JP2016185589A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2016185589A
JP2016185589A JP2015067706A JP2015067706A JP2016185589A JP 2016185589 A JP2016185589 A JP 2016185589A JP 2015067706 A JP2015067706 A JP 2015067706A JP 2015067706 A JP2015067706 A JP 2015067706A JP 2016185589 A JP2016185589 A JP 2016185589A
Authority
JP
Japan
Prior art keywords
layer
thin
cutting
atomic ratio
layer thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015067706A
Other languages
Japanese (ja)
Inventor
英利 淺沼
Hidetoshi Asanuma
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2015067706A priority Critical patent/JP2016185589A/en
Publication of JP2016185589A publication Critical patent/JP2016185589A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a coated tool for exhibiting excellent abrasion resistance and defect resistance even when cutting a titanium alloy, a heat resistant alloy, stainless steel or the like under a high speed cutting condition of causing high heat generation.SOLUTION: In a surface-coated cutting tool, a backing layer is composed of an alternate lamination layer of a thin layer C for satisfying (AlTi)(ON) (a is 0.25≤a≤0.75, and b is 0.50≤b≤0.9 in the atomic ratio) and a thin layer D for satisfying (AlTi)N (g is 0.25≤g≤0.75 in the atomic ratio), and an intermediate layer satisfies (AlTi)N (g is 0.25≤g≤0.75 in the atomic ratio), and an upper layer is composed of an alternate lamination ayer of a thin layer A for satisfying (AlCr)(ON) (c and d are 0.20≤c≤0.60, 0.01≤d≤0.50 in the atomic ratio) and a thin layer B for satisfying (AlMn)(ON) (e and f are 0.10≤e≤0.50, 0.01≤f≤0.50 in the atomic ratio).SELECTED DRAWING: Figure 3

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、チタン合金、耐熱合金、ステンレス鋼等の高熱発生を伴うとともに切刃への溶着性が著しい被削材を高速切削した場合に、硬質被覆層がすぐれた高温安定性、耐熱性、耐摩耗性、耐溶着性を発揮する被覆工具に関するものである。   The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool), and more specifically, for example, a work material that is accompanied by high heat generation such as titanium alloy, heat-resistant alloy, and stainless steel and that has a remarkable weldability to a cutting blade. The present invention relates to a coated tool that exhibits high-temperature stability, heat resistance, wear resistance, and welding resistance with excellent hard coating layers when high-speed cutting is performed.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の工具基体表面を被覆する被膜に対して耐摩耗性や耐欠損性を向上させることが要求されている。   In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is requested | required that a wear resistance and a fracture | rupture resistance should be improved with respect to the film which coat | covers the tool base | substrate surface of a cutting tool.

特許文献1には、アルミニウム酸化物を基とする硬質被覆層であって、Al1−x(O1−Y(0≦X≦0.5、0<Y≦0.4、Z>0)で表される組成を有し、この組成におけるMは、Ti,Zr,V,Nb,Mo,W,Y,Mg,Si,Bから選択される少なくとも1種の元素であるAlM(ON)系硬質被覆層が開示されている。さらに同文献には、このような硬質被覆層は、耐摩耗性と耐熱性にすぐれており、基材の温度が1000℃以下で、具体的には400〜600℃で形成できると開示されている。 Patent Document 1 discloses a hard coating layer based on an aluminum oxide, and Al 1-x M x (O 1-Y N Y ) z (0 ≦ X ≦ 0.5, 0 <Y ≦ 0. 4, Z> 0), and M in this composition is at least one element selected from Ti, Zr, V, Nb, Mo, W, Y, Mg, Si, and B An AlM (ON) hard coating layer is disclosed. Further, the same document discloses that such a hard coating layer is excellent in wear resistance and heat resistance, and can be formed at a substrate temperature of 1000 ° C. or lower, specifically 400 to 600 ° C. Yes.

また、特許文献2は、被覆工具の工具基体上に被膜を形成するものであって、この被膜が、第1超多層膜と第2超多層膜とを各々1以上交互に積層させてなる複合超多層膜を含み、前記第1超多層膜が、A1層とB層とを各々1層以上交互に積層することにより構成され、前記第2超多層膜が、A2層とC層とを各々1層以上交互に積層することにより構成され、前記A1層とA2層が、各々TiN、TiCN、TiAlNまたはTiAlCNのいずれかにより構成され、前記B層が、TiSiNまたはTiSiCNにより構成され、前記C層が、AlCrNまたはAlCrCNにより構成されることにより、耐摩耗性と耐熱性を維持しつつ、脆性の問題を低減した積層系硬質被覆層を有する被覆工具を提供することを開示している。   Further, Patent Document 2 forms a film on a tool base of a coated tool, and this film is a composite in which one or more first super multi-layer films and one or more second super multi-layer films are alternately laminated. Including a super multi-layer film, wherein the first super multi-layer film is formed by alternately laminating one or more layers each of A1 layers and B layers, and the second super multi-layer film comprises A2 layers and C layers, respectively. It is configured by alternately laminating one or more layers, the A1 layer and the A2 layer are each composed of TiN, TiCN, TiAlN, or TiAlCN, the B layer is composed of TiSiN or TiSiCN, and the C layer Discloses providing a coated tool having a laminated hard coating layer with reduced brittleness problems while maintaining wear resistance and heat resistance by being composed of AlCrN or AlCrCN.

さらに、別の従来被覆工具として、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで工具基体を、450℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Cr合金がセットされたカソード電極(蒸発源)との間に、電流:100Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して窒素雰囲気とし、一方、前記工具基体には、例えば、−200Vのバイアス電圧を印加した条件で、工具基体の表面に蒸発した粒子を蒸着させることにより(Al,Cr)N層からなる硬質被覆層が形成されることも知られている(例えば、特許文献3参照)。   Further, as another conventional coated tool, for example, an arc ion plating apparatus, which is one of physical vapor deposition apparatuses shown schematically in FIG. 2, is loaded with a tool base, and the tool base is heated to 450 ° C. with a heater. While being heated to a temperature, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which an Al—Cr alloy having a predetermined composition is set under the condition of current: 100 A and simultaneously reacts in the apparatus. Nitrogen gas is introduced as a gas to form a nitrogen atmosphere. On the other hand, by evaporating evaporated particles on the surface of the tool base under the condition that a bias voltage of −200 V is applied (Al, Cr, for example) ) It is also known that a hard coating layer composed of an N layer is formed (see, for example, Patent Document 3).

特開2010−236092号公報JP 2010-236092 A 国際公開2008/146727号International Publication No. 2008/146727 特開2000−271699号公報JP 2000-271699 A

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらには低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、(Al,Cr)N層からなる被覆層を用いた従来被覆工具においては、これを、鋼や鋳鉄などの被削材の通常切削速度での切削加工に用いた場合には問題ないが、チタン合金、耐熱合金、ステンレス鋼等を、高い発熱を伴うとともに、切刃部への衝撃性および溶着性が著しい高速切削条件で切削した場合には、(Al,Cr)N層は高硬度な皮膜であるが、その硬度や高い残留応力のため、皮膜自体が崩壊したり、剥離したりする問題があり、この結果、切刃部における欠損(微少欠け)の発生が急激に増加し、これが原因で比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools have as much influence on the type of work material as possible. However, in a conventional coated tool using a coating layer composed of an (Al, Cr) N layer, there is a tendency to be versatile, that is, a cutting tool capable of cutting as many grades as possible. Is used for cutting at normal cutting speeds of work materials such as steel and cast iron, but titanium alloys, heat-resistant alloys, stainless steel, etc. are accompanied by high heat generation and are applied to the cutting edge. When cutting under high-speed cutting conditions with remarkable impact and weldability, the (Al, Cr) N layer is a hard film, but the film itself may collapse or peel due to its hardness and high residual stress. Questions There are, as a result, occurs rapidly increased in defects in the cutting edge (small chipping), which is at present, leading to a relatively short time service life due.

例えば、特許文献1によれば、耐摩耗性と耐熱性をある程度向上させることは可能であるが、このようなAlM(ON)系硬質被覆層の問題として脆性を示すことから切削時の衝撃等により被膜自体が破壊したり剥離したりするという問題があった。
また、特許文献2による積層系硬質被覆層によっても、過酷な切削条件下においては積層構造を構成する個々の被膜自体の破壊や剥離を十分に防止することができず、結果として十分な硬質被覆層全体としての耐摩耗性を得ることができない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、チタン合金、耐熱合金、ステンレス鋼等を、高熱発生を伴う高速切削条件で切削した場合においてもすぐれた耐熱性、耐摩耗性および耐溶着性を発揮し、長期に亘ってすぐれた切削性能を示す被覆工具を提供することである。
For example, according to Patent Document 1, although it is possible to improve the wear resistance and heat resistance to some extent, since the problem of such an AlM (ON) hard coating layer shows brittleness, impact during cutting, etc. This causes a problem that the coating itself is broken or peeled off.
Further, even with the hard coating layer of Patent Document 2, even under severe cutting conditions, the individual coatings constituting the laminated structure cannot be sufficiently prevented from being broken or peeled, resulting in a sufficient hard coating. In some cases, the wear resistance of the entire layer could not be obtained.
Therefore, the technical problem to be solved by the present invention, that is, the object of the present invention is to have excellent heat resistance even when cutting titanium alloy, heat-resistant alloy, stainless steel, etc. under high-speed cutting conditions with high heat generation, An object of the present invention is to provide a coated tool that exhibits wear resistance and welding resistance and exhibits excellent cutting performance over a long period of time.

そこで、本発明者らは、前述のような観点から、特にチタン合金、耐熱合金、ステンレス鋼等を高温発熱が伴い、かつ切刃への溶着性が著しい被削材を高速切削条件で切削加工した場合に、硬質被覆層がすぐれた耐熱性、耐摩耗性および耐溶着性を併せ持つ被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the inventors of the present invention cut a workpiece with high-temperature heat generation, particularly titanium alloy, heat-resistant alloy, stainless steel, and the like, which has remarkable weldability to the cutting edge under high-speed cutting conditions. In this case, intensive research was conducted to develop a coated tool having a hard coating layer with excellent heat resistance, wear resistance and welding resistance.

その結果、次のような新規な知見を得た。
(1)(Al,Cr)(ON)層は、耐摩耗性があり、酸素を所定量含有することで耐熱性を向上させることができる。
(2)(Al,Mn)(ON)層は、Mn酸化物自身が非常に安定な物質であり、これがAl酸化物中に導入されることにより、Al酸化物の高温安定性を向上させるという効果を奏する。さらにこれをさらに発展させて、Al,Mnの複合酸窒化物とすることで、各々の酸化物と比べ耐摩耗性が向上する。その結果、切削中に熱の発生しやすい難削材などに対して、すぐれた耐熱性、耐摩耗性、耐溶着性を示す。
(3)しかしながら、前述の(Al,Cr)(ON)層、(Al,Mn)(ON)層をそれぞれ単独で用いた場合、(Al,Cr)(ON)層だけでは、耐摩耗性は確保できたとしても耐熱性に乏しく、逆に、(Al,Mn)(ON)層を単独で用いた場合、耐熱性は確保できても、耐摩耗性に乏しく切削工具の硬質被覆層として実用的ではない。また、それぞれの層の層厚を厚くして耐摩耗性を稼ごうとすると、層内に生じる残留圧縮応力の関係でチッピングが生じやすくなり、長期に亘って切削性能を維持することができない。
As a result, the following new findings were obtained.
(1) The (Al, Cr) (ON) layer has wear resistance, and heat resistance can be improved by containing a predetermined amount of oxygen.
(2) The (Al, Mn) (ON) layer is a very stable substance of Mn oxide itself, and when introduced into the Al oxide, it improves the high-temperature stability of the Al oxide. There is an effect. Furthermore, by further developing this to form a composite oxynitride of Al and Mn, the wear resistance is improved as compared with each oxide. As a result, it exhibits excellent heat resistance, wear resistance, and welding resistance to difficult-to-cut materials that easily generate heat during cutting.
(3) However, when the above-described (Al, Cr) (ON) layer and (Al, Mn) (ON) layer are respectively used alone, the wear resistance can be obtained only by the (Al, Cr) (ON) layer. Even if it can be secured, heat resistance is poor. Conversely, when an (Al, Mn) (ON) layer is used alone, it is practically used as a hard coating layer for cutting tools with poor wear resistance even if heat resistance can be secured. Not right. Further, if it is attempted to increase wear resistance by increasing the thickness of each layer, chipping is likely to occur due to the residual compressive stress generated in the layer, and the cutting performance cannot be maintained over a long period of time.

本発明は、このような知見に基づき、(Al,Ti)N層からなる薄層Cと(Al,Ti)(ON)層からなる薄層Dの交互積層からなる下地層、また、C層より厚膜の(Al,Ti)(ON)層からなる中間層、さらに、(Al,Cr)(ON)層からなる薄層Aと(Al,Mn)(ON)層からなる薄層Bの交互積層からなる上部層を被覆形成した被覆工具において、各層の平均層厚、薄層Cと薄層Dの組成、薄層Aと薄層Bの組成、硬質被覆層全体の合計層厚などと切削性能との関係を詳しく解析した結果得られたものであって、具体的には、以下のような構成からなる。   Based on such knowledge, the present invention provides an underlayer consisting of alternating layers of thin layers C composed of (Al, Ti) N layers and thin layers D composed of (Al, Ti) (ON) layers, and C layers. An intermediate layer composed of a thicker (Al, Ti) (ON) layer, a thin layer A composed of an (Al, Cr) (ON) layer, and a thin layer B composed of an (Al, Mn) (ON) layer In a coated tool in which an upper layer composed of alternating layers is coated, the average layer thickness of each layer, the composition of thin layers C and D, the composition of thin layers A and B, the total layer thickness of the entire hard coating layer, etc. This is obtained as a result of detailed analysis of the relationship with the cutting performance, and specifically comprises the following configuration.

本発明は、前記研究結果に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)前記工具基体表面に形成された薄層Cと薄層Dの交互積層構造からなり、交互積層の合計平均層厚が0.5〜5.0μmである下地層と、
(b)前記下地層の表面に形成された0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−aTi)(O1−b)(ここで、aはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦a≦0.75である。また、bはOとNの合量に占めるNの含有割合を示し、原子比で、0.50≦b≦0.9)を満足する中間層と、
(c)前記中間層の表面に形成された薄層Aと薄層Bの交互積層構造からなり、交互積層の合計平均層厚が0.5〜5.0μmである上部層とからなり、
(d)前記薄層Cは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−aTi)(O1−b)(ここで、aはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦a≦0.75である。また、bはOとNの合量に占めるNの含有割合を示し、原子比で、0.50≦b≦0.9)を満足するAlとTiとの複合窒酸化物層からなり、
(e)前記薄層Dは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−gTi)N(ここで、gはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦g≦0.75である)を満足するAlとTiとの複合窒化物層からなり、
(f)前記薄層Aは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−cCr)(O1−d)(ここで、cはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.20≦c≦0.60である。また、dはOとNの合量に占めるNの含有割合を示し、原子比で、0.01≦d≦0.50)を満足するAlとCrとの複合窒酸化物層からなり、
(g)前記薄層Bは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−eMn)(O1−f)(ここで、eはAlとMnの合量に占めるMnの含有割合を示し、原子比で、0.10≦e≦0.50である。また、fはOとNの合量に占めるNの含有割合を示し、原子比で、0.01≦f≦0.50)を満足するAlとMnとの複合窒酸化物層からなり、
(h)前記下地層および前記上部層の層厚は、前記中間層の層厚よりも厚く、前記硬質被覆層全体の合計平均層厚は1.1〜11.0μmであることを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the research results,
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) an underlayer having an alternating layered structure of thin layers C and D formed on the surface of the tool base, wherein the total average layer thickness of the alternating layers is 0.5 to 5.0 μm;
(B) having an average layer thickness of 0.1 to 1.0 μm formed on the surface of the underlayer, and
Composition formula: (Al 1-a Ti a ) (O 1-b N b ) (where a represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ a ≦ B represents the content ratio of N in the total amount of O and N, and an intermediate layer satisfying an atomic ratio of 0.50 ≦ b ≦ 0.9);
(C) It consists of an alternating layered structure of thin layers A and thin layers B formed on the surface of the intermediate layer, consisting of an upper layer having a total average layer thickness of 0.5 to 5.0 μm.
(D) The thin layer C has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-a Ti a ) (O 1-b N b ) (where a represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ a ≦ Further, b represents the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Ti satisfying the atomic ratio of 0.50 ≦ b ≦ 0.9) Consists of layers
(E) the thin layer D has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-g Ti g ) N (where g represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ g ≦ 0.75) It consists of a composite nitride layer of Al and Ti that is satisfactory,
(F) The thin layer A has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-c Cr c ) (O 1-d N d ) (where c represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.20 ≦ c ≦ In addition, d represents the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Cr satisfying the atomic ratio of 0.01 ≦ d ≦ 0.50) Consists of layers
(G) The thin layer B has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-e Mn e ) (O 1-f N f ) (where e represents the content ratio of Mn in the total amount of Al and Mn, and the atomic ratio is 0.10 ≦ e ≦ In addition, f indicates the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Mn satisfying the atomic ratio of 0.01 ≦ f ≦ 0.50) Consists of layers
(H) The base layer and the upper layer are thicker than the intermediate layer, and the total average thickness of the hard coating layer is 1.1 to 11.0 μm. Surface coated cutting tool. "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。
下地層の薄層Cを構成する(Al,Ti)(ON)層の組成:
工具基体と中間層の間に形成された一層平均層厚1〜50nmの薄層Cである(Al,Ti)(ON)層は、薄層Dとともに交互積層(ナノ積層)構造を形成することによって、工具基体に対する硬質被覆層の密着強度を高め、層間剥離の発生を防止する。
C層の構成成分であるTi成分によって、すぐれた高温強度を備え、また、Al成分によって、高温硬さと耐熱性を補完する。しかし、薄層Cを、組成式:(Al1−aTi)(O1−b)で表したとき、AlとTiとの合量に占めるTiの含有割合を示すaの値(原子比)が0.25未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなり、一方、Tiの含有割合を示すaの値が0.75を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、aの値を0.25〜0.75と定めた。
OとNの合量に占めるNの含有割合を示すbの値(原子比)は、(Al,Ti)(ON)層の高硬度するために必須の成分Nの含有割合である。その効果を十分なものとするためには、OとNの合量に対してNの含有割合が半分以上を占めている必要がある。しかし、bの値が0.9を超えてしまうと、相対的にOの含有割合が0.1未満となってしまい、Oの添加により耐熱性を向上させるという効果が十分に奏されなくなる。したがって、bの値は0.50〜0.9と定めた。
Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.
Composition of the (Al, Ti) (ON) layer constituting the thin layer C of the underlayer:
The (Al, Ti) (ON) layer, which is a thin layer C having an average layer thickness of 1 to 50 nm formed between the tool base and the intermediate layer, forms an alternate laminated (nano laminated) structure together with the thin layer D. Thus, the adhesion strength of the hard coating layer to the tool base is increased and the occurrence of delamination is prevented.
The Ti component, which is a component of the C layer, provides excellent high-temperature strength, and the Al component supplements high-temperature hardness and heat resistance. However, when the thin layer C is represented by the composition formula: (Al 1-a Ti a ) (O 1-b N b ), the value of a indicating the content ratio of Ti in the total amount of Al and Ti ( If the atomic ratio is less than 0.25, high temperature strength cannot be ensured, and abnormal damage is likely to occur at the boundary portion of the cutting edge, and defects are likely to occur. On the other hand, the value of a indicating the Ti content is 0. If it exceeds .75, the Al content will be relatively reduced, and not only the high-temperature hardness required for high-speed cutting will be secured, but also the wear resistance will be reduced, and chipping will be prevented. Since it becomes difficult, the value of a is set to 0.25 to 0.75.
The value (atomic ratio) of b indicating the content ratio of N in the total amount of O and N is the content ratio of the component N essential for increasing the hardness of the (Al, Ti) (ON) layer. In order to make the effect sufficient, it is necessary that the content ratio of N occupies more than half of the total amount of O and N. However, if the value of b exceeds 0.9, the content ratio of O becomes relatively less than 0.1, and the effect of improving heat resistance by the addition of O is not sufficiently achieved. Therefore, the value of b is set to 0.50 to 0.9.

下地層の薄層Dを構成する(Al,Ti)N層の組成:
本発明に係る後述する薄層Aと薄層Bは、化学的に安定であることから、工具基体表面との高い密着性を得難いため、工具基体との間に下地層および中間層を設ける必要がある。下地層としては、工具基体表面との密着性の観点から、(Al,Ti)Nからなる窒化物の薄層Dが好適に用いられるが、一方、中間層との密着性の観点からは、(Al,Ti)(ON)からなる酸窒化物の薄層Cが好ましい。したがって、本発明では、薄層Cと薄層Dの交互積層(ナノ積層)として下地層を構成することにより、下地層自身の強度を高めると同時に、工具基体および中間層との密着強度を高める。そして、薄層Dを、組成式:(Al1−gTi)Nで表したとき、gの値が、原子比で、0.25≦g≦0.75である場合、切削加工時の熱的安定性にすぐれ、しかも、高速切削時の耐摩耗性がすぐれている。
したがって、薄層Dとしては、組成式:(Al1−gTi)N(ここで、gはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦g≦0.75である)を満足するAlとTiの複合窒化物層とする。
Composition of the (Al, Ti) N layer constituting the thin layer D of the underlayer:
Since the thin layer A and the thin layer B, which will be described later, according to the present invention are chemically stable, it is difficult to obtain high adhesion to the surface of the tool base, so it is necessary to provide an underlayer and an intermediate layer between the tool base. There is. As the underlayer, a nitride thin layer D made of (Al, Ti) N is preferably used from the viewpoint of adhesion to the tool base surface, while from the viewpoint of adhesion to the intermediate layer, A thin layer C of oxynitride made of (Al, Ti) (ON) is preferred. Therefore, in the present invention, by forming the base layer as an alternate stack (nano stack) of the thin layer C and the thin layer D, the strength of the base layer itself is increased, and at the same time, the adhesion strength between the tool base and the intermediate layer is increased. . When the thin layer D is expressed by the composition formula: (Al 1-g Ti g ) N, when the value of g is 0.25 ≦ g ≦ 0.75 in terms of atomic ratio, Excellent thermal stability and excellent wear resistance during high-speed cutting.
Therefore, as the thin layer D, the composition formula: (Al 1-g Ti g ) N (where g represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ g The composite nitride layer of Al and Ti satisfying (≦ 0.75).

中間層を構成する(Al,Ti)(ON)層の組成:
下地層と上部層の間に形成された平均層厚0.1〜1.0μmの中間層である(Al,Ti)(ON)層は、下部層と上部層の密着強度を高める作用をする。
中間層の(Al,Ti)(ON)層の組成式は、下地層の薄層Cの組成式と同じであるため下地層との密着強度は高い。そして、この発明では、中間層の層厚を、薄層Cに比べてはるかに厚く形成することによって、上部層との密着強度をより一層高めることができる。
なお、中間層の組成式:(Al1−aTi)(O1−b)において、aの値を0.25〜0.75と定める技術的理由、及び、bの値を0.50〜0.9と定める技術的理由は、前記薄層Cについて述べたのと同じである。
Composition of (Al, Ti) (ON) layer constituting the intermediate layer:
The (Al, Ti) (ON) layer, which is an intermediate layer having an average layer thickness of 0.1 to 1.0 μm formed between the base layer and the upper layer, acts to increase the adhesion strength between the lower layer and the upper layer. .
Since the composition formula of the (Al, Ti) (ON) layer of the intermediate layer is the same as the composition formula of the thin layer C of the underlayer, the adhesion strength with the underlayer is high. And in this invention, the adhesive strength with an upper layer can be further improved by forming the layer thickness of an intermediate | middle layer much thicker than the thin layer C. FIG.
In the composition formula of the intermediate layer: (Al 1-a Ti a ) (O 1-b N b ), the technical reason for setting the value of a to 0.25 to 0.75, and the value of b to 0 The technical reason for setting .50 to 0.9 is the same as that described for the thin layer C.

上部層の薄層A層を構成する(Al,Cr)(ON)層の組成:
後述する薄層Bと共に交互積層構造を構成する薄層Aの(Al1−cCr)(O1−d)層は、層全体に亘って均質な耐摩耗性と耐熱性および靭性を示すが、その構成成分であるCr成分によって、すぐれた高温強度と高温潤滑性を備えるようになり、また、Al成分によって、高温硬さと耐熱性を補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Alとの合量に占めるCrの含有割合を示すc値(原子比、以下同じ)が0.20未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなるため長寿命を期待することはできず、一方、Alとの合量に占めるCrの含有割合を示すc値が0.60を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さを確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、c値を0.20〜0.60と定めた。
OとNの合量に占めるNの含有割合を示すd(原子比)は、(Al,Cr)(ON)層の高硬度維持と耐熱性維持の観点から定められたものであるが、dの値が0.50を超えると、相対的なOの含有割合の減少によって耐熱性が低下し、一方、dの値が0.01以下となると硬さが低下する。したがって、dの値を0.01を超え0.50以下と定めた。
Composition of the (Al, Cr) (ON) layer constituting the thin A layer of the upper layer:
The (Al 1-c Cr c ) (O 1-d N d ) layer of the thin layer A that constitutes an alternate laminated structure with the thin layer B described later has uniform wear resistance, heat resistance and toughness throughout the layer. However, the Cr component, which is a constituent component, provides excellent high-temperature strength and high-temperature lubricity, and the Al component supplements high-temperature hardness and heat resistance. For this reason, a low friction coefficient is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited. However, the c value (atomic ratio, the same applies hereinafter) indicating the content ratio of Cr in the total amount with Al is 0. If it is less than 20, the high temperature strength cannot be ensured, so abnormal damage is likely to occur at the boundary of the cutting edge and defects are likely to occur, so a long life cannot be expected. When the c value indicating the Cr content ratio exceeds 0.60, the Al content ratio is relatively decreased, and not only the high-temperature hardness required for high-speed cutting can be secured, but also wear resistance. The c value was determined to be 0.20 to 0.60 because the properties also deteriorated and it becomes difficult to prevent the occurrence of chipping.
D (atomic ratio) indicating the content ratio of N in the total amount of O and N is determined from the viewpoint of maintaining the high hardness and heat resistance of the (Al, Cr) (ON) layer. If the value exceeds 0.50, the heat resistance decreases due to a relative decrease in the O content, whereas if d decreases to 0.01 or less, the hardness decreases. Therefore, the value of d is determined to be more than 0.01 and 0.50 or less.

上部層の薄層B層を構成する(Al,Mn)(ON)層の組成:
前述した薄層Aと共に交互積層構造を構成する薄層Bの(Al1−eMn)(O1−f)層は、層全体に亘って均質な耐摩耗性と耐熱性および靭性を示すが、その構成成分であるMn成分によって、すぐれた高温安定性を備えるようになり、また、Al、Mnの複合酸窒化物とすることで各々の酸化物と比べて耐摩耗性が向上する。その結果、切削成分によって、高温硬さと耐熱性を補完する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Alとの合量に占めるMnの含有割合を示すe値(原子比、以下同じ)が0.10未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなるため長寿命を期待することはできず、一方、Alとの合量に占めるMnの含有割合を示すe値が0.50を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、e値を0.10〜0.50と定めた。
OとNの合量に占めるNの含有割合を示すf(原子比)は、(Al,Mn)(ON)層の高硬度維持と耐熱性維持の観点から定められたものであるが、
fの値が0.50を超えると、相対的なOの含有割合の減少によって耐熱性が低下し、一方、fの値が0.01以下となると硬さが低下する。したがって、fの値を0.01を超え0.50以下と定めた。
Composition of (Al, Mn) (ON) layer constituting upper thin B layer:
The (Al 1-e Mn e ) (O 1-f N f ) layer of the thin layer B that constitutes an alternate laminated structure with the thin layer A described above has uniform wear resistance, heat resistance and toughness throughout the layer. However, the Mn component, which is a constituent component, provides excellent high-temperature stability, and by using a composite oxynitride of Al and Mn, wear resistance is improved compared to each oxide. To do. As a result, high temperature hardness and heat resistance are complemented by cutting components. Therefore, a low friction coefficient is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited, but the e value (atomic ratio, the same applies hereinafter) indicating the content ratio of Mn in the total amount with Al is 0. If it is less than 10.10, high temperature strength cannot be ensured, so abnormal damage is caused at the boundary portion of the blade edge and defect is likely to occur, so a long life cannot be expected. When the e value indicating the Mn content ratio exceeds 0.50, the Al content ratio is relatively reduced, and not only the high-temperature hardness required for high-speed cutting cannot be secured, but also wear resistance. The e value was determined to be 0.10 to 0.50 because it was difficult to prevent the occurrence of chipping.
F (atomic ratio) indicating the content ratio of N in the total amount of O and N is determined from the viewpoint of maintaining high hardness and heat resistance of the (Al, Mn) (ON) layer,
When the value of f exceeds 0.50, the heat resistance is lowered due to the relative decrease in the O content, whereas when the value of f is 0.01 or less, the hardness is lowered. Therefore, the value of f is determined to be more than 0.01 and 0.50 or less.

下地層、中間層および薄層Aおよび薄層Bからなる上部層の平均層厚ならびに硬質被覆層の合計層厚:
本発明の硬質被覆層の下地層は、その平均層厚が、0.5μm未満では、下地層に要求される密着強度および耐摩耗性を十分に確保することができず、一方、5.0μmを超えると、チッピング、欠損を発生しやすくなるので、下地層の合計平均層厚は、0.5〜5.0μmと定めた。
また、下地層は、それぞれ組成の異なる薄層Cと薄層Dとを交互に積層して構成した交互積層構造とすることで、工具基体に対する密着強度および中間層に対する密着強度が向上するが、薄層Cおよび薄層Dのそれぞれ一層平均層厚が1nm未満になると、各薄層を所定組成のものとして明確に形成することが困難であり、一方、薄層Cおよび薄層Dのそれぞれ一層平均層厚が50nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層C、薄層Dのそれぞれの一層平均層厚は1〜50nmと定めた。
また、中間層を構成する(Al,Ti)(ON)層は、その平均層厚が0.1μm未満であると、下地層と上部層との密着強度を高める効果が少なく、一方、その平均層厚が1.0μmを超えた場合には、耐欠損性、耐チッピング性が低下することから、中間層の平均層厚は0.1〜1.0μmと定めた。
また、上部層は、それぞれの組成の異なる薄層Aと薄層Bとを交互に積層して構成した交互積層構造とすることで、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、薄層Aおよび薄層Bのそれぞれ一層平均層厚が1nm未満になると、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前記のすぐれた特性を発揮することができない。一方、薄層Aおよび薄層Bのそれぞれ一層平均層厚が50nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの一層平均層厚は1〜50nmと定めた。
さらに、薄層Aと薄層Bの交互積層構造からなる上部層の合計平均層厚が0.5μm未満では、長期の使用にわたって、すぐれた耐欠損性、耐チッピング性、耐摩耗性を発揮することはできず、一方、上部層の合計平均層厚が5.0μmを超えると、欠損、チッピングが発生しやすくなることから上部層の合計平均層厚は0.5〜5.0μmと定めた。
また、前述した下地層と中間層と上部層とを加えた硬質被覆層全体の合計平均層厚は、1.1μm未満では、すぐれた耐欠損性、耐チッピング性を十分に発揮することができず、一方、11.0μmを超えると、反対に、チッピング、欠損を発生しやすくなるので、硬質被覆層全体の合計平均層厚は、1.1〜11.0μmと定めた。
更に、下地層の合計平均層厚、あるいは、上部層の合計平均層厚が、中間層の平均層厚以下になると、硬質被覆層全体に占める下地層、上部層の割合が相対的に下がってしまい、耐摩耗性を十分に確保することができないため、下地層の合計平均層厚、あるいは、上部層の合計平均層厚は、中間層の平均層厚より厚くすることとした。
Average layer thickness of the upper layer composed of the underlayer, the intermediate layer and the thin layers A and B and the total layer thickness of the hard coating layer:
If the average layer thickness of the base layer of the hard coating layer of the present invention is less than 0.5 μm, sufficient adhesion strength and wear resistance required for the base layer cannot be secured, while 5.0 μm If it exceeds 1, chipping and defects are likely to occur, so the total average layer thickness of the underlayer was determined to be 0.5 to 5.0 μm.
In addition, the base layer has an alternately laminated structure configured by alternately laminating thin layers C and thin layers D having different compositions, thereby improving the adhesion strength to the tool base and the adhesion strength to the intermediate layer. When the average layer thickness of each of the thin layers C and D is less than 1 nm, it is difficult to clearly form each thin layer having a predetermined composition, while each of the thin layers C and D is one layer. When the average layer thickness exceeds 50 nm, the chip strength and chipping resistance decrease due to the decrease in the film strength due to the coarsening of the particles. Therefore, the average layer thickness of each of the thin layer C and the thin layer D is 1 to 1. It was determined to be 50 nm.
Further, if the average layer thickness of the (Al, Ti) (ON) layer constituting the intermediate layer is less than 0.1 μm, the effect of increasing the adhesion strength between the underlayer and the upper layer is small, while the average When the layer thickness exceeds 1.0 μm, the chipping resistance and chipping resistance deteriorate, so the average layer thickness of the intermediate layer was determined to be 0.1 to 1.0 μm.
Further, the upper layer has an alternate laminated structure in which thin layers A and thin layers B having different compositions are alternately laminated, so that the growth of particles in each layer is prevented from being coarsened. In addition to improving the film strength and preventing the propagation and propagation of cracks by this laminated structure, the chipping resistance and chipping resistance are improved. If the average layer thickness is less than 1 nm, it is difficult to clearly form each thin layer as having a predetermined composition, and the above-described excellent characteristics of each thin layer cannot be exhibited. On the other hand, if the average layer thickness of each of the thin layer A and the thin layer B exceeds 50 nm, the chip strength and chipping resistance decrease due to the decrease in film strength due to the coarsening of the particles. The average layer thickness of each layer B was determined to be 1 to 50 nm.
Furthermore, when the total average layer thickness of the upper layer composed of the alternately laminated structure of the thin layer A and the thin layer B is less than 0.5 μm, excellent chipping resistance, chipping resistance, and wear resistance are exhibited over a long period of use. On the other hand, if the total average layer thickness of the upper layer exceeds 5.0 μm, defects and chipping are likely to occur. Therefore, the total average layer thickness of the upper layer is determined to be 0.5 to 5.0 μm. .
In addition, when the total average layer thickness of the whole hard coating layer including the underlayer, the intermediate layer, and the upper layer described above is less than 1.1 μm, excellent chipping resistance and chipping resistance can be sufficiently exhibited. On the other hand, if it exceeds 11.0 μm, on the contrary, chipping and defects are likely to occur. Therefore, the total average layer thickness of the entire hard coating layer was set to 1.1 to 11.0 μm.
Furthermore, when the total average layer thickness of the underlayer or the total average layer thickness of the upper layer is equal to or less than the average layer thickness of the intermediate layer, the ratio of the underlayer and the upper layer in the entire hard coating layer relatively decreases. Therefore, since sufficient wear resistance cannot be ensured, the total average layer thickness of the underlayer or the total average layer thickness of the upper layer is made larger than the average layer thickness of the intermediate layer.

図3に示されるように本発明の硬質被覆層は、下地層の薄層Cを構成する(Al,Ti)(ON)層、及び下地層の薄層Dを構成する(Al,Ti)N層、また、中間層を構成する(Al,Ti)(ON)層、さらに、上部層の薄層Aを構成する(Al,Cr)(ON)層、および、上部層の薄層Bを構成する(Al,Mn)(ON)層からなる。 そして、上記各層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーター(図示せず)で装置内を、例えば、500℃の温度に加熱した状態で、
(a)アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば、5.0Paの反応雰囲気とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の下地層の薄層Dである(Al,Ti)N層が形成される。
(b)ついで、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)して、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の下地層の薄層Cである(Al,Ti)(ON)層が形成される。
そして、前記(a),(b)を所定の合計層厚になるまで、交互に繰り返すことにより、本発明の下地層を形成することができる。
(c)ついで、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の中間層である(Al,Ti)(ON)層が形成される。
(d)ついで、アノード電極とカソード電極(蒸発源)としてのAl−Cr合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の薄層Aである(Al,Cr)(ON)層が形成される。
(e)ついで、装置内に所定組成のAl−Mn合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)としてのAl−Mn合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)とし、一方、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、前記薄層A上に所定の目標層厚の薄層Bを構成する(Al,Mn)(ON)層が形成される。
そして、前記(d)、(e)を所定の合計層厚になるまで、交互に繰り返すことにより、本発明の上部層を形成することができる。
その結果、前記(a)〜(e)の工程によって、本発明の硬質被覆層を蒸着形成することができる。
As shown in FIG. 3, the hard coating layer of the present invention includes the (Al, Ti) (ON) layer constituting the thin layer C of the foundation layer and the (Al, Ti) N constituting the thin layer D of the foundation layer. (Al, Ti) (ON) layer constituting an intermediate layer, and (Al, Cr) (ON) layer constituting an upper layer thin layer A and thin layer B constituting an upper layer (Al, Mn) (ON) layer. Each of the above layers is, for example, a tool base is loaded into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. 1, and the inside of the apparatus is heated by a heater (not shown). In a state heated to a temperature of 500 ° C.,
(A) For example, arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source) under the condition of current: 110 A, and simultaneously, nitrogen gas is introduced into the apparatus as a reaction gas. For example, the reaction atmosphere is 5.0 Pa, and the tool substrate is vapor-deposited for a predetermined time under the condition that a bias voltage of −100 V is applied, for example. The (Al, Ti) N layer which is the layer D is formed.
(B) Next, an arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source), for example, under the condition of current: 110 A, and the atmosphere in the apparatus is simultaneously changed to 0.5 to 9. In a mixed atmosphere of oxygen and nitrogen of 0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 50:50), the tool base is deposited for a predetermined time under the condition that a bias voltage of, for example, −100 V is applied. An (Al, Ti) (ON) layer, which is a thin layer C of a base layer having a predetermined target layer thickness, is formed on the surface of the substrate.
The underlayer of the present invention can be formed by alternately repeating the steps (a) and (b) until a predetermined total layer thickness is reached.
(C) Next, an arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source), for example, under the condition of current: 110 A, and the atmosphere in the apparatus is simultaneously changed to 0.5 to 9. A tool base is formed by vapor deposition for a predetermined time under a condition in which a bias voltage of −100 V is applied, for example, in an oxygen-nitrogen mixed atmosphere of 0 Pa (for example, a ratio of flow rate% of oxygen: nitrogen is 50:50). An (Al, Ti) (ON) layer, which is an intermediate layer having a predetermined target layer thickness, is formed on the surface.
(D) Next, arc discharge is generated between the anode electrode and the Al—Cr alloy as the cathode electrode (evaporation source), for example, under the condition of current: 110 A, and at the same time, the atmosphere in the apparatus is changed to 0.5 to 9. A tool base is formed by vapor deposition for a predetermined time under a condition in which a bias voltage of −100 V is applied, for example, in an oxygen-nitrogen mixed atmosphere of 0 Pa (for example, a ratio of flow rate% of oxygen: nitrogen is 50:50). The (Al, Cr) (ON) layer, which is a thin layer A having a predetermined target layer thickness, is formed on the surface.
(E) Next, a cathode electrode (evaporation source) made of an Al—Mn alloy having a predetermined composition is arranged in the apparatus, and, for example, an electric current is provided between the anode electrode and the Al—Mn alloy as the cathode electrode (evaporation source). : Arc discharge is generated under the condition of 110A, and the atmosphere in the apparatus is set to an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of oxygen: nitrogen flow% is 50:50). For example, an (Al, Mn) (ON) layer constituting a thin layer B having a predetermined target layer thickness is formed on the thin layer A by performing deposition for a predetermined time under the condition that a bias voltage of −100 V is applied. It is formed.
The upper layer of the present invention can be formed by alternately repeating the steps (d) and (e) until a predetermined total layer thickness is reached.
As a result, the hard coating layer of the present invention can be formed by vapor deposition by the steps (a) to (e).

本発明の被覆工具の一態様によれば、硬質被覆層が、(Al,Ti)(ON)層からなる薄層Cと(Al,Ti)N層からなる薄層Dとの交互積層構造を有する下地層と、(Al,Ti)(ON)層からなる中間層と、さらに、(Al,Cr)(ON)層からなる薄層Aと(Al,Mn)(ON)層からなる薄層Bとの交互積層構造を有する上部層から構成されていることによって、下地層は工具基体と中間層に対する密着強度を高め、また、中間層は、下地層と上部層の密着強度を高め、さらに、上部層の薄層Aが奏するすぐれた耐摩耗性および耐熱性と、薄層Bが奏するすぐれた高温硬さと耐熱性および靭性との相乗効果によって、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性、耐欠損性、耐チッピング性を有することから、その結果、特に、チタン合金、耐熱合金、ステンレス鋼等の大きな発熱を伴い、かつ、高負荷のかかる高速切削加工であっても、長期に亘ってすぐれた耐摩耗性、耐熱性を発揮するものである。   According to one aspect of the coated tool of the present invention, the hard coating layer has an alternately laminated structure of a thin layer C composed of an (Al, Ti) (ON) layer and a thin layer D composed of an (Al, Ti) N layer. A base layer, an intermediate layer made of (Al, Ti) (ON) layer, and a thin layer A made of (Al, Cr) (ON) layer and a thin layer made of (Al, Mn) (ON) layer By being composed of an upper layer having an alternating laminated structure with B, the underlayer increases the adhesion strength between the tool base and the intermediate layer, and the intermediate layer increases the adhesion strength between the underlayer and the upper layer, Due to the synergistic effect of the excellent wear resistance and heat resistance of the thin layer A of the upper layer and the excellent high temperature hardness and heat resistance and toughness of the thin layer B, the hard coating layer has excellent high temperature hardness, Heat resistance, high temperature strength, wear resistance, lubricity, impact resistance, chipping resistance, chip resistance As a result, it has excellent wear resistance over a long period of time even with high-speed cutting with high heat generation, especially with titanium alloys, heat-resistant alloys, stainless steel, etc. It exhibits heat resistance.

本発明被覆工具および比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool and a comparative coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 従来技術を説明する従来のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the conventional arc ion plating apparatus explaining a prior art. 本発明被覆工具を構成する硬質被覆層の縦断面構成図である。It is a longitudinal cross-sectional block diagram of the hard coating layer which comprises this invention coated tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−6を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended into the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C. for 1 hour, and after sintering, tool bases A-1 to A-6 made of WC-base cemented carbide having an ISO standard / CNMG120408 insert shape were formed. .

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−4を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate B made of TiCN base cermet having an ISO standard / CNMG120408 insert shape was used. -1 to B-4 were formed.

(a)ついで、前記工具基体A−1〜A−6およびB−1〜B−4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する3つのカソード電極(蒸発源)を配置し、第1の電極として、下地層の薄層C、薄層Dおよび中間層形成用の所定組成を有するAl−Ti合金、第2の電極として、薄層A形成用の所定組成を有するAl−Cr合金、第3の電極として、薄層B形成用の所定組成を有するAl−Mn合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に130Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の下地層の薄層Dである(Al,Ti)N層を蒸着形成した。
(d)次に、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:130Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)して、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、表3に示される目標組成、目標層厚の下地層の薄層Cである(Al,Ti)(ON)層を蒸着形成した。
前記(c)、(d)を交互に繰り返して、表3に示される目標合計平均層厚の薄層Cと薄層Dの交互積層からなる下地層を工具基体表面に蒸着形成する。
(e)次に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば酸素:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に130Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の中間層としての(Al,Ti)(ON)層を蒸着形成した。
(f)次に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば酸素:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Cr合金電極とアノード電極との間に130Aの電流を流してアーク放電を発生させて、表4に示される目標組成、目標層厚の薄層Aとしての(Al,Cr)(ON)層を蒸着形成した。
(g)次に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば酸素:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−50〜−150Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Mn合金とアノード電極との間に130Aの電流を流してアーク放電を発生させ、前記薄層Aの上に、表4に示される目標組成、目標層厚の薄層Bとしての(Al,Mn)(ON)層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
前記(f)、(g)を交互に繰り返して、表4に示される目標合計平均層厚の交互積層を中間層の上に蒸着形成した。
前記(a)〜(g)によって、本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-6 and B-1 to B-4 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. The first electrode is provided with three cathode electrodes (evaporation sources) that are mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and that face each other across the rotary table. The Al—Ti alloy having a predetermined composition for forming the thin layer C, the thin layer D and the intermediate layer of the underlayer, the Al—Cr alloy having the predetermined composition for forming the thin layer A as the second electrode, As an electrode, an Al-Mn alloy having a predetermined composition for forming the thin layer B is disposed,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an arc discharge is generated by passing a current of 100 A between the Al—Ti alloy (cathode electrode) and the anode electrode, and the tool base surface is bombard washed.
(C) Next, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of -20 to -150 V is applied to the rotating tool base while rotating on the rotary table, and the cathode An arc discharge is generated by passing a current of 130 A between the Al—Ti alloy electrode, which is an electrode (evaporation source), and the anode electrode, and a thin layer D of an underlayer having a target composition and a target layer thickness shown in Table 3 The (Al, Ti) N layer is formed by vapor deposition.
(D) Next, for example, arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source) under the condition of current: 130 A, and at the same time, the atmosphere in the apparatus is changed to 0.5-9. By depositing on the tool base for a predetermined time under a condition of applying a bias voltage of, for example, −100 V, in an oxygen / nitrogen mixed atmosphere of 0.0 Pa (for example, the ratio of flow rate% of oxygen: nitrogen is 50:50), The (Al, Ti) (ON) layer, which is a thin layer C of the base layer having the target composition and target layer thickness shown in Table 3, was formed by vapor deposition.
The above-mentioned (c) and (d) are alternately repeated to form an underlayer consisting of alternating layers of thin layers C and D having the target total average layer thickness shown in Table 3 on the surface of the tool base.
(E) Next, the atmosphere inside the apparatus is maintained in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 50:50), and rotates while rotating on the rotary table. A DC bias voltage of −20 to −150 V was applied to the tool base, and a current of 130 A was passed between the Al—Ti alloy electrode serving as the cathode electrode (evaporation source) and the anode electrode to generate arc discharge. The (Al, Ti) (ON) layer as an intermediate layer having the target composition and target layer thickness shown in FIG.
(F) Next, the atmosphere in the apparatus is maintained in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 50:50), and rotates while rotating on the rotary table. A DC bias voltage of −20 to −150 V was applied to the tool base, and a current of 130 A was passed between the Al—Cr alloy electrode as the cathode electrode (evaporation source) and the anode electrode to generate arc discharge. (Al, Cr) (ON) layer as the thin layer A having the target composition and target layer thickness shown in FIG.
(G) Next, the atmosphere in the apparatus is kept in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 50:50), and rotates while rotating on the rotary table. A direct current bias voltage of −50 to −150 V is applied to the tool base, and a current of 130 A is passed between the Al—Mn alloy of the cathode electrode and the anode electrode to generate an arc discharge. On top of this, an (Al, Mn) (ON) layer as a thin layer B having the target composition and target layer thickness shown in Table 4 is deposited and then arc discharge between the cathode electrode (evaporation source) and the anode electrode Stop
The above (f) and (g) were alternately repeated to form an alternate lamination having a target total average layer thickness shown in Table 4 on the intermediate layer.
Surface-coated inserts (hereinafter referred to as the present invention-coated inserts) 1 to 10 as the present invention-coated tools were produced by the above (a) to (g), respectively.

また、比較の目的で、
(a)前記工具基体A−1〜A−6およびB−1〜B−4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する3つのカソード電極(蒸発源)を配置し、第1の電極として、下地層の薄層C、薄層Dおよび中間層形成用の所定組成を有するAl−Ti合金、第2の電極として、薄層A形成用の所定組成を有するAl−Cr合金、第3の電極として、薄層B形成用の所定組成を有するAl−Mn合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつAl−Ti合金(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paの窒素雰囲気に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表5に示される目標組成、目標層厚の下地層の薄層Dである(Al,Ti)N層を蒸着形成した。
(d)次に、アノード電極とカソード電極(蒸発源)としてのAl−Ti合金との間に、例えば、電流:120Aの条件でアーク放電を発生させ、同時に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)して、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、表3に示される目標組成、目標層厚の下地層の薄層Cである(Al,Ti)(ON)層を蒸着形成した。
前記(c)、(d)を交互に繰り返して、表3に示される目標合計平均層厚の薄層Cと薄層Dの交互積層からなる下地層を工具基体表面に蒸着形成する。
(e)次に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば酸素:窒素の流量%の比が90:10)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Ti合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表5に示される目標組成、目標層厚の中間層としての(Al,Ti)(ON)層を蒸着形成した。(f)次に装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば、酸素:窒素の流量%の比が90:10)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるAl−Cr合金電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表6に示される目標組成、目標層厚の薄層Aとしての(Al,Cr)(ON)層を蒸着形成した。
(g)引き続いて、装置内雰囲気を0.5〜9.0Paの酸素窒素混合雰囲気(例えば酸素:窒素の流量%の比が5:95)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−500Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Mn合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表6に示される目標組成、目標層厚の薄層Bとしての(Al,Mn)(ON)層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
前記(f)、(g)を交互に繰り返して、表6に示される目標合計平均層厚の交互積層を中間層の上に蒸着形成した。
前記(a)〜(g)によって、比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜6をそれぞれ製造した。
各層の形成条件(バイアス電圧、酸素分圧、窒素分圧)を同じく表5、6に示す。
なお、比較被覆インサート1については、交互積層の形成を行わず、(Al,Ti)N層のみからなる硬質被覆層とした。
For comparison purposes,
(A) Each of the tool bases A-1 to A-6 and B-1 to B-4 is ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table, and arranged with three cathode electrodes (evaporation sources) facing each other across the rotary table, as the first electrode, An Al—Ti alloy having a predetermined composition for forming the thin layer C, the thin layer D and the intermediate layer of the underlayer, and an Al—Cr alloy having a predetermined composition for forming the thin layer A as the second electrode, a third electrode As an Al-Mn alloy having a predetermined composition for forming the thin layer B,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied, and an arc discharge is generated by passing a current of 100 A between the Al—Ti alloy (cathode electrode) and the anode electrode, and the tool base surface is bombard washed.
(C) Next, the atmosphere in the apparatus is maintained in a nitrogen atmosphere of 0.5 to 9.0 Pa, and a DC bias voltage of -20 to -150 V is applied to the rotating tool base while rotating on the rotary table, and the cathode An arc discharge is generated by flowing a current of 120 A between the Al—Ti alloy electrode, which is an electrode (evaporation source), and the anode electrode, and the underlayer D having the target composition and target layer thickness shown in Table 5 is generated. The (Al, Ti) N layer is formed by vapor deposition.
(D) Next, for example, an arc discharge is generated between the anode electrode and the Al—Ti alloy as the cathode electrode (evaporation source) under the condition of current: 120 A, and the atmosphere in the apparatus is changed to 0.5 to 9 at the same time. By depositing on the tool base for a predetermined time under a condition of applying a bias voltage of, for example, −100 V, in an oxygen / nitrogen mixed atmosphere of 0.0 Pa (for example, the ratio of flow rate% of oxygen: nitrogen is 50:50), The (Al, Ti) (ON) layer, which is a thin layer C of the base layer having the target composition and target layer thickness shown in Table 3, was formed by vapor deposition.
The above-mentioned (c) and (d) are alternately repeated to form an underlayer consisting of alternating layers of thin layers C and D having the target total average layer thickness shown in Table 3 on the surface of the tool base.
(E) Next, the atmosphere inside the apparatus is maintained in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 90:10), and rotates while rotating on the rotary table. A DC bias voltage of −20 to −150 V is applied to the tool base, and an arc discharge is generated by causing a current of 120 A to flow between the Al—Ti alloy electrode, which is the cathode electrode (evaporation source), and the anode electrode. (Al, Ti) (ON) layer as an intermediate layer having the target composition and target layer thickness shown in FIG. (F) Next, the atmosphere in the apparatus is maintained in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the oxygen: nitrogen flow rate ratio is 90:10), and rotates while rotating on the rotary table. A DC bias voltage of −20 to −150 V is applied to the tool base, and a current of 120 A is passed between the Al—Cr alloy electrode, which is the cathode electrode (evaporation source), and the anode electrode to generate arc discharge. The (Al, Cr) (ON) layer as the thin layer A having the target composition and target layer thickness shown in Table 6 was formed by vapor deposition.
(G) Subsequently, the atmosphere inside the apparatus is maintained in an oxygen-nitrogen mixed atmosphere of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 5:95) and rotates while rotating on the rotary table. A DC bias voltage of −20 to −500 V is applied to the tool base to be used, and a current of 120 A is passed between the Al—Mn alloy of the cathode electrode and the anode electrode to generate an arc discharge. Further, after the (Al, Mn) (ON) layer as the thin layer B having the target composition and the target layer thickness shown in Table 6 is formed by vapor deposition, arc discharge between the cathode electrode (evaporation source) and the anode electrode is performed. Stop,
The above (f) and (g) were alternately repeated to form an alternate lamination having a target total average layer thickness shown in Table 6 on the intermediate layer.
Surface coated inserts (hereinafter referred to as comparative coated inserts) 1 to 6 as comparative coated tools were produced by the above (a) to (g), respectively.
The formation conditions (bias voltage, oxygen partial pressure, nitrogen partial pressure) of each layer are also shown in Tables 5 and 6.
In addition, about the comparison covering insert 1, it did not form alternate lamination | stacking, but was taken as the hard coating layer which consists only of (Al, Ti) N layer.

本発明被覆インサート1〜10および比較被覆インサート1〜6について、以下の切削条件で切削試験を行った。
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の丸棒、
切削速度: 60 m/min.、
切り込み: 1.8 mm、
送り: 0.22 mm/rev.、
切削時間: 6 分、
の条件(切削条件A)でのNi基合金の湿式連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、35m/min.、0.15mm/rev.)、
被削材:JIS・SUS304(HB180)の丸棒、
切削速度: 150m/min.、
切り込み: 2.0mm、
送り: 0.32mm/rev.、
切削時間: 9 分、
の条件(切削条件B)でのステンレス鋼の湿式連続高送り切削加工試験(通常の切削速度および送りは、それぞれ、120 m/min.、0.3 mm/rev.)、
被削材:質量%で、Ti−6%Al−4%Vの組成を有するTi基合金の丸棒、
切削速度: 120 m/min.、
切り込み: 2.2 mm、
送り: 0.28 mm/rev.、
切削時間: 11 分、
の条件(切削条件C)でのTi基合金の湿式連続高速高切込切削加工試験(通常の切削速度、切込および送りは、それぞれ、100 m/min.、2.0mm.、0.2 mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
About this invention coated insert 1-10 and comparative coated insert 1-6, the cutting test was done on the following cutting conditions.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Ni-based alloy round bar having a composition of Si-0.2% Mn-0.05% Cu-0.04% C;
Cutting speed: 60 m / min. ,
Cutting depth: 1.8 mm,
Feed: 0.22 mm / rev. ,
Cutting time: 6 minutes,
Wet continuous high-speed high-feed cutting test of Ni-based alloy under the following conditions (cutting condition A) (normal cutting speed and feed are 35 m / min. And 0.15 mm / rev., Respectively),
Work material: JIS / SUS304 (HB180) round bar,
Cutting speed: 150 m / min. ,
Cutting depth: 2.0mm,
Feed: 0.32 mm / rev. ,
Cutting time: 9 minutes,
(Continuous cutting speed and feed rate are 120 m / min. And 0.3 mm / rev., Respectively)
Work material: Round bar of Ti base alloy having a composition of Ti-6% Al-4% V in mass%,
Cutting speed: 120 m / min. ,
Cutting depth: 2.2 mm,
Feed: 0.28 mm / rev. ,
Cutting time: 11 minutes,
Wet continuous high-speed high-cut cutting test of Ti-based alloy under the following conditions (cutting condition C) (normal cutting speed, cutting and feed are 100 m / min., 2.0 mm., 0.2 respectively. mm / rev.),
The flank wear width of the cutting edge was measured in any high-speed cutting test.
The measurement results are shown in Table 7.



実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−6をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder consisting of the above is blended in the composition shown in Table 1, wet mixed for 72 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-6 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured. .

ついで、これらの工具基体(エンドミル)A−1〜A−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表8に示される目標組成、目標層厚の(Al,Ti)N層からなる薄層Dと、表8に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる薄層Cと、同じく、表8に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる中間層と、表9に示される目標組成、目標層厚の(Al,Cr)(ON)層からなる薄層Aと(Al,Mn)(ON)層からなる薄層Bとの交互積層構造からなる表9に示される目標合計平均層厚の硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜10をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-6 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions, the thin layer D composed of the (Al, Ti) N layer having the target composition and the target layer thickness shown in Table 8, and the target composition and the target layer thickness (Al, Ti) shown in Table 8. The thin layer C composed of the (ON) layer, the target composition shown in Table 8, and the intermediate layer composed of the (Al, Ti) (ON) layer having the target layer thickness, and the target composition and target layer shown in Table 9. Hardness with a target total average layer thickness shown in Table 9 consisting of an alternating layered structure of thin layers A composed of (Al, Cr) (ON) layers and thin layers B composed of (Al, Mn) (ON) layers By forming the coating layer by vapor deposition, the surface-coated cemented carbide engine of the present invention as the coated tool of the present invention is used. Mill (hereinafter, the present invention refers to the coating end mill) 10 was prepared, respectively.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−5の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表8に示される形成条件(バイアス電圧、窒素分圧)を用いて、表10に示される目標組成、目標層厚の(Al,Ti)N層からなる薄層Dと、表10に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる薄層Cと、同じく、表10に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる中間層と、表11に示される目標組成、目標層厚の(Al,Cr)(ON)層からなる薄層Aと(Al,Mn)(ON)層からなる薄層Bとの交互積層構造からなる表8に示される目標合計平均層厚の硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。
なお、比較被覆エンドミル1については、交互積層の形成を行わず、(Al,Ti)N層のみの硬質被覆層とした。
For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-5 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Then, in the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 8, the target composition and the target layer thickness (Al, Ti) N layer shown in Table 10 are formed. The thin layer D and the thin layer C composed of the (Al, Ti) (ON) layer having the target composition and the target layer thickness shown in Table 10, and the target composition and the target layer thickness (Al, shown in Table 10). It consists of an intermediate layer composed of (Ti) (ON) layer, a thin layer A composed of (Al, Cr) (ON) layer and a (Al, Mn) (ON) layer of the target composition and target layer thickness shown in Table 11. Hard coating layer having a target total average layer thickness shown in Table 8 having an alternate laminated structure with thin layer B By vapor deposited surface coating cemented carbide end mills of the comparison coated tool (hereinafter, compared referred to as coated end mill) was produced, respectively 1-5.
In addition, about the comparison coating | coated end mill 1, the formation of an alternating lamination was not performed but it was set as the hard coating layer of only the (Al, Ti) N layer.

つぎに、本発明被覆エンドミル1〜10および比較被覆エンドミル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 65 m/min.、
溝深さ(切り込み): 1.8 mm、
テーブル送り: 140mm/分、
の条件でのNi基合金の湿式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、50 m/min.および1.0 mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
この測定結果を表9、11にそれぞれ示した。
Next, for the present invention coated end mills 1-10 and comparative coated end mills 1-5,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 65 m / min. ,
Groove depth (cut): 1.8 mm,
Table feed: 140mm / min,
Wet high-speed grooving test of Ni-based alloy under the following conditions (normal cutting speed and groove depth are 50 m / min. And 1.0 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Tables 9 and 11, respectively.





実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−6をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC base cemented carbide tool bases (drills) A-1 to A-6 each having a 30-degree two-blade shape were produced.

ついで、これらの工具基体(ドリル)A−1〜A−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される目標組成、目標層厚の(Al,Ti)N層からなる薄層Dと、表12に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる薄層Cと、同じく、、表12に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる中間層と、表13に示される目標組成、目標層厚の(Al,Cr)(ON)層からなる薄層Aと、同じく表9に示される目標組成および目標層厚の(Al,Mn)(ON)層からなる薄層Bとの交互積層構造からなる同じく表13に示される目標合計層厚の硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜10をそれぞれ製造した。   Next, the cutting blades of these tool bases (drills) A-1 to A-6 are subjected to honing, ultrasonically cleaned in acetone, and dried in the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the target composition shown in Table 12 and the thin layer D composed of the (Al, Ti) N layer of the target layer thickness, and the target composition and target layer thickness shown in Table 12 The thin layer C composed of the (Al, Ti) (ON) layer, and the intermediate layer composed of the (Al, Ti) (ON) layer having the target composition and target layer thickness shown in Table 12, and A thin layer A composed of an (Al, Cr) (ON) layer having a target composition and a target layer thickness, and a thin layer consisting of an (Al, Mn) (ON) layer having a target composition and a target layer thickness also shown in Table 9. The hard cover having the target total layer thickness shown in Table 13 and having an alternate laminated structure with the layer B By depositing a layer, the present invention surface-coated cemented carbide drills of the present invention coated tool (hereinafter, the present invention refers to the coating drill) 1 to 10 were prepared, respectively.

また、比較の目的で、前記工具基体(ドリル)A−1、2、4〜6の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表14に示される形成条件(バイアス電圧、窒素分圧)を用いて、表14に示される目標組成、目標層厚の(Al,Ti)N層からなる薄層Dと、表14に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる薄層Cと、同じく、表14に示される目標組成、目標層厚の(Al,Ti)(ON)層からなる中間層と、表15に示される目標組成、目標層厚の(Al,Cr)(ON)層からなる薄層Aと、表15に示される目標組成、目標層厚の(Al,Mn)(ON)層からなる薄層Bとの交互積層構造からなる表15に示される目標合計層厚の硬質被覆層を蒸着形成することにより、比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。なお、比較被覆ドリル1については、交互積層の形成を行わず、(Al,Ti)N層のみの硬質被覆層とした。   For the purpose of comparison, the surfaces of the tool bases (drills) A-1, 2, 4 to 6 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc shown in FIG. In the same process as in Example 1 using the ion plating apparatus, the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 14 were used, and the target composition and target layer thickness (Al , Ti) a thin layer D composed of an N layer, a target composition shown in Table 14, a thin layer C composed of an (Al, Ti) (ON) layer having a target layer thickness, and a target composition shown in Table 14; An intermediate layer composed of an (Al, Ti) (ON) layer having a target layer thickness, a thin layer A composed of an (Al, Cr) (ON) layer having a target composition and a target layer thickness shown in Table 15, and Table 15 Intersection with thin layer B consisting of (Al, Mn) (ON) layers with the indicated target composition and target layer thickness Surface-coated carbide drills (hereinafter referred to as comparative coated drills) 1 to 5 as comparative coated tools are manufactured by vapor-depositing a hard coated layer having a target total layer thickness shown in Table 15 having a laminated structure. did. In addition, about the comparison covering drill 1, the formation of an alternating lamination was not performed but it was set as the hard coating layer only of the (Al, Ti) N layer.

つぎに、本発明被覆ドリル1〜10および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 65 m/min.、
送り: 0.18 mm/rev、
穴深さ: 25 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、20m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。
この測定結果を表13、15にそれぞれ示した。
Next, for the present invention coated drills 1-10 and comparative coated drills 1-5,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 65 m / min. ,
Feed: 0.18 mm / rev,
Hole depth: 25 mm,
Wet high-speed drilling machining test of Ni-based alloy under the conditions (normal cutting speed and feed are 20 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm.
The measurement results are shown in Tables 13 and 15, respectively.





この結果得られた本発明被覆工具としての本発明被覆インサート1〜10、本発明被覆エンドミル1〜10、および本発明被覆ドリル1〜10の硬質被覆層を構成する薄層Aである(Al,Cr)(ON)層と薄層Bである(Al,Mn)(ON)層の組成、比較被覆工具としての比較被覆インサート1〜6、比較被覆エンドミル1〜5、および、比較被覆ドリル1〜5の硬質被覆層を構成する薄層Aである(Al,Cr)(ON)層と薄層Bである(Al,Mn)(ON)層の組成、また、下地層である(Al,Ti)N層からなる薄層Dと、(Al,Ti)(ON)層からなる薄層Cの組成、さらに、中間層である(Al,Ti)(ON)層の組成を透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   It is a thin layer A constituting the hard coating layer of the present coated inserts 1 to 10, the present coated end mills 1 to 10, and the present coated drills 1 to 10 as the present coated tool obtained as a result (Al, Cr) (ON) layer and thin layer B (Al, Mn) (ON) layer composition, comparative coated inserts 1-6 as comparative coated tools, comparative coated end mills 1-5, and comparative coated drill 1 The composition of the (Al, Cr) (ON) layer which is the thin layer A and the (Al, Mn) (ON) layer which is the thin layer B constituting the hard coating layer 5 and the underlying layer (Al, Ti ) The composition of the thin layer D consisting of the N layer and the thin layer C consisting of the (Al, Ti) (ON) layer, and the composition of the (Al, Ti) (ON) layer as the intermediate layer were measured using a transmission electron microscope. Measured by the energy dispersive X-ray analysis method used. It showed target composition substantially the same composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average layer thickness (average value of five places) substantially equal to target layer thickness. .

表7、9、11、13、15に示される結果から、本発明被覆工具は、工具基体の上に所定の組成、目標層厚の薄層Cと薄層Dの交互積層からなる下地層、さらに、所定の組成、目標層厚の中間層を形成した後、所定の組成、目標層厚の薄層Aと、所定の組成、目標層厚の薄層Bとからなる交互積層を形成した結果、薄層Aである(Al,Cr)(ON)層によって、工具基体表面に強固に密着接合した状態で、耐欠損性、高温硬さ、高温強度が向上し、薄層Bである(Al,Mn)(ON)層がすぐれた耐熱性および耐摩耗性を有するとともに、組成が異なる薄層Aと薄層Bとの交互積層による相乗効果によって、耐衝撃性、耐チッピング性、耐クラック進展性を向上させる結果、チタン合金、耐熱合金、ステンレス鋼等の高速切削加工でも、すぐれた耐欠損性が確保され、チッピングの発生なく、長期に亘ってすぐれた耐摩耗性を発揮する。
これに対して、硬質被覆層を構成する各層のいずれかが本発明で規定した組成、平均層厚を逸脱する比較被覆工具においては、いずれもチタン合金、耐熱合金、ステンレス鋼の高速切削加工では、耐摩耗性が十分でなく、かつ皮膜の靭性が低下するために、切刃部にチッピングが発生するようになり、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 7, 9, 11, 13, and 15, the coated tool of the present invention has a predetermined composition on the tool substrate, an underlayer comprising alternating layers of thin layers C and D having a target layer thickness, Further, after forming an intermediate layer having a predetermined composition and a target layer thickness, a result of forming an alternate stack composed of a thin layer A having a predetermined composition and a target layer thickness and a thin layer B having a predetermined composition and a target layer thickness In the state in which the (Al, Cr) (ON) layer, which is the thin layer A, is firmly bonded to the surface of the tool substrate, the chipping resistance, high temperature hardness, and high temperature strength are improved, and the thin layer B (Al , Mn) (ON) layer has excellent heat resistance and wear resistance, and due to the synergistic effect of alternating lamination of thin layer A and thin layer B with different compositions, impact resistance, chipping resistance, crack resistance progress As a result, the high-speed cutting of titanium alloy, heat-resistant alloy, stainless steel, etc. , Excellent chipping resistance can be secured, without chipping, exhibit excellent wear resistance for a long time.
On the other hand, in the comparative coated tool in which any one of the layers constituting the hard coating layer deviates from the composition and average layer thickness specified in the present invention, all are high-speed cutting of titanium alloy, heat-resistant alloy, and stainless steel. It is apparent that the wear resistance is not sufficient and the toughness of the film is reduced, so that chipping occurs at the cutting edge and the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、チタン合金、耐熱合金、ステンレス鋼等の高速切削加工でもすぐれた耐摩耗性と耐欠損性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is excellent in wear resistance and fracture resistance in high-speed cutting such as titanium alloy, heat-resistant alloy, stainless steel as well as cutting of general work materials. Since it exhibits excellent cutting performance and exhibits excellent cutting performance over a long period of time, it can satisfactorily respond to automation of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)前記工具基体表面に形成された薄層Cと薄層Dの交互積層構造からなり、交互積層の合計平均層厚が0.5〜5.0μmである下地層と、
(b)前記下地層の表面に形成された0.1〜1.0μmの平均層厚を有し、かつ、
組成式:(Al1−aTi)(O1−b)(ここで、aはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦a≦0.75である。また、bはOとNの合量に占めるNの含有割合を示し、原子比で、0.50≦b≦0.9)を満足する中間層と、
(c)前記中間層の表面に形成された薄層Aと薄層Bの交互積層構造からなり、交互積層の合計平均層厚が0.5〜5.0μmである上部層とからなり、
(d)前記薄層Cは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−aTi)(O1−b)(ここで、aはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦a≦0.75である。また、bはOとNの合量に占めるNの含有割合を示し、原子比で、0.50≦b≦0.9)を満足するAlとTiとの複合窒酸化物層からなり、
(e)前記薄層Dは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−gTi)N(ここで、gはAlとTiの合量に占めるTiの含有割合を示し、原子比で、0.25≦g≦0.75である)を満足するAlとTiとの複合窒化物層からなり、
(f)前記薄層Aは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−cCr)(O1−d)(ここで、cはAlとCrの合量に占めるCrの含有割合を示し、原子比で、0.20≦c≦0.60である。また、dはOとNの合量に占めるNの含有割合を示し、原子比で、0.01≦d≦0.50)を満足するAlとCrとの複合窒酸化物層からなり、
(g)前記薄層Bは、1〜50nmの一層平均層厚を有し、かつ、
組成式:(Al1−eMn)(O1−f)(ここで、eはAlとMnの合量に占めるMnの含有割合を示し、原子比で、0.10≦e≦0.50である。また、fはOとNの合量に占めるNの含有割合を示し、原子比で、0.01≦f≦0.50)を満足するAlとMnとの複合窒酸化物層からなり、
(h)前記下地層および前記上部層の層厚は、前記中間層の層厚よりも厚く、前記硬質被覆層全体の合計平均層厚は1.1〜11.0μmであることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) an underlayer having an alternating layered structure of thin layers C and D formed on the surface of the tool base, wherein the total average layer thickness of the alternating layers is 0.5 to 5.0 μm;
(B) having an average layer thickness of 0.1 to 1.0 μm formed on the surface of the underlayer, and
Composition formula: (Al 1-a Ti a ) (O 1-b N b ) (where a represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ a ≦ B represents the content ratio of N in the total amount of O and N, and an intermediate layer satisfying an atomic ratio of 0.50 ≦ b ≦ 0.9);
(C) It consists of an alternating layered structure of thin layers A and thin layers B formed on the surface of the intermediate layer, consisting of an upper layer having a total average layer thickness of 0.5 to 5.0 μm.
(D) The thin layer C has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-a Ti a ) (O 1-b N b ) (where a represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ a ≦ Further, b represents the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Ti satisfying the atomic ratio of 0.50 ≦ b ≦ 0.9) Consists of layers
(E) the thin layer D has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-g Ti g ) N (where g represents the content ratio of Ti in the total amount of Al and Ti, and the atomic ratio is 0.25 ≦ g ≦ 0.75) It consists of a composite nitride layer of Al and Ti that is satisfactory,
(F) The thin layer A has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-c Cr c ) (O 1-d N d ) (where c represents the content ratio of Cr in the total amount of Al and Cr, and the atomic ratio is 0.20 ≦ c ≦ In addition, d represents the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Cr satisfying the atomic ratio of 0.01 ≦ d ≦ 0.50) Consists of layers
(G) The thin layer B has an average layer thickness of 1 to 50 nm, and
Composition formula: (Al 1-e Mn e ) (O 1-f N f ) (where e represents the content ratio of Mn in the total amount of Al and Mn, and the atomic ratio is 0.10 ≦ e ≦ In addition, f indicates the content ratio of N in the total amount of O and N, and the composite nitridation of Al and Mn satisfying the atomic ratio of 0.01 ≦ f ≦ 0.50) Consists of layers
(H) The base layer and the upper layer are thicker than the intermediate layer, and the total average thickness of the hard coating layer is 1.1 to 11.0 μm. Surface coated cutting tool.
JP2015067706A 2015-03-27 2015-03-27 Surface-coated cutting tool Pending JP2016185589A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015067706A JP2016185589A (en) 2015-03-27 2015-03-27 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015067706A JP2016185589A (en) 2015-03-27 2015-03-27 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2016185589A true JP2016185589A (en) 2016-10-27

Family

ID=57202400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015067706A Pending JP2016185589A (en) 2015-03-27 2015-03-27 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2016185589A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382061A1 (en) 2017-03-28 2018-10-03 Tungaloy Corporation Coated cutting tool
JP2021000668A (en) * 2019-06-19 2021-01-07 住友電気工業株式会社 Surface-coated cutting tool
JP2021000667A (en) * 2019-06-19 2021-01-07 住友電気工業株式会社 Surface-coated cutting tool
JP7409233B2 (en) 2020-06-08 2024-01-09 住友電気工業株式会社 Cutting tools

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3382061A1 (en) 2017-03-28 2018-10-03 Tungaloy Corporation Coated cutting tool
US10710169B2 (en) 2017-03-28 2020-07-14 Tungaloy Corporation Coated cutting tool
JP2021000668A (en) * 2019-06-19 2021-01-07 住友電気工業株式会社 Surface-coated cutting tool
JP2021000667A (en) * 2019-06-19 2021-01-07 住友電気工業株式会社 Surface-coated cutting tool
JP7251348B2 (en) 2019-06-19 2023-04-04 住友電気工業株式会社 surface coated cutting tools
JP7251347B2 (en) 2019-06-19 2023-04-04 住友電気工業株式会社 surface coated cutting tools
JP7409233B2 (en) 2020-06-08 2024-01-09 住友電気工業株式会社 Cutting tools

Similar Documents

Publication Publication Date Title
JP6011249B2 (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
WO2014061292A1 (en) Surface-coated cutting tool
JP5979438B2 (en) Surface coated cutting tool
JP5783462B2 (en) Surface coated cutting tool
JP2016165787A (en) Surface-coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP5594569B2 (en) Surface coated cutting tool
JP2014188637A (en) Surface-coated cutting tool
JP6233588B2 (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP7110352B2 (en) Hard film and hard film-coated parts
JP5979437B2 (en) Surface coated cutting tool
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP6206289B2 (en) Surface coated cutting tool
JP6221872B2 (en) Surface coated cutting tool
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2014188636A (en) Surface-coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP5686254B2 (en) Surface coated cutting tool
JP5975342B2 (en) Surface coated cutting tool
JP6206288B2 (en) Surface coated cutting tool
JP2011189471A (en) Surface coated cutting tool