JP6959578B2 - Surface coating cutting tool - Google Patents

Surface coating cutting tool Download PDF

Info

Publication number
JP6959578B2
JP6959578B2 JP2018000051A JP2018000051A JP6959578B2 JP 6959578 B2 JP6959578 B2 JP 6959578B2 JP 2018000051 A JP2018000051 A JP 2018000051A JP 2018000051 A JP2018000051 A JP 2018000051A JP 6959578 B2 JP6959578 B2 JP 6959578B2
Authority
JP
Japan
Prior art keywords
tool
cutting
layer
hard coating
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018000051A
Other languages
Japanese (ja)
Other versions
JP2019118997A (en
Inventor
隆之 木村
和宏 引田
健志 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2018000051A priority Critical patent/JP6959578B2/en
Publication of JP2019118997A publication Critical patent/JP2019118997A/en
Application granted granted Critical
Publication of JP6959578B2 publication Critical patent/JP6959578B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

この発明は、Ti基合金、ステンレス鋼等の難削材の高速切削加工において、硬質被覆層がすぐれた潤滑性を備え、溶着、チッピング、欠損等の発生を抑制するとともに、長期の使用にわたってすぐれた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 According to the present invention, in high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel, the hard coating layer has excellent lubricity, suppresses the occurrence of welding, chipping, chipping, etc., and is excellent over a long period of use. It relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits wear resistance.

一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
Generally, as a covering tool, for turning and planing of various types of steel, cast iron, etc., for throw-away chips that are detachably attached to the tip of a cutting tool, for drilling and cutting of the work material, etc. Known drills and miniature drills, end mills used for surface cutting, grooving, shoulder processing, etc. of the work material, solid hobs, pinion cutters, etc. used for lathe cutting of the tooth profile of the work material, etc. There is.
And, many proposals have been made conventionally for the purpose of improving the cutting performance of the covering tool.

例えば、特許文献1に示すように、合金工具鋼の焼入れ材等の高硬度鋼を、高熱発生を伴い、断続的・衝撃的な負荷が作用する高速断続切削条件に供した場合の耐チッピング性、耐欠損性、耐剥離性、耐摩耗性の改善を目的として、工具基体の表面に、組成式:(Cr1−X−Y−ZAlTi)Nで表される(但し、X、Y、Zはいずれも原子比であって、0.40≦X≦0.65、0.01≦Y≦0.20、0.005≦Z≦0.08を満足する)CrとAlとTiとBの複合窒化物からなる硬質被覆層を蒸着形成し、該硬質被覆層を、粒状晶組織の薄層Aと柱状晶組織の薄層Bとの交互積層構造として構成した表面被覆切削工具が提案されている。 For example, as shown in Patent Document 1, chipping resistance when a high-hardness steel such as a hardened material of an alloy tool steel is subjected to high-speed intermittent cutting conditions in which a high heat is generated and an intermittent / impact load acts. , The composition formula: (Cr 1-XY-Z Al X Ti Y B Z ) N is represented on the surface of the tool substrate for the purpose of improving fracture resistance, peel resistance, and abrasion resistance (however, , X, Y, and Z are all atomic ratios and satisfy 0.40 ≦ X ≦ 0.65, 0.01 ≦ Y ≦ 0.20, 0.005 ≦ Z ≦ 0.08) Cr and A surface coating formed by depositing a hard coating layer made of a composite nitride of Al, Ti, and B, and forming the hard coating layer as an alternating laminated structure of a thin layer A having a granular crystal structure and a thin layer B having a columnar crystal structure. Cutting tools have been proposed.

特許文献2には、合金鋼等の切削加工に用いる切削工具の耐摩耗性、耐酸化性、高温潤滑性を向上させることのできる硬質皮膜として、組成式:(Ti,Cr,Al,Si,B,M1−a−b−c−d−e)(C1−f)で表される硬質皮膜(但し、MはW及び/又はMoであって、0<a≦0.7、0<b≦0.7、0.25≦c≦0.75、0≦d+e≦0.2、0.03≦(1−a−b−c−d−e)≦0.35、0.5≦f≦1)が提案されている。 Patent Document 2 describes a hard film capable of improving wear resistance, oxidation resistance, and high-temperature lubricity of a cutting tool used for cutting alloy steel and the like as a composition formula: (Ti a , Cr b , Al c). , Si d , Be , M 1-ab-c-d-e ) (C 1-f N f ) (where M is W and / or Mo, 0 < a ≦ 0.7, 0 <b ≦ 0.7, 0.25 ≦ c ≦ 0.75, 0 ≦ d + e ≦ 0.2, 0.03 ≦ (1-ab-c-d-e) ≦ 0.35, 0.5 ≦ f ≦ 1) have been proposed.

特許文献3には、合金鋼等の切削加工において、すぐれた耐酸化性、高硬度、耐摩耗性を示す硬質皮膜として、組成式:(TiαCr1-α1-a-cGeaAlc(C1-xx)からなる組成(ただし、各元素の原子比が、0≦α≦1、0.010≦a≦0.15、0.40≦c≦0.70、および0.5≦x≦1)を有する硬質皮膜が提案されている。 Patent Document 3 states that a hard film exhibiting excellent oxidation resistance, high hardness, and wear resistance in cutting of alloy steel and the like has a composition formula: (Ti α Cr 1-α ) 1-ac Ge a Al c. The composition consisting of (C 1-x N x ) (however, the atomic ratio of each element is 0 ≦ α ≦ 1, 0.010 ≦ a ≦ 0.15, 0.40 ≦ c ≦ 0.70, and 0. A hard film having 5 ≦ x ≦ 1) has been proposed.

特開2011−224671号公報Japanese Unexamined Patent Publication No. 2011-224671 特開2011−94241号公報Japanese Unexamined Patent Publication No. 2011-94241 特開2015−101736号公報Japanese Unexamined Patent Publication No. 2015-101736

近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化する傾向にあるとともに、できるだけ多くの材種の被削材の切削加工が可能となるような汎用性のある切削工具が求められる傾向にある。
前記特許文献1〜3で提案されている従来被覆工具においては、これを、炭素鋼や合金鋼などの通常の切削条件での切削加工に用いた場合には、特段の問題は生じない。
しかし、Ti基合金、ステンレス鋼等の難削材の高速切削加工に用いた場合には、切削時の発熱によって、溶着、チッピング、欠損が発生しやすく、また、硬質被覆層の高温硬さの低下に伴って、摩耗損傷が進行しやすく、これが原因となって比較的短時間で使用寿命に至るのが現状である。
In recent years, the shift to FA for cutting equipment has been remarkable, while there are strong demands for labor saving, energy saving, and cost reduction for cutting processing, and along with this, cutting processing tends to become faster and more efficient. At the same time, there is a tendency that a versatile cutting tool capable of cutting as many work materials as possible is required.
In the conventional covering tools proposed in Patent Documents 1 to 3, no particular problem occurs when this is used for cutting under normal cutting conditions such as carbon steel and alloy steel.
However, when used for high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel, welding, chipping, and chipping are likely to occur due to heat generated during cutting, and the high-temperature hardness of the hard coating layer Along with the decrease, wear damage is likely to progress, and due to this, the service life is reached in a relatively short time.

そこで、本発明は、高熱発生をともなうTi基合金、ステンレス鋼等の難削材の高速切削加工において、耐溶着性を高めてチッピング、欠損の発生を抑制するとともに、硬質被覆層の高温硬さの低下を防止することによって、長期の使用にわたってすぐれた切削性能を発揮する被覆工具を提供することを目的とする。 Therefore, according to the present invention, in high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steels that generate high heat, welding resistance is enhanced to suppress chipping and chipping, and the high-temperature hardness of the hard coating layer is suppressed. It is an object of the present invention to provide a covering tool that exhibits excellent cutting performance over a long period of use by preventing a decrease in cutting performance.

本発明者等は、上述の観点から、Ti基合金、ステンレス鋼等の難削材の高速切削加工条件で、硬質被覆層がすぐれた潤滑性を備え、これにより、すぐれた耐溶着性を発揮する被覆工具を開発すべく、硬質被覆層を構成する成分系に着目し鋭意研究を行った結果、次のような知見を得た。
炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化硼素焼結体あるいは高速度工具鋼等からなる工具基体の表面に、AlとTiとCrを含む複合窒化物(以下、「(Al,Ti,Cr)N」で示す)層からなる硬質被覆層を設けた前記被覆工具は、高温硬さと耐酸化性を備えることから耐摩耗性にすぐれる被覆工具としてよく知られている(前記特許文献1〜3参照)。
そして、本発明者らは、前記(Al,Ti,Cr)N層からなる硬質被覆層を被覆した被覆工具において、切削加工時の硬質被覆層の潤滑性を高めると同時に、切削加工時の高熱によって硬質被覆層の高温硬さの低下を防止することで、Ti基合金、ステンレス鋼等の難削材の高速切削加工において、溶着、チッピング、欠損等の発生を防止することができるとともに、長期の使用にわたって、すぐれた耐摩耗性を発揮する被覆工具を得られることを見出した。
From the above viewpoint, the present inventors have excellent lubricity of the hard coating layer under high-speed cutting conditions for difficult-to-cut materials such as Ti-based alloys and stainless steel, thereby exhibiting excellent welding resistance. As a result of intensive research focusing on the component system constituting the hard coating layer in order to develop a coating tool for stainless steel, the following findings were obtained.
A composite nitride containing Al, Ti, and Cr on the surface of a tool substrate made of tungsten carbide-based cemented carbide, titanium nitride-based cermet, cubic boron nitride sintered body, high-speed tool steel, or the like (hereinafter, "(Al). , Ti, Cr) N ”), the covering tool provided with the hard coating layer is well known as a coating tool having excellent wear resistance because it has high temperature hardness and oxidation resistance (the above). See Patent Documents 1 to 3).
Then, the present inventors improve the lubricity of the hard coating layer during cutting in a coating tool coated with the hard coating layer composed of the (Al, Ti, Cr) N layer, and at the same time, high heat during cutting. By preventing the high-temperature hardness of the hard coating layer from decreasing, it is possible to prevent the occurrence of welding, chipping, chipping, etc. in high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel, and for a long period of time. It has been found that a covering tool exhibiting excellent wear resistance can be obtained over the use of.

即ち、前記(Al,Ti,Cr)N層からなる硬質被覆層の構成成分として、特定量のB成分、W成分およびGe成分を共に含有させた場合には、切削加工時の高熱発生により、いずれも酸化物が形成され、この酸化物が硬質被覆層の潤滑性向上に寄与する。
例えば、B成分については、切削加工時に、融点が約450℃の酸化硼素を形成し、これが液化することで切削加工初期の比較的低温領域における硬質被覆層表面の潤滑性向上に寄与する。
また、W成分については、550℃以上で潤滑性を有するマグネリ相W3n−1が生成し、さらにマグネリ相は融点が680℃であるため(G.Gassner et al.「Surface & Coatings Technology」201 (2006) 3335 - 3341参照)、これらが切削加工時の発熱によって液化することで硬質被覆層表面の潤滑性が向上する。
さらに、Ge成分については、切削加工時の比較的高温領域において、融点が約1100℃の酸化ゲルマニウムを生成し、高温領域における潤滑性の向上に寄与する。
このように、硬質被覆層表面で、融点がそれぞれ異なる酸化物が比較的低温領域から高温領域までの幅広い温度領域で液化することにより、硬質被覆層表面に潤滑性を付与し、溶着の発生を抑制することができ、これによって摩耗進行が抑制される。
That is, when a specific amount of B component, W component and Ge component are contained together as a constituent component of the hard coating layer composed of the (Al, Ti, Cr) N layer, high heat is generated during cutting. In both cases, oxides are formed, and these oxides contribute to improving the lubricity of the hard coating layer.
For example, with respect to the B component, boron oxide having a melting point of about 450 ° C. is formed at the time of cutting, and this liquefies contributes to the improvement of the lubricity of the surface of the hard coating layer in a relatively low temperature region at the initial stage of cutting.
As for the W component, a magnetic phase W n O 3n-1 having lubricity is formed at 550 ° C or higher, and the magnetic phase has a melting point of 680 ° C (G. Gassner et al. "Surface & Coatings Technology". 201 (2006) 3335 --3341), these are liquefied by the heat generated during cutting, and the lubricity of the hard coating layer surface is improved.
Further, the Ge component produces germanium oxide having a melting point of about 1100 ° C. in a relatively high temperature region during cutting, which contributes to the improvement of lubricity in the high temperature region.
In this way, on the surface of the hard coating layer, oxides having different melting points are liquefied in a wide temperature range from a relatively low temperature region to a high temperature region, thereby imparting lubricity to the surface of the hard coating layer and causing welding. It can be suppressed, thereby suppressing the progress of wear.

つまり、本発明の被覆工具は、前記(Al,Ti,Cr)N層からなる硬質被覆層において、硬質被覆層構成成分として、BとWとGeの三成分を共存させることによって、高熱発生を伴うTi基合金、ステンレス鋼等の難削材の高速切削加工において、潤滑性を向上させ、これによって、溶着、チッピングの発生を抑制すると同時に、摩耗進行を抑制することができるので、長期の使用にわたってすぐれた切削性能を発揮することができるのである。 That is, the coating tool of the present invention generates high heat by coexisting three components of B, W, and Ge as the components of the hard coating layer in the hard coating layer composed of the (Al, Ti, Cr) N layers. In the high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel, the lubricity is improved, which suppresses the occurrence of welding and chipping and at the same time suppresses the progress of wear, so that it can be used for a long period of time. It is possible to demonstrate excellent cutting performance over a period of time.

本発明は、前記知見に基づいてなされたものであって、
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化硼素焼結体および高速度工具鋼のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
前記硬質被覆層は、0.5〜10μmの平均層厚を有するAlとTiとCrとBとWとGeの複合窒化物層であり
前記複合窒化物を、
組成式:(AlTiCr(1-(a+b+c+d+e))Ge)N
で表したとき、0.40≦a≦0.85、0.05≦b≦0.30、0.005≦c≦0.100、0<d≦0.100、0.005≦e≦0.050(ただし、a、b、c、d、eは、いずれも原子比を示す)を満足することを特徴とする表面被覆切削工具。
(2)前記組成式:(AlTiCr(1-(a+b+c+d+e))Ge)NにおけるAlの含有割合aは、0.55≦a≦0.68を満足することを特徴とする前記(1)に記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate made of any one of tungsten carbide-based cemented carbide, titanium nitride-based cermet, cubic boron nitride sintered body, and high-speed tool steel. In the tool
The hard coating layer is a composite nitride layer of Al, Ti, Cr, B, W, and Ge having an average layer thickness of 0.5 to 10 μm .
The composite nitride,
Composition formula: (Al a Ti b Cr (1- (a + b + c + d + e)) B c W d Ge e ) N
When represented by, 0.40 ≦ a ≦ 0.85, 0.05 ≦ b ≦ 0.30, 0.005 ≦ c ≦ 0.100, 0 <d ≦ 0.100, 0.005 ≦ e ≦ 0 A surface-coated cutting tool characterized by satisfying .050 (where a, b, c, d, and e all indicate atomic ratios).
(2) The composition formula: (Al a Ti b Cr (1- (a + b + c + d + e)) B c W d Ge e ) The content ratio a of Al in N is 0.55 ≦ a ≦. The surface-coated cutting tool according to (1) above, which satisfies 0.68. "
It has the characteristics of.

本発明について、以下に詳細を説明する。 The present invention will be described in detail below.

AlとTiとCrとBとWとGeの複合窒化物層の平均層厚:
本発明の硬質被覆層は、AlとTiとCrとBとWとGeの複合窒化物(以下、「(Al,Ti,Cr,B,W,Ge)N」で示す場合がある)層であるが、(Al,Ti,Cr,B,W,Ge)N層の平均層厚が0.5μm未満の場合には、長期の使用にわたって十分な耐摩耗性を発揮することができず、一方、平均層厚が10μmを超えると、チッピング、欠損等の異常損傷を発生する恐れがあるので、(Al,Ti,Cr,B,W,Ge)N層の平均層厚は、0.5〜10μmとすることが望ましい。
Average thickness of composite nitride layer of Al, Ti, Cr, B, W and Ge:
Hard layer of the present invention, a composite nitride of A l Ti, Cr, B, W and Ge (hereinafter sometimes designated "(Al, Ti, Cr, B, W, Ge) N") layer although, (Al, Ti, Cr, B, W, Ge) when the average layer thickness of the N layer is less than 0.5μm can not exhibit sufficient abrasion resistance over long-term use, On the other hand, if the average layer thickness exceeds 10 μm, abnormal damage such as chipping and chipping may occur. Therefore, the average layer thickness of the (Al, Ti, Cr, B, W, Ge) N layer is 0.5. It is desirable to set it to 10 μm.

(Al,Ti,Cr,B,W,Ge)N層の成分組成:
(Al,Ti,Cr,B,W,Ge)N層を構成する成分の組成を、
組成式:(AlTiCr(1-(a+b+c+d+e))Ge)N
で表したとき、0.40≦a≦0.85、0.05≦b≦0.30、0.005≦c≦0.100、0<d≦0.100、0.005≦e≦0.050(ただし、a、b、c、d、eは、いずれも原子比を示す)を満足することが必要であるが、これは次の理由による。
(Al, Ti, Cr, B, W, Ge) Component composition of N layer:
(Al, Ti, Cr, B, W, Ge) The composition of the components constituting the N layer,
Composition formula: (Al a Ti b Cr (1- (a + b + c + d + e)) B c W d Ge e ) N
When represented by, 0.40 ≦ a ≦ 0.85, 0.05 ≦ b ≦ 0.30, 0.005 ≦ c ≦ 0.100, 0 <d ≦ 0.100, 0.005 ≦ e ≦ 0 It is necessary to satisfy .050 (where a, b, c, d, and e all indicate atomic ratios) for the following reasons.

(Al,Ti,Cr,B,W,Ge)N層の構成成分であるAl成分には、硬質被覆層における高温硬さを向上させる作用があり、また、Ti成分には高温強度を向上させる作用がある。Cr成分も高温強度を向上させる作用があるが、特に、Cr成分とAl成分が共存含有されることによって耐熱性、高温耐酸化性が向上する。
しかし、Al成分の含有割合aが0.40未満の場合、あるいは、Ti成分の含有割合bが0.30を超える場合には、所望のすぐれた高温硬さおよび耐熱性を確保することができず、一方、Al成分の含有割合aが0.85を超える場合、あるいは、Ti成分の含有割合bが0.05未満の場合には、Ti成分、Cr成分が少なくなりすぎることにより高温強度が低下し、切刃にチッピング(微小欠け)などが発生し易くなるとともに、六方晶構造の相が生成され高温硬さも低下することから、Al成分の含有割合aは、0.40≦a≦0.85、Ti成分の含有割合bは0.05≦b≦0.30とそれぞれと定める。
なお、耐溶着性、耐チッピング性を維持しつつ、長期の使用にわたってすぐれた耐摩耗性を発揮するためには、Al成分の含有割合aは、0.55≦a≦0.68を満足することが好ましい。
(Al, Ti, Cr, B, W, Ge) The Al component, which is a constituent of the N layer, has the effect of improving the high-temperature hardness of the hard coating layer, and the Ti component improves the high-temperature strength. It works. The Cr component also has an effect of improving high-temperature strength, but in particular, heat resistance and high-temperature oxidation resistance are improved by coexisting and containing the Cr component and the Al component.
However, when the Al component content ratio a is less than 0.40, or when the Ti component content ratio b exceeds 0.30, the desired excellent high-temperature hardness and heat resistance can be ensured. On the other hand, when the Al component content ratio a exceeds 0.85, or when the Ti component content ratio b is less than 0.05, the Ti component and Cr component are too small, resulting in high temperature strength. The content ratio a of the Al component is 0.40 ≦ a ≦ 0 because it is lowered, chipping (micro chipping) is likely to occur on the cutting edge, a hexagonal structure phase is generated, and the high temperature hardness is also lowered. The content ratio b of .85 and Ti component is determined to be 0.05 ≦ b ≦ 0.30, respectively.
The content ratio a of the Al component satisfies 0.55 ≦ a ≦ 0.68 in order to exhibit excellent wear resistance over a long period of use while maintaining welding resistance and chipping resistance. Is preferable.

(Al,Ti,Cr,B,W,Ge)N層中のB成分、W成分およびGe成分は、切削加工時の高熱発生により、いずれも酸化物を形成し、この酸化物が液化することにより硬質被覆層の潤滑性が向上し、溶着、チッピング、欠損の発生を抑制する。
そして、前記酸化物は、それぞれが異なる温度で液化し(酸化硼素は約450℃、酸化ゲルマニウムは約1100℃、酸化タングステンは約680℃でそれぞれ液化する)、また、550℃以上でWの酸化物は潤滑性を有するマグネリ相を生成するため、切削加工に際して、低温から高温までの幅広い温度領域において、硬質被覆層表面に潤滑性を付与することができる。
ただ、B成分の含有割合c及びGe成分の含有割合eが0.005未満では、十分な酸化物が形成されないため潤滑性向上効果が十分ではない。
一方、B成分の含有割合cが0.100を超える場合には、脆化するため、チッピングが発生しやすくなり、また、Ge成分の含有割合eが0.050を超える場合には、脆化するため、チッピングが発生しやすくなる。
よって、B成分の含有割合c及びGe成分の含有割合eは、それぞれ、0.005≦c≦0.100、0.005≦e≦0.050とする。
(Al, Ti, Cr, B, W, Ge) The B component, W component, and Ge component in the N layer all form oxides due to high heat generation during cutting, and these oxides are liquefied. This improves the lubricity of the hard coating layer and suppresses the occurrence of welding, chipping, and defects.
The oxides are liquefied at different temperatures (borone oxide is liquefied at about 450 ° C., germanium oxide is liquefied at about 1100 ° C., and tungsten oxide is liquefied at about 680 ° C.), and W is oxidized at 550 ° C. or higher. Since the material produces a magnetic phase having lubricity, it is possible to impart lubricity to the surface of the hard coating layer in a wide temperature range from low temperature to high temperature during cutting.
However, if the content ratio c of the B component and the content ratio e of the Ge component are less than 0.005, sufficient oxides are not formed, so that the effect of improving lubricity is not sufficient.
On the other hand, when the content ratio c of the B component exceeds 0.100, embrittlement is likely to occur, so that chipping is likely to occur, and when the content ratio e of the Ge component exceeds 0.050, embrittlement is likely to occur. Therefore, chipping is likely to occur.
Therefore, the content ratio c of the B component and the content ratio e of the Ge component are 0.005 ≦ c ≦ 0.100 and 0.005 ≦ e ≦ 0.050, respectively.

また、(Al,Ti,Cr,B,W,Ge)N層の構成成分であるW成分は、タングステン酸化物が潤滑性を有するマグネリ相を生成し、さらに、その液化による前述した硬質被覆層の潤滑性向上効果があるが、W成分が含まれない場合にはこの効果は少ない。
ただ、W成分の含有割合dが0.100を超えると、硬質被覆層の硬さは低下し、耐摩耗性が低下することから、W成分の含有割合eは、0<d≦0.100とする。
Further, the W component, which is a constituent component of the (Al, Ti, Cr, B, W, Ge) N layer, forms a magnetic phase in which the tungsten oxide has lubricity, and further, the above-mentioned hard coating layer is formed by liquefaction thereof. There is an effect of improving the lubricity of the above, but this effect is small when the W component is not contained.
However, when the content ratio d of the W component exceeds 0.100, the hardness of the hard coating layer decreases and the wear resistance decreases. Therefore, the content ratio e of the W component is 0 <d ≦ 0.100. And.

前記(Al,Ti,Cr,B,W,Ge)N層において、該層を構成する成分の総量に占めるN成分の含有割合(原子比)は、化学量論比である0.50には限定されず、これと同等な効果が得られる範囲、例えば、0.40以上0.60以下の範囲であればよい。 In the (Al, Ti, Cr, B, W, Ge) N layer, the content ratio (atomic ratio) of the N component to the total amount of the components constituting the layer is 0.50, which is a stoichiometric ratio. It is not limited, and may be a range in which an effect equivalent to this can be obtained, for example, a range of 0.40 or more and 0.60 or less.

前記した本発明の(Al,Ti,Cr,B,W,Ge)N層は、例えば、物理蒸着法の一種である図1に示すアークイオンプレーティング(以下、「AIP」で示す。)装置を用いて成膜することができる。
(a)まず、炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化硼素焼結体または高速度工具鋼のいずれかで構成された工具基体を洗浄・乾燥した状態で、AIP装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着する。
(b)装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、0.5〜2.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に−200〜−1000Vの直流バイアス電圧を印加し、もって工具基体表面をアルゴンイオンによって5〜30分間ボンバード処理する。
(c)ついで、装置内を10−2Pa以下の真空に保持しながら、また、ヒーターで装置内を、620℃〜650℃の温度に維持する。次いで、装置内に配置した所定組成のAl−Ti−Cr−B−W−Ge合金からなるカソード電極(蒸発源)とアノード電極の間に、例えば、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、4Paの反応雰囲気とし、一方、前記工具基体には、例えば、−100Vのバイアス電圧を印加した条件で蒸着することにより、前記工具基体の表面に、目標組成、目標平均層厚の(Al,Ti,Cr,B,W,Ge)N層を形成する。
上記工程(a)〜(c)により、本発明の被覆工具を作製することができる。
The (Al, Ti, Cr, B, W, Ge) N layer of the present invention described above is, for example, an arc ion plating (hereinafter referred to as “AIP”) apparatus shown in FIG. 1, which is a kind of physical vapor deposition method. Can be formed using.
(A) First, in the AIP apparatus, a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, a cubic boron nitride sintered body, or a high-speed tool steel is cleaned and dried. It is mounted along the outer peripheral portion at a position separated by a predetermined distance in the radial direction from the central axis on the rotary table of.
(B) while maintaining the inside of the apparatus to the following vacuum 10 -2 Pa exhaust, after heating the inside of the apparatus to 500 ° C. by the heater, set to Ar gas atmosphere 0.5~2.0Pa, the rotation A DC bias voltage of −200 to −1000 V is applied to the tool substrate that rotates while rotating on the table, and the surface of the tool substrate is bombarded with argon ions for 5 to 30 minutes.
(C) Subsequently, while maintaining the inside of the apparatus to a vacuum of 10 -2 Pa, also in the apparatus with a heater, maintained at a temperature of 620 ° C. to 650 ° C.. Next, an arc discharge is generated between the cathode electrode (evaporation source) made of an Al-Ti-Cr-B-W-Ge alloy having a predetermined composition and the anode electrode arranged in the apparatus under the condition of, for example, a current of 100 A. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to create a reaction atmosphere of, for example, 4 Pa, while the tool is vapor-deposited on the tool substrate under the condition that a bias voltage of, for example, -100 V is applied. An N layer (Al, Ti, Cr, B, W, Ge) having a target composition and a target average layer thickness is formed on the surface of the substrate.
The covering tool of the present invention can be produced by the above steps (a) to (c).

本発明の被覆工具は、高熱発生を伴うTi基合金、ステンレス鋼等の難削材の高速切削加工に供した場合、硬質被覆層の(Al,Ti,Cr,B,W,Ge)N層が、低温から高温までの幅広い温度領域において、すぐれた潤滑性を有することから、溶着、チッピング、欠損等の発生を抑制することができるので、長期の使用にわたってすぐれた耐摩耗性を発揮する。 The coating tool of the present invention is a hard coating layer (Al, Ti, Cr, B, W, Ge) N layer when subjected to high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel that generate high heat. However, since it has excellent lubricity in a wide temperature range from low temperature to high temperature, it is possible to suppress the occurrence of welding, chipping, chipping, etc., and thus exhibit excellent wear resistance over a long period of use.

本発明被覆工具の硬質被覆層を成膜するアークイオンプレーティング装置の概略説明図を示し、(a)は平面図、(b)は側面図を示す。A schematic explanatory view of an arc ion plating apparatus for forming a hard coating layer of the coating tool of the present invention is shown, (a) is a plan view, and (b) is a side view.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
以下の実施例では、本発明の被覆工具をフライス加工で使用した場合について説明するが、旋削加工、ドリル加工等で用いることを何ら排除するものではない。
また、工具基体としては、WC基超硬合金を用いた場合について説明するが、TiCN基サーメット、立方晶窒化硼素焼結体、高速度工具鋼を工具基体として用いた場合であっても同様の効果が得られる。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
In the following examples, the case where the covering tool of the present invention is used in milling will be described, but the use in turning, drilling, etc. is not excluded at all.
The case where a WC-based cemented carbide is used as the tool substrate will be described, but the same applies even when a TiCN-based cermet, a cubic boron nitride sintered body, or a high-speed tool steel is used as the tool substrate. The effect is obtained.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFENのインサート形状をもったWC基超硬合金工具基体を製造した。 As raw material powders, WC powder, Cr 3 C 2 powder and Co powder, each having an average particle size of 1 to 3 μm, are prepared, these raw material powders are blended into the blending composition shown in Table 1, and wax is further added. After mixing with a ball mill in acetone for 24 hours, drying under reduced pressure, press molding into a powder having a predetermined shape at a pressure of 98 MPa, and this powder in a vacuum of 5 Pa, a predetermined value within the range of 1370 to 1470 ° C. Vacuum-sintered under the condition of holding the temperature for 1 hour, and after sintering, a WC-based cemented carbide tool substrate having an insert shape of ISO standard SEEN1203AFEN was manufactured.

(a)これらの工具基体を、AIP装置の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置内に所定組成のAl−Ti−Cr−B−W−Ge合金からなるターゲット(カソード電極)を配置し、
(b)まず、装置内を排気して真空に保持しながら、ヒーターで工具基体を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、工具基体表面をアルゴンイオンによって5〜30分間ボンバード洗浄し、
(c)ついで、装置内に反応ガスとして窒素ガスを導入して表2に示す窒素圧とし、前記回転テーブル上で自転しながら回転する工具基体の温度を表2に示す温度範囲内に維持するとともに表2に示す直流バイアス電圧を印加し、かつ前記Al−Ti−Cr−B−W−Ge合金ターゲットとアノード電極との間に表2に示すアーク電流を流してアーク放電を発生させて(Al,Ti,Cr,B,W,Ge)N層を蒸着形成することにより、表3に示す硬質被覆層を備えた本発明被覆工具(以下、本発明工具という)1〜7を作製した。
(A) These tool substrates are mounted along the outer peripheral portion at a position radially separated from the central axis of the rotary table of the AIP device by a predetermined distance, and Al-Ti-Cr-B having a predetermined composition is installed in the AIP device. A target (cathode electrode) made of −W—Ge alloy is placed.
(B) First, the tool base is heated to 500 ° C. with a heater while the inside of the device is exhausted and kept in a vacuum, and then a DC bias voltage of −1000 V is applied to the tool base that rotates while rotating on the rotary table. Then, the surface of the tool substrate is bombard-cleaned with argon ions for 5 to 30 minutes.
(C) Next, nitrogen gas is introduced into the apparatus as a reaction gas to obtain the nitrogen pressure shown in Table 2, and the temperature of the tool substrate rotating while rotating on the rotary table is maintained within the temperature range shown in Table 2. At the same time, the DC bias voltage shown in Table 2 is applied, and the arc current shown in Table 2 is passed between the Al-Ti-Cr-B-W-Ge alloy target and the anode electrode to generate an arc discharge ( By depositing and forming Al, Ti, Cr, B, W, Ge) N layers, the coating tools of the present invention (hereinafter referred to as the tools of the present invention) 1 to 7 having the hard coating layer shown in Table 3 were produced.

前記本発明工具1〜7の(Al,Ti,Cr,B,W,Ge)N層について、工具基体表面に垂直な各層断面の組成分析を、透過型電子顕微鏡−エネルギー分散型X線分光分析(TEM−EDS)を用いて行った。
即ち、本発明工具1〜7の(Al,Ti,Cr,B,W,Ge)N層について、工具基体表面と平行方向に20μmの観察範囲において、上部層縦断面に対して0.01μm以下の空間分解能の元素マッピングを行い、被覆した(Al,Ti,Cr,B,W,Ge)N層の組成を測定した。
さらに、(Al,Ti,Cr,B,W,Ge)N層の平均層厚を、走査型電子顕微鏡(SEM)を用いて測定した。
表3に、これらの測定値をそれぞれ示す。
For the (Al, Ti, Cr, B, W, Ge) N layers of the tools 1 to 7 of the present invention, the composition analysis of the cross section of each layer perpendicular to the surface of the tool substrate is performed by transmission electron microscopy-energy dispersive X-ray spectroscopy. (TEM-EDS) was used.
That is, the (Al, Ti, Cr, B, W, Ge) N layers of the tools 1 to 7 of the present invention are 0.01 μm or less with respect to the vertical cross section of the upper layer in an observation range of 20 μm in the direction parallel to the surface of the tool substrate. The spatial resolution of the elemental mapping was performed, and the composition of the coated (Al, Ti, Cr, B, W, Ge) N layer was measured.
Furthermore, the average layer thickness of the (Al, Ti, Cr, B, W, Ge) N layer was measured using a scanning electron microscope (SEM).
Table 3 shows each of these measured values.

次に、比較の目的で、前記AIP装置を用いて、工具基体の表面に、実施例1の前記工程(a)〜(c)と同様にして、表4に示す条件で蒸着形成することにより、表5に示す組成および目標平均層厚の(Al,Ti,Cr,B,W,Ge)N層を備えた比較被覆工具(以下、比較工具という)1〜7を作製した。
また、参考のために、前記特許文献1に示される成分組成を満足する硬質被覆層(具体的には、(Al,Ti,Cr,B)N層)を有する従来被覆工具1(以下、従来工具1という)、前記特許文献2に示される成分組成を満足する硬質被覆層(具体的には、(Al,Ti,Cr,B,W)N層)を有する従来被覆工具2(以下、従来工具2という)及び前記特許文献3に示される成分組成を満足する硬質被覆層(具体的には、(Al,Ti,Cr,Ge)N層)を有する従来被覆工具3(以下、従来工具3という)を表4に示す条件のアークイオンプレーティング法で作製した。
Next, for the purpose of comparison, the AIP apparatus was used to form a vapor deposition on the surface of the tool substrate under the conditions shown in Table 4 in the same manner as in the steps (a) to (c) of Example 1. , Comparative coating tools (hereinafter referred to as comparative tools) 1 to 7 provided with N layers (Al, Ti, Cr, B, W, Ge) having the composition and the target average layer thickness shown in Table 5 were prepared.
Further, for reference, the conventional coating tool 1 having a hard coating layer (specifically, (Al, Ti, Cr, B) N layer) satisfying the component composition shown in Patent Document 1 (hereinafter, conventional coating tool 1). A conventional coating tool 2 (hereinafter referred to as a conventional coating tool 2) having a hard coating layer (specifically, (Al, Ti, Cr, B, W) N layer) satisfying the component composition shown in Patent Document 2 (referred to as tool 1). A conventional covering tool 3 (hereinafter referred to as a conventional tool 3) having a hard coating layer (specifically, (Al, Ti, Cr, Ge) N layer) satisfying the component composition shown in Patent Document 3 and the tool 2). ) Was prepared by the arc ion plating method under the conditions shown in Table 4.

比較工具1〜7について、実施例1の場合と同様な方法で、(Al,Ti,Cr,B,W,Ge)N層の組成分析を行うとともに、(Al,Ti,Cr,B,W,Ge)N層の平均層厚を測定した。
また、従来工具1〜3についても、硬質被覆層の組成分析、平均層厚の測定を行った。
表5に、これらの値をそれぞれ示す。
For the comparative tools 1 to 7, the composition of the (Al, Ti, Cr, B, W, Ge) N layer was analyzed by the same method as in the case of Example 1, and (Al, Ti, Cr, B, W). , Ge) The average thickness of the N layer was measured.
In addition, the composition analysis of the hard coating layer and the measurement of the average layer thickness were also performed for the conventional tools 1 to 3.
Table 5 shows each of these values.

Figure 0006959578
Figure 0006959578

Figure 0006959578
Figure 0006959578

Figure 0006959578
Figure 0006959578

Figure 0006959578
Figure 0006959578

Figure 0006959578
Figure 0006959578

ついで、前記本発明工具1〜7、比較工具1〜7および従来工具1〜3を、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、以下の条件で切削加工試験を行い、切れ刃の損傷状況を観察した。
[切削試験]
切削試験:湿式正面フライス、センターカット切削加工、
被削材:JIS・Ti−6Al−4V合金(60種) ブロック材
幅60mm、長さ250mm、
切削速度:85m/min.、
切り込み:3mm、
送り:0.35mm/rev.、
切削時間:9分、
表6に、前記切削試験の結果を示す。
Then, the tools 1 to 7, the comparative tools 1 to 7, and the conventional tools 1 to 3 of the present invention are all machined under the following conditions while being screwed to the tip of the tool steel cutting tool with a fixing jig. A test was conducted and the damage to the cutting edge was observed.
[Cutting test]
Cutting test: Wet face milling, center cut cutting,
Work material: JIS / Ti-6Al-4V alloy (60 types) Block material Width 60 mm, Length 250 mm,
Cutting speed: 85 m / min. ,
Notch: 3 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 9 minutes,
Table 6 shows the results of the cutting test.

Figure 0006959578
Figure 0006959578

表6に示される結果から、本発明工具1〜7は、(Al,Ti,Cr,B,W,Ge)N層からなる硬質被覆層がすぐれた潤滑性を備え、かつ、高温硬さを維持することができるため、高熱発生を伴うTi基合金、ステンレス鋼等の難削材の高速切削において、すぐれた耐溶着性、耐チッピング性を示すとともに、長期の使用にわたってすぐれた耐摩耗性を発揮する。
これに対して、比較工具1〜7は、硬質被覆層の潤滑性が十分でないため、溶着あるいはチッピング発生によって、工具寿命が短命であった。
また、従来工具1〜3は、硬質被覆層の潤滑性が不十分であること、あるいは、高温硬さの低下により、溶着、チッピングが発生し、あるいは、硬質被覆層の摩耗進行によって、工具寿命が短命であった。
From the results shown in Table 6, in the tools 1 to 7 of the present invention, the hard coating layer composed of (Al, Ti, Cr, B, W, Ge) N layer has excellent lubricity and high temperature hardness. Since it can be maintained, it exhibits excellent welding resistance and chipping resistance in high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel that generate high heat, and also has excellent wear resistance over a long period of use. Demonstrate.
On the other hand, the comparative tools 1 to 7 had a short tool life due to welding or chipping because the lubricity of the hard coating layer was not sufficient.
In addition, the conventional tools 1 to 3 have a tool life due to insufficient lubricity of the hard coating layer, welding or chipping due to a decrease in high temperature hardness, or progress of wear of the hard coating layer. Was short-lived.

本発明の被覆工具は、Ti基合金、ステンレス鋼等の難削材の高速切削加工において、すぐれた耐溶着性、耐チッピング性を発揮し、使用寿命の延命化を可能とするものであるが、他の被削材の切削加工、他の条件での切削加工で使用することも勿論可能である。


The covering tool of the present invention exhibits excellent welding resistance and chipping resistance in high-speed cutting of difficult-to-cut materials such as Ti-based alloys and stainless steel, and can extend the service life. Of course, it can also be used for cutting of other work materials and cutting under other conditions.


Claims (2)

炭化タングステン基超硬合金、炭窒化チタン基サーメット、立方晶窒化硼素焼結体および高速度工具鋼のいずれかからなる工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
前記硬質被覆層は、0.5〜10μmの平均層厚を有するAlとTiとCrとBとWとGeの複合窒化物層であり
前記複合窒化物を、
組成式:(AlTiCr(1-(a+b+c+d+e))Ge)N
で表したとき、0.40≦a≦0.85、0.05≦b≦0.30、0.005≦c≦0.100、0<d≦0.100、0.005≦e≦0.050(ただし、a、b、c、d、eは、いずれも原子比を示す)を満足することを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate made of any of tungsten carbide-based cemented carbide, titanium nitride-based cermet, cubic boron nitride sintered body, and high-speed tool steel.
The hard coating layer is a composite nitride layer of Al, Ti, Cr, B, W, and Ge having an average layer thickness of 0.5 to 10 μm .
The composite nitride,
Composition formula: (Al a Ti b Cr (1- (a + b + c + d + e)) B c W d Ge e ) N
When represented by, 0.40 ≦ a ≦ 0.85, 0.05 ≦ b ≦ 0.30, 0.005 ≦ c ≦ 0.100, 0 <d ≦ 0.100, 0.005 ≦ e ≦ 0 A surface-coated cutting tool characterized by satisfying .050 (where a, b, c, d, and e all indicate atomic ratios).
前記組成式:(AlTiCr(1-(a+b+c+d+e))Ge)NにおけるAlの含有割合aは、0.55≦a≦0.68を満足することを特徴とする請求項1に記載の表面被覆切削工具。 The composition formula: (Al a Ti b Cr (1- (a + b + c + d + e)) B c W d Ge e ) The content ratio a of Al in N is 0.55 ≦ a ≦ 0.68. The surface coating cutting tool according to claim 1, wherein the surface coating cutting tool is characterized in that.
JP2018000051A 2018-01-04 2018-01-04 Surface coating cutting tool Active JP6959578B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018000051A JP6959578B2 (en) 2018-01-04 2018-01-04 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018000051A JP6959578B2 (en) 2018-01-04 2018-01-04 Surface coating cutting tool

Publications (2)

Publication Number Publication Date
JP2019118997A JP2019118997A (en) 2019-07-22
JP6959578B2 true JP6959578B2 (en) 2021-11-02

Family

ID=67305845

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018000051A Active JP6959578B2 (en) 2018-01-04 2018-01-04 Surface coating cutting tool

Country Status (1)

Country Link
JP (1) JP6959578B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7025693B2 (en) * 2018-01-04 2022-02-25 三菱マテリアル株式会社 Surface covering cutting tool

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10309605A (en) * 1997-05-12 1998-11-24 Sumitomo Electric Ind Ltd Coated hard alloy tool
JP2001315006A (en) * 2000-05-11 2001-11-13 Sumitomo Electric Ind Ltd Coated hard tool
SE526336C2 (en) * 2002-07-01 2005-08-23 Seco Tools Ab Cut with durable refractory coating of MAX phase
JP5443403B2 (en) * 2004-09-30 2014-03-19 株式会社神戸製鋼所 Hard coating excellent in high temperature lubricity and wear resistance and target for forming the hard coating
BR112013012688A2 (en) * 2010-11-23 2016-09-06 Seco Tools Ab coated cutting tool insert
JP6059640B2 (en) * 2013-11-21 2017-01-11 株式会社神戸製鋼所 Hard film and hard film forming target

Also Published As

Publication number Publication date
JP2019118997A (en) 2019-07-22

Similar Documents

Publication Publication Date Title
JP5041222B2 (en) Surface coated cutting tool
JP6959578B2 (en) Surface coating cutting tool
JP5088480B2 (en) Surface coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP6959577B2 (en) Surface coating cutting tool
WO2020184352A1 (en) Surface-coated cutting tool
JP2008105107A (en) Surface coated cutting tool with hard coated layer showing excellent wear resistance in high speed cutting
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP7025693B2 (en) Surface covering cutting tool
JP6928222B2 (en) Surface coating cutting tool
JP2021088039A (en) Surface coating-cutting tool
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP2007290090A (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed heavy cutting difficult-to-cut material
JP6928221B2 (en) Surface coating cutting tool
JP2020104224A (en) Surface-coated cutting tool
JP2019171483A (en) Surface-coated cutting tool
JP2019171482A (en) Surface-coated cutting tool
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2008188738A (en) Surface-coated cutting tool provided with hard coated layer achieving excellent chipping resistance in heavy cutting of hard-to-cut material
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP2009095916A (en) Surface-coated cutting tool
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP2007152458A (en) Surface coated cutting tool having hard coating layer having excellent chipping resistance in high-speed cutting material hard to machine
JP2021142586A (en) Surface-coating cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210617

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210623

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210921

R150 Certificate of patent or registration of utility model

Ref document number: 6959578

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150