JP4720990B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials - Google Patents
Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials Download PDFInfo
- Publication number
- JP4720990B2 JP4720990B2 JP2005220179A JP2005220179A JP4720990B2 JP 4720990 B2 JP4720990 B2 JP 4720990B2 JP 2005220179 A JP2005220179 A JP 2005220179A JP 2005220179 A JP2005220179 A JP 2005220179A JP 4720990 B2 JP4720990 B2 JP 4720990B2
- Authority
- JP
- Japan
- Prior art keywords
- layer
- cutting tool
- cemented carbide
- gear cutting
- hard coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23F—MAKING GEARS OR TOOTHED RACKS
- B23F21/00—Tools specially adapted for use in machines for manufacturing gear teeth
- B23F21/12—Milling tools
- B23F21/16—Hobs
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Physical Vapour Deposition (AREA)
Description
この発明は、特にTi合金や高Si含有Al合金、さらにステンレス鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速歯切加工に用いた場合にも、硬質被覆層が前記高反応性被削材に対してきわめて低い反応性を示し、この結果すぐれた耐摩耗性を長期に亘って発揮するようになる表面被覆超硬合金製歯切工具(以下、被覆超硬歯切工具という)に関するものである。 This invention is particularly suitable for high-speed gear cutting with high heat generation of highly reactive work materials such as Ti alloys, high Si-containing Al alloys, and stainless steel, and the hard coating layer is highly reactive. Surface-coated cemented carbide cutting tool (hereinafter referred to as coated carbide cutting tool) that exhibits extremely low reactivity to the workable material and as a result, exhibits excellent wear resistance over a long period of time. ).
従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に被覆超硬歯切工具(ソリッドホブ)が用いられている。
また、被覆超硬歯切工具としては、例えば図3に概略斜視図で示される通り、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状に機械加工された炭化タングステン基超硬合金製歯切工具本体(以下、超硬歯切基体という)の表面に、各種の硬質被覆層を物理蒸着してなる被覆超硬歯切工具が知られている。
Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices, and coated carbide gear cutting tools (solid hobs) are used for gear cutting of gear teeth.
Further, as the coated carbide gear cutting tool, for example, as shown in a schematic perspective view in FIG. 3, a plurality of tooth grooves are formed radially with respect to the rotation axis and along the length direction. Between the front and rear surfaces that face the tooth gap and the front surface is a rake face with respect to the rotation direction, and the tooth is composed of a top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) that are flank surfaces Various hard parts are formed on the surface of a tungsten carbide based cemented carbide cutting tool body (hereinafter referred to as a carbide cutting base) machined into a shape in which a plurality of parts are continuously formed along the length direction. A coated carbide gear cutting tool formed by physical vapor deposition of a coating layer is known.
一方、通常のスローアウエイチップやエンドミル、さらにドリルなどの表面被覆超硬合金製切削工具の硬質被覆層としては、例えば、
組成式:[Ti1-(X+Y) AlX TaY]N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.09を示す)、
を満足するTiとAlとTaの複合窒化物[以下、(Ti,Al,Ta)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成することが知られており、前記(Ti,Al,Ta)N層が、構成成分であるAlによって高温硬さおよび耐熱性、同Tiによって高温強度が向上し、さらに同Taによって被削材との間の反応性抑止効果が発揮されるようになることも知られている。
On the other hand, as a hard coating layer of a cutting tool made of a surface-coated cemented carbide such as a normal throwaway tip, end mill, and drill, for example,
Formula: [Ti 1- (X + Y ) Al X Ta Y] N ( provided that an atomic ratio, X is from .50 to 0.65, Y represents a 0.01 to 0.09),
It is known that a hard coating layer composed of a composite nitride of Ti, Al, and Ta [hereinafter referred to as (Ti, Al, Ta) N] satisfying the above conditions is vapor-deposited with an average layer thickness of 2 to 8 μm. The (Ti, Al, Ta) N layer has high-temperature hardness and heat resistance due to Al as a constituent component, high-temperature strength is improved due to the Ti, and further, the Ta inhibits reactivity with the work material. It is also known that will be demonstrated.
さらに、上記の硬質被覆層を備えた被覆超硬歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬歯切基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Ta合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al,Ta)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の被覆超硬歯切工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの歯切加工に用いた場合には、通常の歯切性能を示し問題はないが、特にTi合金や高Si含有Al合金、さらにステンレス鋼などのきわめて反応性の高い被削材の歯切加工を、高熱発生を伴なう高速歯切加工条件で行うのに用いた場合には、特に硬質被覆層と前記高反応性被削材との反応が、高熱発生に伴って促進されることと相俟って、急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。 In recent years, the performance of cutting devices has been dramatically improved, while there is a strong demand for labor saving and energy saving and further cost reduction for cutting. In coated carbide gear cutting tools, when used for gear cutting of carbon steel, low alloy steel, and ordinary cast iron, there is no problem with normal gear cutting performance. When using gear cutting of highly reactive work materials such as Si-containing Al alloys and stainless steel under high speed gear cutting conditions with high heat generation, especially hard coating layers Combined with the fact that the reaction with the highly reactive work material is promoted as a result of the generation of high heat, the reaction proceeds rapidly, and as a result, the wear life is reached in a relatively short time. is there.
そこで、本発明者等は、上述のような観点から、特に上記高反応性被削材の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬工具を開発すべく、上記従来の被覆超硬歯切工具の硬質被覆層を構成する(Ti,Al,Ta)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Ta)N層において、Ta成分の含有割合を多くすればするほど高反応性被削材との反応性は低下するようになるが、上記の従来(Ti,Al,Ta)N層における1〜9原子%程度のTa含有割合では、前記高反応性被削材との反応を、高熱発生を伴う高速歯切加工で満足に抑制することはできず、高速歯切加工で前記高反応性被削材との反応を十分抑制するには前記1〜9原子%をはるかに越えた50〜70原子%のTa含有が必要であり、一方50〜70原子%のTa成分を含有した(Ti,Al,Ta)N層を硬質被覆層として実用に供するには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合は著しく低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
Therefore, in order to develop a coated carbide tool exhibiting excellent wear resistance with a hard coating layer particularly in high-speed gear cutting of the highly reactive work material from the above viewpoint, As a result of conducting research by paying attention to the (Ti, Al, Ta) N layer constituting the hard coating layer of the above conventional coated carbide gear cutting tool,
(A) In the (Ti, Al, Ta) N layer constituting the hard coating layer, the reactivity with the highly reactive work material decreases as the content ratio of the Ta component increases. In the conventional (Ti, Al, Ta) N layer, the Ta content ratio of about 1 to 9 atomic% can satisfactorily suppress the reaction with the highly reactive work material by high-speed gear cutting with high heat generation. In order to sufficiently suppress the reaction with the highly reactive work material by high-speed gear cutting, it is necessary to contain 50 to 70 atomic% of Ta, far exceeding the above 1 to 9 atomic%, In order to practically use a (Ti, Al, Ta) N layer containing 50 to 70 atomic% Ta component as a hard coating layer, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high temperature strength. In this case, the content ratio of the Al component is unavoidably low. Results hot hardness and shall become that heat resistance of very low.
(b)組成式:(Ti1-(A+B)AlATaB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する、Ta含有割合が50〜70原子%の(Ti,Al,Ta)N層と、
組成式:(Ti1-(C+D)AlCTaD)N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足する、相対的にAl成分の含有割合を多くし、一方所定量のTi成分を含有させて高温強度を確保するためにTa成分の含有割合を相対的に低くした(Ti,Al,Ta)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,Ta)N層は、薄層の交互積層構造によって、上記の高Ta含有の(Ti,Al,Ta)N層(以下、薄層Aという)のもつすぐれた被削材反応性抑制効果と、前記薄層Aに比して相対的にTa含有割合を低く、かつAl含有割合を高くした(Ti,Al,Ta)N層(以下、薄層Bという)のもつ相対的に高い高温硬さおよび耐熱性とを具備するようになるので、硬質被覆層として実用に供することができるようになること。
(B) Composition formula: (Ti 1− (A + B) Al A Ta B ) N (provided that atomic ratio is 0.01 to 0.10 and B is 0.50 to 0.70) A (Ti, Al, Ta) N layer having a Ta content ratio of 50 to 70 atomic%;
Composition formula: (Ti 1− (C + D) Al C Ta D ) N (wherein, C is 0.30 to 0.45 and D is 0.20 to 0.35 in atomic ratio), relative In particular, the content ratio of the Al component is increased, while the content ratio of the Ta component is relatively lowered in order to ensure a high temperature strength by containing a predetermined amount of the Ti component (Ti, Al, Ta) N layer,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and the resulting (Ti, Al, Ta) N layer has a thin layer of alternately laminated structure, The above-described high Ta content (Ti, Al, Ta) N layer (hereinafter referred to as the thin layer A) has an excellent work material reactivity suppressing effect, and a Ta content ratio relative to the thin layer A. And a relatively high high temperature hardness and heat resistance of the (Ti, Al, Ta) N layer (hereinafter referred to as thin layer B) with a low Al content and a high Al content. Be ready for practical use as a layer.
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Ta)N層は、高反応性被削材の高速歯切加工で要求される、被削材反応性抑制効果を有するものの、十分満足な高温硬さおよび耐熱性を有するものではないので、これを硬質被覆層の上部層として設け、一方同下部層として、被削材反応性抑制効果は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Ta)N層、すなわち、
組成式:[Ti1-(E+F)AlETaF]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する、単一相構造の(Ti,Al,Ta)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた被削材反応性抑制効果に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬歯切工具は、上記の高反応性被削材の高熱発生を伴う高速歯切加工でも、前記高反応性被削材と硬質被覆層との反応摩耗が著しく抑制された状態で歯切加工が行われるので、チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Ta) N layer having the alternate layered structure of the thin layer A and the thin layer B of (b) above is required for high-speed gear cutting of a highly reactive work material. Although it has a material reactivity inhibiting effect, it does not have a sufficiently satisfactory high temperature hardness and heat resistance, so this is provided as the upper layer of the hard coating layer, while the same as the lower layer, the work material reactivity inhibiting effect is (Ti, Al, Ta) N layer having a composition corresponding to the above-mentioned conventional hard coating layer, which is insufficient but has a relatively high content of Al component and has excellent high temperature hardness and heat resistance, ,
Compositional formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in terms of atomic ratio) (Ti, Al, Ta) N layer of single phase structure,
The resulting hard coating layer has a high temperature hardness, heat resistance, and high temperature strength in addition to the excellent work material reactivity suppression effect. The coated carbide gear cutting tool formed by vapor deposition of the above-mentioned high-reactive work material with high heat generation, the reactive wear between the high-reactive work material and the hard coating layer is remarkable. Since gear cutting is performed in a restrained state, chipping will not occur and excellent wear resistance will be exhibited over a long period of time.
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する炭化タングステン基超硬合金製歯切工具基体の表面に、
(a)いずれも(Ti,Al,Ta)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlATaB]N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する(Ti,Al,Ta)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCTaD]N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足する(Ti,Al,Ta)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlETaF]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する(Ti,Al,Ta)N層、
からなる硬質被覆層を蒸着形成してなる、高反応性被削材の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具(表面被覆超硬合金製歯切工具)に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of tooth spaces are formed radially and along the length direction with respect to the rotation axis. The tooth part that consists of the front and rear faces that face the groove and the front face is a rake face with respect to the rotation direction, and the top face (tooth tip tooth face) and both side faces (left and right tooth faces) that are flank faces On the surface of the tungsten carbide based cemented carbide cutting tool base having a shape formed continuously along the direction,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Ta) N, the upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternate laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Ta B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) satisfies (Ti , Al, Ta) N layer,
The thin layer B is
Formula: [Ti 1- (C + D ) Al C Ta D] N ( provided that an atomic ratio, C is 0.30 to 0.45, D represents a 0.20 to 0.35) satisfies (Ti , Al, Ta) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) (Ti , Al, Ta) N layer,
Coated cemented carbide cutting tool (surface coated cemented carbide alloy tooth) that exhibits excellent wear resistance due to high-speed gear cutting of highly reactive work materials. Cutting tool).
つぎに、この発明の被覆超硬歯切工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Ta)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同Ta成分には特に被削材との反応性を著しく低減させる作用があり、下部層ではAl成分の含有割合を全体的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとTaとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、高速歯切加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Taの割合を示すF値がTiとAlとの合量に占める割合で、0.01未満では、所定の被削材反応性抑制効果を確保することができず、一方同F値が0.09を超えると、高温強度が急激に低下するようになることから、F値を0.01〜0.09と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, regarding the hard coating layer of the coated carbide gear cutting tool of the present invention, the reason why the numerical values are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, Ta) N layer constituting the hard coating layer improves high-temperature hardness and heat resistance, while the Ti component Has the effect of significantly reducing the reactivity with the work material, especially the Ta component, and in the lower layer, the overall content of the Al component is increased in the lower layer to achieve high high temperature hardness and heat resistance. Although the E value indicating the Al content ratio is less than 0.50 in terms of the total amount of Ti and Ta (atomic ratio, the same shall apply hereinafter), the ratio of Ti is relatively high, and the high-speed teeth The excellent high-temperature hardness and heat resistance required for cutting cannot be ensured, and the progress of wear is rapidly accelerated. On the other hand, when the E value indicating the Al ratio exceeds 0.65, The ratio of Ti is relatively low, and the high temperature strength is abrupt. As a result, chipping (slight chipping) or the like is likely to occur, so the E value was set to 0.50 to 0.65.
Further, the F value indicating the proportion of Ta is a proportion of the total amount of Ti and Al, and if it is less than 0.01, a predetermined work material reactivity suppression effect cannot be ensured, while the F value is If it exceeds 0.09, the high-temperature strength suddenly decreases, so the F value was determined to be 0.01 to 0.09.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while if the layer thickness exceeds 6 μm Since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.
(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Ta)NにおけるTa成分は、上記の通りその含有割合をできるだけ高くして、被削材反応性抑制効果を一段と向上させ、もって高熱発生を伴う高反応性被削材の高速歯切加工での反応摩耗低減を図る目的で含有するものであり、したがってB値が0.50未満では所望のすぐれた被削材反応性抑制効果を確保することができず、一方B値が0.70を越えると、相対的にTi成分の含有割合が少なくなり過ぎて、層自体が具備すべき高温強度を確保することができなくなることから、B値を0.50〜0.70と定めた。
また、Alの割合を示すA値がTiとTaとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度が低下するようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A As described above, the Ta component in (Ti, Al, Ta) N of the upper layer thin layer A is made as high as possible to suppress the reactivity of the work material. It is included for the purpose of further improving the effect and reducing reactive wear in high-speed gear cutting of high-reactive work materials with high heat generation. Therefore, when the B value is less than 0.50, the desired excellent The effect of suppressing the reactivity of the work material cannot be ensured. On the other hand, when the B value exceeds 0.70, the content ratio of the Ti component becomes relatively small, and the high temperature strength that the layer itself should have is ensured. Therefore, the B value was set to 0.50 to 0.70.
In addition, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Ta, and if it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, leading to accelerated wear. On the other hand, if the A value exceeds 0.10, the high-temperature strength decreases, causing chipping. Therefore, the A value was set to 0.01 to 0.10.
(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してTa成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた被削材反応性抑制効果と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.30未満になると、所定の高温硬さおよび耐熱性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.45を越えると、上部層全体の高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.30〜0.45と定めた。
また、Taの割合を示すD値がTiとAlとの合量に占める割合で、0.20未満では、上部層全体の被削材反応性抑制効果の低下が避けられず、一方同D値が0.35を超えると、上部層全体の高温強度が急激に低下するようになることから、D値を0.20〜0.35と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the Ta component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having a relatively high high temperature hardness and heat resistance of the thin layer B is formed, and the C value indicating the Al content ratio in the composition formula If the C value is less than 0.30, the predetermined high temperature hardness and heat resistance cannot be ensured, and wear progresses. On the other hand, if the C value exceeds 0.45, the high temperature of the entire upper layer is increased. Decrease in strength is inevitable and causes chipping. It was defined as 0.30 to 0.45.
Further, the D value indicating the ratio of Ta is a ratio of the total amount of Ti and Al. If the D value is less than 0.20, a decrease in the work material reactivity suppression effect of the entire upper layer is unavoidable, whereas the same D value When the value exceeds 0.35, the high-temperature strength of the entire upper layer suddenly decreases, so the D value was set to 0.20 to 0.35.
(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた被削材反応性抑制効果、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば被削材反応性抑制効果不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進するようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. It is not possible to ensure excellent work material reactivity suppressing effect, and also to ensure a predetermined high temperature hardness and heat resistance, and if each layer thickness exceeds 20 nm, each thin layer has a defect, that is, thin layer A. Insufficient high temperature hardness and heat resistance, and thin layer B, the lack of work material reactivity suppression effect appears locally in the layer, which makes it easier for chipping to occur and promotes the progress of wear. Therefore, the thickness of each layer was set to 5 to 20 nm.
(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた被削材反応性抑制効果および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, it is not possible to provide the hard coating layer with long-term hardness and heat resistance, which is excellent in its own workability, and to the hard coating layer over a long period of time. The tool life is short-lived. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.
この発明の被覆超硬歯切工具は、硬質被覆層が(Ti,Al,Ta)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた被削材反応性抑制効果を具備せしめ、同単一相構造の下部層が相対的にすぐれた高温硬さと耐熱性を有することから、特にTi合金や高Si含有Al合金、さらにステンレス鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速歯切加工でも、前記硬質被覆層の反応摩耗が著しく抑制されるようになり、すぐれた耐摩耗性を長期に亘って発揮するものである。 In the coated carbide gear cutting tool of the present invention, the hard coating layer is composed of a (Ti, Al, Ta) N layer, and the upper layer of the hard coating layer is formed by alternately laminating a thin layer A and a thin layer B. Because it has excellent work material reactivity suppressing effect while maintaining the predetermined high temperature hardness and heat resistance, the lower layer of the same single phase structure has relatively high temperature hardness and heat resistance. In particular, even in high-speed gear cutting with high heat generation of highly reactive work materials such as Ti alloy, high Si content Al alloy, and stainless steel, the reactive wear of the hard coating layer is significantly suppressed. It exhibits excellent wear resistance over a long period of time.
つぎに、この発明の被覆超硬歯切工具を実施例により具体的に説明する。
Next, the coated carbide gear cutting tool of the present invention will be specifically described with reference to examples.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 C2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、2条右捩れ×16溝の形状をもった図3に示されるソリッドホブ型の超硬歯切基体A〜Jをそれぞれ製造した。
WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour to form a cemented carbide round bar material of diameter: 85 mm × length: 125 mm, and machined from this material, outer diameter: 80 mm X Length: Solid hob type cemented carbide cutting bases A to J shown in FIG. 3 each having a total dimension of 120 mm and a shape of two right-hand twists x 16 grooves were manufactured.
(a)ついで、上記の超硬歯切基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Ta合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Ta合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Ta合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−Ta合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−Ta合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬歯切基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬歯切基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Ta合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Ta合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬歯切基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬歯切工具1〜10をそれぞれ製造した。
(A) Next, each of the above-mentioned superhard gear cutting bases A to J is ultrasonically cleaned in acetone and dried, and the central axis on the rotary table in the arc ion plating apparatus shown in FIG. A thin layer of an upper layer having a component composition corresponding to the target composition shown in Table 2 as a cathode electrode (evaporation source) on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from Ti-Al-Ta alloy for forming A, and Ti-Al- for forming thin layer B of the upper layer having the component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on the other side A Ta alloy is disposed opposite to the rotary table, and Ti-Al- for forming a lower layer as a cathode electrode (evaporation source) along the rotary table at a position shifted by 90 degrees from both the Ti-Al-Ta alloys. Ta The gold is attached,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated onto the rotating table while rotating on the rotating table. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the lower layer forming Ti—Al—Ta alloy and the anode electrode to generate an arc discharge. Bombard cleaning with Ti-Al-Ta alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the carbide cutting base rotating while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the Ti—Al—Ta alloy for forming the lower layer and the anode electrode, so that the target composition and target shown in Table 2 are formed on the surface of the cemented carbide cutting base. (Ti, Al, Ta) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the carbide cutting base rotating while rotating on the rotary table. In this state, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer A to generate arc discharge, thereby A thin layer A having a predetermined layer thickness is formed on the surface of the substrate. After the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-Ta alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). The thin layer A type Formation of thin layer A by arc discharge between cathode electrode and anode electrode of Ti-Al-Ta alloy for use, and thin layer by arc discharge between cathode electrode and anode electrode of Ti-Al-Ta alloy for formation of thin layer B The formation of B is alternately repeated so that the target composition shown in Table 2 along the layer thickness direction and the thin layer A and the thin layer B having a single target layer thickness are alternately laminated on the surface of the cemented carbide cutting base. Similarly, the coated super hard gear cutting tools 1 to 10 of the present invention were manufactured by vapor-depositing the upper layers to be formed with the overall target layer thicknesses shown in Table 2, respectively.
また、比較の目的で、上記の超硬歯切基体A〜Jを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったTi−Al−Ta合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Ta合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−Ta合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬歯切基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Ta合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬歯切基体の表面に、表3に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Ta)N層からなる硬質被覆層を蒸着形成することにより、比較被覆超硬歯切工具1〜10をそれぞれ製造した。 Further, for the purpose of comparison, the above-described superhard gear cutting bases A to J are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the (evaporation source), a Ti—Al—Ta alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. Then, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide cutting base, and 100 A was applied between the Ti—Al—Ta alloy of the cathode electrode and the anode electrode. An electric current is applied to generate an arc discharge, so that the surface of the cemented carbide cutting base is bombarded with the Ti—Al—Ta alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 3 Pa. At the same time, the bias voltage applied to the cemented carbide cutting base is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Ta alloy. A comparative coated carbide gear cutting is performed by vapor-depositing a hard coating layer composed of a (Ti, Al, Ta) N layer having a single phase structure with the target composition and target layer thickness shown in Table 3 on the surface of the substrate. Tools 1-10 were produced respectively.
つぎに、上記の本発明被覆超硬歯切工具1〜10および比較被覆超硬歯切工具1〜10のそれぞれについて、
(a)材質がJIS・AC9B(組成、質量%で、Al−19%Si−1%Cu−1%Mg−1%Ni)であり、
モジュール:1.5、圧力角:14.5度、歯数:27、ねじれ角:25度右捩れ、歯幅:20mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度): 500m/min、
送り: 1.5mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の条件(歯切条件A)で高速歯切加工(上記JIS・AC9BのAl合金の歯車の加工の場合の切削速度は通常 350m/min)を行い、また、
(b)材質がJIS・SUS303であり、
モジュール:1.5、圧力角:14.5度、歯数:29、ねじれ角:30度右捩れ、歯幅:22.5mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度): 450m/min、
送り: 1.2mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の条件(歯切条件B)で高速歯切加工(上記材質JIS・SUS303の歯車の加工の場合の切削速度は通常 350m/min)を行い、
上記(a)、(b)の高速歯切加工において、逃げ面摩耗幅が 0.1mmに至るまでの歯車加工数を測定した。
この測定結果を表2、3にそれぞれに示した。
Next, for each of the present invention coated cemented carbide cutting tool 1-10 and comparative coated cemented carbide cutting tool 1-10,
(A) The material is JIS AC9B (composition, mass%, Al-19% Si-1% Cu-1% Mg-1% Ni),
Module: 1.5, Pressure angle: 14.5 degrees, Number of teeth: 27, Twist angle: 25 degrees Right-hand twist, Teeth width: Processing of gears with dimensions and shapes of 20 mm,
Cutting speed (rotational speed): 500 m / min,
Feed: 1.5mm / rev,
Processing form: climb, no shift, dry (air blow),
(The cutting speed in the case of the above-mentioned JIS / AC9B Al alloy gear machining is usually 350 m / min)
(B) The material is JIS / SUS303,
Module: 1.5, Pressure angle: 14.5 degrees, Number of teeth: 29, Twist angle: 30 degrees Right twist, Teeth width: Processing of gears with dimensions and shapes of 22.5 mm,
Cutting speed (rotational speed): 450 m / min,
Feed: 1.2mm / rev,
Processing form: climb, no shift, dry (air blow),
(The cutting speed in the case of processing the gear of the above-mentioned material JIS / SUS303 is usually 350 m / min)
In the high-speed gear cutting of (a) and (b) above, the number of gears processed until the flank wear width reached 0.1 mm was measured.
The measurement results are shown in Tables 2 and 3, respectively.
この結果得られた本発明被覆超硬歯切工具1〜10の(Ti,Al,Ta)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆超硬歯切工具1〜10の(Ti,Al,Ta)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
The thin layer A and the thin layer B constituting the hard coating layer made of (Ti, Al, Ta) N of the coated carbide cutting tool 1 to 10 of the present invention obtained as a result of this, and the composition of the lower layer In addition, the composition of the hard coating layer made of (Ti, Al, Ta) N of the comparative coated carbide gear cutting tools 1 to 10 was measured by an energy dispersive X-ray analysis method using a transmission electron microscope. Each showed substantially the same composition as the target composition.
Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表2、3に示される結果から、本発明被覆超硬歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,Ta)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さ、さらに前記上部層がすぐれた被削材反応性抑制効果を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、特にTi合金や高Si含有Al合金、さらにステンレス鋼などのきわめて反応性の高い被削材の高い発熱を伴う高速歯切加工に用いた場合にも、合金鋼製歯車の歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、前記硬質被覆層と高反応性被削材との間で反応摩耗が著しく抑制された状態で歯切加工が行われるので、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,Ta)N層からなる比較被覆超硬歯切工具は、前記高反応性被削材の高速歯切加工では、特に前記硬質被覆層と高反応性被削材との間の反応摩耗が著しく、この結果比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の表面被覆超硬合金製歯切工具(本発明被覆超硬歯切工具)は、各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの通常の条件での歯切加工は勿論のこと、特に上記の高反応性被削材の高熱発生を伴う高速歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the coated carbide cutting tool of the present invention has a single-phase structure lower layer made of (Ti, Al, Ta) N, each having a hard coating layer having a different composition, Consists of an upper layer having an alternating laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high-temperature hardness, and the upper layer has excellent work material reactivity suppression Since the hard coating layer has these excellent characteristics, it is accompanied by high heat generation of highly reactive work materials such as Ti alloy, high Si content Al alloy, and stainless steel in particular. Even when used for high-speed gear cutting and when gear steel gears are cut under high-speed gear cutting conditions with high heat generation, the hard coating layer and the highly reactive work material The gear cutting is performed with the reaction wear being significantly suppressed Therefore, the comparative coated carbide gear cutting tool in which the hard coating layer is composed of a (Ti, Al, Ta) N layer having a single-phase structure, while exhibiting excellent wear resistance, is provided with the above-described highly reactive cutting. In high-speed gear cutting of materials, it is clear that the reactive wear between the hard coating layer and the highly reactive work material is particularly remarkable, and as a result, the service life is reached in a relatively short time.
As described above, the surface-coated cemented carbide cutting tool of the present invention (the coated carbide cutting tool of the present invention) is used for cutting under normal conditions such as various carbon steels, low alloy steels, and ordinary cast iron. In addition to machining, especially when the above high-reactive work materials are subjected to high-speed gear cutting with high heat generation, the hard coating layer exhibits excellent wear resistance and is excellent over a long period of time. Therefore, the present invention can satisfactorily cope with the high performance of the gear cutting apparatus, the labor saving and energy saving of the gear cutting, and the cost reduction.
Claims (1)
(a)いずれもTiとAlとTaの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlATaB]N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足するTiとAlとTaの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCTaD]N(ただし、原子比で、Cは0.30〜0.45、Dは0.20〜0.35を示す)を満足するTiとAlとTaの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlETaF]N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足するTiとAlとTaの複合窒化物層、
からなる硬質被覆層を蒸着形成してなることを特徴とする高反応性被削材の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具。 On the surface of the tungsten carbide base cemented carbide cutting tool base,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Ta, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. Have
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Formula: [Ti 1- (A + B ) Al A Ta B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) and Ti which satisfies A composite nitride layer of Al and Ta,
The thin layer B is
Ti satisfying the composition formula: [Ti 1− (C + D) Al C Ta D ] N (wherein C is 0.30 to 0.45 and D is 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and Ta,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Ta F ] N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) A composite nitride layer of Al and Ta,
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed gear cutting of a highly reactive work material, characterized in that the hard coating layer is formed by vapor deposition.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005220179A JP4720990B2 (en) | 2005-07-29 | 2005-07-29 | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005220179A JP4720990B2 (en) | 2005-07-29 | 2005-07-29 | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007030131A JP2007030131A (en) | 2007-02-08 |
JP4720990B2 true JP4720990B2 (en) | 2011-07-13 |
Family
ID=37789999
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005220179A Active JP4720990B2 (en) | 2005-07-29 | 2005-07-29 | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP4720990B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111565873B (en) * | 2018-03-19 | 2023-01-10 | 住友电工硬质合金株式会社 | Surface-coated cutting tool |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08134629A (en) * | 1994-09-16 | 1996-05-28 | Sumitomo Electric Ind Ltd | Hyperfine particle laminated film and laminated high hardness material for tool with same |
JP3416937B2 (en) * | 1994-10-28 | 2003-06-16 | 住友電気工業株式会社 | Laminate |
JP3719731B2 (en) * | 1995-01-31 | 2005-11-24 | 日立ツール株式会社 | Coated cutting tool / Coated wear-resistant tool |
JP3543755B2 (en) * | 2000-10-31 | 2004-07-21 | 三菱マテリアル神戸ツールズ株式会社 | Surface coated high-speed tool steel gear cutting tool with excellent chip lubrication property with a hard coating layer |
JP4007102B2 (en) * | 2002-07-10 | 2007-11-14 | 三菱マテリアル神戸ツールズ株式会社 | Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions |
-
2005
- 2005-07-29 JP JP2005220179A patent/JP4720990B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2007030131A (en) | 2007-02-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4645821B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4720989B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4678589B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP2008087114A (en) | Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy | |
JP4720987B2 (en) | Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials | |
JP4720990B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials | |
JP2006334740A (en) | Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material | |
JP4756445B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP4771198B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials | |
JP4702535B2 (en) | Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP6198002B2 (en) | A surface-coated cutting tool that exhibits high wear resistance and chipping resistance with a hard coating layer in high-speed cutting. | |
JP6959577B2 (en) | Surface coating cutting tool | |
JP6959578B2 (en) | Surface coating cutting tool | |
JP4706911B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4771199B2 (en) | Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP2008302439A (en) | Cutting tool made of surface coated cubic boron nitride-base very high pressure sintered material | |
JP2007152457A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy | |
JP4716007B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4706912B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP2002187004A (en) | End mill made of surface-coated cemented carbide excellent in wear resistance in high speed cutting | |
JP4697389B2 (en) | Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting | |
JP3959737B2 (en) | A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear. | |
JP4716006B2 (en) | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel | |
JP4645818B2 (en) | Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys | |
JP2005022044A (en) | Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Effective date: 20071226 Free format text: JAPANESE INTERMEDIATE CODE: A712 |
|
A621 | Written request for application examination |
Effective date: 20080715 Free format text: JAPANESE INTERMEDIATE CODE: A621 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20110309 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20110322 |
|
FPAY | Renewal fee payment (prs date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20140415 Year of fee payment: 3 |
|
R150 | Certificate of patent (=grant) or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |