JP2006315148A - Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel - Google Patents
Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel Download PDFInfo
- Publication number
- JP2006315148A JP2006315148A JP2005142015A JP2005142015A JP2006315148A JP 2006315148 A JP2006315148 A JP 2006315148A JP 2005142015 A JP2005142015 A JP 2005142015A JP 2005142015 A JP2005142015 A JP 2005142015A JP 2006315148 A JP2006315148 A JP 2006315148A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- gear cutting
- cutting tool
- hard coating
- high speed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Physical Vapour Deposition (AREA)
Abstract
Description
この発明は、硬質被覆層が耐摩耗性とともにすぐれた潤滑性を有し、したがって特に合金鋼などの高い発熱を伴う高速ドライ歯切加工に用いた場合にも、すぐれた耐摩耗性および潤滑性を発揮する表面被覆高速度工具鋼製歯切工具(以下、被覆歯切工具という)に関するものである。 The present invention has excellent wear resistance and lubricity even when the hard coating layer has excellent lubricity as well as wear resistance, and therefore is used for high speed dry gear cutting with high heat generation such as alloy steel. The present invention relates to a surface-coated high-speed tool steel gear cutting tool (hereinafter referred to as a coated gear cutting tool).
従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に、ソリッドホブ(例えば図3の概略斜視図参照)やピニオンカッタ(例えば図4の概略斜視図参照)、さらにシェービングカッタなどの歯切工具が用いられている。
また、被覆歯切工具として、例えば図3や図4に示される形状に機械加工された高速度工具鋼で構成された歯切工具本体を基体とし、この基体の表面に、組成式:(Al1-YTiY )N(ただし、原子比で、Yは0.35〜0.60を示す)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を1〜10μmの平均層厚で物理蒸着してなる被覆歯切工具が提案され、前記硬質被覆層を構成する(Al,Ti)N層が、Alによる高温硬さと耐熱性、およびTiによる強度を有することから、かかる硬質被覆層を形成してなる被覆歯切工具はすぐれた歯切性能を発揮することも知られている(例えば特許文献1および特許文献2参照)。また、硬質被覆層を構成する(Al,Ti)N層の窒化物形成元素として、V(バナジウム)をさらに添加した被覆歯切工具も
知られている(例えば特許文献3参照)。
さらに、上記の被覆歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、ヒータで装置内を、例えば雰囲気を2Paの真空雰囲気として、400℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体(歯切工具本体)には、例えば−200Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Al,Ti)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
Further, as a coated gear cutting tool, for example, a gear cutting tool body made of high-speed tool steel machined to the shape shown in FIG. 3 or FIG. 4 is used as a base, and a composition formula: (Al 1-Y Ti Y ) From an Al / Ti composite nitride [hereinafter referred to as (Al, Ti) N] layer satisfying N (wherein Y represents 0.35 to 0.60 in atomic ratio) A coated cutting tool formed by physically vapor-depositing a hard coating layer having an average layer thickness of 1 to 10 μm is proposed, and the (Al, Ti) N layer constituting the hard coating layer has high-temperature hardness and heat resistance due to Al, It is also known that a coated cutting tool formed with such a hard coating layer exhibits excellent gear cutting performance because it has strength due to Ti and Ti (see, for example, Patent Document 1 and Patent Document 2). Further, a coated gear cutting tool in which V (vanadium) is further added as a nitride forming element of the (Al, Ti) N layer constituting the hard coating layer is also known (see, for example, Patent Document 3).
Further, the above-described coated cutting tool is loaded with the above-mentioned substrate in an arc ion plating apparatus, which is one of physical vapor deposition apparatuses schematically shown in FIG. Is heated at a temperature of 400 ° C. under a vacuum atmosphere of 2 Pa, for example, voltage: 35 V, current: between the anode electrode and the cathode electrode (evaporation source) on which an Al—Ti alloy having a predetermined composition is set. An arc discharge is generated under the condition of 90 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas to create a reaction atmosphere of 2 Pa, for example. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Al, Ti) N layer on the surface of the substrate under the applied conditions.
近年の歯切加工装置の高性能化はめざましく、一方で歯切加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、歯切加工は高速化の傾向にあるが、上記従来の被覆歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、これを高い発熱を伴う合金鋼等の高速ドライ歯切加工条件で用いた場合には、溶着による逃げ面摩耗が大きくなり硬質被覆層の摩耗進行が促進され、比較的短時間で使用寿命に至るのが現状である。
In recent years, the performance of gear cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for gear cutting, and with this, gear cutting has a tendency to increase in speed. In the above conventional coated gear cutting tool, there is no problem when it is used under normal gear cutting conditions, but when this is used under high speed dry gear cutting conditions such as alloy steel with high heat generation. The present situation is that the flank wear due to welding is increased, the progress of wear of the hard coating layer is promoted, and the service life is reached in a relatively short time.
そこで、本発明者等は、上述のような観点から、特に高速ドライ歯切加工で硬質被覆層がすぐれた潤滑性、耐摩耗性を発揮する被覆歯切工具を開発すべく、上記従来の被覆歯切工具を構成する硬質被覆層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al)N層の成分としてVを含有させ、TiとAlとVの複合窒化物層を形成した場合、あるいは、硬質被覆層を構成する(Ti,Al,V)N層の成分であるVの含有割合を多くすれば潤滑性は向上するが、1〜9原子%程度のV含有割合では、合金鋼の高速ドライ歯切加工で要求される高い潤滑性、溶着防止効果を確保することはできず、これらの要求に満足に対応させるためには前記1〜9原子%をはるかに越えた50〜70原子%のV含有が必要となる。一方、50〜70原子%のV成分を含有した(Ti,Al,V)N層を硬質被覆層として実用に供するためには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
In view of the above, the present inventors have developed the above-described conventional coating tool in order to develop a coated cutting tool that exhibits excellent lubricity and wear resistance with a hard coating layer particularly in high-speed dry gear cutting. As a result of conducting research, focusing on the hard coating layer that constitutes the gear cutting tool,
(A) V is contained as a component of the (Ti, Al) N layer constituting the hard coating layer to form a composite nitride layer of Ti, Al, and V, or the hard coating layer is constituted (Ti, Al). The lubricity is improved if the content ratio of V, which is a component of the Al, V) N layer, is increased. However, when the V content ratio is about 1 to 9 atomic%, it is required for high speed dry gear cutting of alloy steel. Lubricity and the effect of preventing welding cannot be ensured, and in order to satisfy these requirements satisfactorily, it is necessary to contain 50 to 70 atomic% of V far exceeding the above 1 to 9 atomic%. On the other hand, in order to practically use a (Ti, Al, V) N layer containing 50 to 70 atomic% V component as a hard coating layer, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high temperature strength. In this case, however, it is inevitable that the content ratio of the Al component becomes extremely low, and as a result, the high temperature hardness and heat resistance are extremely low.
(b)組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する、V含有割合が50〜70原子%の(Ti,Al,V)N層と、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,V)N層、
を、それぞれの層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この(Ti,Al,V)N層は、薄層の交互積層構造によって、上記の高V含有の(Ti,Al,V)N層(以下、薄層Aという)のもつすぐれた潤滑性と、前記薄層Aに比して相対的にV含有割合が低く、かつ相対的にAl含有割合が高い(Ti,Al,V)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さおよび耐熱性を具備するようになること。
(B) the composition formula: (Ti 1- (A + B ) Al A V B) N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) satisfies A (Ti, Al, V) N layer having a V content ratio of 50 to 70 atomic%;
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein, C is 0.25 to 0.40 and D is 0.20 to 0.35 in an atomic ratio), relative (Ti, Al, V) N layer with an increased Al component content,
Are alternately laminated in a state where each layer thickness is 5 to 20 nm (nanometer), the (Ti, Al, V) N layer is formed by the above-described high V due to the alternately laminated structure of thin layers. The excellent lubricity of the contained (Ti, Al, V) N layer (hereinafter referred to as the thin layer A), the V content ratio is relatively low compared to the thin layer A, and the relatively Al content A predetermined relatively high high-temperature hardness and heat resistance of the (Ti, Al, V) N layer (hereinafter referred to as the thin layer B) having a high ratio.
(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,V)N層は、合金鋼の高速ドライ歯切加工で要求される高い潤滑性、溶着防止効果を具備するものの、十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方下部層としては、潤滑性が十分であるとはいえないものの、相対的にAl成分の含有割合が高く、すぐれた高温硬さ、耐熱性を具備する硬質被覆層である(Ti,Al,V)N層、すなわち、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する、単一相構造の(Ti,Al,V)N層、
を設けた構造にすると、この硬質被覆層は、一段とすぐれた潤滑性に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆歯切工具は、高熱発生を伴う合金鋼の高速ドライ歯切加工で要求される高い潤滑性、溶着防止効果を具備し、しかも、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, V) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) above has high lubricity and prevention of welding required for high-speed dry gear cutting of alloy steel. Although it has an effect, it does not have a sufficiently satisfactory high temperature hardness and heat resistance, so it is provided as an upper layer of the hard coating layer, while the lower layer, although it can not be said that the lubricity is sufficient, The (Ti, Al, V) N layer, which is a hard coating layer having a relatively high Al component content, excellent high-temperature hardness and heat resistance,
Compositional formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in terms of atomic ratio) (Ti, Al, V) N layer of single phase structure,
With this structure, the hard coating layer has high temperature hardness, heat resistance, and high temperature strength in addition to excellent lubricity. The gear cutting tool has the high lubricity and anti-welding effect required for high-speed dry gear cutting of alloy steel with high heat generation, and also exhibits excellent wear resistance over a long period of time. .
The research results shown in (a) to (c) above were obtained.
この発明は、上記の研究結果に基づいてなされたものであって、高速度工具鋼基体の表面に、
(a)いずれも(Ti,Al,V)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する(Ti,Al,V)N層、
上記薄層Bは、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する(Ti,Al,V)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する(Ti,Al,V)N層、
からなる硬質被覆層を蒸着形成してなる、合金鋼の高速ドライ歯切加工で硬質被覆層がすぐれた潤滑性を発揮する表面被覆高速度工具鋼製歯切工具に特徴を有するものである。
つぎに、この発明の被覆歯切工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,V)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同V成分には潤滑性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとVとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、合金鋼の高速ドライ歯切加工で要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進されるようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
This invention was made based on the above research results, and on the surface of a high-speed tool steel substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, V) N, the upper layer has a thickness of 0.5 to 1.5 μm, and the lower layer has a thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in terms of atomic ratio) (Ti , Al, V) N layer,
The thin layer B is
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein C is 0.25 to 0.40 and D is 0.20 to 0.35 in terms of atomic ratio) (Ti , Al, V) N layer,
(C) the lower layer has a single phase structure;
Composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) (Ti , Al, V) N layer,
It is characterized by a surface-coated high-speed tool steel gear cutting tool that exhibits excellent lubricity in high-speed dry gear cutting of alloy steel formed by vapor-depositing a hard coating layer made of
Next, the reason why the structure of the hard coating layer constituting the coated cutting tool of the present invention is limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, V) N layer constituting the hard coating layer improves high-temperature hardness and heat resistance, while the Ti component Has the effect of improving the high temperature strength and the lubricity of the V component, and the lower layer has a relatively high Al component content to provide high high temperature hardness and heat resistance. When the E value indicating the ratio is less than 0.50 in the ratio of the total amount of Ti and V (atomic ratio, the same applies hereinafter), the ratio of Ti is relatively increased, and high-speed dry gear cutting of alloy steel is performed. The required high temperature hardness and heat resistance cannot be ensured, and the progress of wear is rapidly promoted. On the other hand, if the E value indicating the proportion of Al exceeds 0.65, the relative In addition, the ratio of Ti becomes too small, and the high-temperature strength rapidly decreases, As a result, chipping (slight chipping) and the like are likely to occur, so the E value was set to 0.50 to 0.65.
また、Vの割合を示すF値がTiとAlとの合量に占める割合で、0.01未満では、所定の潤滑性を確保することができず、一方同F値が0.09を超えると、高温硬さおよび耐熱性が急激に低下するようになることから、F値を0.01〜0.09と定めた。 Further, the F value indicating the proportion of V is the proportion of the total amount of Ti and Al. If the F value is less than 0.01, the predetermined lubricity cannot be ensured, while the F value exceeds 0.09. Since the high temperature hardness and the heat resistance are drastically reduced, the F value is determined to be 0.01 to 0.09.
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命化の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
(b)上部層の薄層Aの組成式
表面層の薄層Aの(Ti,Al,V)NにおけるV成分は、上記の通り相対的に含有割合を著しく高くして、潤滑性を向上させ、もって高熱発生を伴う合金鋼の高速ドライ歯切加工に適応させる目的で含有するものであり、したがってB値が0.50未満では所望のすぐれた潤滑性を確保することができず、一方B値が0.70を越えると、層自体が具備すべき高温強度を確保することができなくなり、チッピングが発生し易くなることから、B値を0.50〜0.70と定めた。
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a shortened tool life, while the layer thickness exceeds 6 μm. Then, since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.
(B) Composition formula of thin layer A of the upper layer V component in (Ti, Al, V) N of thin layer A of the surface layer has a relatively high content ratio as described above to improve lubricity. Therefore, it is contained for the purpose of adapting to high-speed dry gear cutting of alloy steel with high heat generation. Therefore, if the B value is less than 0.50, the desired excellent lubricity cannot be ensured. If the B value exceeds 0.70, the high temperature strength that the layer itself should have cannot be secured, and chipping is likely to occur. Therefore, the B value was set to 0.50 to 0.70.
また、Alの割合を示すA値がTiとVとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度に低下傾向が現れるようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してV成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた潤滑性と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.25未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同C値が0.40を越えると、高温強度が急激に低下するようになり、上部層にチッピングが発生し易くなることから、C値を0.25〜0.40と定めた。
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and V. If it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, which causes accelerated wear. On the other hand, when the A value exceeds 0.10, a tendency to decrease in high-temperature strength appears, which causes chipping. Therefore, the A value was determined to be 0.01 to 0.10.
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the V component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having a relatively high high-temperature hardness and heat resistance of the thin layer B is formed, but the C value indicating the Al content in the composition formula is less than 0.25. , The predetermined high temperature hardness and heat resistance cannot be ensured, which causes wear promotion. On the other hand, when the C value exceeds 0.40, the high temperature strength rapidly decreases, Since chipping is likely to occur in the layer, the C value is set to 0.25 to 0. .40.
また、Vの割合を示すD値がTiとAlとの合量に占める割合で、0.20未満では、上部層全体の潤滑性低下が避けられず、一方同D値が0.35を超えると、上部層全体の高温強度が急激に低下することから、D値を0.20〜0.35と定めた。
(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた潤滑性、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば潤滑性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。
Further, the D value indicating the ratio of V is the ratio of the total amount of Ti and Al. If the value is less than 0.20, the lubricity of the entire upper layer is inevitably deteriorated, while the D value exceeds 0.35. Then, since the high temperature strength of the entire upper layer is drastically reduced, the D value was set to 0.20 to 0.35.
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent lubricity, further high temperature hardness and heat resistance cannot be ensured, and if the thickness of each layer exceeds 20 nm, each thin layer has defects, ie, if it is thin layer A, high temperature hardness and heat resistance Insufficient lubricity, if thin layer B, insufficient lubricity will appear locally in the layer, which may cause chipping and promote the progress of wear. It was set to ˜20 nm.
(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた潤滑性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命化の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer
If the layer thickness is less than 0.5 μm, the excellent lubricity and the predetermined high temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a shortened tool life, while the layer thickness When the thickness exceeds 1.5 μm, chipping is likely to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.
この発明の被覆歯切工具は、硬質被覆層が(Ti,Al,V)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた潤滑性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さと耐熱性を有することから、溶着による摩耗の進行が促進され易い高熱発生を伴う合金鋼の高速ドライ歯切加工でも、硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。
In the coated cutting tool according to the present invention, the hard coating layer is composed of (Ti, Al, V) N layers. The upper layer of the hard coating layer has an alternate laminated structure of thin layers A and thin layers B. The high-temperature hardness and heat resistance of the single-phase structure is maintained while maintaining high-temperature hardness and heat resistance, and the lower layer of the same phase structure has excellent high-temperature hardness and heat resistance. Even in high-speed dry gear cutting of alloy steel with high heat generation, excellent wear resistance is exhibited over a long period of time without occurrence of chipping in the hard coating layer.
つぎに、この発明の被覆歯切工具を実施例により具体的に説明する。
Next, the coated gear cutting tool of the present invention will be specifically described with reference to examples.
(実施例1)
歯切工具本体として、材質がJIS・SKH55および同SKH51の高速度工具鋼からなる直径:80mm×長さ:130mmの寸法をもった素材から、機械加工にて外径:75mm×長さ:110mmの全体寸法をもち、かつ3条右捩れ×18溝の形状をもった図3に概略斜視図で示されるソリッドホブを製造した。
(a)ついで、上記の2種の材質の歯切工具本体(ソリッドホブ)を基体とし、これらの基体のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表1に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−V合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表1に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−V合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−V合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−V合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって歯切工具本体基体表面を前記Ti−Al−V合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記歯切工具本体基体の表面に、表1に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する歯切工具本体基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記歯切工具本体基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記歯切工具本体基体の表面に、層厚方向に沿って表1に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表1に示される全体目標層厚で蒸着形成することにより、本発明被覆歯切工具1〜6をそれぞれ製造した。
また、比較の目的で、上記の2種類の材質の基体(歯切工具本体)を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもったTi−Al−V合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記歯切工具本体基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって歯切工具本体基体表面を前記Ti−Al−V合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記歯切工具本体基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−V合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記歯切工具本体基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着形成することにより、被覆歯切工具1〜6(以下、比較被覆歯切工具1〜6と云う)をそれぞれ製造した。
つぎに、上記の本発明被覆歯切工具1〜6および比較被覆歯切工具1〜6を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール:1.5、圧力角:14.5度、歯数:70、ねじれ角:30度右捩れ、歯幅:22.5mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度):230m/min、
送り: 3mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の条件で高速ドライ歯切加工(上記の材質がJIS・SCr420Hの低合金鋼歯車の加工の場合の切削速度は通常150m/min)で行い、
逃げ面摩耗幅が0.2mmに至るまでの歯車加工数を測定した。この測定結果を表1,2それぞれに示した。
Example 1
As the gear cutting tool body, the outer diameter: 75 mm x length: 110 mm by machining from a material with a diameter: 80 mm x length: 130 mm made of high speed tool steel of JIS SKH55 and SKH51 The solid hob shown in the schematic perspective view of FIG. 3 having the overall dimensions of 3 and having the shape of three right-hand twists × 18 grooves was manufactured.
(A) Next, the above two kinds of gear cutting tool bodies (solid hobs) are used as substrates, and each of these substrates is subjected to ultrasonic cleaning in acetone and dried, and then the arc ions shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the plating apparatus, and corresponds to the target composition shown in Table 1 as the cathode electrode (evaporation source) on one side. The upper layer with the component composition corresponding to the target composition shown in Table 1 as the Ti-Al-V alloy for forming the thin layer A of the upper layer having the component composition and the cathode electrode (evaporation source) on the other side A Ti-Al-V alloy for forming a thin layer B is disposed opposite to the rotary table, and a cathode electrode (steamed along the rotary table at a position shifted by 90 degrees from both the Ti-Al-V alloys. Source) The Ti-Al-V alloy for the lower layer formed is attached as,
(B) First, after the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 400 ° C. with a heater, and then rotates on the rotary table while rotating on the rotary tool main body base. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the lower layer forming Ti—Al—V alloy and the anode electrode to generate an arc discharge. Bombarded with Ti-Al-V alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the gear cutting tool main body rotating while rotating on the rotary table, and A current of 100 A is passed between the Ti-Al-V alloy for forming the lower layer and the anode electrode to generate an arc discharge, so that the target composition and target shown in Table 1 are formed on the surface of the gear cutting tool main body. (Ti, Al, V) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the gear cutting tool main body rotating while rotating on the rotary table. In this state, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer A to generate arc discharge, and the gear cutting tool body A thin layer A having a predetermined thickness is formed on the surface of the substrate, and after the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). You may)) again said thin layer The thin layer A is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming, and the thin layer is formed by arc discharge between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer B. The formation of the layer B is alternately repeated, so that the thin layer A and the thin layer B having the target composition and the target layer thickness shown in Table 1 along the layer thickness direction are alternately laminated on the surface of the gear cutting tool main body. The present invention coated gear cutting tools 1 to 6 were respectively produced by vapor-depositing and forming an upper layer consisting of the above with the overall target layer thickness shown in Table 1.
For comparison purposes, the above two types of base materials (gear cutting tool main body) were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), a Ti—Al—V alloy having a component composition corresponding to the target composition shown in Table 2 is mounted, and the apparatus is first evacuated to a vacuum of 0.1 Pa or less. The heater is heated to 400 ° C. with a heater, a DC bias voltage of −1000 V is applied to the gear cutting tool main body, and the Ti—Al—V alloy of the cathode electrode and the anode electrode A current of 100 A is passed between them to generate an arc discharge, so that the surface of the main body of the gear cutting tool is bombarded with the Ti-Al-V alloy, and then nitrogen gas is introduced into the apparatus as a reactive gas. and a bias voltage applied to the gear cutting tool body base is lowered to -100V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti-Al-V alloy, Coating is performed by vapor-depositing a hard coating layer composed of a (Ti, Al, V) N layer having a single phase structure having a target composition and a target layer thickness shown in Table 2 on the surface of the base of the gear cutting tool main body. The gear cutting tools 1 to 6 (hereinafter referred to as comparative coated gear cutting tools 1 to 6) were produced.
Next, using the above-described coated cutting tool 1-6 of the present invention and the comparative coated cutting tool 1-6, the material is made of low alloy steel of JIS / SCr420H, module: 1.5, pressure angle: 14. Machining of gears with dimensions and shapes of 5 degrees, number of teeth: 70, twist angle: 30 degrees right twist, tooth width: 22.5 mm,
Cutting speed (rotational speed): 230 m / min,
Feed: 3mm / rev,
Processing form: climb, no shift, dry (air blow),
Under the conditions of high-speed dry gear cutting (the cutting speed in the case of processing the low alloy steel gear whose material is JIS / SCr420H is usually 150 m / min),
The number of gears processed until the flank wear width reached 0.2 mm was measured. The measurement results are shown in Tables 1 and 2, respectively.
(実施例2)
また、歯切工具本体として、同じく材質がJIS・SKH55および同SKH51の高速度工具鋼からなる外径:105mm×厚さ:22mmの寸法をもった素材から、機械加工にてピッチ円直径:100mm×厚さ:18mmの全体寸法をもち、かつカッタ歯数:50の形状をもった図4に概略斜視図で示されるディスク型ピニオンカッタ(JIS・B・4356記載の100形)を製造した。
ついで、上記の歯切工具本体(ピニオンカッタ)を基体とし、これらの基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表1に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる下部層と、同じく層厚方向に沿って表1に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表1に示される全体目標層厚で蒸着形成することにより、本発明被覆歯切工具7〜12をそれぞれ製造した。
(Example 2)
In addition, as a gear cutting tool body, a material having a size of outer diameter: 105 mm × thickness: 22 mm made of high-speed tool steel of the same material as JIS / SKH55 and SKH51 is used to machine a pitch circle diameter: 100 mm. × Thickness: A disk-type pinion cutter (100 type described in JIS B / 4356) shown in a schematic perspective view in FIG. 4 having an overall dimension of 18 mm and a shape of 50 cutter teeth was manufactured.
Next, the above-described gear cutting tool body (pinion cutter) is used as a base, and the surfaces of these bases are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. A lower layer composed of a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 1 under the same conditions as in Example 1, and along the layer thickness direction. The coated layer of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of a thin layer A and a thin layer B having a target composition and a single target layer thickness shown in Table 1 with the overall target layer thickness shown in Table 1 as well. Cutting tools 7 to 12 were produced.
また、比較の目的で、上記の歯切工具本体(ピニオンカッタ)の基体の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表2に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより、被覆歯切工具7〜12(以下、比較被覆歯切工具7〜12と云う)をそれぞれ製造した。
つぎに、上記の本発明被覆歯切工具7〜12および比較被覆歯切工具7〜12を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール: 2 、圧力角:20度、歯数:15、歯幅:22.5mmの寸法および形状をもった歯車の加工を、
ストローク数:1150ストローク/min、
円周送り:0.3mm/ストローク、
半径送り:0.03mm/ストローク、
の条件で高速歯切加工(上記の材質がJIS・SCr420Hの低合金鋼歯車の加工の場合のストローク数は通常750ストローク/min)で行い、逃げ面摩耗幅が0.2mmに至るまでの歯車加工数を測定した。この測定結果を表1,2にそれぞれ示した。
For comparison purposes, the surface of the base of the above-described gear cutting tool body (pinion cutter) is ultrasonically cleaned in acetone and dried, and is then loaded into the arc ion plating apparatus shown in FIG. By vapor-depositing a hard coating layer composed of a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 2 under the same conditions as in Example 1 above, Coated gear cutting tools 7 to 12 (hereinafter referred to as comparative coated gear cutting tools 7 to 12) were produced.
Next, using the above-described coated cutting tool 7-12 and comparative coated cutting tool 7-12 of the present invention, the material is made of low alloy steel of JIS / SCr420H, module: 2, pressure angle: 20 degrees, tooth Machining of gears with dimensions and shape of number: 15 and tooth width: 22.5 mm,
Number of strokes: 1150 stroke / min,
Circumferential feed: 0.3 mm / stroke,
Radius feed: 0.03mm / stroke,
Gears with high-speed gear cutting under the above conditions (the number of strokes is usually 750 strokes / min when the above material is made of a low alloy steel gear of JIS / SCr420H), and the flank wear width reaches 0.2 mm. The number of processes was measured. The measurement results are shown in Tables 1 and 2, respectively.
この結果得られた本発明被覆歯切工具1〜12の(Ti,Al,V)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆歯切工具1〜12の(Ti,Al,V)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
The thin layer A and thin layer B of the hard coating layer composed of (Ti, Al, V) N of the coated cutting tools 1 to 12 of the present invention obtained as a result of this, and the composition of the lower layer, and The composition of the hard coating layer made of (Ti, Al, V) N of the comparative coated gear cutting tools 1 to 12 was measured by energy dispersive X-ray analysis using a transmission electron microscope. It showed substantially the same composition.
Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.
表1,2に示される結果から、本発明被覆歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,V)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さおよび耐熱性、さらに前記上部層がすぐれた潤滑性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、合金鋼製歯車の歯切加工を、高い発熱を伴う高速ドライ歯切加工条件で行なった場合にも、硬質被覆層がすぐれた潤滑性、耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Ti,Al,V)N層からなる比較被覆歯切工具は、前記高速ドライ歯切加工条件では、耐摩耗性、潤滑性不足が原因で、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆歯切工具は、通常の条件での歯切加工は勿論のこと、特に各種の合金鋼製歯車などの歯切加工を、高い発熱を伴う高速ドライ歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性、潤滑性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 1 and 2, the coated cutting tool according to the present invention has a single-phase structure lower layer composed of (Ti, Al, V) N, each of which has a hard coating layer having a different composition, and a layer thickness. Is composed of an upper layer having an alternating laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high temperature hardness and heat resistance, and the upper layer has excellent lubricity. Because the hard coating layer has these excellent characteristics, the hard coating layer is excellent even when gear cutting of alloy steel gears is performed under high-speed dry gear cutting conditions with high heat generation. Compared with the high-speed dry gear cutting conditions, the comparative coated gear cutting tool in which the hard coating layer is composed of a (Ti, Al, V) N layer having a single-phase structure, while exhibiting excellent lubricity and wear resistance. Due to lack of wear resistance and lubricity, the service life can be shortened in a relatively short time. Rukoto is clear.
As described above, the coated gear cutting tool of the present invention is not only gear cutting under normal conditions, but also gear cutting of various alloy steel gears, etc., especially high speed dry gear cutting with high heat generation. Even when performed under the conditions, the hard coating layer exhibits excellent wear resistance and lubricity, and exhibits excellent performance over a long period of time. It can cope with labor saving, energy saving and cost reduction of processing sufficiently satisfactorily.
Claims (1)
(a)いずれもTiとAlとV(バナジウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)AlAVB)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足するTiとAlとVの複合窒化物層、
上記薄層Bは、
組成式:(Ti1-(C+D)AlCVD)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足するTiとAlとVの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)AlEVF)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足するTiとAlとVの複合窒化物層、
からなる硬質被覆層を蒸着形成してなること、
を特徴とする合金鋼の高速ドライ歯切加工で硬質被覆層がすぐれた潤滑性を発揮する表面被覆高速度工具鋼製歯切工具。 On the surface of the cutting tool base made of high-speed tool steel,
(A) All are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and V (vanadium), the upper layer being 0.5 to 1.5 μm and the lower layer being 2 to 6 μm in thickness. Each with
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in atomic ratio) A composite nitride layer of Al and V;
The thin layer B is
Ti satisfying the composition formula: (Ti 1- (C + D) Al C V D ) N (wherein C represents 0.25 to 0.40 and D represents 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and V,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E represents 0.50 to 0.65 and F represents 0.01 to 0.09 in atomic ratio) A composite nitride layer of Al and V;
Vapor-depositing a hard coating layer consisting of
A surface-coated high-speed tool steel cutting tool that exhibits excellent lubricity with a hard coating layer in high-speed dry gear cutting of alloy steel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005142015A JP2006315148A (en) | 2005-05-16 | 2005-05-16 | Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005142015A JP2006315148A (en) | 2005-05-16 | 2005-05-16 | Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006315148A true JP2006315148A (en) | 2006-11-24 |
Family
ID=37536254
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005142015A Withdrawn JP2006315148A (en) | 2005-05-16 | 2005-05-16 | Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006315148A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103764873A (en) * | 2011-06-30 | 2014-04-30 | 欧瑞康贸易股份公司(特吕巴赫) | Nano-layer coating for high performance tools |
-
2005
- 2005-05-16 JP JP2005142015A patent/JP2006315148A/en not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103764873A (en) * | 2011-06-30 | 2014-04-30 | 欧瑞康贸易股份公司(特吕巴赫) | Nano-layer coating for high performance tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2010214522A (en) | Cutting tool | |
JP4720989B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4720987B2 (en) | Surface-coated high-speed tool steel gear cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials | |
JP2016185589A (en) | Surface-coated cutting tool | |
JP3543755B2 (en) | Surface coated high-speed tool steel gear cutting tool with excellent chip lubrication property with a hard coating layer | |
JP4678589B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4716095B2 (en) | Surface-coated high-speed tool steel gear cutting tool that exhibits excellent chipping resistance due to high-speed gear cutting of alloy steel | |
JP4716006B2 (en) | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel | |
JP2006315148A (en) | Gear cutting tool made of surface coated high speed steel with hard coating layer exhibiting excellent lubricity in high speed dry gear cutting of alloy steel | |
JP4702535B2 (en) | Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel | |
JP4706909B2 (en) | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel | |
JP4720986B2 (en) | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel | |
JP4706916B2 (en) | Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel | |
JP6043192B2 (en) | Laminated coating with excellent wear resistance | |
JP6168540B2 (en) | Hard lubricant coating and hard lubricant coating tool | |
JP4706911B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4706918B2 (en) | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials | |
JP4720990B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials | |
WO2017038435A1 (en) | Hard coating and hard coating-covered member | |
JP6099225B2 (en) | Hard lubricant coating and hard lubricant coating tool | |
JP4716007B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP4706912B2 (en) | Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel | |
JP5692636B2 (en) | Surface coated cutting tool | |
JP5686254B2 (en) | Surface coated cutting tool | |
JP4720993B2 (en) | Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20071226 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20080805 |