JP4706912B2 - Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel - Google Patents

Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel Download PDF

Info

Publication number
JP4706912B2
JP4706912B2 JP2005220181A JP2005220181A JP4706912B2 JP 4706912 B2 JP4706912 B2 JP 4706912B2 JP 2005220181 A JP2005220181 A JP 2005220181A JP 2005220181 A JP2005220181 A JP 2005220181A JP 4706912 B2 JP4706912 B2 JP 4706912B2
Authority
JP
Japan
Prior art keywords
layer
gear cutting
cutting tool
hard coating
cemented carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005220181A
Other languages
Japanese (ja)
Other versions
JP2007030133A (en
Inventor
幸生 青木
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005220181A priority Critical patent/JP4706912B2/en
Publication of JP2007030133A publication Critical patent/JP2007030133A/en
Application granted granted Critical
Publication of JP4706912B2 publication Critical patent/JP4706912B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Physical Vapour Deposition (AREA)

Description

この発明は、硬質被覆層がすぐれた熱伝導性を有し、さらに高温硬さと高温強度に加えて、高温耐酸化性も具備し、したがって特に合金鋼などの高い発熱を伴う高速歯切加工に用いた場合にも、すぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具(以下、被覆超硬歯切工具という)に関するものである。   In the present invention, the hard coating layer has excellent thermal conductivity, and also has high-temperature oxidation resistance in addition to high-temperature hardness and high-temperature strength. Therefore, particularly for high-speed gear cutting with high heat generation such as alloy steel. The present invention also relates to a surface-coated cemented carbide gear cutting tool (hereinafter referred to as a coated carbide gear cutting tool) that exhibits excellent wear resistance even when used.


従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられ、これら歯車の歯形の歯切加工に被覆超硬歯切工具(ソリッドホブ)が用いられている。

また、被覆超硬歯切工具としては、例えば図3に概略斜視図で示される通り、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状に機械加工された炭化タングステン基超硬合金製歯切工具基体(以下、超硬歯切基体という)の表面に、各種の硬質被覆層を物理蒸着してなる被覆超硬歯切工具が知られている。

Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices, and coated carbide gear cutting tools (solid hobs) are used for gear cutting of gear teeth.

Further, as the coated carbide gear cutting tool, for example, as shown in a schematic perspective view in FIG. 3, a plurality of tooth grooves are formed radially with respect to the rotation axis and along the length direction. Between the front and rear surfaces that face the tooth gap and the front surface is a rake face with respect to the rotation direction, and the tooth is composed of a top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) that are flank surfaces Various hard parts are formed on the surface of a tungsten carbide-based cemented carbide cutting tool base (hereinafter referred to as a carbide cutting base) machined into a shape in which a plurality of parts are continuously formed along the length direction. A coated carbide gear cutting tool formed by physical vapor deposition of a coating layer is known.


一方、通常のスローアウエイチップやエンドミル、さらにドリルなどの表面被覆超硬合金製切削工具の硬質被覆層としては、例えば、

組成式:[Cr1-X AlX]N(ただし、原子比で、Xは0.50〜0.70を示す)で表されるCr−Al系複合窒化物[以下、(Cr,Al)Nで示す]等が知られている。そして、硬質被覆層を構成する前記(Cr,Al)N層が、構成成分であるAlによって高温硬さ、同Crによって高温強度、さらにCrとAlの共存含有によってすぐれた高温耐酸化性を具備することから、かかる硬質被覆層を形成してなる被覆歯切工具はすぐれた歯切性能を発揮することも知られている。

On the other hand, as a hard coating layer of a cutting tool made of a surface-coated cemented carbide such as a normal throwaway tip, end mill, and drill, for example,

Composition formula: Cr—Al-based composite nitride represented by [Cr 1-X Al X ] N (wherein X represents 0.50 to 0.70 in atomic ratio) [hereinafter referred to as (Cr, Al) And the like are known. The (Cr, Al) N layer constituting the hard coating layer has high-temperature hardness due to Al as a constituent component, high-temperature strength due to the Cr, and excellent high-temperature oxidation resistance due to the coexistence of Cr and Al. Therefore, it is also known that a coated gear cutting tool formed with such a hard coating layer exhibits excellent gear cutting performance.


さらに、上記の被覆歯切工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の基体を装入し、例えば雰囲気を2Paの真空雰囲気として、ヒータで装置内を500℃の温度に加熱した状態で、アノード電極と所定組成を有するCr−Al系合金がセットされたカソード電極(蒸発源)との間に、例えば電圧:35V、電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記基体には、例えば−200Vのバイアス電圧を印加した条件で、前記基体の表面に、上記(Cr,Al)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特許第3027502号

Furthermore, the above-described coated cutting tool is loaded with the above-mentioned substrate in an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. 2, for example, and the atmosphere is set to a vacuum atmosphere of 2 Pa, for example. In a state in which the inside of the apparatus is heated to a temperature of 500 ° C. with a heater, for example, a voltage: 35 V, a current: between the anode electrode and a cathode electrode (evaporation source) on which a Cr—Al alloy having a predetermined composition is set. An arc discharge was generated under the condition of 90 A, and simultaneously, nitrogen gas was introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. On the other hand, a bias voltage of −200 V, for example, was applied to the substrate. It is also known that it is produced by vapor-depositing a hard coating layer composed of the (Cr, Al) N layer on the surface of the substrate.
Patent No. 3027502


近年の歯切加工装置の高性能化はめざましく、一方で歯切加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、歯切加工は高速化の傾向にあるが、上記従来の被覆歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、これを合金鋼等の高速歯切加工条件で用いた場合には、硬質被覆層の具備する熱伝導性(抜熱効果)が十分でないため、切刃部に偏摩耗の原因となる熱塑性変形が発生し、摩耗進行が促進され、比較的短時間で使用寿命に至るのが現状である。

In recent years, the performance of gear cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for gear cutting, and with this, gear cutting has a tendency to increase in speed. In the above conventional coated gear cutting tool, there is no problem when this is used under normal gear cutting conditions, but when this is used under high speed gear cutting conditions such as alloy steel, a hard coating layer is used. As the thermal conductivity (heat removal effect) of is not sufficient, the cutting edge part is subject to thermoplastic deformation that causes uneven wear, the wear progress is promoted, and the service life is reached in a relatively short time. It is.


そこで、本発明者等は、上述のような観点から、特に合金鋼の高速歯切加工で硬質被覆層がすぐれた熱伝導性、耐摩耗性を発揮する被覆ハイス歯切工具を開発すべく、上記従来の被覆ハイス歯切工具の硬質被覆層に着目し研究を行った結果、

(a)硬質被覆層を構成する(Cr,Al)N層の成分としてBを含有させ、CrとAlとBの複合窒化物層を形成した場合、Bの含有割合を多くすれば硬質被覆層の熱伝導性は向上するが、1〜10原子%程度のBを含有させただけでは、合金鋼の高速歯切加工で要求される高い熱伝導性を確保することができないため、耐摩耗性が十分ではなく、これらの要求に満足に対応させるためには前記1〜10原子%をはるかに越えた20〜35原子%のB含有が必要となる。しかし、20〜35原子%のB成分を含有した(Cr,Al,B)N層を硬質被覆層として実用に供するためには、硬質被覆層の成分として少なくとも所定量のCrを含有させて所定の高温強度を確保する必要があるため、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。

Therefore, the present inventors, from the above viewpoint, in order to develop a coated high-speed gear cutting tool that exhibits excellent thermal conductivity and wear resistance, especially in high-speed gear cutting of alloy steel, As a result of conducting research focusing on the hard coating layer of the conventional coated high-speed gear cutting tool,

(A) When B is contained as a component of the (Cr, Al) N layer constituting the hard coating layer and a composite nitride layer of Cr, Al and B is formed, the hard coating layer can be obtained by increasing the B content ratio. However, the high thermal conductivity required for high-speed gear cutting of alloy steel cannot be ensured only by containing about 1 to 10 atomic% of B. However, in order to satisfy these requirements satisfactorily, it is necessary to contain 20 to 35 atomic% of B, far exceeding the above 1 to 10 atomic%. However, in order to practically use a (Cr, Al, B) N layer containing 20 to 35 atomic% of B component as a hard coating layer, at least a predetermined amount of Cr is contained as a component of the hard coating layer. In this case, it is inevitable that the content ratio of the Al component is extremely low, and as a result, the high temperature hardness and heat resistance are extremely low.

(b)組成式:(Cr1-(E+F)Al)N(ただし、原子比で、Eは0.01〜0.10、Fは0.20〜0.35を示す)を満足する、B含有割合が20〜35原子%の(Cr,Al,B)N層と、
組成式:(Cr1-(M+N)Al)N(ただし、原子比で、Mは0.25〜0.40、Dは0.10〜0.20を示す)を満足する、相対的にAl成分の含有割合を多くした(Cr,Al,B)N層、
を、それぞれの層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この(Cr,Al,B)N層は、薄層の交互積層構造によって、上記の高B含有の(Cr,Al,B)N層(以下、薄層Aという)のもつすぐれた熱伝導性と、前記薄層Aに比して相対的にB含有割合が低く、かつ相対的にAl含有割合が高い(Cr,Al,B)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さおよび耐熱性を具備するようになること。
(B) Composition formula: (Cr 1− (E + F) Al E B F ) N (provided that the atomic ratio indicates that E is 0.01 to 0.10 and F is 0.20 to 0.35) A (Cr, Al, B) N layer having a B content of 20 to 35 atomic%;
Composition formula: (Cr 1− (M + N) Al M B N ) N (wherein, in terms of atomic ratio, M is 0.25 to 0.40, D is 0.10 to 0.20), relative (Cr, Al, B) N layer with an increased content ratio of Al component,
Are alternately laminated in a state where each layer thickness is 5 to 20 nm (nanometer), the (Cr, Al, B) N layer is formed by the above-mentioned high B by the thin laminated structure. The excellent thermal conductivity of the contained (Cr, Al, B) N layer (hereinafter referred to as the thin layer A), the B content ratio is relatively low as compared with the thin layer A, and the relative Al content A predetermined relatively high high temperature hardness and heat resistance of the (Cr, Al, B) N layer (hereinafter referred to as the thin layer B) having a high content ratio.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Cr,Al,B)N層は、合金鋼の高速歯切加工で要求される高い熱伝導性を具備するものの、十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方下部層としては、熱伝導性が十分であるとはいえないものの、相対的にAl成分の含有割合が高く、すぐれた高温硬さ、耐熱性を具備する硬質被覆層である(Cr,Al,B)N層、すなわち、
組成式:(Cr1-(X+Y)Al)N(ただし、原子比で、Xは0.50〜0.70、Yは0.01〜0.10を示す)を満足する、単一相構造の(Cr,Al,B)N層、
を設けた構造にすると、この硬質被覆層は、一段とすぐれた熱伝導性に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬歯切工具は、高熱発生を伴う合金鋼の高速歯切加工で要求される高い熱伝導性を具備し、しかも、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Cr, Al, B) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) has high thermal conductivity required for high-speed gear cutting of alloy steel. However, since it does not have sufficiently satisfactory high-temperature hardness and heat resistance, it is provided as the upper layer of the hard coating layer, while the lower layer is relatively insufficient in thermal conductivity, (Cr, Al, B) N layer, which is a hard coating layer having a high Al component content, excellent high-temperature hardness and heat resistance,
Composition formula: (Cr 1− (X + Y) Al X B Y ) N (wherein X is 0.50 to 0.70 and Y is 0.01 to 0.10 in atomic ratio) (Cr, Al, B) N layer of single phase structure,
With this structure, the hard coating layer has high-temperature hardness, heat resistance, and high-temperature strength in addition to excellent thermal conductivity. Therefore, the hard coating layer is formed by vapor deposition. The coated carbide gear cutting tool has high thermal conductivity required for high speed gear cutting of alloy steel with high heat generation, and exhibits excellent wear resistance over a long period of time.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する炭化タングステン基超硬合金製歯切工具基体の表面に、
(a)いずれも(Cr,Al,B)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、

組成式:(Cr1-(E+F)Al)N(ただし、原子比で、Eは0.01〜0.10、Fは0.20〜0.35を示す)を満足する(Cr,Al,B)N層、

上記薄層Bは、

組成式:(Cr1-(M+N)Al)N(ただし、原子比で、Mは0.25〜0.40、Dは0.10〜0.20を示す)を満足する(Cr,Al,B)N層、からなり、

(c)上記下部層は、単一相構造を有し、
組成式:(Cr1-(X+Y)Al)N(ただし、原子比で、Xは0.50〜0.70、Yは0.01〜0.10を示す)を満足する(Cr,Al,B)N層、
からなる硬質被覆層を蒸着形成してなる、合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する被覆超硬歯切工具(表面被覆超硬合金製歯切工具)に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of tooth spaces are formed radially and along the length direction with respect to the rotation axis. The tooth part that consists of the front and rear faces that face the groove and the front face is a rake face with respect to the rotation direction, and the top face (tooth tip tooth face) and both side faces (left and right tooth faces) that are flank faces On the surface of the tungsten carbide based cemented carbide cutting tool base having a shape formed continuously along the direction,
(A) Both are composed of an upper layer and a lower layer made of (Cr, Al, B) N, the upper layer has a layer thickness of 0.5 to 1.5 μm, and the lower layer has a layer thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternate laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is

Composition formula: (Cr 1− (E + F) Al E B F ) N (wherein E is 0.01 to 0.10 and F is 0.20 to 0.35 in atomic ratio) (Cr , Al, B) N layer,

The thin layer B is

Composition formula: (Cr 1− (M + N) Al M B N ) N (wherein M is 0.25 to 0.40 and D is 0.10 to 0.20 in atomic ratio) (Cr , Al, B) N layer,

(C) the lower layer has a single phase structure;
Composition formula: (Cr 1− (X + Y) Al X B Y ) N (wherein X is 0.50 to 0.70 and Y is 0.01 to 0.10 in atomic ratio) (Cr , Al, B) N layer,
For the coated carbide cutting tool (surface coated cemented carbide cutting tool) that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, formed by vapor-depositing a hard coating layer consisting of It has characteristics.

つぎに、この発明の被覆超硬歯切工具において、これを構成する硬質被覆層の構成を上記の通りに限定した理由を説明する。

(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Cr,Al,B)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Cr成分には高温強度、さらに同B成分には熱伝導性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すX値がCrとBとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にCrの割合が多くなって、合金鋼の高速歯切加工で要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進されるようになり、一方Alの割合を示すX値が同0.70を越えると、相対的にCrの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、X値を0.50〜0.70と定めた。
また、Bの割合を示すY値がCrとAlとの合量に占める割合で、0.01未満では、所定の熱伝導性を確保することができず、一方同Y値が0.10を超えると、高温硬さおよび耐熱性が急激に低下するようになることから、Y値を0.01〜0.10と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命化の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason for limiting the configuration of the hard coating layer constituting the coated carbide gear cutting tool of the present invention as described above will be described.

(A) Composition formula and layer thickness of lower layer As described above, the Al component in the (Cr, Al, B) N layer constituting the hard coating layer improves the high-temperature hardness and heat resistance, while the Cr component Has the effect of improving the high-temperature strength and further the thermal conductivity of the B component. In the lower layer, the Al component content is relatively increased to provide high high-temperature hardness and heat resistance. If the X value indicating the content ratio is less than 0.50 in the ratio of the total amount of Cr and B (atomic ratio, the same shall apply hereinafter), the ratio of Cr is relatively high, and high speed gear cutting of alloy steel. The required high-temperature hardness and heat resistance cannot be ensured, and the progress of wear is rapidly promoted. On the other hand, if the X value indicating the proportion of Al exceeds 0.70, the relative In addition, the ratio of Cr becomes too small, and the high-temperature strength rapidly decreases. As a result, chipping (slight chipping) and the like are likely to occur, so the X value was set to 0.50 to 0.70.
Further, the Y value indicating the ratio of B is the ratio of the total amount of Cr and Al, and if it is less than 0.01, the predetermined thermal conductivity cannot be ensured, while the Y value is 0.10. If it exceeds, the high temperature hardness and the heat resistance will decrease rapidly, so the Y value was determined to be 0.01 to 0.10.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a shortened tool life, while the layer thickness exceeds 6 μm. Then, since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.


(b)上部層の薄層Aの組成式
表面層の薄層Aの(Cr,Al,B)NにおけるB成分は、上記の通り相対的に含有割合を著しく高くして、熱伝導性を向上させ、もって高熱発生を伴う合金鋼の高速歯切加工ですぐれた抜熱効果を発揮させ、偏摩耗の原因となる熱塑性変形の発生を防止する作用があるが、その含有割合を示すF値が0.20未満では所望のすぐれた熱伝導性を確保することができず、一方F値が0.35を越えると、層自体が具備すべき高温強度を確保することができなくなり、チッピングが発生し易くなることから、F値を0.20〜0.35と定めた。

また、Alの割合を示すE値がCrとBとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同E値が0.10を超えると、高温強度に低下傾向が現れるようになり、チッピング発生の原因となることから、E値を0.01〜0.10と定めた。

(B) Composition formula of the thin layer A of the upper layer The B component in (Cr, Al, B) N of the thin layer A of the surface layer has a relatively high content ratio as described above, and the thermal conductivity is increased. F value that shows the content ratio, which has the effect of improving the heat removal effect of high-speed gear cutting of alloy steel with high heat generation and preventing the occurrence of thermoplastic deformation causing uneven wear. Is less than 0.20, the desired excellent thermal conductivity cannot be ensured. On the other hand, if the F value exceeds 0.35, the high temperature strength that the layer itself should have cannot be ensured, and chipping is not possible. Since it becomes easy to generate | occur | produce, F value was set to 0.20-0.35.

Further, the E value indicating the proportion of Al is the proportion of the total amount of Cr and B, and if it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, which causes accelerated wear. On the other hand, if the E value exceeds 0.10, a tendency to decrease in the high temperature strength appears, which causes the occurrence of chipping. Therefore, the E value was set to 0.01 to 0.10.


(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してB成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた熱伝導性と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すM値が0.25未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同M値が0.40を越えると、高温強度が急激に低下するようになり、上部層にチッピングが発生し易くなることから、M値を0.25〜0.40と定めた。

また、Bの割合を示すN値がCrとAlとの合量に占める割合で、0.10未満では、上部層全体の熱伝導性低下が避けられず、一方同N値が0.20を超えると、上部層全体の高温強度が急激に低下することから、N値を0.10〜0.20と定めた。

(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the B component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having the heat conductivity and the relatively high high-temperature hardness and heat resistance of the thin layer B is formed, and the M value indicating the Al content in the composition formula is 0.25. If the M value is less than 0.40, the predetermined high-temperature hardness and heat resistance cannot be ensured, which causes accelerated wear. On the other hand, if the M value exceeds 0.40, the high-temperature strength suddenly decreases. Since chipping is likely to occur in the upper layer, the M value is set to 0.25 to 0.25. It was set to 0.40.

Further, the N value indicating the ratio of B is the ratio of the total amount of Cr and Al. If the N value is less than 0.10, a decrease in the thermal conductivity of the entire upper layer is inevitable, while the N value is 0.20. When exceeding, since the high temperature strength of the whole upper layer will fall rapidly, N value was defined as 0.10-0.20.


(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた熱伝導性、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば熱伝導性の低下が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。

(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent thermal conductivity, predetermined high-temperature hardness and heat resistance cannot be ensured, and if the thickness of each layer exceeds 20 nm, the disadvantages of each thin layer, that is, if thin layer A is high-temperature hardness If the heat resistance is insufficient and the thin layer B, a decrease in thermal conductivity appears locally in the layer, and this is likely to cause chipping or promote the progress of wear. The thickness was set to 5 to 20 nm.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた熱伝導性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命化の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, the excellent thermal conductivity and predetermined high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆超硬歯切工具は、硬質被覆層が(Cr,Al,B)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた熱伝導性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さと耐熱性を有することから、高熱発生による摩耗の進行が促進され易い合金鋼の高速歯切加工でも、硬質被覆層がすぐれた抜熱効果を発揮し、この結果切刃部に偏摩耗の原因となる熱塑性変形の発生なく、切刃部は正常摩耗形態をとり、すぐれた耐摩耗性を長期に亘って発揮するものである。
In the coated carbide gear cutting tool of the present invention, the hard coating layer is composed of the (Cr, Al, B) N layer, and the upper layer of the hard coating layer is formed by alternately laminating the thin layer A and the thin layer B.・ Providing excellent thermal conductivity while maintaining the specified high-temperature hardness and heat resistance, and the lower layer of the single-phase structure has excellent high-temperature hardness and heat resistance. Even in high-speed gear cutting of alloy steel that is easy to promote, the hard coating layer exhibits excellent heat removal effect. As a result, there is no occurrence of thermoplastic deformation that causes uneven wear on the cutting edge, and the cutting edge is normally worn. It takes a form and exhibits excellent wear resistance over a long period of time.


つぎに、この発明の被覆超硬歯切工具を実施例により具体的に説明する。

Next, the coated carbide gear cutting tool of the present invention will be specifically described with reference to examples.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、3条右捩れ×19溝の形状をもった図3に示されるソリッドホブ型の超硬歯切基体A〜Jをそれぞれ製造した。

WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour to form a cemented carbide round bar material of diameter: 85 mm × length: 125 mm, and machined from this material, outer diameter: 80 mm × Length: Solid hob type carbide gear cutting bases A to J shown in FIG. 3 each having the overall dimensions of 120 mm and the shape of three right-handed twists × 19 grooves were manufactured.

(a)ついで、上記の超硬歯切基体A〜Jのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Cr−Al−B合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表2に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Cr−Al−B合金を前記回転テーブルを挟んで対向配置し、また前記両Cr−Al−B合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Cr−Al−B合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Cr−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Cr−Al−B合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Cr−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬歯切基体の表面に、表2に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,B)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Cr−Al−B合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬歯切基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Cr−Al−B合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Cr−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Cr−Al−B合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬歯切基体の表面に、層厚方向に沿って表2に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表2に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬歯切工具1〜10をそれぞれ製造した。
(A) Next, each of the above-mentioned superhard gear cutting bases A to J is ultrasonically cleaned in acetone and dried, and the central axis on the rotary table in the arc ion plating apparatus shown in FIG. A thin layer of an upper layer having a component composition corresponding to the target composition shown in Table 2 as a cathode electrode (evaporation source) on one side, mounted along a peripheral portion at a predetermined distance in the radial direction from Cr-Al-B alloy for forming A, Cr-Al- for forming thin layer B of the upper layer having the component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on the other side B alloy is placed opposite to the rotary table, and Cr-Al- for forming a lower layer as a cathode electrode (evaporation source) along the rotary table at a position shifted by 90 degrees from both the Cr-Al-B alloys. Wearing B alloy And,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the interior of the apparatus is heated to 500 ° C. with a heater, and then rotated onto the rotating table while rotating on the rotating table. A DC bias voltage of −1000 V is applied, and a current of 100 A is passed between the Cr—Al—B alloy for forming the lower layer and the anode electrode to generate an arc discharge. Bombarded with Cr-Al-B alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to the carbide cutting base rotating while rotating on the rotary table, and An arc discharge is generated by flowing a current of 100 A between the lower layer forming Cr—Al—B alloy and the anode electrode, and the target composition and target shown in Table 2 are formed on the surface of the cemented carbide cutting base. (Cr, Al, B) N layer having a single-phase structure of layer thickness is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas was introduced as a reaction gas into the apparatus to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the carbide cutting base rotating while rotating on the rotary table. In this state, a predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Cr-Al-B alloy for forming the thin layer A to generate arc discharge, and the cemented carbide cutting A thin layer A having a predetermined layer thickness is formed on the surface of the substrate. After the thin layer A is formed, the arc discharge is stopped, and instead, between the cathode electrode and the anode electrode of the Cr-Al-B alloy for forming the thin layer B Similarly, a predetermined current in the range of 50 to 200 A is supplied to generate arc discharge to form a thin layer B having a predetermined thickness, and then the arc discharge is stopped (in this case, starting from the formation of the thin layer B). May be used again to form the thin layer A. Formation of thin layer A by arc discharge between the cathode electrode and anode electrode of r-Al-B alloy, and thin layer B by arc discharge between the cathode electrode and anode electrode of Cr-Al-B alloy for forming thin layer B Are alternately and repeatedly formed on the surface of the cemented carbide substrate by alternating lamination of thin layers A and B having a target composition and a single target layer thickness shown in Table 2 along the layer thickness direction. Similarly, the coated carbide carbide cutting tools 1 to 10 of the present invention were manufactured by vapor-depositing the upper layer with the entire target layer thickness shown in Table 2.

また、比較の目的で、上記の超硬歯切基体A〜Jを、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったCr−Al−B合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬歯切基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al−B合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面を前記Cr−Al−B合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬歯切基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al−B合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬歯切基体の表面に、表3に示される目標組成および目標層厚の単一相構造を有する(Cr,Al,B)N層からなる硬質被覆層を蒸着形成することにより、比較被覆超硬歯切工具1〜10をそれぞれ製造した。   Further, for the purpose of comparison, the above-described superhard gear cutting bases A to J are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the (evaporation source), a Cr—Al—B alloy having a component composition corresponding to the target composition shown in Table 3 is mounted, and the apparatus is first evacuated and kept at a vacuum of 0.1 Pa or less. Then, after heating the inside of the apparatus to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the cemented carbide cutting base, and 100 A between the Cr—Al—B alloy of the cathode electrode and the anode electrode was applied. When an electric current is passed to generate an arc discharge, the surface of the carbide cutting base is bombarded with the Cr—Al—B alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 3 Pa. In addition, the bias voltage applied to the cemented carbide cutting base is lowered to −100 V, and arc discharge is generated between the cathode electrode and the anode electrode of the Cr—Al—B alloy, thereby the carbide cutting base. A comparative coated carbide gear cutting tool is formed by vapor-depositing a hard coating layer composed of a (Cr, Al, B) N layer having a single phase structure with the target composition and target layer thickness shown in Table 3 on the surface of 1 to 10 were produced.

つぎに、上記の本発明被覆超硬歯切工具1〜10および比較被覆超硬歯切工具1〜10を用いて、材質がJIS・SCr420Hの合金鋼にして、

モジュール:1.75、圧力角:17.5度、歯数:47、ねじれ角:30度右捩れ、歯幅:25mmの寸法および形状をもった歯車の加工を、

切削速度(回転速度): 500m/min、
送り: 1.5mm/rev、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の高速歯切加工条件(上記JIS・SCr420Hの合金鋼歯車の加工の場合の切削速度は通常 350m/min)で行い、
逃げ面摩耗幅が 0.1 mmに至るまでの歯車加工数を測定した。
この測定結果を表2、3にそれぞれに示した。
Next, using the above-described coated carbide cutting tool 1-10 of the present invention and the comparative coated carbide cutting tool 1-10, the material is alloy steel of JIS / SCr420H,

Module: 1.75, pressure angle: 17.5 degrees, number of teeth: 47, helix angle: 30 degrees right twist, tooth width: 25mm

Cutting speed (rotational speed): 500 m / min,
Feed: 1.5mm / rev,
Processing form: climb, no shift, dry (air blow),
The high-speed gear cutting conditions (the cutting speed in the case of machining the above-mentioned JIS / SCr420H alloy steel gear is usually 350 m / min),
The number of gears processed until the flank wear width reached 0.1 mm was measured.
The measurement results are shown in Tables 2 and 3, respectively.


Figure 0004706912
Figure 0004706912

Figure 0004706912
Figure 0004706912

Figure 0004706912
Figure 0004706912


この結果得られた本発明被覆超硬歯切工具1〜10の(Cr,Al,B)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに比較被覆超硬歯切工具1〜10の(Cr,Al,B)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。

The thin layer A and the thin layer B constituting the hard coating layer made of (Cr, Al, B) N of the coated carbide cutting tool 1-10 of the present invention obtained as a result of this, and the composition of the lower layer In addition, the composition of the hard coating layer made of (Cr, Al, B) N of the comparative coated carbide gear cutting tools 1 to 10 was measured by an energy dispersive X-ray analysis method using a transmission electron microscope. Each showed substantially the same composition as the target composition.
Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表2、3に示される結果から、本発明被覆超硬歯切工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Cr,Al,B)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さ、さらに前記上部層がすぐれた熱伝導性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、合金鋼製歯車の歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、前記硬質被覆層が前記上部層によってすぐれた抜熱効果を発揮し、切刃部に偏摩耗の原因となる熱塑性変形の発生なく、すぐれた耐摩耗性を発揮するのに対して、硬質被覆層が単一相構造の(Cr,Al,B)N層からなる比較被覆超硬歯切工具は、前記高速歯切加工条件では、特に熱伝導性不足が原因で切刃部に熱塑性変形が発生し、これによって摩耗形態が偏摩耗形態をとるようになることから、摩耗進行が速くなり、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の表面被覆超硬合金製歯切工具(本発明被覆超硬歯切工具)は、通常の条件での歯切加工は勿論のこと、特に各種の合金鋼製歯車などの歯切加工を、高い発熱を伴う高速歯切加工条件で行なった場合にも、硬質被覆層がすぐれた耐摩耗性を発揮し、長期に亘ってすぐれた性能を示すものであるから、歯切加工装置の高性能化、並びに歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the coated carbide cutting tool of the present invention has a single-phase structure lower layer made of (Cr, Al, B) N, each of which has a different hard coating layer composition, It consists of an upper layer having an alternating layer structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high-temperature hardness, and the upper layer has excellent thermal conductivity. In addition, since the hard coating layer combines these excellent characteristics, even when gear cutting of alloy steel gears is performed under high-speed gear cutting conditions with high heat generation, the hard coating layer is Excellent heat removal effect is achieved by the upper layer, and excellent wear resistance is exhibited without the occurrence of thermoplastic deformation that causes uneven wear at the cutting edge, whereas the hard coating layer has a single-phase structure. The comparative coated carbide gear cutting tool composed of (Cr, Al, B) N layer is Under gear cutting conditions, especially the thermal deformation of the cutting edge occurs due to insufficient thermal conductivity, and this causes the wear form to become an uneven wear form. It is clear that the service life is reached.
As described above, the surface-coated cemented carbide gear cutting tool of the present invention (the coated carbide gear cutting tool of the present invention) is not only gear cutting under normal conditions, but also various alloy steel gears, etc. Even when the gear cutting is performed under high-speed gear cutting conditions with high heat generation, the hard coating layer exhibits excellent wear resistance and exhibits excellent performance over a long period of time. It is possible to satisfactorily cope with the high performance of the cutting device, the labor saving and energy saving of gear cutting, and the cost reduction.

この発明の被覆超硬歯切工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coated carbide gear cutting tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus. 超硬歯切工具(ソリッドホブ)の概略斜視図である。It is a schematic perspective view of a cemented carbide cutting tool (solid hob).

Claims (1)

炭化タングステン基超硬合金製歯切工具基体の表面に、

(a)いずれもCrとAlとB(ボロン)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの平均層厚をそれぞれ有し、
(b)上記上部層は、いずれも一層平均層厚がそれぞれ5〜20nm(ナノメ−タ−)の薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:[Cr1-(E+F)Al]N(ただし、原子比で、Eは0.01〜0.10、Fは0.20〜0.35を示す)を満足するCrとAlとBの複合窒化物層、
上記薄層Bは、
組成式:[Cr1-(M+N)Al]N(ただし、原子比で、Mは0.25〜0.40、Nは0.10〜0.20を示す)を満足するCrとAlとBの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:[Cr1-(X+Y)Al]N(ただし、原子比で、Xは0.50〜0.70、Yは0.01〜0.10を示す)を満足するCrとAlとBの複合窒化物層、
からなる硬質被覆層を蒸着形成してなることを特徴とする合金鋼の高速歯切加工で硬質被覆層がすぐれた耐摩耗性を発揮する表面被覆超硬合金製歯切工具。
On the surface of the tungsten carbide base cemented carbide cutting tool base,

(A) Both are composed of an upper layer and a lower layer made of a composite nitride of Cr, Al, and B (boron), the upper layer being an average layer of 0.5 to 1.5 μm, and the lower layer being an average layer of 2 to 6 μm Each has a thickness,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B each having an average layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: [Cr 1− (E + F) Al E B F ] N (wherein, in terms of atomic ratio, E represents 0.01 to 0.10, F represents 0.20 to 0.35) and Cr A composite nitride layer of Al and B;
The thin layer B is
Composition formula: [Cr 1- (M + N ) Al M B N] N ( provided that an atomic ratio, M is 0.25 to 0.40, N denotes the 0.10 to 0.20) and Cr satisfying a A composite nitride layer of Al and B,
(C) the lower layer has a single phase structure;
Composition formula: [Cr 1− (X + Y) Al X B Y ] N (wherein, in terms of atomic ratio, X represents 0.50 to 0.70, Y represents 0.01 to 0.10) and Cr A composite nitride layer of Al and B;
A surface-coated cemented carbide cutting tool that exhibits excellent wear resistance in high-speed gear cutting of alloy steel, characterized in that the hard coating layer is formed by vapor deposition.
JP2005220181A 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel Active JP4706912B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005220181A JP4706912B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005220181A JP4706912B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Publications (2)

Publication Number Publication Date
JP2007030133A JP2007030133A (en) 2007-02-08
JP4706912B2 true JP4706912B2 (en) 2011-06-22

Family

ID=37790001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005220181A Active JP4706912B2 (en) 2005-07-29 2005-07-29 Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel

Country Status (1)

Country Link
JP (1) JP4706912B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337005A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Abrasive-resistant coating coated tool
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2005330539A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Abrasion-resistant coated member

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002337005A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Abrasive-resistant coating coated tool
JP2004238736A (en) * 2003-01-17 2004-08-26 Hitachi Tool Engineering Ltd Hard film, and hard film-coated tool
JP2005330539A (en) * 2004-05-20 2005-12-02 Tungaloy Corp Abrasion-resistant coated member

Also Published As

Publication number Publication date
JP2007030133A (en) 2007-02-08

Similar Documents

Publication Publication Date Title
JP2009039838A (en) Surface-coated cutting tool
JP3873276B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP6376466B2 (en) Surface coated cutting tool
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2010207917A (en) Surface coated cutting tool
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4706912B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP6959577B2 (en) Surface coating cutting tool
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4716007B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP3959737B2 (en) A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP6471546B2 (en) Surface coated cutting tool
JP6102653B2 (en) Surface coated cutting tool
JP5692636B2 (en) Surface coated cutting tool
JP4120243B2 (en) A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP4716006B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel
JP4007104B2 (en) A surface-coated stripping tool that provides excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP2006224216A (en) Cutting tool made of surface coated cemented carbide alloy with hard coating layer displaying excellent abrasion resistance in high speed cutting work of heat resisting alloy
JP2003326402A (en) Method for forming hard layer, providing excellent wear resistance in high speed cutting, on cutting tool surface
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4706909B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting of alloy steel

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080715

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110217

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110302