活かし、靭性を高めることにより耐剥離性を改善し、更に耐酸化性、及び表面平滑性に優れる被覆工具及びその製造方法を提供することできた。これにより摩耗環境下においても、チッピングや膜剥離が発生し難く、長時間安定して使用可能な優れた寿命を有する被覆工具が実現できた。   According to the present invention, it was possible to provide a coated tool that improves the peel resistance by increasing the toughness by utilizing the high hardness of the coating film containing Si, and further has excellent oxidation resistance and surface smoothness, and a method for producing the same. . As a result, it was possible to realize a coated tool having excellent life that can be used stably for a long period of time without causing chipping or film peeling even in a wear environment.

本願発明の被覆工具に被覆する硬質皮膜は、Siを含有した窒化物皮膜にKrを含有させることにより、皮膜硬度を低下させることなく、Si含有皮膜の靭性が格段に向上し、更に耐酸化性、及び表面平滑性を改善することができる。本願発明の硬質皮膜の靭性が向上する理由は、Krが主に結晶粒界に存在し、クラックの進展を抑制することに加え、Si含有皮膜の残留圧縮応力を低減できるためである。硬質皮膜の耐酸化性が向上する理由は、主に結晶粒界を介して拡散する酸素の進行をKrが阻害する効果による。硬質皮膜の表面平滑性が向上する理由は、Ar等を添加する場合に比べ、被覆時に硬質皮膜を構成する成分のイオン化が促進され、マクロパーティクルが大幅に減少することと、硬質皮膜表面への打ち込み効率が向上し、表面の結晶粒が平滑に成長するためである。硬質皮膜の好ましいKr含有量は原子%で、0.01以上、0.6以下である。0.01未満の場合、Krを含有する効果が薄れ、残留圧縮応力が増加する傾向にあり、耐剥離性が低下する傾向にある。一方、0.6を超えて多い場合、硬度が低下する傾向にあり、耐摩耗性に乏しくなるためである。
本願発明の硬質皮膜は、Siを含有する窒化物の硬質皮膜である。Siを含有する窒化物は、高硬度で耐酸化性に優れ、工具の耐摩耗性改善に有効であるが、その反面極めて脆い特性を有する。そのため、耐剥離性を考慮し、Si含有量は精々総金属元素に対して、原子%濃度比で25%未満が実用化されている。ここで、Krを含有することにより、Si含有皮膜の脆性を大幅に改善でき、Si含有量を総金属元素に対して、原子%濃度比で50%未満まで含有させることも可能となり、耐酸化性を改善することができ好ましい。
The hard film to be coated on the coated tool of the present invention is that Kr is contained in a nitride film containing Si, so that the toughness of the Si-containing film is remarkably improved and the oxidation resistance is further improved without reducing the film hardness. , And surface smoothness can be improved. The reason why the toughness of the hard coating of the present invention is improved is that Kr is mainly present at the grain boundaries, and in addition to suppressing the progress of cracks, the residual compressive stress of the Si-containing coating can be reduced. The reason why the oxidation resistance of the hard coating is improved is mainly due to the effect of Kr inhibiting the progress of oxygen diffusing through the grain boundaries. The reason why the surface smoothness of the hard coating is improved is that, compared to the case of adding Ar or the like, the ionization of the components constituting the hard coating is promoted during coating, and the macro particles are greatly reduced, and the surface of the hard coating is improved. This is because the implantation efficiency is improved and the crystal grains on the surface grow smoothly. The preferable Kr content of the hard coating is at least 0.01 and not more than 0.6 in atomic%. If it is less than 0.01, the effect of containing Kr is weakened, the residual compressive stress tends to increase, and the peel resistance tends to decrease. On the other hand, if it exceeds 0.6, the hardness tends to decrease and the wear resistance becomes poor.
The hard film of the present invention is a hard film of nitride containing Si. A nitride containing Si has high hardness and excellent oxidation resistance, and is effective in improving the wear resistance of the tool, but on the other hand, it has extremely brittle characteristics. Therefore, in consideration of peeling resistance, the Si content is practically less than 25% in terms of atomic% concentration ratio with respect to the total metal elements. Here, by containing Kr, the brittleness of the Si-containing film can be greatly improved, and the Si content can be contained in an atomic% concentration ratio of less than 50% with respect to the total metal elements. It is possible to improve the properties.

本願発明の硬質皮膜の金属元素は、Siの1部を、Ti、Cr、Nb、Al、Zr、Y、V、W、Moから選択される1種以上の金属元素で置換し、Nの1部を、C、O、B、Sから選択される1種以上の非金属元素で置換したことにより、高硬度、高耐酸化性、高潤滑性、低摩擦抵抗になり、優れた被覆工具が実現でき好ましい。例えば、Siの1部をTi、Nb、Cr、Alから選択される1種以上の元素と置換することは、特に皮膜の高硬度化に寄与する効果を有する。W、Y、Al、Mo等の1種以上と置換することは特に耐熱性の向上に、Nb、Al、Y、Cr等の1種以上と置換することは特に耐酸化性の向上に、W、Cr等の1種以上と置換することは特に強度と耐塑性変形性の改善に、V、Zr、Mo、W等の1種以上と置換することは特に摺動性の向上に効果を有し、好ましい。皮膜硬度、耐酸化性の改善が著しい添加元素は、Ti、Al、Cr、Nb等が挙げられる。耐摩耗性の観点から、好ましい金属元素の成分は、TiSi、TiAlSi、AlCrSi、AlSi、AlNbCrSi、TiSiNbAlが挙げられる。また非金属成分のうち、Nの40原子%未満を、C、B、O、Sの非金属元素で置換することが、更に好ましい。Bを含有することにより、特に耐熱性、及び潤滑性に優れ、C、Sを含有することにより、特に耐溶着性、及び摺動特性を大幅に改善することが出来、好ましい。好ましい非金属元素の成分は、NC、NB、NCB、NCOB、である。   The metal element of the hard coating of the present invention replaces a part of Si with one or more metal elements selected from Ti, Cr, Nb, Al, Zr, Y, V, W, and Mo, and 1 of N By replacing the part with one or more non-metallic elements selected from C, O, B, and S, high hardness, high oxidation resistance, high lubricity, and low friction resistance are obtained, and an excellent coated tool is obtained. Realized and preferred. For example, replacing one part of Si with one or more elements selected from Ti, Nb, Cr, and Al has an effect that contributes particularly to increasing the hardness of the film. Replacing with one or more of W, Y, Al, Mo, etc. particularly improves the heat resistance, and substituting with one or more of Nb, Al, Y, Cr, etc. particularly improves the oxidation resistance. Substitution with one or more of Cr, Cr, etc. is particularly effective for improving strength and plastic deformation resistance, and substitution with one or more of V, Zr, Mo, W, etc. is particularly effective for improving slidability. And preferred. Examples of additive elements that are remarkably improved in film hardness and oxidation resistance include Ti, Al, Cr, and Nb. From the viewpoint of wear resistance, preferred metal element components include TiSi, TiAlSi, AlCrSi, AlSi, AlNbCrSi, and TiSiNbAl. Moreover, it is more preferable to substitute less than 40 atomic% of N with nonmetallic elements of C, B, O, and S among nonmetallic components. By containing B, heat resistance and lubricity are particularly excellent, and by containing C and S, welding resistance and sliding characteristics can be significantly improved, which is preferable. Preferred non-metallic element components are NC, NB, NCB, NCOB.

本願発明の硬質皮膜は、X線回折における回折ピークのうち、面心立方構造の(200)から算出される半価幅が2θで1度以上であることが好ましい。硬質皮膜の結晶構造は、少なくとも立方晶B1構造の面心立方構造からの回折ピークを有する構造が好ましく、六方晶B4構造の最密六方構造、又はアモルファス相を含んでもよい。最密六方構造を含有することにより、特に耐酸化性が向上して好ましい。また、面心立方構造とアモルファス相との混合組織とすることにより、皮膜の硬度が向上し、耐摩耗性が向上することから、好ましい。面心立方構造の(200)から算出される半価幅が2θで1度以上であることが好ましい。これより、皮膜の硬度向上とKrによる高靭性化の効果が顕著に発揮され、工具の耐摩耗性を大幅に改善することが出来て好ましい。皮膜の硬度向上と高靭性化のバランスから、半価幅が2θで1度以上、2.5度以下がより好ましく、1.3度以上、2.5度以下が、最も好ましい。硬質皮膜は、硬度が30GPa以上、60GPa以下が、工具の耐摩耗性を改善することでき、好ましい。硬質皮膜内のKrを定量、及び定性する手段としては、X線光電子分光分析、二次イオン質量分析、もしくは電子線プローブマイクロアナライザー等が挙げられる。   The hard film of the present invention preferably has a half width calculated from (200) of the face-centered cubic structure of diffraction peaks in X-ray diffraction being 2 degrees or more at 2θ. The crystal structure of the hard coating is preferably a structure having at least a diffraction peak from the face-centered cubic structure of the cubic B1 structure, and may include a close-packed hexagonal structure of the hexagonal B4 structure or an amorphous phase. By containing a close-packed hexagonal structure, oxidation resistance is particularly improved, which is preferable. In addition, a mixed structure of a face-centered cubic structure and an amorphous phase is preferable because the hardness of the film is improved and the wear resistance is improved. The half-value width calculated from (200) of the face-centered cubic structure is preferably 1 ° or more at 2θ. Accordingly, the effect of improving the hardness of the film and increasing the toughness due to Kr is remarkably exhibited, and the wear resistance of the tool can be greatly improved, which is preferable. From the balance between improving the hardness of the film and increasing the toughness, the half width is preferably 2 ° or more and 2 ° or less at 2θ, and most preferably 1.3 ° or more and 2.5 ° or less. The hardness of the hard coating is preferably 30 GPa or more and 60 GPa or less because the wear resistance of the tool can be improved. Examples of means for quantifying and qualifying Kr in the hard coating include X-ray photoelectron spectroscopy, secondary ion mass spectrometry, or electron beam probe microanalyzer.

本願発明の被覆方法は、少なくともSiを含有した固体蒸発源を用いた物理蒸着法であり、気体成分としてKr及びNを含有した減圧雰囲気で、窒化物の硬質皮膜を被覆する製造方法が好ましい。硬質皮膜の金属成分であるSiは、固体蒸発源を用いた物理蒸着法により、硬質皮膜に添加することにより、Krを添加する効果が顕著に現れ、高硬度で高靭性からなる硬質皮膜が得られる。気体成分としてKr及びNを含有した減圧雰囲気で、Si含有皮膜を被覆することにより、圧縮残留応力が低減でき、皮膜の靭性を高めることが出来、耐剥離性が格段に向上する。製造方法において、窒素ガスに対するKrガスの流量体積比率Rを、0.2≦R≦4の範囲とすることにより、Si含有硬質皮膜が高硬度で靭性に優れ、又平滑性にも優れることから好ましい。R値が0.2未満の場合、Kr添加の効果が十分ではなく、脆い特性が現れ、耐剥離性が低下する傾向にある。また硬質皮膜内にKrが検出されない場合が確認された。R値が4を超えて大きいと、皮膜硬度が低下する傾向にあり、耐摩耗性が低下する。Si含有硬質皮膜内にKrをより効果的に含有させるために、被覆時に印加するバイアス電圧をパルス状のバイアス電圧とすることにより、結晶粒界がより明確になり、Krを効果的に結晶粒界に取り込むことが出来、好ましい。バイポラ−パルス状のパルスバイアス電圧がより好ましく、その反転時間を長く設定することが好ましい。Kr及びN以外にArを用いることも可能である。この場合、窒素ガスに対するKrガスの流量体積比率Rが、1.2以上、4以下が耐摩耗性の観点から適している。   The coating method of the present invention is a physical vapor deposition method using a solid evaporation source containing at least Si, and a manufacturing method for coating a hard nitride film in a reduced-pressure atmosphere containing Kr and N as gas components is preferable. When Si, which is a metal component of the hard film, is added to the hard film by a physical vapor deposition method using a solid evaporation source, the effect of adding Kr appears remarkably, and a hard film having high hardness and high toughness is obtained. It is done. By covering the Si-containing film in a reduced-pressure atmosphere containing Kr and N as gas components, the compressive residual stress can be reduced, the toughness of the film can be increased, and the peel resistance is greatly improved. In the production method, by setting the flow volume ratio R of Kr gas to nitrogen gas in the range of 0.2 ≦ R ≦ 4, the Si-containing hard film has high hardness and excellent toughness, and also has excellent smoothness. preferable. When the R value is less than 0.2, the effect of Kr addition is not sufficient, brittle characteristics appear, and the peel resistance tends to decrease. Further, it was confirmed that Kr was not detected in the hard coating. When the R value exceeds 4 and the film hardness tends to decrease, the wear resistance decreases. In order to contain Kr more effectively in the Si-containing hard film, the grain boundary becomes clearer by making the bias voltage applied at the time of coating a pulsed bias voltage, and Kr can be effectively used as a crystal grain. It can be taken into the field, which is preferable. A bipolar-pulse-like pulse bias voltage is more preferable, and the inversion time is preferably set long. Ar can be used in addition to Kr and N. In this case, a flow volume ratio R of Kr gas to nitrogen gas of 1.2 or more and 4 or less is suitable from the viewpoint of wear resistance.

本願発明の該硬質皮膜は、単一層においても優れた耐摩耗性を示すが、耐摩耗性、耐剥離性を改善し、工具寿命を延長するために、基材と該硬質皮膜の中間層として、Ti、Cr、Al、Nb、Yから選択される1種以上の窒化物皮膜を被覆することができ、好ましい。優れた耐摩耗性を発揮する中間層の成分は、(TiAl)N、(AlCr)N、(AlNb)N、(AlCrTi)N、(AlCrY)Nが特に好ましい。中間層と硬質皮膜の各層の厚さを2nm以上、20nm以下の範囲で、500層以上、8000層以下で積層することにより、皮膜全体の残留圧縮応力を低減することができ、工具寿命を更に延長することが出来、好ましい。
本願発明の被覆工具は、金型等の耐摩耗工具、及び切削工具、特にエンドミル、ドリル、リーマ、カッター、ブローチ、ホブ、マイクロドリル、ルーター、ミーリング用インサート、ターニング用インサート等に用いることにより、優れた切削寿命が得られ好ましい。本願発明の被覆工具は、基材が立方晶窒化硼素焼結体であることにより、更に優れた耐摩耗性と耐塑性変形性が得られ、好ましい。立方晶窒化硼素焼結体は、cBN含有率が55体積%以上、cBN平均粒子径が3μm未満、主バインダーがTiN、Ti(CN)、TiCの何れかである事が、耐摩耗性と機械強度がバランス良く、密着性に優れており、好ましい。また、基材がWC−Co系超硬合金であることにより、優れた密着強度を有する皮膜と耐チッピング性が得られ、好ましい。WC−Co系超硬合金は、WC平均粒子径が0.6μm以下、Coバインダーが8重量%以下、V及び/又はCrを含んでいることにより、耐摩耗性に加えて機械強度が最も優れ、好ましい。以下、本願発明を実施例に基づいて説明するが、本願発明は下記実施例に限定されず、適宜変更を行うことは本願発明の範囲含まれる。
The hard coating of the present invention exhibits excellent wear resistance even in a single layer, but in order to improve wear resistance and peel resistance and extend the tool life, as an intermediate layer between the substrate and the hard coating. One or more nitride films selected from Ti, Cr, Al, Nb, and Y can be coated, which is preferable. The components of the intermediate layer exhibiting excellent wear resistance are particularly preferably (TiAl) N, (AlCr) N, (AlNb) N, (AlCrTi) N, and (AlCrY) N. By laminating the thickness of each layer of the intermediate layer and the hard coating in the range of 2 nm or more and 20 nm or less with 500 layers or more and 8000 layers or less, the residual compressive stress of the entire coating can be reduced, and the tool life is further increased. It can be extended and is preferable.
The coated tool of the present invention is used for wear-resistant tools such as molds and cutting tools, particularly end mills, drills, reamers, cutters, broaches, hobbs, micro drills, routers, milling inserts, turning inserts, etc. An excellent cutting life is obtained, which is preferable. The coated tool of the present invention is preferable because the base material is a cubic boron nitride sintered body, and thus further excellent wear resistance and plastic deformation resistance can be obtained. The cubic boron nitride sintered body has a cBN content of 55% by volume or more, an average particle size of cBN of less than 3 μm, and the main binder is any one of TiN, Ti (CN), and TiC. The strength is well balanced and the adhesiveness is excellent, which is preferable. Moreover, since the base material is a WC-Co based cemented carbide, a film having excellent adhesion strength and chipping resistance can be obtained, which is preferable. The WC-Co cemented carbide has the most excellent mechanical strength in addition to wear resistance because it has a WC average particle size of 0.6 μm or less, a Co binder of 8 wt% or less, and V and / or Cr. ,preferable. Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to the following Example, It is contained in the range of this invention to change suitably.

本願発明の被覆工具の工具寿命を評価するために、基材として、Co:6質量%、WC平均粒径が0.2μm、VN:0.3質量%、Cr:0.5質量%、硬度がHRAで94.3の超微粒子超硬合金製、直径1mmの2枚刃ボールエンドミルを使用した。この基材を脱脂洗浄し、スパッタリング装置にセットし、本願発明のSiとKrを含有した窒化物系の硬質皮膜を成膜した。成膜には、スパッタリング蒸発源を4基搭載し、所定の回転スピードで自公転する試料ホルダーを配備したスパッタリング装置を用い、そのうちの2基のスパッタリング蒸発源にSiターゲットを設置した。ターゲットには、熱間静水圧焼結したものをバッキングプレートに多数個張り付けたものを用いた。上記脱脂洗浄後の基材を、スパッタリング装置内の試料ホルダーに装着し、500℃で加熱脱ガス処理した。装置内の真空度を4×10−4Pa以下に真空排気後、Arを装置内に導入し、圧力を8×10−1Paにして、基材に−200Vのバイアス電圧を印加して、基材のArイオンによるクリーニング処理を略60分間実施した。その後、連続して装置内にArガスを300ml/分、及びKrガスを200ml/分、及びN2ガスを100ml/分の流量で導入し、R値を2.0に設定した。装置内の圧力を5×10−1Pa、成膜温度を480℃にして、基材に−100V、+0Vの間で、周波数2kHz、反転時間1600nsのパルス状バイアス電圧を印加した。Siターゲット2基夫々に2kWの電力を供給し、SiとKrを含有する硬質皮膜を略約3μm厚被覆した。この成膜中に、試料ホルダーを毎分2回転の公転速度で回転させることにより、本発明例1を作製した。作製した本発明例と比較例の皮膜構成及びその詳細を表1にあわせて示す。   In order to evaluate the tool life of the coated tool of the present invention, as a base material, Co: 6% by mass, WC average particle size is 0.2 μm, VN: 0.3% by mass, Cr: 0.5% by mass, hardness Used a 2 flute ball end mill with a diameter of 1 mm made of ultra-fine cemented carbide of HRA 94.3. This base material was degreased and washed, set in a sputtering apparatus, and a nitride-based hard film containing Si and Kr of the present invention was formed. For film formation, a sputtering apparatus equipped with four sputtering evaporation sources and equipped with a sample holder that revolves at a predetermined rotation speed was used, and Si targets were installed in two of these sputtering evaporation sources. As the target, a hot-water isostatic sintered material stuck on a backing plate was used. The substrate after degreasing and cleaning was mounted on a sample holder in a sputtering apparatus and subjected to heat degassing at 500 ° C. After evacuating the vacuum in the apparatus to 4 × 10 −4 Pa or less, Ar is introduced into the apparatus, the pressure is set to 8 × 10 −1 Pa, a bias voltage of −200 V is applied to the base, and the base The cleaning treatment with Ar ions was performed for about 60 minutes. Thereafter, Ar gas was continuously introduced into the apparatus at a flow rate of 300 ml / min, Kr gas at 200 ml / min, and N 2 gas at a flow rate of 100 ml / min, and the R value was set to 2.0. The pressure in the apparatus was 5 × 10 −1 Pa, the film formation temperature was 480 ° C., and a pulsed bias voltage having a frequency of 2 kHz and an inversion time of 1600 ns was applied to the substrate between −100 V and +0 V. Electric power of 2 kW was supplied to each of the two Si targets, and a hard coating containing Si and Kr was coated with a thickness of about 3 μm. During the film formation, the sample holder was rotated at a revolution speed of 2 revolutions per minute to produce Invention Example 1. Table 1 shows the film configurations and details of the inventive examples and comparative examples produced.

本発明例2から33についても、断りのない限り本発明例1に準じた条件を使用した。本発明例4はTiとAlSiからなる複合ターゲットを用いたが、複合ターゲットは、Siの面積率が10〜20%となるようターゲットを作製した。特に記載が無い限り、他の複合ターゲットも同様に作製した。本発明例5〜6は、反応ガスとして酸素ガスまたはアセチレンガスを微少量加えて成膜した。本発明例25〜29は中間層を用いた。4基搭載したスパッタリング蒸発源のうち、2基にTiSiターゲットを、残2基に各種組成が異なるターゲットを用いた。成膜条件は、本発明例1準じた条件を採用し、Arイオンによるクリーニング処理を施した。装置内の圧力を5×10−1Pa、成膜温度を480℃にして、基材に−100Vのバイアス電圧を印加、中間層成膜用のターゲットに4kWの電力を供給し、中間層を略約3μm厚被覆した。その後、本発明例11と略同じ成膜条件で(TiSi)N皮膜を略1μm厚被覆した。本発明例30、31、32は、本発明例13と略同じ成膜条件であるが、ターゲット表面のTiB2面積率が異なる試料を作成した。本発明例33は、本発明例13と略同じ成膜条件であるが、成膜時のバイアス電圧を−50Vに変更して試料を作成した。
比較のために、本発明例1と略同じ成膜条件を用いるものの、連続して装置内に導入するガスを変更して被覆した。比較例34は、N2ガスを100ml/分、残Arガスを導入し、装置内の圧力が5×10−1Paで成膜した。比較例35は本発明例2と略同じ成膜条件を用い、連続して装置内に導入するガスを、N2ガスを100ml/分、残Arガスを導入し、装置内の圧力が5×10−1Paで成膜した。比較例36は本発明例3と略同じ成膜条件を用い、ターゲット連続して装置内に導入するガスを、N2ガスを100ml/分、残Arガスを導入し、装置内の圧力が5×10−1Paで成膜した。比較例37は本発明例23と略同じ成膜条件を用い、AlとTiからなる複合ターゲットを用いた。比較例38は比較例37と略同じ成膜条件を用い、連続して装置内に導入するガスを、N2ガスを100ml/分、残Arガスを導入し、装置内の圧力が5×10−1Paで成膜した。
For Invention Examples 2 to 33, the conditions according to Invention Example 1 were used unless otherwise specified. In Invention Example 4, a composite target made of Ti and AlSi was used. The composite target was prepared so that the area ratio of Si was 10 to 20%. Unless otherwise specified, other composite targets were produced in the same manner. Invention Examples 5 to 6 were formed by adding a small amount of oxygen gas or acetylene gas as a reaction gas. In Invention Examples 25 to 29, an intermediate layer was used. Of the four sputtering evaporation sources, two TiSi targets were used, and the remaining two were targets with different compositions. The film forming conditions were the same as those in Example 1 of the present invention, and a cleaning process using Ar ions was performed. The pressure inside the apparatus is 5 × 10 −1 Pa, the film forming temperature is 480 ° C., a bias voltage of −100 V is applied to the substrate, 4 kW power is supplied to the target for forming the intermediate layer, and the intermediate layer is substantially The coating was about 3 μm thick. Thereafter, a (TiSi) N film was coated with a thickness of about 1 μm under substantially the same film formation conditions as Example 11 of the present invention. Inventive Examples 30, 31, and 32 have substantially the same film forming conditions as Inventive Example 13, but samples with different TiB2 area ratios on the target surface were prepared. Inventive Example 33 has substantially the same film forming conditions as Inventive Example 13, but the bias voltage during film formation was changed to −50 V to prepare a sample.
For comparison, although substantially the same film forming conditions as in Example 1 of the present invention were used, the gas introduced continuously into the apparatus was changed and coated. In Comparative Example 34, N2 gas was introduced at 100 ml / min and residual Ar gas was introduced, and the film was formed at a pressure of 5 × 10 −1 Pa in the apparatus. Comparative Example 35 uses substantially the same film formation conditions as Example 2 of the present invention. The gas continuously introduced into the apparatus is N2 gas at 100 ml / min, the remaining Ar gas is introduced, and the pressure in the apparatus is 5 × 10. The film was formed at −1 Pa. Comparative Example 36 uses substantially the same film formation conditions as Example 3 of the present invention. The gas continuously introduced into the apparatus is 100 ml / min of N2 gas, the remaining Ar gas is introduced, and the pressure in the apparatus is 5 ×. The film was formed at 10-1 Pa. Comparative Example 37 used substantially the same film forming conditions as Example 23 of the present invention, and used a composite target composed of Al and Ti. Comparative Example 38 uses substantially the same film forming conditions as Comparative Example 37. The gas continuously introduced into the apparatus is N 2 gas at 100 ml / min, the remaining Ar gas is introduced, and the pressure in the apparatus is 5 × 10 −. The film was formed at 1 Pa.

本発明例と比較例のKrの定性分析は、次の方法で評価した。日立製作所製S−4200型電界放射型走査型電子顕微鏡(以下、FE−SEMと記す。)に付属の堀場製作所製EMAX−7000型、SPECTRUM、Rel.M905313E、Ver.1.20、ROM、Ver.1.0、EDX装置を用いた。以後、これをEDX分析と言う。加速電圧を20kV、エミッション電流を略10μA、X線取り込み時間を100秒、X線取り出し角度を30度、電子線入射角度を90度、パルス処理時間をP5、プローブ電流を0.2nA、の測定条件で行い、Krに帰属するピークの有無を確認した。分析試料は、工具寿命の評価に用いたボールエンドミルを用い、被覆後、アセトン内で超音波洗浄を10分間処理したものを用いた。
本発明例のKrの定量分析は、次の方法で評価した。PHI社製Quanyum2000型走査型X線光電子分光分析装置を用い、X線源としてAlKα(モノクロ)、分析領域を直径100μm、電子中和銃を使用した。測定直前にArイオン銃を用い、試料表面を1分間エッチングした後に分析を行った。このときのエッチング速度は、SiO2換算で毎分6.5nmであった。これらの測定方法により、試料の極表面に存在する元素を分析し、測定された各元素のピーク強度より、PHI社提供の相対感度因子を用い、表面原子濃度を見積もった。分析試料は、鏡面加工を施した厚さ1mmの超硬合金製試験片を用い、被覆後、アセトン内で超音波洗浄を10分間処理したものを用いた。作製した本発明例のX線光電子分光分析による定量分析結果の詳細を表2に示す。表2中のC及びOは成膜中に意図的に添加したものではない。同様にして測定した試料のKr含有量を表1に併記する。
The qualitative analysis of Kr of the present invention example and the comparative example was evaluated by the following method. HORIBA, Ltd. EMAX-7000, SPECTRUM, Rel. Attached to Hitachi S-4200 Field Emission Scanning Electron Microscope (hereinafter referred to as FE-SEM). M905313E, Ver. 1.20, ROM, Ver. 1.0, EDX equipment was used. Hereinafter, this is referred to as EDX analysis. Measurement with acceleration voltage of 20 kV, emission current of approximately 10 μA, X-ray capture time of 100 seconds, X-ray extraction angle of 30 degrees, electron beam incident angle of 90 degrees, pulse processing time of P5, and probe current of 0.2 nA Under the conditions, the presence or absence of a peak attributed to Kr was confirmed. The analysis sample used was a ball end mill used for the evaluation of tool life, and was subjected to ultrasonic cleaning in acetone for 10 minutes after coating.
The quantitative analysis of Kr in the inventive examples was evaluated by the following method. Using a Quantum 2000 scanning X-ray photoelectron spectroscopic analyzer manufactured by PHI, AlKα (monochrome) was used as the X-ray source, the analysis area was 100 μm in diameter, and an electron neutralizing gun was used. An analysis was performed after etching the sample surface for 1 minute using an Ar ion gun immediately before the measurement. The etching rate at this time was 6.5 nm per minute in terms of SiO2. Using these measurement methods, the elements present on the extreme surface of the sample were analyzed, and the surface atomic concentration was estimated from the measured peak intensity of each element using a relative sensitivity factor provided by PHI. As the analysis sample, a 1 mm-thick cemented carbide specimen subjected to mirror finishing was used, and after the coating, ultrasonic cleaning in acetone was performed for 10 minutes. Table 2 shows the details of the quantitative analysis results by X-ray photoelectron spectroscopic analysis of the manufactured example of the present invention. C and O in Table 2 are not intentionally added during film formation. The Kr content of the sample measured in the same manner is also shown in Table 1.

皮膜のX線回折における回折ピークのうち、面心立方構造の(200)ピークの半価幅を測定した。測定は、X線回折装置により、管電圧を120kV、電流を40μA、X線源をCukα、入射角を5度、入射スリットを0.4mm、2θを30から70度の範囲で実施した。得られた皮膜からのX線回折プロファイルのうち、立方晶B1構造の2θで38度から45度の範囲の最大ピーク強度を示すピーク、すなわち(200)面に相当するピークの半価幅を測定した。その評価結果を表1に併記する。皮膜の平滑性を評価するために、FE−SEMを用い、皮膜表面を1万倍で観察し、表面の凹凸を観察した。   Of the diffraction peaks in X-ray diffraction of the film, the half width of the (200) peak of the face-centered cubic structure was measured. The measurement was performed by an X-ray diffractometer with a tube voltage of 120 kV, a current of 40 μA, an X-ray source of Cukα, an incident angle of 5 degrees, an incident slit of 0.4 mm, and 2θ of 30 to 70 degrees. Of the X-ray diffraction profile from the obtained film, the half-value width of the peak showing the maximum peak intensity in the range of 38 to 45 degrees at 2θ of the cubic B1 structure, that is, the peak corresponding to the (200) plane is measured. did. The evaluation results are also shown in Table 1. In order to evaluate the smoothness of the film, FE-SEM was used, the film surface was observed at a magnification of 10,000 times, and surface irregularities were observed.

作製した本発明例及び比較例の工具寿命を以下の条件で評価した。下記の条件で切削評価を行い、逃げ面摩耗幅が0.1mmに達した切削長、若しくは著しく不安定な加工状態、例えば火花発生、異音、加工面のむしれ、焼け等などの状態に達した時の切削長を工具寿命と判断した。10m未満は切り捨てて表記した。評価結果を表1に併記した。
(切削条件)
工具 :2枚刃ボールエンドミル、直径1mm
切削方法 :超高速仕上げ加工
被削材 :SUS420J2、硬さHRC50
切り込み :軸方向、0.01mm、径方向、0.01mm
主軸回転数 :20000min−1
テーブル送り:4m/min
切削油 :無し、ドライ切削
The tool lifes of the manufactured inventive examples and comparative examples were evaluated under the following conditions. Cutting evaluation is performed under the following conditions, cutting length when the flank wear width has reached 0.1 mm, or extremely unstable machining state, such as sparking, abnormal noise, flaking of the machining surface, burning, etc. The cutting length when reached was judged as the tool life. Less than 10m was rounded down. The evaluation results are also shown in Table 1.
(Cutting conditions)
Tool: 2-flute ball end mill, 1 mm diameter
Cutting method: Super high speed finishing Work material: SUS420J2, hardness HRC50
Cutting: axial direction, 0.01 mm, radial direction, 0.01 mm
Spindle speed: 20000 min-1
Table feed: 4m / min
Cutting oil: None, dry cutting

本発明例1と比較例34を比較した。比較例34は、Krを含有しない皮膜であり、切削初期に皮膜が剥離し、20mで工具寿命に達したが、本発明例1は工具寿命が70mであり、3.5倍工具寿命が向上した。本発明例1のEDX結果を図1、比較例34のEDX結果を図2に示す。図1には、Krのピーク強度が認められるが、図2は、Krのピークが検出されなかった。本発明例1と比較例34の皮膜表面をFE−SEMにより観察した結果を図3、図4に示す。図3は、粒子状の界面が観察され、SiとKrを含有した本発明例1は、平滑性に優れていた。しかし、図4は粒子状の界面が明確に観察されなかった。本発明例2と比較例35を比較した。比較例35は、Krを含有しない皮膜であり、切削初期に皮膜が剥離し、20mで工具寿命に達したが、本発明例1は工具寿命が120mであり、6倍工具寿命が向上した。本発明例3と比較例36を比較した。比較例36は、Krを含有しない皮膜であり、切削初期に皮膜が剥離し、50mで工具寿命に達したが、本発明例3は工具寿命が250mであり、5倍工具寿命が向上した。図5に本発明例3のEDX結果を示す。本発明例3にはKrのピークが明瞭に認められた。本発明例4と比較例37を比較した。比較例37は、被覆時にKrを用い、且つKrのピークが皮膜から検出されるものの、Siを含有しない皮膜であり、80mで逃げ面摩耗幅が0.1mmに達し、工具寿命となった。Siを含有する本発明例4は工具寿命が360mであり、4.5倍工具寿命が向上した。従って、単にSiを含有した皮膜は、高硬度で優れた耐熱性を有するものの、極めて脆い特性のため、皮膜剥離が発生し易く、その特性が十分に発揮されないが、本願発明のSi及びKrを含有する皮膜とすることにより、Siを含有する皮膜の高硬度と耐熱性を活かし、靭性を高めることにより格段に耐剥離性が改善され、表面平滑性に優れる被覆工具を提供することが可能となった。比較例37と比較例38を見ても、皮膜にKrを含有することより、工具寿命は改善された。   Invention Example 1 and Comparative Example 34 were compared. Comparative Example 34 is a film that does not contain Kr, and the film peeled off at the beginning of cutting and reached the tool life at 20 m, while Example 1 of the present invention had a tool life of 70 m and improved the tool life by 3.5 times. did. FIG. 1 shows the EDX result of Inventive Example 1, and FIG. 2 shows the EDX result of Comparative Example 34. FIG. 1 shows the Kr peak intensity, but FIG. 2 shows no Kr peak detected. The result of having observed the film | membrane surface of this invention example 1 and the comparative example 34 by FE-SEM is shown in FIG. 3, FIG. In FIG. 3, a particulate interface was observed, and Example 1 of the present invention containing Si and Kr was excellent in smoothness. However, in FIG. 4, the particulate interface was not clearly observed. Invention Example 2 and Comparative Example 35 were compared. Comparative Example 35 was a film containing no Kr, and the film peeled off at the initial stage of cutting and reached the tool life at 20 m. However, Example 1 of the present invention had a tool life of 120 m, and the tool life improved 6 times. Invention Example 3 and Comparative Example 36 were compared. Comparative Example 36 is a film containing no Kr, and the film peeled off at the initial stage of cutting and reached the tool life at 50 m. In Invention Example 3, the tool life was 250 m, and the tool life was improved 5 times. FIG. 5 shows the EDX results of Example 3 of the present invention. In Example 3 of the present invention, a peak of Kr was clearly recognized. Invention Example 4 and Comparative Example 37 were compared. In Comparative Example 37, Kr was used at the time of coating, and the peak of Kr was detected from the film, but the film did not contain Si. The flank wear width reached 0.1 mm at 80 m, and the tool life was reached. Invention Example 4 containing Si had a tool life of 360 m, and improved the tool life by 4.5 times. Therefore, although a film containing only Si has high hardness and excellent heat resistance, the film is extremely brittle, so that film peeling is likely to occur and the characteristics are not sufficiently exhibited. By making it a coating film, the high hardness and heat resistance of the coating film containing Si can be utilized, and by increasing the toughness, it is possible to provide a coated tool with markedly improved peel resistance and excellent surface smoothness. became. Even when Comparative Examples 37 and 38 were seen, the tool life was improved by containing Kr in the coating.

本発明例1と本発明例5〜9を比較する。本発明例5〜9は、Nに加え非金属元素としてB、O、S、Cを含有する。本発明例1の工具寿命が70mであるのに対して、本発明例5〜9は、Si、Krと共にB、O、S、Cを含有し、本発明例1の2倍以上工具寿命が長く、優れていた。従って、本願発明は、SiとKrを含有する皮膜が、非金属元素としてB、O、S、Cから選択される少なくとも1種以上の元素を含有していることが好ましい。これは、SiとKrを含有する皮膜が、B、O、S、Cから選択される少なくとも1種以上の元素を含有していることにより、夫々高硬度、耐凝着性、高潤滑性、低摩擦抵抗になったためである。基材が略同じであり、Siと窒素から構成される本発明例1に対して、他の金属元素を加えて成膜した本発明例12、15から20と、22から24を比較した。本発明例1の工具寿命が70mであるのに対して、Si、Krと共に他の金属元素を加えて成膜した本発明例12、15から20と、22から24は、2倍以上工具寿命が長く、優れていた。例えば、本発明例2と本発明例10を比較する。本発明例2はSiと窒素と炭素を含有し、本発明例10はTiの金属元素を加えて成膜した。本発明例2の工具寿命が120mであるのに対して、本発明例10は、2倍以上工具寿命が長く、優れていた。本発明例3と本発明例11、13、14、21を比較する。本発明例3は、TiSiと窒素かを含有し、本発明例11、13、14、21は硼素もしくは硼素と炭素を加えて成膜した。本発明例11のEDX結果を図6に示し、その拡大を図7に示す。本発明例11は、KrとArのピークが検出された。本発明例21のEDX結果を図8に示し、Krのピークが検出された。本発明例3の工具寿命が250mであるのに対して、硼素もしくは硼素と炭素を加えて成膜した本発明例11、13、14、21は、1.4倍以上工具寿命が長く、優れていた。従って、本発明は、Si及びKrを含有する皮膜は金属元素として、Ti、Cr、Nb、Al、Zr、Y、V、W、Moから選択される1種以上を含有し、非金属元素として、N、C、O、B、Sから選択される1種以上を含有することが好ましい。本発明例3と本発明例25〜29を比較する。本発明例25〜29は中間層を用いることにより、2倍以上工具寿命が向上した。従って、中間層を用いることがより好ましい。表2から、本発明例13、31、32、33のKr含有量は原子%で、夫々0.31、0.23、0.22、0.61であった。Kr含有量が0.61の本発明例33は、耐摩耗性が低下した。これより、硬質皮膜のKr含有量が原子%で、0.01以上、0.6以下であることがより好ましい。本発明例13、30、31のSi2pのスペクトルを図9から図11に示すが、85〜90eVの範囲のピークがKrに帰属するピークであり、95〜105eVの範囲のピークがSiに帰属するピークである。図より、X線光電子分光分析においても、Krが硬質皮膜内に存在することが確認出来た。Krの含有量は特に皮膜の結晶粒子形態に依存している。即ち柱状組織の場合には、比較的多く検出され、平滑な表面構造をしているものは、比較的少ない。(200)から算出した半価幅が2θで0.7度の本発明例33と、1.4度の本発明例13を比較する。本発明例13は、本発明例33よりも1.5倍以上工具寿命が長かった。また、大気中1000℃で1時間保持した後、皮膜表面をFE−SEMで観察した結果、本発明例33よりも本発明例13の方が、酸化物が微細であり、断面組織においても酸化層の厚みが薄く、耐酸化性にも優れていた。従って、硬質皮膜のX線回折における回折ピークのうち、面心立方構造の(200)から算出される半価幅が2θで1度以上であることがより好ましい。   Invention Example 1 and Invention Examples 5 to 9 are compared. Invention Examples 5 to 9 contain B, O, S, and C as nonmetallic elements in addition to N. While the tool life of Invention Example 1 is 70 m, Invention Examples 5 to 9 contain B, O, S, and C together with Si and Kr, and the tool life is twice or more that of Invention Example 1. It was long and excellent. Therefore, in the present invention, the coating containing Si and Kr preferably contains at least one element selected from B, O, S, and C as a nonmetallic element. This is because the film containing Si and Kr contains at least one element selected from B, O, S, and C, so that high hardness, adhesion resistance, high lubricity, This is because the low frictional resistance is achieved. Inventive Examples 12, 15 to 20, and 22 to 24, which were formed by adding other metal elements, were compared to Inventive Example 1 having substantially the same base material and composed of Si and nitrogen. While the tool life of the inventive example 1 is 70 m, the inventive examples 12, 15 to 20 and 22 to 24 formed by adding other metal elements together with Si and Kr have a tool life more than twice as long. Was long and excellent. For example, Invention Example 2 and Invention Example 10 are compared. Invention Example 2 contains Si, nitrogen, and carbon, and Invention Example 10 was formed by adding a Ti metal element. While the tool life of Invention Example 2 is 120 m, Invention Example 10 is excellent because the tool life is twice or more. Invention Example 3 and Invention Examples 11, 13, 14, and 21 are compared. Invention Example 3 contains TiSi and nitrogen, and Invention Examples 11, 13, 14, and 21 were formed by adding boron or boron and carbon. FIG. 6 shows the EDX result of Example 11 of the present invention, and FIG. In Invention Example 11, Kr and Ar peaks were detected. The EDX result of Example 21 of the present invention is shown in FIG. 8, and a Kr peak was detected. In contrast to the tool life of Invention Example 3, which is 250 m, Invention Examples 11, 13, 14, and 21 formed by adding boron or boron and carbon have a longer tool life of 1.4 times or more and are excellent. It was. Therefore, in the present invention, the coating containing Si and Kr contains at least one selected from Ti, Cr, Nb, Al, Zr, Y, V, W, and Mo as a metallic element, and as a nonmetallic element It is preferable to contain 1 or more types selected from N, C, O, B, and S. Invention Example 3 is compared with Invention Examples 25-29. In Examples 25 to 29 of the present invention, the tool life was improved twice or more by using the intermediate layer. Therefore, it is more preferable to use an intermediate layer. From Table 2, the Kr contents of Invention Examples 13, 31, 32, and 33 were atomic%, which were 0.31, 0.23, 0.22, and 0.61, respectively. Inventive Example 33 having a Kr content of 0.61 has decreased wear resistance. From this, it is more preferable that the Kr content of the hard coating is 0.01% or more and 0.6 or less in atomic%. The Si2p spectra of Invention Examples 13, 30, and 31 are shown in FIG. 9 to FIG. 11. The peak in the range of 85 to 90 eV is attributed to Kr, and the peak in the range of 95 to 105 eV is attributed to Si. It is a peak. From the figure, it was confirmed that Kr was present in the hard coating also in the X-ray photoelectron spectroscopic analysis. The content of Kr depends particularly on the crystal particle morphology of the coating. That is, in the case of a columnar structure, a relatively large number of detected and smooth surface structures are relatively few. The present invention example 33 having a half width calculated from (200) of 2θ of 0.7 degrees and the present invention example 13 of 1.4 degrees are compared. Invention Example 13 had a tool life that was 1.5 times longer than Invention Example 33. Moreover, after maintaining at 1000 degreeC in air | atmosphere for 1 hour, as a result of observing the film | membrane surface by FE-SEM, the direction of this invention example 13 is finer than the example 33 of this invention, and oxidation is also in cross-sectional structure | tissue. The layer was thin and excellent in oxidation resistance. Therefore, it is more preferable that the half width calculated from (200) of the face-centered cubic structure among the diffraction peaks in the X-ray diffraction of the hard film is 1 degree or more at 2θ.

図1は、本発明例1のEDX結果を示す。FIG. 1 shows an EDX result of Example 1 of the present invention. 図2は、比較例34のEDX結果を示す。FIG. 2 shows the EDX result of Comparative Example 34. 図3は、本発明例1の皮膜表面の観察結果を示す。FIG. 3 shows the observation results of the coating surface of Example 1 of the present invention. 図4は、比較例34の皮膜表面の観察結果を示す。FIG. 4 shows the observation results of the coating surface of Comparative Example 34. 図5は、本発明例3のEDX結果を示す。FIG. 5 shows the EDX result of Example 3 of the present invention. 図6は、本発明例11のEDX結果を示す。FIG. 6 shows the EDX result of Example 11 of the present invention. 図7は、図6の拡大図を示す。FIG. 7 shows an enlarged view of FIG. 図8は、本発明例21のEDX結果を示す。FIG. 8 shows the EDX result of Example 21 of the present invention. 図9は、本発明例13のX線光電子分光分析結果を示す。FIG. 9 shows the results of X-ray photoelectron spectroscopy analysis of Example 13 of the present invention. 図10は、本発明例30のX線光電子分光分析結果を示す。FIG. 10 shows the results of X-ray photoelectron spectroscopy analysis of Example 30 of the present invention. 図11は、本発明例31のX線光電子分光分析結果を示す。FIG. 11 shows the results of X-ray photoelectron spectroscopy analysis of Example 31 of the present invention.

Claims (6)

基材表面に皮膜を被覆した被覆工具において、該皮膜の少なくとも1層は、Siを含有した窒化物の硬質皮膜であり、該硬質皮膜はKrを含有することを特徴とする被覆工具。 A coated tool in which a surface of a substrate is coated with a film, wherein at least one layer of the film is a hard film of nitride containing Si, and the hard film contains Kr. 請求項1に記載の被覆工具において、該硬質皮膜のKr含有量が原子%で、0.01以上、0.6以下であることを特徴とする被覆工具。 The coated tool according to claim 1, wherein the hard coating has a Kr content of 0.01% or more and 0.6 or less in atomic%. 請求項1乃至請求項2の何れかに記載の被覆工具において、該硬質皮膜は、Siの1部を、Ti、Cr、Nb、Al、Zr、Y、V、W、Moから選択される1種以上の金属元素で置換し、Nの1部を、C、O、B、Sから選択される1種以上の非金属元素で置換したことを特徴とする被覆工具。 3. The coated tool according to claim 1, wherein the hard coating is configured such that one part of Si is selected from Ti, Cr, Nb, Al, Zr, Y, V, W, and Mo. A coated tool, wherein one or more metal elements are substituted, and one part of N is substituted with one or more nonmetallic elements selected from C, O, B, and S. 請求項3に記載の被覆工具において、該硬質皮膜のX線回折における回折ピークのうち、面心立方構造の(200)から算出される半価幅が2θで1度以上であることを特徴とする被覆工具。 4. The coated tool according to claim 3, wherein a half-value width calculated from (200) of a face-centered cubic structure among diffraction peaks in X-ray diffraction of the hard film is 1 ° or more at 2θ. Coated tool. 請求項1に記載の被覆工具において、該硬質皮膜の被覆方法は、少なくともSiを含有した固体蒸発源を用いた物理蒸着法であり、気体成分としてKr及び窒素を含有した減圧雰囲気で、窒化物の硬質皮膜を被覆することを特徴とする被覆工具の製造方法。 2. The coated tool according to claim 1, wherein the method of coating the hard film is a physical vapor deposition method using a solid evaporation source containing at least Si, and nitride in a reduced pressure atmosphere containing Kr and nitrogen as gas components. A method for producing a coated tool, characterized in that a hard film is coated. 請求項5に記載の製造方法において、窒素ガスに対するKrガスの流量体積比率Rが、0.2≦R≦4であることを特徴とする被覆工具の製造方法。
6. The method for manufacturing a coated tool according to claim 5, wherein a flow volume ratio R of Kr gas to nitrogen gas is 0.2 ≦ R ≦ 4.
JP2006138464A 2006-05-18 2006-05-18 Coated tool and manufacturing method thereof Pending JP2007307652A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138464A JP2007307652A (en) 2006-05-18 2006-05-18 Coated tool and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138464A JP2007307652A (en) 2006-05-18 2006-05-18 Coated tool and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2007307652A true JP2007307652A (en) 2007-11-29

Family

ID=38840956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138464A Pending JP2007307652A (en) 2006-05-18 2006-05-18 Coated tool and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2007307652A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527383A (en) * 2008-07-09 2011-10-27 エーリコン・トレイディング・アーゲー・トリューバッハ Coating system, coated workpiece and method for producing the same
CN112064021A (en) * 2020-09-22 2020-12-11 南京航空航天大学 Method for regulating and controlling cutter coating stress by adopting thermotropic phase change film

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248420A (en) * 1993-02-25 1994-09-06 Kyocera Corp Hard film coated member
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2005126736A (en) * 2003-10-21 2005-05-19 Hitachi Tool Engineering Ltd Hard film
JP2005262356A (en) * 2004-03-17 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2005344148A (en) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd Wear-resistant film, and surface-coated cutting tool using the same
JP2006028600A (en) * 2004-07-16 2006-02-02 Kobe Steel Ltd Stacked film having excellent wear resistance and heat resistance

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06248420A (en) * 1993-02-25 1994-09-06 Kyocera Corp Hard film coated member
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2005126736A (en) * 2003-10-21 2005-05-19 Hitachi Tool Engineering Ltd Hard film
JP2005262356A (en) * 2004-03-17 2005-09-29 Sumitomo Electric Hardmetal Corp Surface-coated cutting tool
JP2005344148A (en) * 2004-06-01 2005-12-15 Sumitomo Electric Ind Ltd Wear-resistant film, and surface-coated cutting tool using the same
JP2006028600A (en) * 2004-07-16 2006-02-02 Kobe Steel Ltd Stacked film having excellent wear resistance and heat resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011527383A (en) * 2008-07-09 2011-10-27 エーリコン・トレイディング・アーゲー・トリューバッハ Coating system, coated workpiece and method for producing the same
CN112064021A (en) * 2020-09-22 2020-12-11 南京航空航天大学 Method for regulating and controlling cutter coating stress by adopting thermotropic phase change film
CN112064021B (en) * 2020-09-22 2021-10-19 南京航空航天大学 Method for regulating and controlling cutter coating stress by adopting thermotropic phase change film

Similar Documents

Publication Publication Date Title
JPWO2006070730A1 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
JP2006225708A (en) Wear resistant film, wear resistant film-coated cutting tool, and method for producing wear resistant film
JP2007119795A (en) Hard film, and coated tool with hard film
JP3963354B2 (en) Coated cutting tool
JPWO2020075356A1 (en) Cutting tools and their manufacturing methods
JP4916021B2 (en) Film
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2007307652A (en) Coated tool and manufacturing method thereof
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
WO2019035219A1 (en) Coated cutting tool
JP4645944B2 (en) Carbide broach made of surface-coated cemented carbide with excellent wear resistance due to lubricated amorphous carbon coating
JP2008173756A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed heavy cutting of heat resistant alloy
JP2005256095A (en) Hard coating and coating process
JP6959577B2 (en) Surface coating cutting tool
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
JP6959578B2 (en) Surface coating cutting tool
JP2008173752A (en) Surface-coated cutting tool having hard coating layer exhibiting excellent chipping resistance and excellent wear resistance in high-speed cutting of heat resistant alloy
JPWO2020075355A1 (en) Cutting tools and their manufacturing methods
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2008030158A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloy
JP2008105106A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4535249B2 (en) Method of manufacturing a surface-coated cemented carbide cutting tool that exhibits high wear resistance with a hard coating layer in high-speed cutting
JP2006224198A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of highly reactive work material
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080805

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090319

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090511