JP4706911B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel - Google Patents

Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel Download PDF

Info

Publication number
JP4706911B2
JP4706911B2 JP2005220177A JP2005220177A JP4706911B2 JP 4706911 B2 JP4706911 B2 JP 4706911B2 JP 2005220177 A JP2005220177 A JP 2005220177A JP 2005220177 A JP2005220177 A JP 2005220177A JP 4706911 B2 JP4706911 B2 JP 4706911B2
Authority
JP
Japan
Prior art keywords
layer
cutting tool
gear cutting
hard coating
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005220177A
Other languages
Japanese (ja)
Other versions
JP2007030129A (en
Inventor
幸生 青木
宏一 松村
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005220177A priority Critical patent/JP4706911B2/en
Publication of JP2007030129A publication Critical patent/JP2007030129A/en
Application granted granted Critical
Publication of JP4706911B2 publication Critical patent/JP4706911B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層がすぐれた耐熱塑性変形性を有し、さらに高温硬さおよび高温強度も具備し、したがって特に合金鋼などの高い発熱を伴なう高速歯切加工に用いた場合にも、硬質被覆層に摩耗進行を加速する偏摩耗の原因となる熱塑性変形の発生がなく、この結果すぐれた耐摩耗性を長期に亘って発揮する表面被覆超硬合金製歯切工具(以下、被覆超硬歯切工具という)に関するものである。   The present invention provides a hard coating layer having excellent heat-resistant plastic deformation properties, and also having high-temperature hardness and high-temperature strength, and therefore, particularly when used for high-speed gear cutting with high heat generation such as alloy steel. However, there is no occurrence of thermoplastic deformation that causes uneven wear that accelerates the progress of wear in the hard coating layer, and as a result, a surface-coated cemented carbide gear cutting tool (hereinafter, referred to as excellent wear resistance) is exhibited. This is related to a coated carbide gear cutting tool.

従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に被覆超硬歯切工具(ソリッドホブ)が用いられている。

また、被覆超硬歯切工具としては、例えば図3に概略斜視図で示される通り、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状に機械加工された炭化タングステン基超硬合金製歯切工具本体(以下、超硬歯切基体という)の表面に、各種の硬質被覆層を物理蒸着してなる被覆超硬歯切工具が知られている。
Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices, and coated carbide gear cutting tools (solid hobs) are used for gear cutting of gear teeth.

Further, as the coated carbide gear cutting tool, for example, as shown in a schematic perspective view in FIG. 3, a plurality of tooth grooves are formed radially with respect to the rotation axis and along the length direction. Between the front and rear surfaces that face the tooth gap and the front surface is a rake face with respect to the rotation direction, and the tooth is composed of a top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) that are flank surfaces Various hard parts are formed on the surface of a tungsten carbide based cemented carbide cutting tool body (hereinafter referred to as a carbide cutting base) machined into a shape in which a plurality of parts are continuously formed along the length direction. A coated carbide gear cutting tool formed by physical vapor deposition of a coating layer is known.

一方、通常のスローアウエイチップやエンドミル、さらにドリルなどの表面被覆超硬合金製切削工具の硬質被覆層としては、例えば、

組成式:[Ti1-(X+Y) AlX Cr]N(ただし、原子比で、Xは0.45〜0.65、Yは0.01〜0.15を示す)、

を満足するTiとAlとCrの複合窒化物[以下、(Ti,Al,Cr)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成することが知られており、さらに、上記硬質被覆層を構成する(Ti,Al,Cr)N層は、構成成分であるAlによって高温硬さおよび高温耐酸化性、同Tiによって高温強度、同Crによって耐熱性の向上した特性を具備することも知られている。
On the other hand, as a hard coating layer of a cutting tool made of a surface-coated cemented carbide such as a normal throwaway tip, end mill, and drill, for example,

Formula: [Ti 1- (X + Y ) Al X Cr Y] N ( provided that an atomic ratio, X is 0.45 to 0.65, Y represents a 0.01 to 0.15),

It is known to form a hard coating layer composed of a composite nitride of Ti, Al, and Cr [hereinafter referred to as (Ti, Al, Cr) N] satisfying the requirements with an average layer thickness of 2 to 8 μm. Furthermore, the (Ti, Al, Cr) N layer constituting the hard coating layer is improved in high-temperature hardness and high-temperature oxidation resistance by Al as a constituent component, high-temperature strength by Ti, and heat resistance by Cr. It is also known to have properties.

さらに、上記の硬質被覆層を備えた被覆超硬歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬歯切基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−Cr合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−100Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Ti,Al,Cr)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平7−237010号公報
Furthermore, the above-mentioned coated carbide cutting tool provided with the above-mentioned hard coating layer is obtained by, for example, applying the above-mentioned carbide cutting base to an arc ion plating apparatus which is a kind of physical vapor deposition apparatus schematically shown in FIG. For example, between the anode electrode and the cathode electrode (evaporation source) in which a Ti—Al—Cr alloy having a predetermined composition is set in a state where the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater, Arc discharge was generated under the condition of current: 90 A, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, a bias voltage of, for example, −100 V was applied to the substrate. It is also known that it is produced by vapor-depositing a hard coating layer comprising the (Ti, Al, Cr) N layer on the surface of the substrate.
JP-A-7-237010

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記従来の被覆超硬歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、これを高熱発生を伴う合金鋼等の高速歯切加工条件で用いた場合には、硬質被覆層の熱塑性変形が原因で偏摩耗形態をとるようになることから、摩耗が急速に進行するようになり、この結果比較的短時間で摩耗寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In the coated carbide gear cutting tool, there is no problem when this is used under normal gear cutting conditions, but when this is used under high speed gear cutting conditions such as alloy steel with high heat generation, Since the hard coating layer takes the form of uneven wear due to the thermoplastic deformation, the wear progresses rapidly, and as a result, the wear life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具を開発すべく、上記従来の被覆超硬歯切工具の硬質被覆層を構成する(Ti,Al,Cr)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,Cr)N層において、Cr成分の含有割合を多くすれば耐熱塑性変形性が向上するが、上記の従来(Ti,Al,Cr)N層における1〜15原子%程度のCr含有割合では、合金鋼の高熱発生を伴う高速歯切加工における熱塑性変形の発生を防止するに十分でなく、これらの要求に満足に対応させるためには前記1〜15原子%をはるかに越えた40〜60原子%のCr含有が必要となるが、40〜60原子%のCr成分を含有した(Ti,Al,Cr)N層を硬質被覆層として実用に供するには、所定量のTiを含有させて所定の高温強度を確保する必要があるために、Al成分の含有割合は結果として非常に少ないものとなり、結局、硬質被覆層の高温硬さはきわめて低いものとなること。
In view of the above, the present inventors have developed the above-described conventional cemented carbide cutting tool that exhibits excellent wear resistance with a hard coating layer particularly in high-speed gear cutting of alloy steel. As a result of conducting research by paying attention to the (Ti, Al, Cr) N layer that constitutes the hard coating layer of the coated carbide gear cutting tool,
(A) In the (Ti, Al, Cr) N layer constituting the hard coating layer, if the Cr component content is increased, the heat-resistant plastic deformation is improved, but the conventional (Ti, Al, Cr) N layer described above The Cr content of about 1 to 15 atomic% in the steel is not sufficient to prevent the occurrence of thermoplastic deformation in high-speed gear cutting with high heat generation of the alloy steel. In order to satisfy these requirements satisfactorily, Although it is necessary to contain 40-60 atomic% of Cr far exceeding -15 atomic%, a (Ti, Al, Cr) N layer containing 40-60 atomic% of Cr component is practically used as a hard coating layer. In order to provide it, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high-temperature strength. As a result, the content ratio of the Al component becomes very small. As a result, the high-temperature hardness of the hard coating layer is extremely low. To be low.

(b)組成式:[Ti1-(A+B)AlCr]N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足する、Cr含有割合が40〜60原子%の(Ti,Al,Cr)N層と、
組成式:[Ti1-(C+D)AlCr]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,Cr)N層、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この(Ti,Al,Cr)N層は、薄層の交互積層構造によって、上記の高Cr含有の(Ti,Al,Cr)N層(以下、薄層Aという)のもつすぐれた耐熱塑性変形性と、前記薄層Aに比してCr含有割合が低く、かつ相対的に高Al含有の(Ti,Al,Cr)N層(以下、薄層Bという)のもつ相対的に高い高温硬さを具備するようになること。
(B) the composition formula: [Ti 1- (A + B ) Al A Cr B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.40 to 0.60) satisfies A (Ti, Al, Cr) N layer having a Cr content of 40 to 60 atomic%;
Formula: [Ti 1- (C + D ) Al C Cr D] N ( provided that an atomic ratio, C is 0.20 to 0.35, D represents a 0.15 to 0.30) satisfies, relative (Ti, Al, Cr) N layer with a large content ratio of Al component,
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometers), and this (Ti, Al, Cr) N layer is formed by the above-described alternate lamination structure of thin layers. The excellent heat-resistant plastic deformation property of the (Ti, Al, Cr) N layer (hereinafter referred to as the thin layer A) containing high Cr, the Cr content ratio being lower than that of the thin layer A, and relatively high A relatively high high temperature hardness of an Al-containing (Ti, Al, Cr) N layer (hereinafter referred to as a thin layer B).

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,Cr)N層は、合金鋼の高速歯切加工で要求されるすぐれた耐熱塑性変形性と所定の高温硬さを具備するものの、十分に満足できる高温硬さを有するものであるとはいえないので、これを硬質被覆層の上部層として設け、一方同下部層として、耐熱塑性変形性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さを具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,Cr)N層、すなわち、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足する、単一相構造の(Ti,Al,Cr)N層、
を設けた構造にすると、この結果の硬質被覆層は、すぐれた耐熱塑性変形性、高温強度、および高温硬さのすべてを備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬歯切工具は、高熱発生を伴う合金鋼の高速歯切加工でも、前記硬質被覆層に偏摩耗の原因となる熱塑性変形の発生がなくなり、正常摩耗形態をとるようになることから、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, Cr) N layer having the alternately laminated structure of the thin layer A and the thin layer B of (b) is excellent in heat plastic deformation required for high-speed gear cutting of alloy steel. Although it has a predetermined high temperature hardness, it can not be said that it has a sufficiently satisfactory high temperature hardness, so this is provided as the upper layer of the hard coating layer, while as the lower layer, the heat resistance plastic deformation is (Ti, Al, Cr) N layer having a composition corresponding to the above conventional hard coating layer, which is insufficient but has a relatively high content of Al component and has excellent high temperature hardness,
Formula: [Ti 1- (E + F ) Al E Cr F] N ( provided that an atomic ratio, E is 0.45 to 0.65, F represents a 0.01 to 0.15) satisfies the single (Ti, Al, Cr) N layer of single phase structure,
Therefore, the resulting hard coating layer has all of excellent heat plastic deformation, high temperature strength, and high temperature hardness. Therefore, the hard coating layer is formed by vapor deposition of this hard coating layer. Carbide hobbing tools are superior in that high-speed gear cutting of alloy steel with high heat generation eliminates the occurrence of thermoplastic deformation that causes uneven wear in the hard coating layer and assumes a normal wear form. The wear resistance should be demonstrated over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する炭化タングステン基超硬合金製歯切工具基体の表面に、
(a)いずれも(Ti,Al,Cr)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1 -(A+B)AlCr]N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足する(Ti,Al,Cr)N層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCr]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足する(Ti,Al,Cr)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足する(Ti,Al,Cr)N層、
からなる硬質被覆層を蒸着形成してなる、合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具(表面被覆超硬合金製歯切工具)に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of tooth spaces are formed radially and along the length direction with respect to the rotation axis. The tooth part that consists of the front and rear faces that face the groove and the front face is a rake face with respect to the rotation direction, and the top face (tooth tip tooth face) and both side faces (left and right tooth faces) that are flank faces On the surface of the tungsten carbide based cemented carbide cutting tool base having a shape formed continuously along the direction,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, Cr) N, the upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternate laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Ti 1 − (A + B) Al A Cr B ] N (wherein A represents 0.01 to 0.10 and B represents 0.40 to 0.60 in terms of atomic ratio) (Ti , Al, Cr) N layer,
The thin layer B is
Composition formula: [Ti 1− (C + D) Al C Cr D ] N (wherein C is 0.20 to 0.35 and D is 0.15 to 0.30 in atomic ratio) (Ti , Al, Cr) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Ti 1− (E + F) Al E Cr F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.15 in atomic ratio) (Ti , Al, Cr) N layer,
For the coated carbide cutting tool (surface coated cemented carbide cutting tool) that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, formed by vapor-depositing a hard coating layer consisting of It has characteristics.

つぎに、この発明の被覆超硬歯切工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,Cr)N層におけるAl成分には高温硬さを向上させ、一方同Ti成分には高温強度、さらに同Cr成分には耐熱塑性変形性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さを具備せしめるが、Alの含有割合を示すE値がTiとCrとの合量に占める割合(原子比、以下同じ)で0.45未満では、相対的にTiの割合が多くなって、合金鋼の高速歯切加工で要求されるすぐれた高温硬さを確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.45〜0.65と定めた。
また、Crの割合を示すF値がTiとAlの合量に占める割合で、0.01未満では、所定の最小限の耐熱塑性変形性を確保することができず、一方同F値が0.15を超えると、所定の高温強度確保が困難になることから、F値を0.01〜0.15と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, regarding the hard coating layer of the coated carbide gear cutting tool of the present invention, the reason why the numerical values are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, Cr) N layer constituting the hard coating layer improves high temperature hardness, while the Ti component has high temperature strength. In addition, the Cr component has the effect of improving the heat-resistant plastic deformation, and the lower layer has a relatively high Al component content to provide a high high-temperature hardness. When the value is less than 0.45 in the ratio of the total amount of Ti and Cr (atomic ratio, the same applies hereinafter), the ratio of Ti is relatively increased, which is an excellent requirement for high-speed gear cutting of alloy steel. High temperature hardness cannot be ensured, and the progress of wear is accelerated rapidly. On the other hand, when the E value indicating the Al ratio exceeds 0.65, the Ti ratio is relatively decreased. , High-temperature strength drops rapidly, resulting in chipping (slight chipping) Therefore, the E value is set to 0.45 to 0.65.
Further, if the F value indicating the ratio of Cr is the ratio of the total amount of Ti and Al, and less than 0.01, the predetermined minimum heat-resistant plastic deformation cannot be ensured, while the F value is 0. If it exceeds .15, it becomes difficult to ensure a predetermined high-temperature strength, so the F value was determined to be 0.01 to 0.15.
Further, if the layer thickness is less than 2 μm, the excellent high-temperature hardness cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 6 μm, chipping occurs. The layer thickness was determined to be 2 to 6 μm because it easily occurs.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,Cr)NにおけるCr成分は、上記の通り相対的に含有割合を高くして、高熱発生を伴う合金鋼の高速歯切加工での耐熱塑性変形性の向上を図る目的で含有するものであり、したがってB値が0.40未満では所望のすぐれた耐熱塑性変形性を確保することができず、一方B値が0.60を越えると、隣接して高温強度のすぐれた薄層Bが存在しても、上部層の高温強度低下は避けられず、チッピング発生の原因となることから、B値を0.40〜0.60と定めた。
また、Alの割合を示すA値がTiとCrの合量に占める割合で、0.01未満では、最低限の高温硬さを確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度に低下傾向が現れるようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A The Cr component in (Ti, Al, Cr) N of the upper layer thin layer A has a relatively high content ratio as described above, and an alloy with high heat generation. It is included for the purpose of improving the heat-resistant plastic deformability in high-speed gear cutting of steel. Therefore, if the B value is less than 0.40, the desired excellent heat-resistant plastic deformability cannot be ensured. If the B value exceeds 0.60, even if a thin layer B having excellent high temperature strength is present adjacently, a decrease in high temperature strength of the upper layer is unavoidable and causes chipping. It was set to 0.40 to 0.60.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and Cr, and if it is less than 0.01, the minimum high-temperature hardness cannot be ensured, causing wear promotion, while the same A When the value exceeds 0.10, a tendency to decrease in the high-temperature strength appears and causes chipping, so the A value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、薄層Aに比してCr成分の含有割合を相対的に低くし、一方Al成分の含有割合を相対的に高く維持することで、相対的に高い高温硬さを具備せしめ、隣接する薄層Aの高温硬さ不足を補強し、もって、前記薄層Aのもつすぐれた耐熱塑性変形性と、前記薄層Bのもつ所定の高温硬さを具備した上部層を形成するものであるが、前記薄層Bの組成式におけるAlの含有割合を示すC値が0.20未満になると、Alの含有割合が少なくなり過ぎて、所定の高温硬さを確保することができず、硬質被覆層の摩耗進行が促進するようになり、一方同C値が0.35を越えると、相対的にTi成分の含有割合が低下し、高温強度低下は避けられず、チッピング発生の原因となることから、C値を0.20〜0.35と定めた。
また、Crの割合を示すD値がTiとAlの合量に占める割合で、0.15未満では、上部層全体としての耐熱塑性変形性の改善効果が少なく、一方同D値が0.30を超えると、上部層全体の高温強度が低下するようになることから、D値を0.15〜0.30と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the Cr component is relatively lower than that of the thin layer A, while the content ratio of the Al component is relatively By maintaining the high temperature hardness relatively high, the shortage of the high temperature hardness of the adjacent thin layer A is reinforced, so that the thin layer A has excellent heat-resistant plastic deformation and the thin layer The upper layer having a predetermined high-temperature hardness of B is formed. When the C value indicating the Al content in the composition formula of the thin layer B is less than 0.20, the Al content is It becomes too small to secure a predetermined high-temperature hardness, and the progress of wear of the hard coating layer is promoted. On the other hand, if the C value exceeds 0.35, the Ti component is relatively contained. Since the ratio decreases, a decrease in high-temperature strength is inevitable, causing chipping, The C value was determined to be 0.20 to 0.35.
Further, if the D value indicating the ratio of Cr is the ratio of the total amount of Ti and Al, and less than 0.15, the effect of improving the heat plastic deformation property of the entire upper layer is small, while the D value is 0.30. Since the high temperature strength of the whole upper layer will fall when exceeding, D value was defined as 0.15-0.30.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた耐熱塑性変形性と、所定の高温硬さを確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さ不足、薄層Bであれば耐熱塑性変形性の不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent heat-resistant plastic deformation and predetermined high-temperature hardness cannot be ensured, and if each layer thickness exceeds 20 nm, each thin layer has a defect, ie, if it is thin layer A, high-temperature hardness is insufficient. In the case of the thin layer B, the lack of heat-resistant plastic deformability appears locally in the layer, and this makes it easier for chipping to occur or promotes the progress of wear. It was determined to be 5 to 20 nm.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた耐熱塑性変形性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, the excellent thermal plastic deformation property of itself cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. If the thickness exceeds 1.5 μm, chipping is likely to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆超硬歯切工具は、硬質被覆層が(Ti,Al,Cr)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた耐熱塑性変形性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さを有することから、特に高熱発生を伴う合金鋼の高速歯切加工でも、前記硬質被覆層の熱塑性変形が著しく抑制されるようになり、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated carbide gear cutting tool of the present invention, the hard coating layer is composed of a (Ti, Al, Cr) N layer, and the upper layer of the hard coating layer is formed by alternately laminating a thin layer A and a thin layer B. Because it has excellent heat-resistant plastic deformation and the lower layer of the single phase structure has excellent high-temperature hardness, even in high-speed gear cutting of alloy steel with high heat generation, thermoplastic deformation of the hard coating layer Is remarkably suppressed, and excellent wear resistance is exhibited over a long period of time.


つぎに、この発明の被覆超硬歯切工具を実施例により具体的に説明する。

Next, the coated carbide gear cutting tool of the present invention will be specifically described with reference to examples.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、2条右捩れ×16溝の形状をもった図3に示されるソリッドホブ型の超硬歯切基体A〜Jをそれぞれ製造した。

WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour to form a cemented carbide round bar material of diameter: 85 mm × length: 125 mm, and machined from this material, outer diameter: 80 mm X Length: Solid hob type cemented carbide cutting bases A to J shown in FIG. 3 each having a total dimension of 120 mm and a shape of two right-hand twists x 16 grooves were manufactured.


(a)ついで、上記の超硬歯切基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−Cr合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−Cr合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−Cr合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−Cr合金を装着し、

(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−Cr合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬歯切基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−Cr合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬歯切基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−Cr合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−Cr合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−Cr合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬歯切基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬歯切工具1〜10をそれぞれ製造した。

(A) Next, each of the above-mentioned superhard gear cutting bases A to J is ultrasonically cleaned in acetone and dried, and the central axis on the rotary table in the arc ion plating apparatus shown in FIG. A thin layer of an upper layer having a component composition corresponding to the target composition shown in Table 2 as a cathode electrode (evaporation source) on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from Ti-Al-Cr alloy for forming A, Ti-Al- for forming thin layer B of the upper layer having the component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on the other side A Cr alloy is disposed oppositely across the turntable, and Ti-Al- for forming a lower layer as a cathode electrode (evaporation source) along the turntable at a position shifted by 90 degrees from both the Ti-Al-Cr alloys. Cr The gold is attached,

(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated onto the rotating table while rotating on the rotating table. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the lower layer forming Ti—Al—Cr alloy and the anode electrode to generate an arc discharge. Bombard cleaning with Ti-Al-Cr alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the carbide cutting base rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the Ti—Al—Cr alloy for forming the lower layer and the anode electrode, so that the target composition and target shown in Table 2 are formed on the surface of the cemented carbide cutting base. (Ti, Al, Cr) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the carbide cutting base rotating while rotating on the rotary table. In this state, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-Cr alloy for forming the thin layer A to generate arc discharge, and the cemented carbide cutting A thin layer A having a predetermined thickness is formed on the surface of the substrate, and after the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-Cr alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). The thin layer A type Of thin layer A by arc discharge between cathode electrode and anode electrode of Ti-Al-Cr alloy for use, and thin layer by arc discharge between cathode electrode and anode electrode of Ti-Al-Cr alloy for formation of thin layer B The formation of B is alternately repeated so that the target composition shown in Table 2 along the layer thickness direction and the thin layer A and the thin layer B having a single target layer thickness are alternately laminated on the surface of the cemented carbide cutting base. Similarly, the coated superhard gear cutting tools 1 to 10 of the present invention were manufactured by vapor-depositing the upper layers to be formed with the overall target layer thicknesses shown in Table 2, respectively.


また、比較の目的で、上記の超硬歯切基体A〜Jを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったTi−Al−Cr合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒータで装置内を500℃に加熱した後、前記超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Ti−Al−Cr合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬歯切基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬歯切基体の表面に、表3に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,Cr)N層からなる硬質被覆層を蒸着形成することにより、比較被覆超硬歯切工具1〜10をそれぞれ製造した。

Further, for the purpose of comparison, the above-described superhard gear cutting bases A to J are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the (evaporation source), a Ti—Al—Cr alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. Then, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide cutting base, and 100 A of the cathode electrode was placed between the Ti—Al—Cr alloy and the anode electrode. An electric current is applied to generate an arc discharge, so that the surface of the cemented carbide cutting substrate is bombarded with the Ti—Al—Cr alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. In addition, the bias voltage applied to the cemented carbide cutting base is lowered to −100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti—Al—Cr alloy. A comparative coated carbide gear cutting tool is formed by vapor-depositing a hard coating layer consisting of a (Ti, Al, Cr) N layer having a single phase structure with the target composition and target layer thickness shown in Table 3 on the surface of 1 to 10 were produced.


つぎに、上記の本発明被覆超硬歯切工具1〜10および比較被覆超硬歯切工具1〜10を用いて、材質がJIS・SCr420Hの合金鋼にして、

モジュール:2.0、圧力角:20度、歯数:29、ねじれ角:25度右捩れ、 歯幅:20.0mmの寸法および形状をもった歯車の加工を、

切削速度(回転速度): 450m/min、
送り: 1.8mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の高速歯切加工条件(上記JIS・SCr420Hの合金鋼歯車の加工の場合の切削速度は通常 350m/min)で行い、
逃げ面摩耗幅が 0.1 mmに至るまでの歯車加工数を測定した。
この測定結果を表2、3にそれぞれに示した。

Next, using the above-described coated carbide cutting tool 1-10 of the present invention and the comparative coated carbide cutting tool 1-10, the material is alloy steel of JIS / SCr420H,

Module: 2.0, pressure angle: 20 degrees, number of teeth: 29, twist angle: 25 degrees right-hand twist, tooth width: machining of gears with dimensions and shapes of 20.0 mm,

Cutting speed (rotational speed): 450 m / min,
Feed: 1.8mm / rev,
Processing form: climb, no shift, dry (air blow),
The high-speed gear cutting conditions (the cutting speed in the case of machining the above-mentioned JIS / SCr420H alloy steel gear is usually 350 m / min),
The number of gears processed until the flank wear width reached 0.1 mm was measured.
The measurement results are shown in Tables 2 and 3, respectively.


Figure 0004706911
Figure 0004706911

Figure 0004706911
Figure 0004706911

Figure 0004706911
Figure 0004706911


この結果得られた本発明被覆超硬歯切工具1〜10の(Ti,Al,Cr)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆超硬歯切工具1〜10の(Ti,Al,Cr)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。

As a result, the thin layer A and the thin layer B of the hard coating layer made of (Ti, Al, Cr) N of the coated carbide cutting tool 1 to 10 of the present invention obtained, and the composition of the lower layer. The composition of the hard coating layer made of (Ti, Al, Cr) N of the comparative coated carbide gear cutting tools 1 to 10 was measured by energy dispersive X-ray analysis using a transmission electron microscope. Each showed substantially the same composition as the target composition.

Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表2、3に示される結果から、本発明被覆超硬歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,Cr)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さ、さらに前記上部層がすぐれた耐熱塑性変形性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、合金鋼製歯車の歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、チッピング、偏摩耗の発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,Cr)N層からなる比較被覆超硬歯切工具は、前記高速歯切加工条件では、特に耐熱塑性変形性不足が原因で摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の表面被覆超硬合金製歯切工具(本発明被覆超硬歯切工具)は、通常の条件での歯切加工は勿論のこと、特に各種の合金鋼製歯車などの歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the coated carbide cutting tool of the present invention has a single-phase structure lower layer made of (Ti, Al, Cr) N, each having a hard coating layer having a different composition, It consists of an upper layer having an alternating laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high-temperature hardness, and the upper layer has excellent heat-resistant plastic deformation. However, since the hard coating layer combines these excellent properties, even when gear cutting of alloy steel gears is performed under high-speed gear cutting conditions with high heat generation, chipping and uneven wear are prevented. The comparative coated carbide gear cutting tool in which the hard coating layer is composed of a (Ti, Al, Cr) N layer having a single phase structure, while exhibiting excellent wear resistance without occurrence, is the high-speed gear cutting processing described above. In particular, the wear progressed rapidly due to the lack of heat-resistant plastic deformation, It is clear that lead to specific short time service life.
As described above, the surface-coated cemented carbide gear cutting tool of the present invention (the coated carbide gear cutting tool of the present invention) is not only gear cutting under normal conditions, but also various alloy steel gears, etc. Even when the gear cutting is performed under high-speed gear cutting conditions with high heat generation, the hard coating layer exhibits excellent wear resistance and exhibits excellent performance over a long period of time. It is possible to satisfactorily cope with the high performance of the cutting device, the labor saving and energy saving of gear cutting, and the cost reduction.


この発明の被覆超硬歯切工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated carbide gear cutting tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. 超硬歯切工具(ソリッドホブ)の概略斜視図である。It is a schematic perspective view of a cemented carbide cutting tool (solid hob).

Claims (1)

炭化タングステン基超硬合金製歯切工具基体の表面に、

(a)いずれもTiとAlとCrの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Ti1-(A+B)AlCr]N(ただし、原子比で、Aは0.01〜0.10、Bは0.40〜0.60を示す)を満足するTiとAlとCrの複合窒化物層、
上記薄層Bは、
組成式:[Ti1-(C+D)AlCr]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足するTiとAlとCrの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Ti1-(E+F)AlCr]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.15を示す)を満足するTiとAlとCrの複合窒化物層、
からなる硬質被覆層を蒸着形成してなることを特徴とする合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具。
On the surface of the tungsten carbide base cemented carbide cutting tool base,

(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and Cr, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. Have
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: [Ti 1− (A + B) Al A Cr B ] N (wherein A represents 0.01 to 0.10 and B represents 0.40 to 0.60) A composite nitride layer of Al and Cr;
The thin layer B is
Formula: [Ti 1- (C + D ) Al C Cr D] N ( provided that an atomic ratio, C is 0.20 to 0.35, D denotes the 0.15 to 0.30) and Ti which satisfies A composite nitride layer of Al and Cr,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: [Ti 1− (E + F) Al E Cr F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.15 in atomic ratio) A composite nitride layer of Al and Cr;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, characterized in that the hard coating layer is formed by vapor deposition.
JP2005220177A 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel Active JP4706911B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220177A JP4706911B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220177A JP4706911B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Publications (2)

Publication Number Publication Date
JP2007030129A JP2007030129A (en) 2007-02-08
JP4706911B2 true JP4706911B2 (en) 2011-06-22

Family

ID=37789997

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220177A Active JP4706911B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Country Status (1)

Country Link
JP (1) JP4706911B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115261715A (en) * 2021-04-29 2022-11-01 宝山钢铁股份有限公司 High-temperature carburized gear shaft steel and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003340606A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP3416937B2 (en) * 1994-10-28 2003-06-16 住友電気工業株式会社 Laminate
JP3719731B2 (en) * 1995-01-31 2005-11-24 日立ツール株式会社 Coated cutting tool / Coated wear-resistant tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003340606A (en) * 2002-05-27 2003-12-02 Mitsubishi Materials Corp Surface-covered cemented carbide made cutting tool having hard coated layer to exhibit excellent abrasion resistance in high-speed cutting work

Also Published As

Publication number Publication date
JP2007030129A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2017154200A (en) Surface-coated cutting tool
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP6376466B2 (en) Surface coated cutting tool
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4720987B2 (en) Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4706912B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4716007B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP3959737B2 (en) A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP2016175161A (en) Surface-coated cutting tool
JP4716006B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP6471546B2 (en) Surface coated cutting tool
JP4716095B2 (en) Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel
JP4120243B2 (en) A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP4706909B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4720986B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4007104B2 (en) A surface-coated stripping tool that provides excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP3543768B2 (en) Surface coated cemented carbide gear cutting tool with a hard coating layer that exhibits excellent heat-resistant plastic deformation properties
JP2008260097A (en) Surface-coated cutting tool
JP4816844B2 (en) A surface-coated tungsten carbide-based cemented carbide cutting tool with excellent chipping resistance in high-speed gear cutting.
JP2008260098A (en) Surface-coated cutting tool
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP3956387B2 (en) A surface-coated cemented carbide striping tool with excellent wear resistance with a hard coating layer in high-speed gear cutting.

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302