JP4716095B2 - Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel - Google Patents

Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel Download PDF

Info

Publication number
JP4716095B2
JP4716095B2 JP2005144005A JP2005144005A JP4716095B2 JP 4716095 B2 JP4716095 B2 JP 4716095B2 JP 2005144005 A JP2005144005 A JP 2005144005A JP 2005144005 A JP2005144005 A JP 2005144005A JP 4716095 B2 JP4716095 B2 JP 4716095B2
Authority
JP
Japan
Prior art keywords
layer
gear cutting
speed
cutting tool
thin layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005144005A
Other languages
Japanese (ja)
Other versions
JP2006320974A (en
Inventor
宏一 松村
浩一 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005144005A priority Critical patent/JP4716095B2/en
Publication of JP2006320974A publication Critical patent/JP2006320974A/en
Application granted granted Critical
Publication of JP4716095B2 publication Critical patent/JP4716095B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

この発明は、硬質被覆層が耐摩耗性とともにすぐれた耐欠損性を有し、したがって特に合金鋼などの高い発熱を伴う高速歯切加工に用いた場合にも、すぐれた耐摩耗性および耐欠損性を発揮する表面被覆高速度工具鋼製歯切工具(以下、被覆歯切工具という)に関するものである。   The present invention has excellent wear resistance and fracture resistance even when the hard coating layer has excellent wear resistance as well as wear resistance, and therefore, particularly when used for high-speed gear cutting with high heat generation such as alloy steel. The present invention relates to a surface-coated high-speed tool steel gear cutting tool (hereinafter referred to as a coated gear cutting tool) that exhibits the properties.


従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に、ソリッドホブ(例えば図3の概略斜視図参照)やピニオンカッタ(例えば図4の概略斜視図参照)、さらにシェービングカッタなどの歯切工具が用いられている。

また、被覆歯切工具として、例えば図3や図4に示される形状に機械加工された高速度工具鋼で構成された歯切工具本体を基体とし、この基体の表面に、組成式:(Al1-(X+Y)CrSi)N(ただし、原子比で、Xは0.20〜0.75、Yは0.01〜0.30を示す)を満足するCr,Al及びSiを主成分とする複合窒化物層からなる硬質被覆層を物理蒸着してなる被覆歯切工具が提案され、前記硬質被覆層を構成する複合窒化物層は、優れた耐摩耗性を備えることが知られている。

さらに、上記の被覆歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、ヒータで装置内を、例えば雰囲気を2Paの真空雰囲気として、400℃の温度に加熱した状態で、アノード電極と所定組成を有するCr−Al−Si合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体(歯切工具本体)には、例えば−200Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(CrAl,Si)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開2003−321764号公報

Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices. For gear cutting of these gear teeth, a solid hob (for example, see the schematic perspective view of FIG. 3) or a pinion cutter (for example, FIG. 4). In addition, a cutting tool such as a shaving cutter is used.

Further, as a coated gear cutting tool, for example, a gear cutting tool body made of high-speed tool steel machined to the shape shown in FIG. 3 or FIG. 4 is used as a base, and a composition formula: (Al 1- (X + Y) Cr X Si Y) N ( provided that an atomic ratio, X is .20 to .75, Y is Cr satisfying a shows the 0.01 to 0.30), mainly Al and Si A coated cutting tool formed by physically vapor-depositing a hard coating layer composed of a composite nitride layer as a component has been proposed, and the composite nitride layer constituting the hard coating layer is known to have excellent wear resistance. ing.

Further, the above-described coated cutting tool is loaded with the above-mentioned substrate in an arc ion plating apparatus, which is one of physical vapor deposition apparatuses schematically shown in FIG. Is heated to a temperature of 400 ° C. under a vacuum atmosphere of 2 Pa, and the voltage between the anode electrode and the cathode electrode (evaporation source) in which a Cr—Al—Si alloy having a predetermined composition is set is, for example, 35 V Arc discharge was generated under the condition of current: 90 A, and simultaneously nitrogen gas was introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of, for example, 2 Pa. On the other hand, a bias of −200 V, for example, was applied to the base body (gear cutting tool body). It is also known that it is produced by vapor-depositing a hard coating layer composed of the (CrAl, Si) N layer on the surface of the substrate under the condition of applying a voltage.
Japanese Patent Laid-Open No. 2003-321764



近年の歯切加工装置の高性能化はめざましく、一方で歯切加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、歯切加工は高速化の傾向にあるが、上記従来の被覆歯切工具においては、これを通常の歯切加工条件で用いた場合には大きな問題はないが、これを高い発熱を伴う合金鋼等の高速歯切加工条件で用いた場合には、耐欠損性、耐摩耗性はまだ十分とはいえず、欠損(カケ、チッピング)の発生により、あるいは、硬質被覆層の摩耗進行により、比較的短時間で使用寿命に至るのが現状である。


In recent years, the performance of gear cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for gear cutting, and with this, gear cutting has a tendency to increase in speed. In the above conventional coated gear cutting tool, there is no major problem when this is used under normal gear cutting conditions, but when this is used under high speed gear cutting conditions such as alloy steel with high heat generation. However, the chipping resistance and wear resistance are not sufficient yet, and the service life is reached in a relatively short time due to the occurrence of chipping (chips and chipping) or the progress of wear of the hard coating layer. is there.



そこで、本発明者等は、上述のような観点から、特に高速歯切加工で硬質被覆層がすぐれた耐欠損性、耐摩耗性を発揮する被覆歯切工具を開発すべく、上記従来の被覆歯切工具を構成する硬質被覆層に着目し、研究を行った結果、

(a)硬質被覆層を構成するCrとAlとSiの複合窒化物[以下、(Cr,Al,Si)Nで示す]層の成分であるSiの含有割合を多くすれば層の耐熱塑性変形性が向上するようになるが、その含有割合は精々1〜10原子%程度までで、これ以上含有させると、Al成分の含有割合が45〜65原子%であることと相俟って、Cr成分の含有割合が低下するようになることから、上記の従来の(Cr,Al,Si)N層の具備する特性のうち、特に高温強度が低下し、その結果、耐欠損性に劣るものとなる。一方、所定の高温強度を確保し得る程度に十分な量のCr成分を含有させようとすれば、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、そうすると、硬質被覆層の高温硬さは低いものとなること。


(b)上記(a)の(Cr,Al,Si)N層に比して、Si含有割合をきわめて高く、一方Si成分の含有割合を高めた分、Al含有割合を低くして、
組成式:[Cr1-(A+B)AlSi]N(ただし、原子比で、Aは0.01〜0.10、Bは0.35〜0.50を示す)を満足するものとし、もってAl成分の低含有によって高温硬さおよび高温耐酸化性は不十分となるが、高Si含有によって耐熱塑性変形性を一段と向上せしめた(Cr,Al,Si)N層(以下、薄層Aという)と、
上記薄層Aに比して、相対的にAl含有割合を相対的に高く、一方Si含有割合を相対的に低くして、
組成式:[Cr1-(C+D)AlSi]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足するものとし、もって前記薄層Aに比して、低Si含有で相対的に耐熱塑性変形性は低いものとなるが、Al含有割合を相対的に高くした分高い高温硬さおよび高温耐酸化性を有する(Cr,Al,Si)N層(以下、薄層Bという)、
を、それぞれの一層平均層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の薄層Aおよび薄層Bの交互積層構造の(Cr,Al,Si)N層(この場合、前記薄層Aおよび薄層Bとも35原子%以上のCr成分を含有するので、高い高温強度を保持する)においては、上記の高Si含有の薄層Aによるすぐれた耐熱塑性変形性と、上記の相対的に高いAl含有の薄層Bによる高温硬さおよび高温耐酸化性を具備するようになること。


(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Cr,Al,Si)N層は、合金鋼の高速歯切加工で要求される、すぐれた耐熱塑性変形性および高温強度を有するが、前記薄層Aおよび薄層Bとも相対的にAl成分の含有割合が低いので、十分満足する高温硬さおよび高温耐酸化性を具備するものではなく、一方上記(a)の(Cr,Al,Si)N層、すなわち、
組成式:[Cr1-(E+F)AlSi]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.10を示す)を満足する単一相構造の(Cr,Al,Si)N層は、合金鋼の高速歯切加工で要求される十分な耐熱塑性変形性を具備するものではないが、Al成分の高含有によってすぐれた高温硬さおよび高温耐酸化性を具備するので、これを上記の薄層Aと薄層Bの交互積層構造を有する(Cr,Al,Si)N層の下部層として硬質被覆層を構成すると、この結果の硬質被覆層は、すぐれた耐熱塑性変形性および高温強度、さらにすぐれた高温硬さおよび高温耐酸化性を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆歯切工具は、上記の高熱発生を伴う合金鋼の高速歯切加工でも、偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を長期に亘って発揮すること。
以上(a)〜(c)に示される研究結果を得たのである。


この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)いずれも(Cr,Al,Si)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚が5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Cr1-(A+B)AlSi]N(ただし、原子比で、Aは0.01〜0.10、Bは0.35〜0.50を示す)を満足する(Cr,Al,Si)N層、
上記薄層Bは、
組成式:[Cr1-(C+D)AlSi]N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足する(Cr,Al,Si)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Cr1-(E+F)AlSi]N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.10を示す)を満足する(Cr,Al,Si)N層、

からなる硬質被覆層を蒸着形成してなる、合金鋼の高速歯切加工で硬質被覆層がすぐれた耐欠損性を発揮する被覆歯切工具に特徴を有するものである。

つぎに、この発明の被覆歯切工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。

(a)下部層の組成式および平均層厚
上記の通り、硬質被覆層を構成する(Cr,Al,Si)N層におけるAl成分には高温硬さ、同Cr成分には高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させ、さらに同Si成分には耐熱塑性変形性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび高温耐酸化性を維持するが、Alの含有割合を示すE値がCrとSiとの合量に占める割合(原子比、以下同じ)で0.45未満では、所望のすぐれた高温硬さおよび高温耐酸化性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示す同E値が同0.65を越えると、高温強度が急激に低下し、この結果チッピング、微少欠けなどの欠損が発生し易くなることから、E値を0.45〜0.65と定めた。


In view of the above, the inventors of the present invention have developed the above-described conventional coating tool in order to develop a coated gear cutting tool that exhibits excellent fracture resistance and wear resistance, particularly in high-speed gear cutting. As a result of conducting research, focusing on the hard coating layer that constitutes the gear cutting tool,

(A) Heat-resistant plastic deformation of a layer by increasing the content ratio of Si as a component of a composite nitride of Cr, Al, and Si [hereinafter referred to as (Cr, Al, Si) N] constituting the hard coating layer The content ratio is at most about 1 to 10 atomic%, and when it is further contained, the content ratio of the Al component is 45 to 65 atomic%, Cr Since the content ratio of the component is reduced, among the characteristics of the conventional (Cr, Al, Si) N layer, particularly the high temperature strength is reduced, and as a result, the fracture resistance is inferior. Become. On the other hand, if a sufficient amount of Cr component is included to ensure a predetermined high-temperature strength, in this case, it is inevitable that the content ratio of the Al component is extremely low. The high temperature hardness of the material should be low.


(B) Compared with the (Cr, Al, Si) N layer of (a) above, the Si content ratio is extremely high, while the content ratio of the Si component is increased, the Al content ratio is decreased,
Composition formula: [Cr 1- (A + B ) Al A Si B] N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a from 0.35 to 0.50) shall satisfy Therefore, although the high-temperature hardness and high-temperature oxidation resistance become insufficient due to the low content of the Al component, the (Cr, Al, Si) N layer (hereinafter referred to as the thin layer) has further improved the heat-resistant plastic deformation property due to the high Si content. A)
Compared to the thin layer A, the Al content rate is relatively high, while the Si content rate is relatively low,
Composition formula: [Cr 1- (C + D ) Al C Si D] N ( provided that an atomic ratio, C is 0.20 to 0.35, D denotes the 0.15 to 0.30) shall satisfy Therefore, compared to the thin layer A, it has a low Si content and a relatively low heat-resistant plastic deformability, but has a high high-temperature hardness and high-temperature oxidation resistance due to a relatively high Al content. (Cr, Al, Si) N layer (hereinafter referred to as thin layer B),
Are alternately laminated in a state where each layer has an average layer thickness of 5 to 20 nm (nanometer), and (Cr, Al, Si) of the alternately laminated structure of thin layer A and thin layer B as a result. In the N layer (in this case, both the thin layer A and the thin layer B contain a Cr component of 35 atomic% or more, thus maintaining high high-temperature strength), the excellent heat resistance by the high Si-containing thin layer A described above It should have plastic deformability and high temperature hardness and high temperature oxidation resistance due to the relatively high Al-containing thin layer B.


(C) The (Cr, Al, Si) N layer having the alternate layered structure of the thin layer A and the thin layer B of (b) is excellent in heat plastic deformation required for high speed gear cutting of alloy steel. However, since both the thin layer A and the thin layer B have a relatively low content of the Al component, they do not have sufficiently satisfactory high temperature hardness and high temperature oxidation resistance. ) (Cr, Al, Si) N layer, ie,
Composition formula: [Cr 1− (E + F) Al E Si F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.10 in atomic ratio) The (Cr, Al, Si) N layer of phase structure does not have sufficient heat-resistant plastic deformation required for high-speed gear cutting of alloy steel, but it has excellent high-temperature hardness due to the high content of Al component. When the hard coating layer is formed as the lower layer of the (Cr, Al, Si) N layer having the alternate layered structure of the thin layer A and the thin layer B, the high-temperature oxidation resistance is obtained. Since the hard coating layer has excellent heat plastic deformation and high temperature strength, and excellent high temperature hardness and high temperature oxidation resistance, the coated cutting tool formed by vapor deposition of this hard coating layer is: Even in the above high-speed gear cutting of alloy steel with high heat generation, Thermal plastic deformation without generation of exert over the superior wear resistance to long term that that.
The research results shown in (a) to (c) above were obtained.


This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) Both are composed of an upper layer and a lower layer made of (Cr, Al, Si) N, the upper layer has an average layer thickness of 0.5 to 1.5 μm, and the lower layer has an average layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate layered structure of thin layers A and thin layers B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Cr 1− (A + B) Al A Si B ] N (wherein A is 0.01 to 0.10 and B is 0.35 to 0.50 in terms of atomic ratio) (Cr , Al, Si) N layer,
The thin layer B is
Composition formula: [Cr 1− (C + D) Al C Si D ] N (wherein C is 0.20 to 0.35 and D is 0.15 to 0.30 in atomic ratio) (Cr , Al, Si) N layer,
(C) the lower layer has a single phase structure;
Composition formula: [Cr 1− (E + F) Al E Si F ] N (wherein E is 0.45 to 0.65 and F is 0.01 to 0.10 in atomic ratio) (Cr , Al, Si) N layer,

The present invention is characterized by a coated gear cutting tool which has a hard coating layer exhibiting excellent fracture resistance by high-speed gear cutting of alloy steel formed by vapor-depositing a hard coating layer made of

Next, regarding the hard coating layer of the coated cutting tool of the present invention, the reason why the numerical values are limited as described above will be described.

(A) Composition formula and average layer thickness of lower layer As described above, the Al component in the (Cr, Al, Si) N layer constituting the hard coating layer is improved in high-temperature hardness, and the Cr component is improved in high-temperature strength. At the same time, the high-temperature oxidation resistance is improved in the state where Al and Cr coexist, and the Si component also has the effect of improving the heat-resistant plastic deformation property. In the lower layer, the content ratio of the Al component is relatively increased. Thus, while maintaining high high-temperature hardness and high-temperature oxidation resistance, if the E value indicating the Al content is less than 0.45 in terms of the total amount of Cr and Si (atomic ratio, the same shall apply hereinafter), it is desirable. High temperature hardness and high temperature oxidation resistance cannot be ensured, and wear progresses rapidly. On the other hand, if the E value indicating the proportion of Al exceeds 0.65, high temperature strength As a result, chipping, slight missing Since defects such as cracks are likely to occur, the E value was set to 0.45 to 0.65.

また、Siの割合を示すF値がCrとAlの合量に占める割合で、0.01未満では、所定の耐熱塑性変形性向上効果を確保することができず、一方同F値が0.10を超えると、高温強度に明確な低下傾向が現れるようになることから、F値を0.01〜0.10と定めた。   Further, if the F value indicating the proportion of Si is a proportion of the total amount of Cr and Al, and less than 0.01, it is not possible to ensure a predetermined heat resistant plastic deformation improvement effect, while the F value is 0. When it exceeds 10, since a clear decreasing tendency appears in the high-temperature strength, the F value is set to 0.01 to 0.10.

さらに、その平均層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱塑性変形性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が6μmを越えると、欠損が発生し易くなることから、その平均層厚を2〜6μmと定めた。   Furthermore, if the average layer thickness is less than 2 μm, the excellent high-temperature hardness and heat-resistant plastic deformability cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while the average layer thickness is When the thickness exceeds 6 μm, defects are likely to occur. Therefore, the average layer thickness is set to 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Cr,Al,Si)NにおけるSi成分には、上記の通り相対的にその含有割合を高くして、耐熱塑性変形性を向上させ、もって高熱発生を伴う高硬度鋼の高速切削加工で偏摩耗の原因となる熱塑性変形の発生を防止する作用があるが、その含有割合を示すB値がCrとAlの合量に占める割合で、0.35未満では前記作用に所望のすぐれた効果を確保することができず、一方同B値が0.50を越えると、隣接して相対的に高温硬さおよび高温耐酸化性のすぐれた薄層Bが存在しても、上部層の高温硬さおよび高温耐酸化性の低下は避けられず、摩耗が促進するようになることから、B値を0.35〜0.50と定めた。
(B) Composition formula of the upper layer thin layer A The Si component in (Cr, Al, Si) N of the upper layer thin layer A is relatively increased in content as described above, so that the heat-resistant plastic deformation is achieved. Has the effect of preventing the occurrence of thermoplastic deformation, which causes uneven wear in high-speed cutting of high hardness steel with high heat generation, but the B value indicating the content ratio is the total amount of Cr and Al. If the ratio is less than 0.35, the desired excellent effect cannot be ensured for the above action. On the other hand, if the B value exceeds 0.50, relatively high temperature hardness and acid resistance Even if there is a thin layer B having excellent chemical properties, the high temperature hardness and high temperature oxidation resistance of the upper layer are inevitably lowered, and wear is promoted. Therefore, the B value is set to 0.35 to 0. .50.

また、Alの割合を示すA値がCrとSiの合量に占める割合で、0.01未満では、最低限の高温硬さおよび高温耐酸化性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度が低下するようになり、欠損発生の原因となることから、A値を0.01〜0.10と定めた。   Moreover, if the A value indicating the proportion of Al is the proportion of the total amount of Cr and Si, and less than 0.01, the minimum high-temperature hardness and high-temperature oxidation resistance cannot be ensured, and the cause of accelerated wear On the other hand, if the A value exceeds 0.10, the high-temperature strength decreases, causing the occurrence of defects, so the A value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、Si成分の含有割合を相対的に低くし、Al成分の含有割合を高く維持することで、相対的に高い高温硬さおよび高温耐酸化性を具備せしめ、隣接する薄層Aの高温硬さおよび高温耐酸化性の不足を補強し、もって、前記薄層Aの有するすぐれた耐熱塑性変形性と、前記薄層Bの有する高温硬さおよび高温耐酸化性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.20未満では、所望の高温硬さおよび高温耐酸化性を確保することができず、摩耗進行が促進するようになり、一方同C値が0.35を越えると、上部層全体の高温強度が低下するようになり、欠損発生の原因となることから、C値を0.20〜0.35と定めた。
(C) Composition formula of the upper layer thin layer B In the upper layer thin layer B, the Si component content ratio is relatively low, and the Al component content ratio is kept high, so that the relatively high temperature is high. It is provided with hardness and high-temperature oxidation resistance to reinforce the lack of high-temperature hardness and high-temperature oxidation resistance of the adjacent thin layer A, so that the excellent heat-resistant plastic deformation property of the thin layer A and the thin layer The upper layer having high-temperature hardness and high-temperature oxidation resistance of B is formed. If the C value indicating the Al content in the composition formula is less than 0.20, the desired high-temperature hardness and high-temperature acid resistance It is not possible to ensure the chemical conversion, and the progress of wear is promoted. On the other hand, if the C value exceeds 0.35, the high temperature strength of the entire upper layer is lowered, which causes the occurrence of defects. Therefore, the C value was set to 0.20 to 0.35.

また、Siの割合を示すD値がCrとAlの合量に占める割合で、0.15未満になると、上部層全体の耐熱塑性変形性低下が避けられず、一方同D値が0.30を超えると、高温強度が急激に低下するようになることから、D値を0.15〜0.30と定めた。   Further, if the D value indicating the proportion of Si is a proportion of the total amount of Cr and Al, and less than 0.15, the heat resistance plastic deformation of the entire upper layer is inevitably lowered, while the D value is 0.30. Since the high-temperature strength suddenly drops when the value exceeds D, the D value is set to 0.15 to 0.30.

(d)上部層の薄層Aと薄層Bの一層平均層厚
それぞれの一層平均層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた耐熱塑性変形性および所定の高温硬さおよび高温耐酸化性を確保することができなくなり、またそれぞれの一層平均層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さおよび高温耐酸化性不足、薄層Bであれば耐熱塑性変形性不足が層内に局部的に現れ、これが原因で欠損が発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの一層平均層厚を5〜20nmと定めた。
(D) Single layer average layer thickness of thin layer A and thin layer B of the upper layer If each layer average layer thickness is less than 5 nm, it is difficult to clearly form each thin layer with the above composition. The desired excellent heat-resistant plastic deformation property and the predetermined high temperature hardness and high temperature oxidation resistance cannot be ensured for the layer, and the disadvantage that each thin layer has when the average layer thickness of each layer exceeds 20 nm, that is, In the case of the thin layer A, insufficient high-temperature hardness and high-temperature oxidation resistance, and in the case of the thin layer B, insufficient heat-resistant plastic deformability appears locally in the layer, and this is likely to cause defects or progress of wear. Each layer has an average layer thickness of 5 to 20 nm because it is promoted.

(e)上部層の平均層厚
その平均層厚が0.5μm未満では、自身のもつすぐれた耐熱塑性変形性および高温硬さを硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その平均層厚が1.5μmを越えると、欠損が発生し易くなることから、その平均層厚を0.5〜1.5μmと定めた。
(E) Average layer thickness of the upper layer If the average layer thickness is less than 0.5 μm, the excellent heat-resistant plastic deformation and high temperature hardness cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the average layer thickness exceeds 1.5 μm, defects are likely to occur. Therefore, the average layer thickness was set to 0.5 to 1.5 μm.

この発明の被覆歯切工具は、硬質被覆層が(Cr,Al,Si)N層からなるが、硬質被覆層の表面層を薄層Aと薄層Bの交互積層構造とすることによってすぐれた耐熱塑性変形性と所定の高温硬さおよび高温耐酸化性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さおよび高温耐酸化性を有することから、特に高熱発生を伴なう合金鋼の高速歯切加工でも、硬質被覆層がすぐれた耐欠損性、耐熱塑性変形性を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、切刃部は正常摩耗形態をとり、欠損の発生もなくすぐれた耐摩耗性を長期に亘って発揮するものである。
In the coated cutting tool of the present invention, the hard coating layer is composed of a (Cr, Al, Si) N layer, and the surface layer of the hard coating layer is excellent by adopting an alternate laminated structure of the thin layer A and the thin layer B. It has particularly high heat generation because it has heat plastic deformation, predetermined high temperature hardness and high temperature oxidation resistance, and the lower layer of the single phase structure has excellent high temperature hardness and high temperature oxidation resistance. Even in high-speed gear cutting of alloy steel, the hard coating layer exhibits excellent fracture resistance and heat-resistant plastic deformation, and as a result, there is no occurrence of thermoplastic deformation that causes uneven wear in the cutting edge, and the cutting edge is normal. It takes a wear form and exhibits excellent wear resistance over a long period of time without the occurrence of defects.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION



つぎに、この発明の被覆歯切工具を実施例により具体的に説明する。


Next, the coated gear cutting tool of the present invention will be specifically described with reference to examples.

(実施例1)
歯切工具本体として、材質がJIS・SKH55および同SKH51の高速度工具鋼からなる直径:110mm×長さ:170mmの寸法をもった素材から、機械加工にて外径:108mm×長さ:160mmの全体寸法をもち、かつ3条右捩れ×12溝の形状をもった図3に概略斜視図で示されるソリッドホブを製造した。

(a)ついで、上記の2種の材質の歯切工具本体(ソリッドホブ)を基体とし、これらの基体のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表1に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Cr−Al−Si合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表1に示される目標組成に対応した成分組成をもった表面層の薄層B形成用Cr−Al−Si合金を前記回転テーブルを挟んで対向配置し、また前記両Cr−Al−Si合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Cr−Al−Si合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって歯切工具本体基体表面を前記Cr−Al−Si合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記歯切工具本体基体の表面に、表1に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Si)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Cr−Al−Si合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記歯切工具本体基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Cr−Al−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Cr−Al−Si合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Cr−Al−Si合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記歯切工具本体基体の表面に、層厚方向に沿って表1に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表1に示される全体目標層厚で蒸着形成することにより、本発明被覆歯切工具1〜6をそれぞれ製造した。


また、比較の目的で、上記の2種類の材質の基体(歯切工具本体)を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもったCr−Al−Si合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記歯切工具本体基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって歯切工具本体基体表面を前記Cr−Al−Si合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記歯切工具本体基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−Si合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記歯切工具本体基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Si)N層からなる硬質被覆層を蒸着形成することにより、被覆歯切工具1〜6(以下、比較被覆歯切工具1〜6と云う)をそれぞれ製造した。

つぎに、上記の本発明被覆歯切工具1〜6および比較被覆歯切工具1〜6を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール:2.5、圧力角:20度、歯数:28、ねじれ角:25度左捩れ、歯幅:50mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度):220m/min、
送り:2.0mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の条件で高速ドライ歯切加工(上記の材質がJIS・SCr420Hの低合金鋼歯車の加工の場合の切削速度は通常120m/min)で行い、
逃げ面摩耗幅が0.2mmに至るまでの歯車加工数を測定した。この測定結果を表1,2それぞれに示した。
Example 1
As the gear cutting tool body, the outer diameter: 108mm x length: 160mm from the material with the dimensions of diameter: 110mm x length: 170mm made of high speed tool steel of JIS / SKH55 and SKH51 The solid hob shown in the schematic perspective view of FIG. 3 having the overall dimensions of 3 and having the shape of three right-handed twists × 12 grooves was manufactured.

(A) Next, the above two kinds of gear cutting tool bodies (solid hobs) are used as substrates, and each of these substrates is subjected to ultrasonic cleaning in acetone and dried, and then the arc ions shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the plating apparatus, and corresponds to the target composition shown in Table 1 as the cathode electrode (evaporation source) on one side. As the upper layer of the thin layer A forming Cr-Al-Si alloy having the above component composition, the surface having the component composition corresponding to the target composition shown in Table 1, respectively, as the other cathode electrode (evaporation source) A Cr-Al-Si alloy for forming a thin layer B is disposed opposite to each other with the rotary table in between, and a cathode electrode along the rotary table at a position shifted by 90 degrees from both the Cr-Al-Si alloys. Fitted with a Cr-Al-Si alloy for the lower layer formed as (evaporation source),
(B) First, after the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 400 ° C. with a heater, and then rotates on the rotary table while rotating on the rotary tool main body base. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the Cr—Al—Si alloy for forming the lower layer and the anode electrode to generate an arc discharge. Bombard cleaning with Cr-Al-Si alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the gear cutting tool main body rotating while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the lower layer forming Cr—Al—Si alloy and the anode electrode, so that the target composition and target shown in Table 1 are formed on the surface of the gear cutting tool main body. (Cr, Al, Si) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the gear cutting tool main body rotating while rotating on the rotary table. In this state, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Cr-Al-Si alloy for forming the thin layer A to generate arc discharge, and the gear cutting tool body A thin layer A having a predetermined layer thickness is formed on the surface of the substrate, and after the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Cr-Al-Si alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). You may) Formation of thin layer A by arc discharge between the cathode electrode and anode electrode of Cr-Al-Si alloy for forming layer A, and arc discharge between cathode electrode and anode electrode of Cr-Al-Si alloy for forming thin layer B The formation of the thin layer B is alternately repeated, so that the target composition and the target layer thickness of the thin layer A and the thin layer B shown in Table 1 along the layer thickness direction are formed on the surface of the gear cutting tool main body. The coated layers for cutting tools 1 to 6 of the present invention were manufactured by vapor-depositing the upper layers composed of alternating layers with the same overall target layer thickness shown in Table 1.


For comparison purposes, the above two types of base materials (gear cutting tool main body) were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, as a cathode electrode (evaporation source), Cr—Al—Si alloys each having a component composition corresponding to the target composition shown in Table 2 were mounted, and the inside of the apparatus was first evacuated to a vacuum of 0.1 Pa or less. The heater is heated to 400 ° C. with a heater, and then a DC bias voltage of −1000 V is applied to the gear cutting tool body base, and the cathode electrode is composed of the Cr—Al—Si alloy and the anode electrode. A current of 100 A is passed between them to generate an arc discharge, so that the surface of the main body of the gear cutting tool is bombarded with the Cr—Al—Si alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas. And 3 Pa of reaction atmosphere, the bias voltage applied to the gear cutting tool body substrate is lowered to -100 V, and arc discharge is generated between the cathode electrode and the anode electrode of the Cr-Al-Si alloy, Therefore, by vapor-depositing a hard coating layer composed of a (Cr, Al, Si) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 2 on the surface of the gear cutting tool main body base, Coated gear cutting tools 1 to 6 (hereinafter referred to as comparative coated gear cutting tools 1 to 6) were produced.

Next, using the above-described coated gear cutting tools 1 to 6 and comparative coated gear cutting tools 1 to 6 described above, the material is made of a low alloy steel of JIS / SCr420H, module: 2.5, pressure angle: 20 degrees. , The processing of gears with the dimensions and shape of the number of teeth: 28, twist angle: 25 degrees left twist, tooth width: 50 mm,
Cutting speed (rotational speed): 220 m / min,
Feed: 2.0mm / rev,
Processing form: climb, no shift, dry (air blow),
Under the conditions of high-speed dry gear cutting (the cutting speed in the case of processing a low alloy steel gear of which the material is JIS / SCr420H is usually 120 m / min),
The number of gears processed until the flank wear width reached 0.2 mm was measured. The measurement results are shown in Tables 1 and 2, respectively.

(実施例2)
また、歯切工具本体として、同じく材質がJIS・SKH55および同SKH51の高速度工具鋼からなる外径:110mm×厚さ:20mmの寸法をもった素材から、機械加工にてピッチ円直径:105mm×厚さ:18mmの全体寸法をもち、かつカッタ歯数:44の形状をもった図4に概略斜視図で示されるディスク型ピニオンカッタ(JIS・B・4356記載の100形)を製造した。
(Example 2)
In addition, as a gear cutting tool body, a material having a size of outer diameter: 110 mm × thickness: 20 mm made of high-speed tool steel of the same material as JIS / SKH55 and SKH51 is used to machine a pitch circle diameter: 105 mm. X Thickness: A disk type pinion cutter (100 type described in JIS B 4356) shown in a schematic perspective view in FIG. 4 having an overall dimension of 18 mm and a shape of cutter teeth: 44 was manufactured.

ついで、上記の歯切工具本体(ピニオンカッタ)を基体とし、これらの基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表1に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Si)N層からなる下部層と、同じく層厚方向に沿って表1に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる表面層を同じく表1に示される全体目標層厚で蒸着形成することにより、本発明被覆歯切工具7〜12をそれぞれ製造した。   Next, the above-described gear cutting tool body (pinion cutter) is used as a base, and the surfaces of these bases are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. A lower layer composed of a (Cr, Al, Si) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 1 under the same conditions as in Example 1, and along the layer thickness direction. The coated layer of the present invention is formed by vapor-depositing a surface layer composed of alternately laminated thin layers A and B having a target composition and a single target layer thickness shown in Table 1 with an overall target layer thickness also shown in Table 1. Cutting tools 7 to 12 were produced.

また、比較の目的で、上記の歯切工具本体(ピニオンカッタ)の基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表2に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,Si)N層からなる硬質被覆層を蒸着することにより、被覆歯切工具7〜12(以下、比較被覆歯切工具7〜12と云う)をそれぞれ製造した。


つぎに、上記の本発明被覆歯切工具7〜12および比較被覆歯切工具7〜12を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール:2.25、圧力角:20度、歯数:44、歯幅:20mmの寸法および形状をもった歯車の加工を、
ストローク数:900ストローク/min、
円周送り:0.5mm/ストローク、
半径送り:0.015mm/ストローク、
の条件で高速歯切加工(上記の材質がJIS・SCr420Hの低合金鋼歯車の加工の場合のストローク数は通常600ストローク/min)で行い、逃げ面摩耗幅が0.2mmに至るまでの歯車加工数を測定した。この測定結果を表1,2にそれぞれ示した。
For comparison purposes, the surface of the base of the above-described gear cutting tool body (pinion cutter) is ultrasonically cleaned in acetone and dried, and is then loaded into the arc ion plating apparatus shown in FIG. By vapor-depositing a hard coating layer composed of a (Cr, Al, Si) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 2 under the same conditions as in Example 1 above, Coated gear cutting tools 7 to 12 (hereinafter referred to as comparative coated gear cutting tools 7 to 12) were produced.


Next, using the above-described coated cutting tool 7-12 and comparative coated cutting tool 7-12 of the present invention, the material is made of low alloy steel of JIS / SCr420H, module: 2.25, pressure angle: 20 degrees. , Processing of gears having the size and shape of the number of teeth: 44, tooth width: 20 mm,
Number of strokes: 900 stroke / min,
Circumferential feed: 0.5mm / stroke,
Radius feed: 0.015mm / stroke,
Gears with high-speed gear cutting under the above conditions (the number of strokes is usually 600 strokes / min when processing low-alloy steel gears with the above material is JIS / SCr420H), and the flank wear width reaches 0.2 mm. The number of processes was measured. The measurement results are shown in Tables 1 and 2, respectively.

Figure 0004716095
Figure 0004716095

Figure 0004716095
Figure 0004716095

この結果得られた本発明被覆歯切工具1〜12の(Cr,Al,Si)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆歯切工具1〜12の(Cr,Al,Si)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。


表1,2に示される結果から、本発明被覆歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Cr,Al,Si)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成することによってすぐれた耐熱塑性変形性と所定の高温硬さ、高温強度および高温耐酸化性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さおよび高温耐酸化性を有することから、特に高熱発生を伴なう合金鋼の高速歯切加工でも、硬質被覆層がすぐれた耐欠損性、耐熱塑性変形性を発揮し、この結果切刃部に欠損の発生はなく、また、偏摩耗の原因となる熱塑性変形の発生もなく、切刃部は正常摩耗形態をとり、欠損の発生もなくすぐれた耐摩耗性を長期に亘って発揮するものである。

上述のように、この発明の被覆歯切工具は、通常の条件での歯切加工は勿論のこと、特に各種の合金鋼製歯車などの歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性、耐欠損性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
The thin layer A and thin layer B of the hard coating layer made of (Cr, Al, Si) N of the coated cutting tools 1 to 12 of the present invention obtained as a result, and the composition of the lower layer, and The composition of the hard coating layer made of (Cr, Al, Si) N of the comparative coated gear cutting tools 1 to 12 was measured by an energy dispersive X-ray analysis method using a transmission electron microscope. It showed substantially the same composition.

Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.


From the results shown in Tables 1 and 2, the coated cutting tool of the present invention has a single-phase structure lower layer composed of (Cr, Al, Si) N, each of which has a hard coating layer having a different composition, and a layer thickness. Are made of an upper layer having an alternately laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, thereby providing excellent heat plastic deformation and predetermined high temperature hardness, high temperature strength and high temperature oxidation resistance, Since the lower layer of the single-phase structure has excellent high-temperature hardness and high-temperature oxidation resistance, even with high-speed gear cutting of alloy steel with high heat generation, the hard coating layer has excellent fracture resistance, Demonstrates heat-resistant plastic deformation. As a result, there is no chipping at the cutting edge, there is no occurrence of thermoplastic deformation that causes uneven wear, and the cutting edge is in a normal wear form with no chipping. It exhibits excellent wear resistance over a long period of time.

As described above, the coated gear cutting tool of the present invention can be used not only for gear cutting under normal conditions, but also for gear cutting such as various alloy steel gears, especially for high-speed gear cutting with high heat generation. In this case, the hard coating layer exhibits excellent wear resistance and fracture resistance, and exhibits excellent performance over a long period of time. It can cope with labor saving, energy saving and cost reduction of processing sufficiently satisfactorily.

この発明の被覆歯切工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the covering gear cutting tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. ソリッドホブの概略斜視図である。It is a schematic perspective view of a solid hob. ディスク型ピニオンカッタの概略斜視図である。It is a schematic perspective view of a disk-type pinion cutter.

Claims (1)

高速度工具鋼で構成された歯切工具本体の表面に、
(a)いずれもCrとAlとSiの複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Cr1-(A+B)AlSi)N(ただし、原子比で、Aは0.01〜0.10、Bは0.35〜0.50を示す)を満足するCrとAlとSiの複合窒化物層、
上記薄層Bは、
組成式:(Cr1-(C+D)AlSi)N(ただし、原子比で、Cは0.20〜0.35、Dは0.15〜0.30を示す)を満足するCrとAlとSiの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Cr1-(E+F)AlSi)N(ただし、原子比で、Eは0.45〜0.65、Fは0.01〜0.10を示す)を満足するCrとAlとSiの複合窒化物層、
からなる硬質被覆層を蒸着形成してなること、
を特徴とする合金鋼の高速歯切加工で硬質被覆層がすぐれた耐欠損性を発揮する表面被覆高速度工具鋼製歯切工具。
On the surface of the gear cutting tool body made of high-speed tool steel,
(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Cr, Al and Si, the upper layer having a layer thickness of 0.5 to 1.5 μm, and the lower layer having a layer thickness of 2 to 6 μm. And
(B) Each of the upper layers has an alternate laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
A composition formula: (Cr 1− (A + B) Al A Si B ) N (wherein, A represents 0.01 to 0.10 and B represents 0.35 to 0.50 in atomic ratio) and Cr A composite nitride layer of Al and Si;
The thin layer B is
Cr satisfying the composition formula: (Cr 1− (C + D) Al C Si D ) N (wherein C is 0.20 to 0.35 and D is 0.15 to 0.30 in atomic ratio) A composite nitride layer of Al and Si,
(C) the lower layer has a single phase structure;
Composition formula: (Cr 1− (E + F) Al E Si F ) N (wherein, in terms of atomic ratio, E represents 0.45 to 0.65, F represents 0.01 to 0.10) and Cr A composite nitride layer of Al and Si;
Vapor-depositing a hard coating layer consisting of
A surface-coated high-speed tool steel gear cutting tool that exhibits high chipping resistance with a hard coating layer by high-speed gear cutting of alloy steel.
JP2005144005A 2005-05-17 2005-05-17 Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel Active JP4716095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005144005A JP4716095B2 (en) 2005-05-17 2005-05-17 Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005144005A JP4716095B2 (en) 2005-05-17 2005-05-17 Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel

Publications (2)

Publication Number Publication Date
JP2006320974A JP2006320974A (en) 2006-11-30
JP4716095B2 true JP4716095B2 (en) 2011-07-06

Family

ID=37541014

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005144005A Active JP4716095B2 (en) 2005-05-17 2005-05-17 Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel

Country Status (1)

Country Link
JP (1) JP4716095B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7216914B2 (en) * 2019-03-12 2023-02-02 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance in high-load cutting.

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050381A (en) * 2002-07-24 2004-02-19 Mitsubishi Materials Corp Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2004066361A (en) * 2002-08-02 2004-03-04 Sumitomo Electric Ind Ltd Coated cutting tool
JP2006137982A (en) * 2004-11-11 2006-06-01 Hitachi Tool Engineering Ltd Hard film coated member, and its coating method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004050381A (en) * 2002-07-24 2004-02-19 Mitsubishi Materials Corp Cutting tool made of surface covering cemented carbide in which hard covering layer exhibits excellent chipping resistance at deep cutting processing condition
JP2004066361A (en) * 2002-08-02 2004-03-04 Sumitomo Electric Ind Ltd Coated cutting tool
JP2006137982A (en) * 2004-11-11 2006-06-01 Hitachi Tool Engineering Ltd Hard film coated member, and its coating method

Also Published As

Publication number Publication date
JP2006320974A (en) 2006-11-30

Similar Documents

Publication Publication Date Title
JP2011167793A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4720987B2 (en) Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4716095B2 (en) Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel
JP3543755B2 (en) Surface coated high-speed tool steel gear cutting tool with excellent chip lubrication property with a hard coating layer
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2011167794A (en) Surface coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4716006B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP2006315148A (en) Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel
JP4706909B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4720986B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4706916B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP2016165787A (en) Surface-coated cutting tool
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP3956390B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting
JP6233588B2 (en) Surface coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP5975342B2 (en) Surface coated cutting tool
JP5686254B2 (en) Surface coated cutting tool
JP2008260097A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080321

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110303

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110316

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3