JP3959737B2 - A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear. - Google Patents

A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear. Download PDF

Info

Publication number
JP3959737B2
JP3959737B2 JP2002069771A JP2002069771A JP3959737B2 JP 3959737 B2 JP3959737 B2 JP 3959737B2 JP 2002069771 A JP2002069771 A JP 2002069771A JP 2002069771 A JP2002069771 A JP 2002069771A JP 3959737 B2 JP3959737 B2 JP 3959737B2
Authority
JP
Japan
Prior art keywords
content point
highest
lowest
hard coating
content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002069771A
Other languages
Japanese (ja)
Other versions
JP2003266243A (en
Inventor
幸生 青木
俊之 谷内
稔 福永
Original Assignee
三菱マテリアル神戸ツールズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル神戸ツールズ株式会社 filed Critical 三菱マテリアル神戸ツールズ株式会社
Priority to JP2002069771A priority Critical patent/JP3959737B2/en
Publication of JP2003266243A publication Critical patent/JP2003266243A/en
Application granted granted Critical
Publication of JP3959737B2 publication Critical patent/JP3959737B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、すぐれた高強度と高靭性を有し、かつ高温硬さと耐熱性にもすぐれ、したがって特に各種の鋼製歯車などの歯切加工を、高い機械的熱的衝撃を伴う高速条件で行なった場合に、すぐれた耐チッピング性を発揮する硬質被覆層を炭化タングステン基超硬合金製むく歯切工具(以下、超硬歯切工具という)の表面に形成する方法に関するものである。
【0002】
【従来の技術】
従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられているが、これら歯車の歯形の歯切加工に、図3に概略斜視図で例示される形状の超硬歯切工具(ソリッドホブ)が用いられている。
【0003】
さらに、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置内に超硬歯切工具を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬歯切工具には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬歯切工具の表面に、
組成式:(AlZTi1-Z )N(ただし、原子比で、Zは0.40〜0.65を示す)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で形成する方法が知られている。
【0004】
【発明が解決しようとする課題】
近年の歯切加工装置の高性能化はめざましく、一方で歯切加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、歯切加工は高速化の傾向にあるが、上記の従来超硬歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、歯切加工を高い機械的熱的衝撃を伴う高速条件で行なった場合には、特に硬質被覆層の強度および靭性不足が原因で、特に歯面を構成する逃げ面とすくい面の交わる切刃稜線部などにチッピング(微小割れ)が発生し易くなり、比較的短時間で使用寿命に至るのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に上記の従来超硬歯切工具の硬質被覆層である(Al,Ti)N層に着目し、高速歯切加工ですぐれた耐チッピング性を発揮する(Al,Ti)N層を開発すべく、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来硬質被覆層である(Al,Ti)N層は、層厚全体に亘って実質的に均一な組成を有し、したがって均質な高温硬さと耐熱性を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に超硬歯切工具装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に前記超硬歯切工具を装着し、この状態で装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で超硬歯切工具自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させる条件で(Al,Ti)N層を形成すると、前記超硬歯切工具の表面には、回転テーブル上の中心軸から半径方向に離れた位置に配置された前記超硬歯切工具が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記超硬歯切工具が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成されることから、上記回転テーブルの回転によって層中には層さ方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造をもった(Al,Ti)N層が形成されるようになること。
【0006】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Al,Ti)N層において、例えば対向配置のカソード電極(蒸発源)のそれぞれの組成を調製すると共に、超硬歯切工具が装着されている回転テーブルの回転速度を制御して、上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.20〜0.35を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔が0.01〜0.1μm、
となるようにすると、上記Al最高含有点部分では、上記の従来(Al,Ti)N層と同じ組成をもつため、これのもつ高温硬さと耐熱性に相当するすぐれた高温硬さと耐熱性(高温特性)を示し、一方上記Al最低含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、Ti含有量の高いものとなるので、高強度と高靭性が確保され、かつこれらAl成分最高含有点とAl成分不含有点の間隔をきわめて小さくしたことから、層全体の特性としてすぐれた高温特性を保持した状態で、一段とすぐれた強度と靭性を具備するようになり、したがって、かかる構成の(Ti,Al)N層を硬質被覆層として形成してなる超硬歯切工具は、特に各種の鋼製歯車などの歯切加工を、高い機械的熱的衝撃を伴う高速条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に超硬歯切工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として、上記回転テーブルを挟んで対向配置したAl最高含有点(Ti最低含有点)形成用Al−Ti合金のカソード電極およびAl最低含有点(Ti最高含有点)形成用Ti−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
もって、上記回転テーブル上で自転しながら回転する上記超硬歯切工具の表面に、
厚さ方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.20〜0.35を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
(Al,Ti)N層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着することからなる、高速歯切加工で硬質被覆層がすぐれた耐チッピング性を発揮する硬質被覆層を超硬歯切工具の表面に形成する方法に特徴を有するものである。
【0008】
つぎに、この発明の硬質被覆層形成方法において、形成される硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
(Al,Ti)N層におけるAlは、高強度および高靭性を有するTiN層の高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってAl成分の含有割合が高くなればなるほど高温特性は向上したものになるが、その割合(X値)がTiとの合量に占める割合(原子比)で0.40未満では所望のすぐれた高温特性を確保することができず、一方その割合が同じく0.65を越えて高くなると、高強度および高靭性を有するAl最低含有点が隣接して存在しても層自体の強度および靭性の低下は避けられず、この結果チッピングなどが発生し易くなることから、その割合を0.40〜0.65と定めた。
【0009】
(b)Al最低含有点の組成
上記の通りAl最高含有点は高温特性のすぐれたものであるが、反面強度および靭性の劣るものであるため、このAl最高含有点の強度および靭性不足を補う目的で、Ti含有割合が高く、これによって高強度および高靭性を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合(Y)がTiとの合量に占める割合(原子比)で0.35を越えると、所望のすぐれた強度および靭性を確保することができず、一方その割合が同じく0.20未満になると、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所望の高温特性を具備せしめることができなくなることから、その割合を0.20〜0.35と定めた。
【0010】
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高温特性と、強度および靭性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば強度および靭性不足、Al最低含有点であれば高温特性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0011】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐チッピング性を確保することができず、一方その平均層厚が15μmを越えると、切刃稜線部にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0012】
【発明の実施の形態】
つぎに、この発明の硬質被覆層形成方法を実施例により具体的に説明する。
まず、原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、(W,Ti)C[質量割合で、WC/TiC=50/50]粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を2KPaの窒素雰囲気中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、4条右捩れ×20溝の形状をもった図3に示されるソリッドホブ型の超硬歯切工具A〜Jをそれぞれ製造した。
【0013】
ついで、上記の超硬歯切工具A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に自転自在に装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Ti−Al合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切工具に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切工具の表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切工具に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Ti−Al合金およびAl最高含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させる条件で本発明法1〜10を実施し、もって前記超硬歯切工具の表面に、層さ方向に沿って表2に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表2に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表2に示される目標全体層厚の硬質被覆層を蒸着形成した。
【0014】
また、比較の目的で、上記の超硬歯切基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、種々の成分組成をもったAl−Ti合金を装着し、またボンバート洗浄用金属Tiも装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬歯切工具に−1000Vの直流バイアス電圧を印加し、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切工具の表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記超硬歯切工具に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させる条件で従来法1〜10を実施し、もって、前記超硬歯切工具A〜Jのそれぞれの表面に、表3に示される目標組成および目標層厚を有し、かつ層さ方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を蒸着形成した。
【0015】
つぎに、上記の本発明法1〜10および従来法1〜10により得られた超硬歯切工具を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール:1.75、圧力角:17.5度、歯数:33、ねじれ角:36度左捩れ、歯丈:5.86mm、歯幅:15.5mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度):400m/min、
送り:2.5mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
歯車加工数:1000個、
の高速歯切加工条件で歯切加工を行い、逃げ面摩耗幅を測定した。この測定結果を表2,3それぞれに示した。
【0016】
【表1】

Figure 0003959737
【0017】
【表2】
Figure 0003959737
【0018】
【表3】
Figure 0003959737
【0019】
この結果得られた本発明法1〜10により得られた超硬歯切工具の硬質被覆層におけるAl成分最高含有点とAl成分最低含有点の組成、並びに従来法1〜10により得られた超硬歯切工具の硬質被覆層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明法1〜10の硬質被覆層におけるAl成分最高含有点とAl成分最低含有点間の間隔、およびこれの全体層厚、並びに従来法1〜10の硬質被覆層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ値を示した。
【0020】
【発明の効果】
表2,3に示される結果から、本発明法1〜10により層さ方向にAl最低含有点とAl最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有する硬質被覆層を形成してなる超硬歯切工具は、いずれも鋼製歯車の歯切加工を、高い機械的熱的衝撃を伴う高速条件で行なった場合にも、硬質被覆層がすぐれた耐チッピング性を発揮するのに対して、従来法1〜10により層さ方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を形成してなる超硬歯切工具においては、いずれも前記硬質被覆層がすぐれた高温硬さと耐熱性を有するものの、強度および靭性に劣るものであるために、特に高速歯切加工では切刃稜線部にチッピングが発生し、これが原因で切刃の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の硬質被覆形成方法によれば、通常の条件での歯切加工は勿論のこと、特に各種の鋼歯車などの歯切加工を、高い機械的熱的衝撃を伴う高速条件で行なった場合にも、すぐれた耐チッピング性を発揮する硬質被覆層を形成することができ、歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来の硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。
【図3】超硬歯切工具の概略斜視図である。[0001]
BACKGROUND OF THE INVENTION
The present invention has excellent high strength and toughness, and excellent high-temperature hardness and heat resistance. Therefore, gear cutting of various steel gears and the like is performed under high-speed conditions with high mechanical and thermal shock. The present invention relates to a method of forming a hard coating layer exhibiting excellent chipping resistance when performed on the surface of a tungsten carbide based cemented carbide stripping tool (hereinafter referred to as a carbide cutting tool).
[0002]
[Prior art]
Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various driving devices. For gear cutting of the gear teeth of these gears, cemented carbide teeth having a shape illustrated in a schematic perspective view in FIG. A cutting tool (solid hob) is used.
[0003]
Further, for example, a carbide cutting tool is inserted into an arc ion plating apparatus which is one of physical vapor deposition apparatuses shown in the schematic explanatory diagram of FIG. 2, and the apparatus is heated to a temperature of, for example, 500 ° C. with a heater. In this state, an arc discharge is generated between the anode electrode and the cathode electrode (evaporation source) on which an Al—Ti alloy having a predetermined composition is set, for example, at a current of 90 A, and at the same time as a reaction gas in the apparatus. Nitrogen gas is introduced to form a reaction atmosphere of 2 Pa, for example. On the other hand, the carbide cutting tool is applied with a bias voltage of, for example, −100 V on the surface of the carbide cutting tool.
Composition formula: (Al Z Ti 1-Z ) N ( provided that an atomic ratio, Z is shows the 0.40 to 0.65) composite nitride of Al and Ti to satisfy the following, (Al, Ti) N A method of forming a hard coating layer composed of a layer with an average layer thickness of 1 to 15 μm is known.
[0004]
[Problems to be solved by the invention]
In recent years, the performance of gear cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for gear cutting, and with this, gear cutting has a tendency to increase in speed. In the above conventional carbide cutting tool, there is no problem when it is used under normal gear cutting conditions, but when gear cutting is performed under high speed conditions with high mechanical and thermal shock. In particular, due to the lack of strength and toughness of the hard coating layer, chipping (micro-cracking) tends to occur especially at the cutting edge ridge where the flank and rake face make up the tooth surface, and it can be used in a relatively short time. The current situation is that it reaches the end of its life.
[0005]
[Means for Solving the Problems]
In view of the above, the present inventors have focused on the (Al, Ti) N layer, which is a hard coating layer of the above conventional carbide cutting tool, and has excellent chipping resistance by high-speed gear cutting. As a result of research to develop a (Al, Ti) N layer that demonstrates its properties,
(A) The (Al, Ti) N layer, which is a conventional hard coating layer formed by using the arc ion plating apparatus shown in FIG. 2, has a substantially uniform composition over the entire layer thickness. Therefore, it has a uniform high-temperature hardness and heat resistance, but for example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. Carbide gear cutting tool mounting rotary table is provided, Al-Ti alloy with relatively high Al content (low Ti content) on one side and Ti content relatively on the other side across the rotary table Using an arc ion plating apparatus in which a Ti—Al alloy having a high amount (low Al content) is disposed as a cathode electrode (evaporation source) and facing, a radius from the central axis of the rotary table is set on the rotary table of the apparatus. Direction The carbide cutting tool is mounted at a position away from the surface, and in this state, the atmosphere inside the apparatus is changed to a nitrogen atmosphere, the rotary table is rotated, and the thickness of the hard coating layer formed by vapor deposition is made uniform. When the (Al, Ti) N layer is formed under the condition that the arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode on both sides while rotating the hard gear cutting tool itself, On the surface of the tool, the carbide cutting tool disposed at a position radially away from the central axis on the rotary table has a relatively high Al content (low Ti content) on the one side. At the point closest to the cathode electrode (evaporation source) of the Al—Ti alloy, the highest Al content point is formed in the layer, and the carbide cutting tool has a relatively high Ti content on the other side ( Ti-Al alloy with low Al content Since the Al minimum content point is formed in the layer when it is closest to the cathode electrode, the Al maximum content point and the Al minimum content point are formed in the layer along the layer direction by the rotation of the rotary table. A component concentration distribution structure in which the Al (Ti) content continuously changes from the highest Al content point to the lowest Al content point and from the lowest Al content point to the highest Al content point while repeatedly appearing alternately at predetermined intervals. A (Al, Ti) N layer is formed.
[0006]
(B) In the (Al, Ti) N layer having the repeated continuous change component concentration distribution structure of (a) above, for example, the respective compositions of cathode electrodes (evaporation sources) arranged opposite to each other are prepared, and a carbide cutting tool is prepared. By controlling the rotational speed of the turntable mounted, the Al maximum content point is the composition formula: (Al X Ti 1-X ) N (however, in atomic ratio, X is 0.40 to 0.65) Show),
The Al minimum content point is a composition formula: (Al Y Ti 1-Y ) N (however, Y is 0.20 to 0.35 in atomic ratio),
And the distance in the thickness direction between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
Then, since the Al highest content point portion has the same composition as the conventional (Al, Ti) N layer, it has excellent high temperature hardness and heat resistance corresponding to the high temperature hardness and heat resistance ( On the other hand, in the above-mentioned Al minimum content point portion, the Al content is low compared to the Al maximum content point portion, and the Ti content is high, so high strength and high toughness are ensured, And since the interval between these Al component highest content point and Al component non-contained point was made extremely small, while maintaining the high temperature characteristics excellent as the characteristics of the entire layer, it came to have further superior strength and toughness, Therefore, a cemented carbide cutting tool in which the (Ti, Al) N layer having such a structure is formed as a hard coating layer, particularly gear cutting of various steel gears, etc. is performed at high speed with high mechanical and thermal shock. When done under conditions Also, it becomes to exhibit chipping resistance of the hard coating layer has excellent.
The research results shown in (a) and (b) above were obtained.
[0007]
The present invention has been made on the basis of the above research results, and a cemented carbide cutting tool is placed on the rotary table in the arc ion plating apparatus at a position radially away from the central axis of the rotary table. Attached freely to rotate,
The reaction atmosphere in the arc ion plating apparatus is a nitrogen gas atmosphere, the cathode electrode of the Al-Ti alloy for forming the Al highest content point (Ti lowest content point) and the Al lowest content point arranged oppositely across the rotary table ( An arc discharge is generated between the cathode electrode of the Ti-Al alloy for forming Ti and the anode electrode arranged in parallel with each of these cathode electrodes,
Therefore, on the surface of the carbide cutting tool that rotates while rotating on the rotary table,
Along the thickness direction, the highest Al content point (Ti lowest content point) and the lowest Al content point (Ti highest content point) are alternately present at predetermined intervals, and from the highest Al content point to the Al The lowest concentration point, having a component concentration distribution structure in which the Al (Ti) content continuously changes from the lowest Al content point to the highest Al content point,
Furthermore, the Al highest content point is the composition formula: (Al X Ti 1-X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
The Al minimum content point is a composition formula: (Al Y Ti 1-Y ) N (however, Y is 0.20 to 0.35 in atomic ratio),
And the interval between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm.
A hard coating layer that exhibits excellent chipping resistance by high-speed gear cutting, comprising physical vapor deposition of a hard coating layer comprising an (Al, Ti) N layer with an overall average layer thickness of 1 to 15 μm. It has a feature in the method of forming on the surface of a cemented carbide cutting tool.
[0008]
Next, the reason why the structure of the hard coating layer formed in the method of forming a hard coating layer of the present invention is limited as described above will be described.
(A) Composition of Al highest content point (Al, Ti) Al in the N layer is contained for the purpose of improving the high temperature hardness and heat resistance (high temperature characteristics) of the TiN layer having high strength and high toughness. Therefore, the higher the content ratio of the Al component, the higher the high temperature characteristics. However, when the ratio (X value) is less than 0.40 in terms of the total amount with Ti (atomic ratio), it is desirable. However, if the ratio is also higher than 0.65, the strength and toughness of the layer itself even if there is an Al minimum content point having high strength and high toughness. As a result, chipping and the like are liable to occur. Therefore, the ratio is set to 0.40 to 0.65.
[0009]
(B) Composition of the lowest Al content point As described above, the highest Al content point has excellent high-temperature characteristics, but on the other hand, it is inferior in strength and toughness. For this purpose, the Al content is high, and the Al minimum content points that have high strength and high toughness are alternately interposed in the thickness direction. Therefore, the Al content (Y) is the same as that of Ti. If the ratio (atomic ratio) in the amount exceeds 0.35, the desired excellent strength and toughness cannot be ensured. On the other hand, if the ratio is also less than 0.20, the ratio of Ti is relatively high. The ratio is set to 0.20 to 0.35 because it becomes too large to be able to provide desired high temperature characteristics at the Al minimum content point.
[0010]
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. The strength and toughness cannot be ensured, and when the distance exceeds 0.1 μm, the disadvantages of the respective points, that is, when the Al maximum content point is insufficient, the strength and toughness are insufficient, and when the Al minimum content point is high, the temperature is high. Insufficient characteristics appear locally in the layer, which makes it easier for chipping to occur on the cutting edge and promotes the progress of wear, so the interval was set to 0.01 to 0.1 μm. .
[0011]
(D) If the overall average layer thickness of the hard coating layer is less than 1 μm, the desired chipping resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping occurs at the edge line of the cutting edge. Since it becomes easy to generate | occur | produce, the average layer thickness was defined as 1-15 micrometers.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the method for forming a hard coating layer according to the present invention will be specifically described with reference to examples.
First, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, (W, Ti) C, all having an average particle diameter of 1 to 3 μm as raw material powders. [By weight, WC / TiC = 50/50] powder and Co powder were prepared, and these raw material powders were blended into the blending composition shown in Table 1, wet-mixed for 24 hours with a ball mill, and dried. The green compact was pressed into a green compact at a pressure of 100 MPa, and the green compact was sintered in a nitrogen atmosphere of 2 KPa at a temperature of 1400 ° C. for 1 hour, and a carbide of diameter: 85 mm × length: 125 mm. A solid hob shown in FIG. 3 is formed by forming an alloy round bar material and machining it from this material, with the overall dimensions of outer diameter: 80 mm x length: 120 mm, and 4 right-hand twisted x 20 grooves. Type cemented carbide cutting tool ~J was prepared, respectively.
[0013]
Next, each of the above-described superhard gear cutting tools A to J is ultrasonically cleaned in acetone and dried, on the rotary table in the arc ion plating apparatus shown in FIG. Ti-Al alloy for forming the lowest Al content point with various components as cathode electrode (evaporation source) on one side, which is rotatably mounted at a position radially away from the central axis, cathode electrode on the other side As the (evaporation source), Al-Ti alloys for forming the highest Al content point with various component compositions are arranged opposite to each other with the rotary table interposed therebetween, and a bombard cleaning metal Ti is also mounted. The device is heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less, and then applied to a cemented carbide cutting tool that rotates while rotating on the rotary table. Is applied, and a current of 100 A is caused to flow between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, whereby the surface of the carbide cutting tool is cleaned by Ti bombardment, and then the reaction gas is put into the apparatus. As a reaction atmosphere of 10 Pa by introducing nitrogen gas as follows, a DC bias voltage of −100 V is applied to a carbide cutting tool rotating while rotating on the rotary table, and each cathode electrode (the Al minimum) is applied. The present invention methods 1 to 10 are carried out under the condition that an arc discharge is generated by flowing a current of 100 A between the anode electrode and a Ti-Al alloy for content point formation and an Al-Ti alloy for Al content point formation) Therefore, on the surface of the cemented carbide cutting tool, a target interval in which the Al minimum content point and the Al maximum content point of the target composition shown in Table 2 are alternately shown in Table 2 along the layer direction. And having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point, from the Al lowest content point to the Al highest content point, And the hard coating layer of the target whole layer thickness similarly shown in Table 2 was formed by vapor deposition.
[0014]
In addition, for comparison purposes, each of the above-mentioned superhard gear cutting bases A to J is ultrasonically cleaned in acetone and dried, and then loaded into a normal arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), an Al—Ti alloy having various component compositions is mounted, and a bombard cleaning metal Ti is also mounted, and the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less. After heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the cemented carbide cutting tool, and a current of 100 A is passed between the metal Ti of the cathode electrode and the anode electrode to generate an arc. Electric discharge is generated, and the surface of the cemented carbide cutting tool is cleaned by Ti bombardment. Next, nitrogen gas is introduced into the apparatus as a reactive gas to create a reaction atmosphere of 10 Pa and applied to the cemented carbide cutting tool. The conventional carbide cutting tool is operated under the condition that the bias voltage is reduced to -100V and a current of 100A is passed between the cathode electrode and the anode electrode to generate arc discharge. A hard coating layer comprising a (Ti, Al) N layer having a target composition and a target layer thickness shown in Table 3 and having substantially no composition change along the layer direction on each surface of A to J Was formed by vapor deposition.
[0015]
Next, using the cemented carbide cutting tools obtained by the above-described inventive methods 1 to 10 and conventional methods 1 to 10, the material is made of a low alloy steel of JIS / SCr420H, module: 1.75, pressure angle 17.5 degrees, number of teeth: 33, twist angle: 36 degrees left-handed twist, tooth height: 5.86 mm, tooth width: 15.5 mm
Cutting speed (rotational speed): 400 m / min,
Feed: 2.5mm / rev,
Processing form: climb, no shift, dry (air blow),
Gear processing number: 1000 pieces,
Gear cutting was performed under the high-speed gear cutting conditions, and the flank wear width was measured. The measurement results are shown in Tables 2 and 3, respectively.
[0016]
[Table 1]
Figure 0003959737
[0017]
[Table 2]
Figure 0003959737
[0018]
[Table 3]
Figure 0003959737
[0019]
As a result, the composition of the Al component highest content point and the Al component lowest content point in the hard coating layer of the cemented carbide cutting tool obtained by the present invention methods 1 to 10, and the super obtained by the conventional methods 1 to 10 When the composition of the hard coating layer of the hard cutting tool was measured using an Auger spectroscopic analyzer, it showed substantially the same composition as the target composition.
Moreover, the space | interval between the Al component highest content point and the Al component minimum content point in these hard coating layers of this invention method 1-10, the whole layer thickness, and the thickness of the hard coating layer of the conventional methods 1-10 When the cross section was measured using a scanning electron microscope, all showed substantially the same value as the target value.
[0020]
【The invention's effect】
From the results shown in Tables 2 and 3, according to the present invention methods 1 to 10, the lowest Al content point and the highest Al content point are alternately present at predetermined intervals in the layer direction, and from the highest Al content point. The carbide minimum cutting tool formed by forming a hard coating layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the Al minimum content point, the Al minimum content point to the Al maximum content point, In both cases, the gear cutting of the steel gear is performed under high speed conditions with high mechanical and thermal shock, while the hard coating layer exhibits excellent chipping resistance, whereas the conventional methods 1 to In the cemented carbide cutting tool formed by forming a hard coating layer made of a (Ti, Al) N layer having substantially no composition change along the layer direction according to No. 10, the above-mentioned hard coating layer has an excellent high temperature. Although it has hardness and heat resistance, strength and toughness To be poor in, particularly chipping occurs in the cutting edge line portion at a high speed gear cutting, this is faster wear progress of the cutting edge due, it is clear that lead to a relatively short time service life.
As described above, according to the hard coating forming method of the present invention, not only gear cutting under normal conditions but also gear cutting such as various steel gears is performed at high speed with high mechanical and thermal shock. Even under the conditions, it is possible to form a hard coating layer exhibiting excellent chipping resistance, and it is possible to satisfactorily cope with labor saving and energy saving of gear cutting and further cost reduction.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used to form a hard coating layer of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used for forming a conventional hard coating layer.
FIG. 3 is a schematic perspective view of a cemented carbide cutting tool.

Claims (1)

アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に炭化タングステン基超硬合金からなるむく歯切工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として、上記回転テーブルを挟んで対向配置したAl最高含有点(Ti最低含有点)形成用Al−Ti合金のカソード電極およびAl最低含有点(Ti最高含有点)形成用Ti−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
もって、上記回転テーブル上で自転しながら回転する上記むく歯切工具の表面に、
厚さ方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.40〜0.65を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.20〜0.35を示す)、をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
AlとTiの複合窒化物からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着すること、
を特徴とする高速歯切加工ですぐれた耐チッピング性を発揮する硬質被覆層を超硬合金製むく歯切工具の表面に形成する方法。
On the rotary table in the arc ion plating apparatus, a peeling tool made of tungsten carbide based cemented carbide is mounted on a rotary table at a position away from the central axis of the rotary table in a radial direction.
The reaction atmosphere in the arc ion plating apparatus is a nitrogen gas atmosphere, the cathode electrode of the Al-Ti alloy for forming the Al highest content point (Ti lowest content point) and the Al lowest content point arranged oppositely across the rotary table ( An arc discharge is generated between the cathode electrode of the Ti-Al alloy for forming Ti and the anode electrode arranged in parallel with each of these cathode electrodes,
Therefore, on the surface of the peeling gear that rotates while rotating on the rotary table,
Along the thickness direction, the highest Al content point (Ti lowest content point) and the lowest Al content point (Ti highest content point) are alternately present at predetermined intervals, and from the highest Al content point to the Al The lowest concentration point, having a component concentration distribution structure in which the Al (Ti) content continuously changes from the lowest Al content point to the highest Al content point,
Furthermore, the Al highest content point is the composition formula: (Al X Ti 1-X ) N (wherein X is 0.40 to 0.65 in atomic ratio),
The Al minimum content point satisfies the composition formula: (Al Y Ti 1-Y ) N (wherein Y is 0.20 to 0.35 in atomic ratio), and adjacent Al highest The interval between the content point and the Al minimum content point is 0.01 to 0.1 μm.
Physically vapor-depositing a hard coating layer made of a composite nitride of Al and Ti with an overall average layer thickness of 1 to 15 μm,
A method of forming a hard coating layer exhibiting excellent chipping resistance in high-speed gear cutting, characterized by the above, on the surface of a cemented carbide metal cutting tool.
JP2002069771A 2002-03-14 2002-03-14 A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear. Expired - Fee Related JP3959737B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002069771A JP3959737B2 (en) 2002-03-14 2002-03-14 A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002069771A JP3959737B2 (en) 2002-03-14 2002-03-14 A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.

Publications (2)

Publication Number Publication Date
JP2003266243A JP2003266243A (en) 2003-09-24
JP3959737B2 true JP3959737B2 (en) 2007-08-15

Family

ID=29200515

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002069771A Expired - Fee Related JP3959737B2 (en) 2002-03-14 2002-03-14 A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.

Country Status (1)

Country Link
JP (1) JP3959737B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4001845B2 (en) * 2003-06-13 2007-10-31 三菱マテリアル神戸ツールズ株式会社 Cemented carbide base material for surface coated gear cutting tool, and surface coated gear cutting tool
JP6000173B2 (en) * 2013-03-19 2016-09-28 株式会社神戸製鋼所 PVD processing apparatus and PVD processing method
JP6384341B2 (en) * 2014-06-27 2018-09-05 三菱マテリアル株式会社 Surface coated cutting tool with excellent abnormal damage resistance and wear resistance

Also Published As

Publication number Publication date
JP2003266243A (en) 2003-09-24

Similar Documents

Publication Publication Date Title
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP3959737B2 (en) A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4120243B2 (en) A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP3991262B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP2005028484A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in chipping resistance under heavy cutting condition
JP3956387B2 (en) A surface-coated cemented carbide striping tool with excellent wear resistance with a hard coating layer in high-speed gear cutting.
JP4007104B2 (en) A surface-coated stripping tool that provides excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP3956386B2 (en) A surface-coated cemented carbide striping tool that exhibits excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4816844B2 (en) A surface-coated tungsten carbide-based cemented carbide cutting tool with excellent chipping resistance in high-speed gear cutting.
JP4716007B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP3944903B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP3543768B2 (en) Surface coated cemented carbide gear cutting tool with a hard coating layer that exhibits excellent heat-resistant plastic deformation properties
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP4706912B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4539049B2 (en) A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting.
JP4304586B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP2005022044A (en) Cutting tool made of surface coated cemented carbide with surface coating layer exhibiting excellent wear resistance in high-speed cutting
JP2004338060A (en) Surface coated cemented carbide cutting tool with hard coating layer exhibiting excellent wear resistance in high-speed cutting condition, and its manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20050307

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050308

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20050307

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070305

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees