JP6206288B2 - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP6206288B2
JP6206288B2 JP2014063115A JP2014063115A JP6206288B2 JP 6206288 B2 JP6206288 B2 JP 6206288B2 JP 2014063115 A JP2014063115 A JP 2014063115A JP 2014063115 A JP2014063115 A JP 2014063115A JP 6206288 B2 JP6206288 B2 JP 6206288B2
Authority
JP
Japan
Prior art keywords
layer
thin layer
tool
cutting
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014063115A
Other languages
Japanese (ja)
Other versions
JP2015182207A (en
Inventor
大介 風見
大介 風見
英利 淺沼
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2014063115A priority Critical patent/JP6206288B2/en
Publication of JP2015182207A publication Critical patent/JP2015182207A/en
Application granted granted Critical
Publication of JP6206288B2 publication Critical patent/JP6206288B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、表面被覆切削工具(以下、被覆工具という)に関し、さらに詳しくは、例えば、軟鋼、低炭素鋼等の高熱発生を伴うとともに切刃への溶着性が著しい被削材を高速切削した場合に、硬質被覆層がすぐれた高温安定性、耐熱性、耐摩耗性、耐溶着性を発揮する被覆工具に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool). More specifically, for example, high-speed cutting is performed on a work material that is accompanied by high heat generation, such as mild steel and low-carbon steel, and has remarkable weldability to a cutting edge. In particular, the present invention relates to a coated tool that exhibits excellent high temperature stability, heat resistance, wear resistance, and welding resistance with a hard coating layer.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミル工具などが知られている。   In general, coated tools are used for turning and planing of work materials such as various types of steel and cast iron, inserts that can be used detachably attached to the tip of a cutting tool, drilling processing of work materials, etc. There are drills, miniature drills, solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material, etc. Also, inserts are detachably attached and cutting is performed in the same way as solid type end mills Insert type end mill tools are known.

近年、金属材料の切削加工においては高能率化の要求が高く、切削速度を高速化させることが求められている。このため、切削工具の工具基体表面を被覆する被膜に対して耐摩耗性や耐欠損性を向上させることが要求されている。 In recent years, there is a high demand for higher efficiency in cutting metal materials, and it is required to increase the cutting speed. For this reason, it is requested | required that a wear resistance and a fracture | rupture resistance should be improved with respect to the film which coat | covers the tool base | substrate surface of a cutting tool.

特許文献1には、アルミニウム酸化物を基とする硬質被覆層であって、Al1−x(O1−y(0≦x≦0.5、0<y≦0.4、z>0)で表される組成を有し、この組成におけるMは、Ti,Zr,V,Nb,Mo,W,Y,Mg,Si,Bから選択される少なくとも1種の元素であるAlM(ON)系硬質被覆層が開示されている。さらに同文献には、このような硬質被覆層は、耐摩耗性と耐熱性にすぐれており、基材の温度が1000℃以下で、具体的には400〜600℃で形成できると開示されている。 Patent Document 1 discloses a hard coating layer based on an aluminum oxide, and Al 1-x M x (O 1-y N y ) z (0 ≦ x ≦ 0.5, 0 <y ≦ 0. 4, z> 0), and M in this composition is at least one element selected from Ti, Zr, V, Nb, Mo, W, Y, Mg, Si, and B An AlM (ON) hard coating layer is disclosed. Further, the same document discloses that such a hard coating layer is excellent in wear resistance and heat resistance, and can be formed at a substrate temperature of 1000 ° C. or lower, specifically 400 to 600 ° C. Yes.

また、特許文献2は、被覆工具の工具基体上に被膜を形成するものであって、この被膜が、第1超多層膜と第2超多層膜とを各々1以上交互に積層させてなる複合超多層膜を含み、前記第1超多層膜が、A1層とB層とを各々1層以上交互に積層することにより構成され、前記第2超多層膜が、A2層とC層とを各々1層以上交互に積層することにより構成され、前記A1層とA2層が、各々TiN、TiCN、TiAlNまたはTiAlCNのいずれかにより構成され、前記B層が、TiSiNまたはTiSiCNにより構成され、前記C層が、AlCrNまたはAlCrCNにより構成されることにより、耐摩耗性と耐熱性を維持しつつ、脆性の問題を低減した積層系硬質被覆層を有する被覆工具を提供することを開示している。   Further, Patent Document 2 forms a film on a tool base of a coated tool, and this film is a composite in which one or more first super multi-layer films and one or more second super multi-layer films are alternately laminated. Including a super multi-layer film, wherein the first super multi-layer film is formed by alternately laminating one or more layers each of A1 layers and B layers, and the second super multi-layer film comprises A2 layers and C layers, respectively. It is configured by alternately laminating one or more layers, the A1 layer and the A2 layer are each composed of any one of TiN, TiCN, TiAlN, or TiAlCN, the B layer is composed of TiSiN or TiSiCN, and the C layer Discloses providing a coated tool having a laminated hard coating layer with reduced brittleness problems while maintaining wear resistance and heat resistance by being composed of AlCrN or AlCrCN.

特開2010−236092号公報JP 2010-236092 A 国際公開2008/146727号International Publication No. 2008/146727

ところが、近年の切削加工装置の自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらには低コスト化の要求は強く、これに伴い、切削工具には被削材の材種にできるだけ影響を受けない汎用性、すなわち、できるだけ多くの材種の切削加工が可能な切削工具が求められる傾向にあるが、前記従来被覆工具を、低炭素鋼、軟鋼等の高い発熱を伴うとともに、切刃部への溶着性が著しい高速切削条件で切削した場合には、潤滑性が不足し、その結果、被削材が切刃に溶着し、それが原因となってチッピングが発生し、比較的短時間で使用寿命に至るのが現状である。   However, the automation of cutting machines in recent years has been remarkable. On the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and as a result, cutting tools have as much influence on the type of work material as possible. Versatility, that is, there is a tendency to require a cutting tool capable of cutting as many grades as possible. However, the conventional coated tool is accompanied by high heat generation of low carbon steel, mild steel, etc. When cutting under high-speed cutting conditions with remarkable weldability to the part, lubricity is insufficient, and as a result, the work material is welded to the cutting edge, causing chipping, which is relatively short. The current situation is that the service life is reached in time.

例えば、特許文献1によれば、耐摩耗性と耐熱性をある程度向上させることは可能であるが、このようなAlM(ON)系硬質被覆層の問題として脆性を示すことから切削時の衝撃等により被膜自体が破壊したり剥離したりするという問題があった。
また、特許文献2による積層系硬質被覆層によっても、過酷な切削条件下においては積層構造を構成する個々の被膜自体の破壊や剥離を十分に防止することができず、結果として十分な硬質被覆層全体としての耐摩耗性を得ることができない場合があった。
そこで、本発明が解決しようとする技術的課題、すなわち、本発明の目的は、低炭素鋼、軟鋼等を高熱発生を伴う高速切削条件で切削した場合においてもすぐれた潤滑性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示す被覆工具を提供することである。
For example, according to Patent Document 1, although it is possible to improve the wear resistance and heat resistance to some extent, since the problem of such an AlM (ON) hard coating layer shows brittleness, impact during cutting, etc. This causes a problem that the coating itself is broken or peeled off.
Further, even with the hard coating layer of Patent Document 2, even under severe cutting conditions, the individual coatings constituting the laminated structure cannot be sufficiently prevented from being broken or peeled, resulting in a sufficient hard coating. In some cases, the wear resistance of the entire layer could not be obtained.
Thus, the technical problem to be solved by the present invention, that is, the object of the present invention is to provide excellent lubricity and wear resistance even when cutting low carbon steel, mild steel, etc. under high-speed cutting conditions with high heat generation. It is to provide a coated tool that exhibits and exhibits excellent cutting performance over a long period of time.

そこで、本発明者らは、前述のような観点から、低炭素鋼、軟鋼などを切削する場合にも、硬質被覆層がすぐれた潤滑性と耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った。   Therefore, from the viewpoints described above, the present inventors have developed a coated tool that exhibits excellent lubricity and wear resistance even when cutting low carbon steel, mild steel, etc. We conducted intensive research.

その結果、次のような新規な知見を得た。
(1)Ti(OCN)層は、耐摩耗性があり、酸素を所定量含有することで耐熱性を向上させることができる。
(2)(Al,Mg)(ON)層は、Mg酸化物自身が非常に安定な物質であり、これがAl酸化物中に導入されることにより、Al酸化物の高温安定性を向上させるという効果を奏する。さらにこれを発展させて、Al,Mgの複合酸窒化物とすることで、各々の酸化物と比べ耐摩耗性が向上する。その結果、切削中に熱の発生しやすい難削材などに対して、すぐれた耐熱性、耐摩耗性、耐溶着性を示す。
(3)しかしながら、前述のTi(OCN)層、(Al,Mg)(ON)層をそれぞれ単独で用いた場合、Ti(OCN)層だけでは、耐摩耗性は確保できたとしても耐熱性に乏しく、逆に、(Al,Mg)(ON)層を単独で用いた場合、耐熱性は確保できても、耐摩耗性に乏しく切削工具の硬質被覆層として実用的ではない。また、それぞれの層の層厚を厚くして耐摩耗性を稼ごうとすると、層内に生じる残留圧縮応力の関係でチッピングが生じやすくなり、長期に亘って切削性能を維持することができない。
As a result, the following new findings were obtained.
(1) The Ti (OCN) layer has wear resistance, and heat resistance can be improved by containing a predetermined amount of oxygen.
(2) The (Al, Mg) (ON) layer is a very stable material of Mg oxide itself, and when introduced into the Al oxide, it improves the high temperature stability of the Al oxide. There is an effect. Furthermore, by developing this to form a composite oxynitride of Al and Mg, the wear resistance is improved as compared with each oxide. As a result, it exhibits excellent heat resistance, wear resistance, and welding resistance to difficult-to-cut materials that easily generate heat during cutting.
(3) However, when the above-described Ti (OCN) layer and (Al, Mg) (ON) layer are respectively used alone, the Ti (OCN) layer alone is resistant to heat even if the wear resistance can be ensured. On the contrary, when the (Al, Mg) (ON) layer is used alone, it is not practical as a hard coating layer of a cutting tool due to poor wear resistance even though heat resistance can be secured. Further, if it is attempted to increase wear resistance by increasing the thickness of each layer, chipping is likely to occur due to the residual compressive stress generated in the layer, and the cutting performance cannot be maintained over a long period of time.

本発明は、このような知見に基づき、下地層、Ti(OCN)層からなる薄層A、(Al,Mg)(ON)層からなる薄層B、各層の平均層厚、薄層Aと薄層Bの層厚の関係、硬質被覆層全体の合計層厚などと切削性能との関係を詳しく解析した結果得られたものであって、具体的には、以下のような構成からなる。   Based on such knowledge, the present invention provides a base layer, a thin layer A composed of a Ti (OCN) layer, a thin layer B composed of an (Al, Mg) (ON) layer, an average layer thickness of each layer, and a thin layer A This is obtained as a result of detailed analysis of the relationship between the layer thickness of the thin layer B, the total layer thickness of the entire hard coating layer, etc. and the cutting performance, and specifically comprises the following configuration.

本発明は、前記研究結果に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)前記工具基体表面に形成された0.55〜5.5μmの平均層厚を有し、かつ、
組成式:Ti(C1−e)(ここで、eはCとNとの合量に占めるCの含有割合を示し、原子比で、0.1≦e≦0.9)を満足するTiの炭窒化物層からなる下地層と、
(b)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:Ti(O1−a−b)(ここで、aはOとCとNとの合量に占めるOの含有割合を示し、原子比で、0.05≦a≦0.5である。また、bはOとCとNとの合量に占めるCの含有割合を示し、原子比で、0.1≦b≦0.4)を満足するTiの複合炭窒酸化物層からなる薄層Aと、
(c)0.05〜0.5μmの平均層厚を有し、かつ、
組成式:(Al1−CMg)(O1−d)(ここで、cはAlとMgとの合量に占めるMgの含有割合を示し、原子比で、0.10≦c≦0.50である。また、dはOとNとの合量に占めるNの含有割合を示し、原子比で、0.01≦d≦0.50)を満足するAlとMgとの複合窒酸化物層からなる薄層Bであり、
前記下地層の直上には前記薄層Aが形成され、かつ、前記薄層Aおよび薄層Bは交互積層を形成し、前記下地層の層厚の方がその上部に形成した交互積層の合計層厚よりも厚く、前記薄層Aの層厚は薄層Bの層厚よりも厚く、硬質被覆層全体の合計層厚が1.0〜10.0μmであることを特徴とする表面被覆切削工具。」
を特徴とする。
The present invention has been made based on the research results,
“(1) In a surface-coated cutting tool in which a hard coating layer is formed on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.55 to 5.5 μm formed on the surface of the tool substrate; and
Composition formula: Ti (C e N 1-e ) (where e represents the content ratio of C in the total amount of C and N, and the atomic ratio satisfies 0.1 ≦ e ≦ 0.9) An underlayer comprising a Ti carbonitride layer,
(B) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: Ti (O a C b N 1-ab ) (where a represents the content of O in the total amount of O, C and N, and the atomic ratio is 0.05 ≦ a ≦ In addition, b represents the content ratio of C in the total amount of O, C, and N, and the composite carbonitride of Ti that satisfies the atomic ratio of 0.1 ≦ b ≦ 0.4) A thin layer A comprising an oxide layer;
(C) having an average layer thickness of 0.05 to 0.5 μm, and
Composition formula: (Al 1-C Mg C ) (O 1-d N d ) (where c represents the content ratio of Mg in the total amount of Al and Mg, and the atomic ratio is 0.10 ≦ c ≦ 0.50 In addition, d represents the content ratio of N in the total amount of O and N, and the composite of Al and Mg satisfying the atomic ratio of 0.01 ≦ d ≦ 0.50) A thin layer B composed of a nitrided oxide layer,
The thin layer A is formed immediately above the underlayer, and the thin layer A and the thin layer B form an alternating laminate, and the layer thickness of the underlayer is the sum of the alternately laminated layers formed thereon. The surface coating cutting is characterized in that the layer thickness of the thin layer A is larger than the layer thickness of the thin layer B, and the total thickness of the hard coating layer is 1.0 to 10.0 μm. tool. "
It is characterized by.

次に、本発明の被覆工具の硬質被覆層の構成層に関し、前記の通りに数値限定した理由を説明する。   Next, the reason why the numerical values of the constituent layers of the hard coating layer of the coated tool of the present invention are limited as described above will be described.

(a)工具基体上に形成する下地層の平均層厚と組成:
本発明に係る後述する薄層Aと薄層Bは、化学的に安定であることから、工具基体とも結合しにくい。すなわち、薄層Aおよび薄層Bは工具基体表面との高い密着性を得難いため、工具基体との間に下地層を設ける必要がある。下地層としては、工具基体表面との密着性にすぐれ、また、それ自体の硬度も高いTiの炭窒化物が好適に用いられる。
下地層に用いるTiの炭窒化物を組成式:Ti(C1−e)で表したとき、eの値を、原子比で、0.1≦e≦0.9とした場合、工具基体表面との付着強度が高く、また、後述する交互積層を構成するTiの複合炭窒酸化物層(薄層A)との密着性にもすぐれている。
また、下地層の平均層厚が、0.55μm未満では、下地層に要求される耐摩耗性を十分に確保することができず、一方、5.5μmを超えると、チッピング、欠損を発生しやすくなるので、下地層の平均層厚は、0.55〜5.5μmと定めた。
したがって、工具基体上には0.55〜5.5μmの平均層厚を有し、組成式:Ti(C1−e)(ここで、eはCとNとの合量に占めるCの含有割合を示し、原子比で、0.1≦e≦0.9)を満足する下地層を形成する。
(A) Average layer thickness and composition of the underlayer formed on the tool substrate:
Since the thin layer A and the thin layer B, which will be described later, according to the present invention are chemically stable, they are difficult to bond to the tool substrate. That is, since it is difficult for the thin layer A and the thin layer B to obtain high adhesion to the tool base surface, it is necessary to provide a base layer between the thin base A and the tool base. As the underlayer, Ti carbonitride having excellent adhesion to the surface of the tool base and having high hardness is preferably used.
When the Ti carbonitride used for the underlayer is represented by the composition formula: Ti (C e N 1-e ), when the value of e is 0.1 ≦ e ≦ 0.9 in terms of atomic ratio, the tool Adhesion strength with the substrate surface is high, and it has excellent adhesion to a Ti composite carbonitride oxide layer (thin layer A) that constitutes an alternate lamination described later.
In addition, if the average thickness of the underlayer is less than 0.55 μm, sufficient wear resistance required for the underlayer cannot be secured, while if it exceeds 5.5 μm, chipping and defects occur. Since it becomes easy, the average layer thickness of the underlayer was determined to be 0.55 to 5.5 μm.
Therefore, it has an average layer thickness of 0.55 to 5.5 μm on the tool substrate, and the composition formula: Ti (C e N 1-e ) (where e is the C in the total amount of C and N) The base layer satisfying 0.1 ≦ e ≦ 0.9) in terms of atomic ratio is formed.

(b)薄層A層を構成するTi(OCN)層の組成:
後述する薄層Bと共に交互積層構造を構成する薄層AのTi(O1−a−b)層は、層全体に亘って均質な耐摩耗性と耐熱性および靭性を示すが、その構成成分であるTi成分によって、すぐれた高温強度を備えるようになる。
また、OとCとNの合量に占めるOの含有割合を示すa値(原子比)は、Ti(OCN)層の耐熱性を向上させるために必須の成分Oの含有割合である。OとCとNの合量に対してOの含有割合a値が0.05未満であると耐熱性向上効果が十分でなく、一方、a値が0.5を超えると、薄層Aの構成成分C、Nの含有割合が低下し、その結果、下地層との密着性が低下することから、Oの含有割合a値は、0.05〜0.5とする必要がある。
また、OとCとNの合量に占めるCの含有割合を示すb値(原子比)は、工具基体表面に形成した下地層との密着性を向上させるために必須の成分であるCの含有割合である。Cの含有割合であるb値が0.1未満であると下地層との密着性が十分でなくなり、一方、b値が0.4を超えると、後記する薄層Bとの密着性が低下することから、Cの含有割合b値は、0.1〜0.4と定める。
本発明の薄層Aは、前記のとおり下地層との密着性に優れることから、下地層の直上には、薄層Aを形成する。
(B) Composition of Ti (OCN) layer constituting thin layer A layer:
Although the Ti (O a C b N 1-ab ) layer of the thin layer A that constitutes an alternate laminated structure with the thin layer B to be described later shows uniform wear resistance, heat resistance and toughness throughout the layer. The Ti component as a constituent component provides excellent high-temperature strength.
Moreover, a value (atomic ratio) which shows the content rate of O which occupies for the total amount of O, C, and N is a content rate of the component O essential in order to improve the heat resistance of a Ti (OCN) layer. If the O content ratio a value is less than 0.05 with respect to the total amount of O, C and N, the effect of improving heat resistance is not sufficient, while if the a value exceeds 0.5, the thin layer A Since the content ratios of the constituent components C and N are decreased, and as a result, the adhesion with the underlayer is decreased, the O content ratio a value needs to be 0.05 to 0.5.
Further, the b value (atomic ratio) indicating the content ratio of C in the total amount of O, C, and N is an essential component for improving the adhesion to the base layer formed on the tool base surface. It is a content ratio. If the b value, which is the content ratio of C, is less than 0.1, the adhesiveness with the underlayer is insufficient, while if the b value exceeds 0.4, the adhesiveness with the thin layer B described later decreases. Therefore, the content ratio b value of C is determined to be 0.1 to 0.4.
Since the thin layer A of the present invention is excellent in adhesion to the underlayer as described above, the thin layer A is formed immediately above the underlayer.

(c)薄層B層を構成する(Al,Mg)(ON)層の組成:
前述した薄層Aと共に交互積層構造を構成する薄層Bの(Al1−CMg)(O1−d)層は、層全体に亘って均質な耐摩耗性と耐熱性および靭性を示すが、その構成成分であるMg成分によって、すぐれた高温安定性を備えるようになり、また、Al、Mgの複合酸窒化物とすることで各々の酸化物と比べて耐摩耗性が向上する。そのため、高温切削条件下でも低摩擦係数が維持され、すぐれた耐熱性を発揮するようになるが、Alとの合量に占めるMgの含有割合を示すc値(原子比、以下同じ)が0.10未満になると、高温強度を確保することができないために刃先の境界部分において異常損傷を生じ欠損を発生しやすくなるため長寿命を期待することはできず、一方、Alとの合量に占めるMgの含有割合を示すc値が0.50を越えると、相対的にAlの含有割合が減少し、高速切削加工で必要とされる高温硬さ確保することができないばかりか、耐摩耗性も低下し、チッピング発生を防止することが困難になることから、c値を0.10〜0.50と定めた。
OとNの合量に占めるOの含有割合を示す(1−d)値(原子比)は、(Al,Mg)(ON)層の耐熱性を向上させるために必須の成分Oの含有割合である。その効果を十分なものとするためには、OとNの合量に対して半分以上を占めている必要がある。しかしながら、(1−d)値が0.99を超えてしまうと、相対的にNの含有割合が0.01未満となってしまい、Nの添加により硬度を向上させるという効果が十分に奏されなくなる。したがって、d値を0.01〜0.50と定めた。
(C) Composition of (Al, Mg) (ON) layer constituting thin layer B layer:
The (Al 1-C Mg C ) (O 1-d N d ) layer of the thin layer B that constitutes an alternate laminated structure with the thin layer A described above has uniform wear resistance, heat resistance and toughness throughout the entire layer. However, the Mg component, which is a constituent component, provides excellent high-temperature stability, and by using a composite oxynitride of Al and Mg, wear resistance is improved compared to each oxide. To do. Therefore, a low friction coefficient is maintained even under high temperature cutting conditions, and excellent heat resistance is exhibited. However, the c value (atomic ratio, the same applies hereinafter) indicating the content ratio of Mg in the total amount with Al is 0. If it is less than 10.10, high temperature strength cannot be ensured, so abnormal damage is caused at the boundary portion of the blade edge and defect is likely to occur, so a long life cannot be expected. When the c value indicating the Mg content ratio exceeds 0.50, the Al content ratio is relatively reduced, and not only the high-temperature hardness required for high-speed cutting can be secured, but also wear resistance. The c value was determined to be 0.10 to 0.50 because it was difficult to prevent the occurrence of chipping.
The (1-d) value (atomic ratio) indicating the content ratio of O in the total amount of O and N is the content ratio of the component O essential for improving the heat resistance of the (Al, Mg) (ON) layer. It is. In order to make the effect sufficient, it is necessary to occupy more than half of the total amount of O and N. However, if the (1-d) value exceeds 0.99, the content ratio of N becomes relatively less than 0.01, and the effect of improving the hardness by adding N is sufficiently exhibited. Disappear. Therefore, d value was defined as 0.01-0.50.

(d)薄層Aおよび薄層Bの平均層厚ならびに硬質被覆層の合計層厚:
本発明の硬質被覆層は、それぞれの組成の異なる薄層Aと薄層Bとを交互に積層して構成した交互積層構造とすることで、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、薄層Aの平均層厚が0.1μm未満、薄層Bの平均層厚が0.05μm未満になると、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前記のすぐれた特性を発揮することができない。一方、薄層Aの平均層厚が1.0μm、薄層Bの平均層厚が0.5μmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの平均層厚を0.1〜1.0μmおよび0.05〜0.5μmと定めた。
また、前述した下地層と、薄層Aおよび薄層Bとの交互積層構造とを加えた硬質被覆層の合計層厚は、1.0μm未満では、前述した交互積層構造の備えるすぐれた耐欠損性、耐チッピング性を十分に発揮することができず、一方、10μmを超えると、反対に、チッピング、欠損を発生しやすくなるので、硬質被覆層の合計層厚は、1.0〜10μmと定めた。更に、下地層の層厚(X)の方がその上部に形成した薄層Aおよび薄層Bの交互積層の合計層厚(Y)よりも薄くなると、総厚に占める硬質膜の割合が相対的に下がってしまい、耐摩耗性を十分に確保することができないため、下地層の層厚(X)と薄層Aおよび薄層Bの交互積層の合計層厚(Y)の関係をX>Yと定めた。
(D) Average layer thickness of thin layer A and thin layer B and total layer thickness of hard coating layer:
The hard coating layer of the present invention has an alternate laminated structure in which thin layers A and thin layers B having different compositions are alternately laminated, thereby preventing the growth of particles in each layer from being coarsened. The particle size is reduced, the film strength is improved, and crack propagation and progress are prevented by this laminated structure, thereby improving the chipping resistance and chipping resistance. Is less than 0.1 μm and the average layer thickness of the thin layer B is less than 0.05 μm, it is difficult to clearly form each thin layer as having a predetermined composition. Unable to demonstrate the characteristics. On the other hand, if the average layer thickness of the thin layer A exceeds 1.0 μm and the average layer thickness of the thin layer B exceeds 0.5 μm, the chip strength and chipping resistance decrease due to the decrease in film strength due to the coarsening of the particles. Therefore, the average layer thickness of each of the thin layer A and the thin layer B was determined to be 0.1 to 1.0 μm and 0.05 to 0.5 μm.
In addition, if the total thickness of the hard coating layer including the above-described underlayer and the alternately laminated structure of the thin layers A and B is less than 1.0 μm, the excellent defect resistance provided by the above-mentioned alternately laminated structure is less than 1.0 μm. However, if the thickness exceeds 10 μm, on the other hand, chipping and defects are likely to occur. Therefore, the total thickness of the hard coating layer is 1.0 to 10 μm. Determined. Furthermore, when the layer thickness (X) of the underlayer is thinner than the total layer thickness (Y) of the alternately laminated thin layers A and B formed thereon, the ratio of the hard film to the total thickness is relative Since the wear resistance cannot be sufficiently secured, the relationship between the layer thickness (X) of the underlayer and the total layer thickness (Y) of the alternate lamination of the thin layers A and B is X> Y was determined.

なお、本発明の硬質被覆層を構成する薄層Aを構成するTi(OCN)層および薄層Bを構成する(Al,Mg)(ON)層は、例えば、図1に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に工具基体を装入し、ヒーターで装置内を、例えば、500℃の温度に加熱した状態で、
(a)アノード電極とカソード電極(蒸発源)としてのTi電極との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内の雰囲気を0.5〜9.0Paの窒素ガス及びメタンガスの混合雰囲気(例えば、窒素:メタンの流量%の比が50:50)とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の下地層であるTi(CN)層が形成される。
(b)アノード電極とカソード電極(蒸発源)としてのTi合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内の雰囲気を0.5〜9.0Paの酸素とメタンと窒素の混合雰囲気(例えば、酸素:メタン:窒素の流量%の比が30:30:40)とし、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、工具基体表面に、所定の目標層厚の薄層AであるTi(OCN)層が形成される。
(c)ついで、装置内に所定組成のAl−Mg合金からなるカソード電極(蒸発源)を配置し、アノード電極とカソード電極(蒸発源)としてのAl−Mg合金との間に、例えば、電流:110Aの条件でアーク放電を発生させ、同時に装置内の雰囲気を0.5〜9.0Paの酸素と窒素の混合雰囲気(例えば、酸素:窒素の流量%の比が50:50)とし、一方、工具基体には、例えば、−100Vのバイアス電圧を印加した条件で所定時間蒸着することにより、前記薄層A上に所定の目標層厚の薄層Bを構成する(Al,Mg)(ON)層が形成される。
前記(b)、(c)を所定の合計層厚になるまで、交互に繰り返すことにより、図3に示される本発明の硬質被覆層を蒸着形成することができる。
The Ti (OCN) layer constituting the thin layer A constituting the hard coating layer of the present invention and the (Al, Mg) (ON) layer constituting the thin layer B are shown schematically in FIG. 1, for example. In a state where a tool base is loaded into an arc ion plating apparatus which is a kind of physical vapor deposition apparatus, and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater.
(A) For example, arc discharge is generated between the anode electrode and the Ti electrode as the cathode electrode (evaporation source) under the condition of current: 110 A, and at the same time, the atmosphere in the apparatus is nitrogen of 0.5 to 9.0 Pa. A tool base is formed by vapor deposition for a predetermined time under a condition in which a bias voltage of −100 V is applied, for example, in a mixed atmosphere of gas and methane gas (for example, a nitrogen: methane flow rate% ratio is 50:50). A Ti (CN) layer, which is a base layer having a predetermined target layer thickness, is formed on the surface.
(B) For example, arc discharge is generated between the anode electrode and the Ti alloy as the cathode electrode (evaporation source) under the condition of current: 110 A, and at the same time, the atmosphere in the apparatus is oxygen of 0.5 to 9.0 Pa. And a mixed atmosphere of methane and nitrogen (for example, the ratio of the flow rate% of oxygen: methane: nitrogen is 30:30:40), and vapor deposition is performed on the tool base for a predetermined time under the condition that, for example, a bias voltage of −100 V is applied. Thus, a Ti (OCN) layer, which is a thin layer A having a predetermined target layer thickness, is formed on the surface of the tool base.
(C) Next, a cathode electrode (evaporation source) made of an Al—Mg alloy having a predetermined composition is arranged in the apparatus, and, for example, a current is provided between the anode electrode and the Al—Mg alloy as the cathode electrode (evaporation source). : Arc discharge is generated under the condition of 110 A, and the atmosphere in the apparatus is simultaneously a mixed atmosphere of oxygen and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of oxygen: nitrogen flow% is 50:50), On the tool base, for example, a thin layer B having a predetermined target layer thickness is formed on the thin layer A by depositing for a predetermined time under the condition that a bias voltage of −100 V is applied (Al, Mg) (ON ) Layer is formed.
By repeating the steps (b) and (c) alternately until a predetermined total layer thickness is obtained, the hard coating layer of the present invention shown in FIG. 3 can be formed by vapor deposition.

本発明の被覆工具の一態様によれば、硬質被覆層がTi(CN)層からなる下地層の上にTi(OCN)層からなる薄層Aと(Al,Mg)(ON)層からなる薄層Bとの交互積層構造を有していることによって、薄層Aが奏するすぐれた耐摩耗性および耐熱性と、薄層Bが奏するすぐれた高温硬さと耐熱性および靭性との相乗効果によって、硬質被覆層は、すぐれた高温硬さ、耐熱性、高温強度、耐摩耗性、潤滑性、耐衝撃性、耐欠損性、耐チッピング性を有することから、その結果、特に、軟鋼、低炭素鋼等の溶着性の高い被削材を、大きな発熱を伴い、かつ、高負荷のかかる高速切削加工を行った場合であっても、長期に亘ってすぐれた耐摩耗性、耐熱性、耐溶着性を発揮するものである。   According to one aspect of the coated tool of the present invention, the hard coating layer is composed of a thin layer A composed of a Ti (OCN) layer and an (Al, Mg) (ON) layer on an underlayer composed of a Ti (CN) layer. By having an alternate layered structure with the thin layer B, the excellent wear resistance and heat resistance exhibited by the thin layer A and the synergistic effect of the excellent high temperature hardness, heat resistance and toughness exhibited by the thin layer B The hard coating layer has excellent high temperature hardness, heat resistance, high temperature strength, wear resistance, lubricity, impact resistance, chipping resistance, and chipping resistance. Even when work materials with high weldability such as steel are subjected to high-speed cutting with large heat generation and high load, excellent wear resistance, heat resistance, and welding resistance over a long period of time It demonstrates the nature.

本発明被覆工具および比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated tool and a comparative coated tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 本発明被覆工具を構成する硬質被覆層の縦断面膜構成図である。It is a longitudinal cross-sectional film | membrane structural view of the hard coating layer which comprises this invention coated tool.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−6を形成した。 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder and Co powder each having an average particle diameter of 1 to 3 μm are prepared. , Blended in the blending composition shown in Table 1, wet-mixed with a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was vacuumed at 6 Pa, temperature: 1400 ° C. Were sintered for 1 hour, and after sintering, tool bases A-1 to A-6 made of WC-base cemented carbide having an ISO standard / CNMG120408 insert shape were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比で、TiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−4を形成した。 In addition, as raw material powders, TiCN (mass ratio, TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC, all having an average particle diameter of 0.5 to 2 μm. Prepare powder, Co powder, and Ni powder, mix these raw material powders into the composition shown in Table 2, wet mix for 24 hours with a ball mill, dry, and press-mold into green compact at 100 MPa pressure Then, this green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool substrate B made of TiCN base cermet having an ISO standard / CNMG120408 insert shape was used. -1 to B-4 were formed.

(a)ついで、前記工具基体A−1〜A−6およびB−1〜B−4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する2つのカソード電極(蒸発源)を配置し、第1の電極として、下地層および薄層A形成用のTi、第2の電極として、薄層B形成用の所定組成を有するAl−Mg合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつTi(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paのメタンと窒素の混合雰囲気(例えばメタン:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるTi電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表3に示される目標組成、目標層厚の下地層としてのTi(CN)層を蒸着形成した。
(d)次に装置内雰囲気を0.5〜9.0Paの酸素とメタンと窒素の混合雰囲気(例えば酸素:メタン:窒素の流量%の比が30:30:40)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるTi電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表4に示される目標組成、目標層厚の薄層AとしてのTi(OCN)層を蒸着形成した。
(e)次に装置内雰囲気を0.5〜9.0Paの酸素と窒素の混合雰囲気(例えば酸素:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Mg合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、前記薄層Aの上に、表4に示される目標組成、目標層厚の薄層Bとしての(Al,Mg)(ON)層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
前記(d)、(e)を交互に繰り返して、表4に示される合計層厚の交互積層を工具基体上の下地層の上に蒸着形成し、表3、表4に示す本発明被覆工具としての表面被覆インサート(以下、本発明被覆インサートと云う)1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-6 and B-1 to B-4 is ultrasonically cleaned in acetone and dried, and then the arc ion plating apparatus shown in FIG. A first electrode is provided with two cathode electrodes (evaporation sources) that are mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the inner rotary table, and that face each other across the rotary table. As for the underlayer and Ti for forming the thin layer A, as the second electrode, an Al-Mg alloy having a predetermined composition for forming the thin layer B is disposed,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied and a current of 100 A is passed between Ti (cathode electrode) and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, while maintaining the atmosphere in the apparatus in a mixed atmosphere of methane and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of methane: nitrogen is 50:50), while rotating on the rotary table, A DC bias voltage of −20 to −150 V is applied to the rotating tool base, and an arc discharge is generated by causing a current of 120 A to flow between the Ti electrode, which is the cathode electrode (evaporation source), and the anode electrode. A Ti (CN) layer as an underlayer having the target composition and target layer thickness shown in FIG.
(D) Next, the atmosphere in the apparatus is kept in a mixed atmosphere of oxygen, methane and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of flow rate% of oxygen: methane: nitrogen is 30:30:40) and rotated. A DC bias voltage of -20 to -150 V is applied to the tool base that rotates while rotating on the table, and a current of 120 A is passed between the Ti electrode that is the cathode electrode (evaporation source) and the anode electrode to cause arc discharge. The Ti (OCN) layer as the thin layer A having the target composition and target layer thickness shown in Table 4 was formed by vapor deposition.
(E) Next, the atmosphere in the apparatus is maintained in a mixed atmosphere of oxygen and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of oxygen: nitrogen is 50:50) while rotating on the rotary table. A DC bias voltage of −20 to −150 V is applied to the rotating tool base, and an arc discharge is generated by flowing a current of 120 A between the Al—Mg alloy of the cathode electrode and the anode electrode. After depositing (Al, Mg) (ON) layer as a thin layer B having the target composition and target layer thickness shown in Table 4 on A, a gap between the cathode electrode (evaporation source) and the anode electrode is formed. Stop arc discharge,
The coating tools of the present invention shown in Tables 3 and 4 are formed by alternately repeating the steps (d) and (e) to form an alternate stack of the total layer thickness shown in Table 4 on the base layer on the tool substrate. Surface-coated inserts (hereinafter referred to as the present invention-coated inserts) 1 to 10 were produced.

また、比較の目的で、
(a)前記工具基体A−1〜A−4およびB−1、B−2のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、前記回転テーブルを挟んで対向する2つのカソード電極(蒸発源)を配置し、第1の電極として、薄層A形成用のTi、第2の電極として、薄層B形成用の所定組成を有するAl−Mg合金を配置し、
(b)まず、装置内を排気して0.1 Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加し、かつTi(カソード電極)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄し、
(c)次に装置内雰囲気を0.5〜9.0Paのメタンと窒素の混合雰囲気(例えばメタン:窒素の流量%の比が50:50)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるTi電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表5に示される目標組成、目標層厚の下地層としてのTi(CN)層を蒸着形成した。
(d)次に装置内雰囲気を0.5〜9.0Paの酸素とメタンと窒素の混合雰囲気(例えば酸素:メタン:窒素の流量%の比が30:30:40)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、カソード電極(蒸発源)であるTi電極とアノード電極との間に120Aの電流を流してアーク放電を発生させて、表6に示される目標組成、目標層厚の薄層AとしてのTi(OCN)層を蒸着形成した。
(e)引き続いて、装置内雰囲気を0.5〜9.0Paの酸素と窒素の混合雰囲気(例えば酸素:窒素の流量%の比が5:95)に保持して、回転テーブル上で自転しながら回転する工具基体に−20〜−150Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Mg合金とアノード電極との間に120Aの電流を流してアーク放電を発生させ、工具基体の表面に、表6に示される目標組成、目標層厚の薄層Bとしての(Al,Mg)(ON)層を蒸着形成した後、カソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、
前記(d)、(e)を交互に繰り返して、表6に示される合計層厚の交互積層構造の硬質被覆層を工具基体上の下地層の上に蒸着形成し、表5、表6に示される比較被覆工具としての表面被覆インサート(以下、比較被覆インサートと云う)1〜6をそれぞれ製造した。各層の形成条件(バイアス電圧、酸素分圧、窒素分圧)を同じく表5、表6に示す。なお、比較被覆インサート1は、交互積層の形成を行わず、Ti(CN)層のみからなる硬質被覆層とした。
For comparison purposes,
(A) Each of the tool bases A-1 to A-4 and B-1 and B-2 is ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table, two cathode electrodes (evaporation sources) facing each other across the rotary table are arranged, and the first electrode is Ti for forming the thin layer A, and as the second electrode, an Al-Mg alloy having a predetermined composition for forming the thin layer B is disposed,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then rotated to a tool base that rotates while rotating on a rotary table. A DC bias voltage is applied and a current of 100 A is passed between Ti (cathode electrode) and the anode electrode to generate an arc discharge, thereby bombarding the tool substrate surface,
(C) Next, while maintaining the atmosphere in the apparatus in a mixed atmosphere of methane and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of the flow rate% of methane: nitrogen is 50:50), while rotating on the rotary table, A DC bias voltage of −20 to −150 V is applied to the rotating tool base, and an arc discharge is generated by flowing a current of 120 A between the Ti electrode, which is the cathode electrode (evaporation source), and the anode electrode. A Ti (CN) layer as an underlayer having the target composition and target layer thickness shown in FIG.
(D) Next, the atmosphere in the apparatus is kept in a mixed atmosphere of oxygen, methane and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of flow rate% of oxygen: methane: nitrogen is 30:30:40) and rotated. A DC bias voltage of -20 to -150 V is applied to the tool base that rotates while rotating on the table, and a current of 120 A is passed between the Ti electrode that is the cathode electrode (evaporation source) and the anode electrode to cause arc discharge. The Ti (OCN) layer as the thin layer A having the target composition and target layer thickness shown in Table 6 was formed by vapor deposition.
(E) Subsequently, the atmosphere in the apparatus is maintained in a mixed atmosphere of oxygen and nitrogen of 0.5 to 9.0 Pa (for example, the ratio of oxygen: nitrogen flow rate% is 5:95), and rotates on a rotary table. While applying a DC bias voltage of −20 to −150 V to the rotating tool base and causing a current of 120 A to flow between the Al—Mg alloy of the cathode electrode and the anode electrode, an arc discharge is generated. (Al, Mg) (ON) layer as a thin layer B having the target composition and target layer thickness shown in Table 6 is deposited on the surface of the electrode, and then an arc between the cathode electrode (evaporation source) and the anode electrode is formed. Stop discharging,
By repeating the steps (d) and (e) alternately, a hard coating layer having an alternate laminated structure with a total layer thickness shown in Table 6 is formed on the underlayer on the tool substrate by vapor deposition. Surface coated inserts (hereinafter referred to as comparative coated inserts) 1 to 6 as the comparative coated tools shown were produced, respectively. The formation conditions (bias voltage, oxygen partial pressure, nitrogen partial pressure) of each layer are also shown in Tables 5 and 6. The comparative coating insert 1 was a hard coating layer made of only a Ti (CN) layer without forming an alternate lamination.

本発明被覆インサート1〜10および比較被覆インサート1〜6について、以下の切削条件で切削試験を行った。
被削材:JIS・SS400の丸棒、
切削速度: 300 m/min.、
切り込み: 2.0 mm、
送り: 0.25 mm/rev.、
切削時間: 14 分、
の条件(切削条件A)での軟鋼の乾式連続高速切削加工試験(通常の切削速度は、200 m/min.)、
被削材:JIS・S10Cの丸棒、
切削速度: 270 m/min.、
切り込み: 2.0 mm、
送り: 0.3 mm/rev.、
切削時間: 12 分、
の条件(切削条件B)での低炭素鋼の乾式連続高速高送り切削加工試験(通常の切削速度は、200m/min.、0.25mm/rev.)、
を行い、いずれの高速切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表7に示した。
About this invention coated insert 1-10 and comparative coated insert 1-6, the cutting test was done on the following cutting conditions.
Work material: JIS / SS400 round bar,
Cutting speed: 300 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.25 mm / rev. ,
Cutting time: 14 minutes,
Dry continuous high-speed cutting test of mild steel under the conditions (cutting condition A) (normal cutting speed is 200 m / min.),
Work material: JIS / S10C round bar,
Cutting speed: 270 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 12 minutes,
Dry carbon continuous high-speed high-feed cutting test (normal cutting speed is 200 m / min., 0.25 mm / rev.)
The flank wear width of the cutting edge was measured in any high-speed cutting test. The measurement results are shown in Table 7.

実施例1と同様、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末からなる原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、直径が13mmの工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)A−1〜A−6をそれぞれ製造した。 As in Example 1, all of WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder having an average particle diameter of 1 to 3 μm. The raw material powder consisting of the above is blended in the composition shown in Table 1, wet mixed for 72 hours with a ball mill, dried, and then pressed into a green compact at a pressure of 100 MPa. , Temperature: Sintered at 1400 ° C. for 1 hour to form a round tool sintered body for forming a tool base having a diameter of 13 mm. WC-base cemented carbide tool bases (end mills) A-1 to A-6 having a four-blade square shape with a diameter x length of 10 mm x 22 mm and a twist angle of 30 degrees were manufactured. .

ついで、これらの工具基体(エンドミル)A−1〜A−6の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表8に示される目標組成、目標層厚のTi(CN)層からなる下地層の上に、表9に示される目標組成、目標層厚のTi(OCN)層からなる薄層Aと、表9に示される目標組成、目標層厚の(Al,Mg)(ON)層からなる薄層Bとの交互積層を形成した表9に示される目標合計層厚の硬質被覆層を蒸着形成することにより、表8、表9に示される本発明被覆工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆エンドミルと云う)1〜6をそれぞれ製造した。   Then, the surfaces of these tool bases (end mills) A-1 to A-6 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. 1 under the same conditions as 1, on the base layer composed of the target composition and target layer thickness Ti (CN) layer shown in Table 8, from the target composition and target layer thickness Ti (OCN) layer shown in Table 9 Hard layer having a target total layer thickness shown in Table 9 in which alternating layers of thin layer A and thin layer B consisting of (Al, Mg) (ON) layers having the target composition and target layer thickness shown in Table 9 are formed. The surface-coated carbide end mills (hereinafter referred to as the present invention-coated end mills) 1 to 6 as the present invention-coated tools shown in Tables 8 and 9 were produced by vapor-depositing the coating layers, respectively.

また、比較の目的で、前記工具基体(エンドミル)A−1〜A−5の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表10に示される形成条件(バイアス電圧、窒素分圧)を用いて、表10に示される目標組成、目標層厚のTi(CN)層のみからなるもの、および、下地層の上に、表11に示される目標組成、目標層厚のTi(OCN)層からなる薄層Aと、表11に示される目標組成、目標層厚の(Al,Mg)(ON)層からなる薄層Bとの交互積層を形成した表11に示される目標合計層厚の硬質被覆層を蒸着形成することにより、表10、表11に示される比較被覆工具としての表面被覆超硬製エンドミル(以下、比較被覆エンドミルと云う)1〜5をそれぞれ製造した。
つぎに、本発明被覆エンドミル1〜6および比較被覆エンドミル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの
JIS・ SS400 の板材、
切削速度: 250 m/min.、
溝深さ(切り込み): 5.0 mm、
テーブル送り: 1700 mm/min.、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は、 200 m/min.)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表9、11にそれぞれ示した。
For comparison purposes, the surfaces of the tool bases (end mills) A-1 to A-5 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. In the same process as in Example 1, using the formation conditions (bias voltage, nitrogen partial pressure) shown in Table 10 and consisting only of a Ti (CN) layer having the target composition and target thickness shown in Table 10 And a thin layer A composed of a Ti (OCN) layer having a target composition and target thickness shown in Table 11 on the underlayer, and a target composition and target layer thickness (Al, Mg) shown in Table 11 The surface as a comparative coating tool shown in Tables 10 and 11 by vapor-depositing a hard coating layer having a target total layer thickness shown in Table 11 in which alternating layers with thin layers B made of (ON) layers are formed. Coated carbide end mill (hereinafter referred to as comparative coated end mill) And refers) 1-5 were prepared, respectively.
Next, for the present invention coated end mills 1-6 and comparative coated end mills 1-5,
Work material-Plane dimensions: 100 mm x 250 mm, thickness: 50 mm JIS / SS400 plate,
Cutting speed: 250 m / min. ,
Groove depth (cut): 5.0 mm,
Table feed: 1700 mm / min. ,
A dry high-speed grooving test of mild steel under the conditions of (normal cutting speed is 200 m / min.),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 9 and 11, respectively.

実施例2で製造した直径が13mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ8mm×22mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)A−1〜A−6をそれぞれ製造した。   The round bar sintered body with a diameter of 13 mm manufactured in Example 2 was used, and from this round bar sintered body, the dimensions of the groove forming part diameter × length were 8 mm × 22 mm and the twist angle by grinding. WC base cemented carbide tool bases (drills) A-1 to A-6 each having a 30-degree two-blade shape were produced.

ついで、これらの工具基体(ドリル)A−1〜A−6の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同一の条件で、表12に示される目標組成、目標層厚の下地層の上に表13に示される目標組成、目標層厚のTi(OCN)層からなる薄層Aと、同じく表13に示される目標組成および目標層厚の(Al,Mg)(ON)層からなる薄層Bとの交互積層を形成した表13に示される目標合計層厚の硬質被覆層を蒸着形成することにより、表12、表13に示される本発明被覆工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆ドリルと云う)1〜6をそれぞれ製造した。   Next, the cutting blades of these tool bases (drills) A-1 to A-6 are subjected to honing, ultrasonically cleaned in acetone, and dried in the arc ion plating apparatus shown in FIG. And under the same conditions as in Example 1, a thin layer comprising a Ti (OCN) layer having a target composition and a target layer thickness shown in Table 13 on a base layer having a target composition and a target layer thickness shown in Table 12. Hard coating with a target total layer thickness shown in Table 13 in which layers A and thin layers B composed of (Al, Mg) (ON) layers having the target composition and target layer thickness also shown in Table 13 are formed. By forming the layers by vapor deposition, surface coated carbide drills (hereinafter referred to as the present invention coated drills) 1 to 6 as the present invention coated tools shown in Tables 12 and 13 were produced, respectively.

また、比較の目的で、前記工具基体(ドリル)A−1〜A−5の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、実施例1と同様工程で、表14に示される形成条件(バイアス電圧、窒素分圧)を用いて、表14に示される目標組成、目標層厚のTi(CN)層のみからなるもの、および、Ti(CN)層からなる下地層の上に、表15に示される目標組成、目標層厚のTi(OCN)層からなる薄層Aと、表15に示される目標組成、目標層厚の(Al,Mg)(ON)層からなる薄層Bとの交互積層を形成した表15に示される目標合計層厚の硬質被覆層を蒸着形成することにより、表14、表15に示される比較被覆工具としての表面被覆超硬製ドリル(以下、比較被覆ドリルと云う)1〜5をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (drills) A-1 to A-5 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plate shown in FIG. In the same process as in Example 1, using the forming conditions (bias voltage, nitrogen partial pressure) shown in Table 14, the target composition and the target layer thickness Ti (CN) shown in Table 14 were charged. A thin layer A composed of a Ti (OCN) layer having a target composition and a target thickness shown in Table 15 on a base layer composed of only a layer and a Ti (CN) layer, and Table 15 By vapor-depositing a hard coating layer having a target total layer thickness shown in Table 15 in which an alternate lamination with a thin layer B composed of an (Al, Mg) (ON) layer having a target composition and a target layer thickness was formed, Table 14 Surface coating super as a comparative coating tool shown in Table 15 Ltd. drill (hereinafter, compared referred to as coated drill) to produce respectively 1-5.

つぎに、本発明被覆ドリル1〜6および比較被覆ドリル1〜5について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの
JIS・S10Cの板材
切削速度: 150 m/min.、
送り: 0.35 mm/rev、
穴深さ: 6 mm、
の条件での低炭素鋼の乾式高速穴あけ切削加工試験(通常の切削速度は、100 m/min.)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表13、15にそれぞれ示した。
Next, for the present invention coated drills 1-6 and comparative coated drills 1-5,
Work material-planar dimension: 100 mm × 250 mm, thickness: 50 mm JIS / S10C plate material Cutting speed: 150 m / min. ,
Feed: 0.35 mm / rev,
Hole depth: 6 mm,
Low-carbon steel dry high-speed drilling test under normal conditions (normal cutting speed is 100 m / min.),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 13 and 15, respectively.

この結果得られた本発明被覆工具としての本発明被覆インサート1〜10、本発明被覆エンドミル1〜6、および本発明被覆ドリル1〜6の硬質被覆層を構成する下地層であるTi(CN)層と薄層AであるTi(OCN)層と薄層Bである(Al,Mg)(ON)層の組成、並びに、比較被覆工具としての比較被覆インサート1〜6、比較被覆エンドミル1〜5、および比較被覆ドリル1〜5の硬質被覆層を構成する下地層であるTi(CN)層と薄層AであるTi(OCN)層と薄層Bである(Al,Mg)(ON)層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   Ti (CN) which is the ground layer constituting the hard coating layer of the present invention coated inserts 1-10, the present invention coated end mills 1-6, and the present invention coated drills 1-6 as the present coated tool obtained as a result. Composition of Ti (OCN) layer which is a layer and thin layer A and (Al, Mg) (ON) layer which is a thin layer B, as well as comparative coated inserts 1 to 6 as comparative coated tools, comparative coated end mills 1 to 5 , And Ti (CN) layer which is a base layer constituting the hard coating layer of comparative coated drills 1 to 5, Ti (OCN) layer which is thin layer A, and (Al, Mg) (ON) layer which is thin layer B Were measured by an energy dispersive X-ray analysis method using a transmission electron microscope, and showed substantially the same composition as the target composition.

また、前記硬質被覆層を構成する各層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に等しい平均層厚(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of each layer which comprises the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average layer thickness (average value of five places) substantially equal to target layer thickness. .

表3〜15に示される結果から、本発明被覆工具は、工具基体の上に所定の組成、平均層厚の下地層を形成した後、所定の組成、平均層厚の薄層Aと、所定の組成、平均層厚の薄層Bとからなる交互積層を形成した結果、薄層AであるTi(OCN)層によって、工具基体表面の下地層に強固に密着接合した状態で、耐欠損性、高温硬さ、高温強度が向上し、薄層Bである(Al,Mg)(ON)層がすぐれた耐熱性および耐摩耗性を有するとともに、組成が異なる薄層Aと薄層Bとの交互積層による相乗効果によって、耐衝撃性、耐チッピング性、耐クラック進展性を向上させる結果、軟鋼、低炭素鋼等の高速切削加工でも、すぐれた耐熱性、耐溶着性を示し、長期に亘ってすぐれた耐摩耗性を発揮する。これに対して、硬質被覆層を構成する各層のいずれかが本発明で規定した組成、平均層厚を逸脱する比較被覆工具においては、いずれも軟鋼、低炭素鋼等の高速切削加工では、耐熱性、耐溶着性が十分でなく、切刃部にチッピング、欠損が発生するようになり、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 15, the coated tool of the present invention formed a base layer having a predetermined composition and average layer thickness on the tool base, and then a thin layer A having a predetermined composition and average layer thickness, and a predetermined layer. As a result of forming an alternating laminate composed of the thin layer B having the composition and the average layer thickness, the Ti (OCN) layer, which is the thin layer A, is firmly bonded to the underlying layer on the surface of the tool base, and the fracture resistance is maintained. The high-temperature hardness and high-temperature strength are improved, and the thin layer B (Al, Mg) (ON) layer has excellent heat resistance and wear resistance, and the thin layer A and the thin layer B having different compositions As a result of improving the impact resistance, chipping resistance, and crack progress resistance by synergistic effects by alternating lamination, it shows excellent heat resistance and welding resistance even in high-speed cutting of mild steel, low carbon steel, etc. Exhibits excellent wear resistance. On the other hand, any of the layers constituting the hard coating layer has a composition defined in the present invention and a comparative coated tool that deviates from the average layer thickness, all of which are heat resistant in high-speed cutting such as mild steel and low carbon steel. It is clear that the properties and welding resistance are not sufficient, chipping and chipping occur at the cutting edge, and the service life is reached in a relatively short time.

前述のように、本発明の被覆工具は、一般的な被削材の切削加工は勿論のこと、特に、軟鋼、低炭素鋼等の溶着を発生し易い被削材の高速切削加工でもすぐれた耐熱性、耐溶着性、耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention is excellent not only for cutting of general work materials, but also for high-speed cutting of work materials that tend to cause welding such as mild steel and low carbon steel. Since it exhibits heat resistance, welding resistance, and wear resistance and exhibits excellent cutting performance over a long period of time, it is possible to automate cutting equipment, reduce cutting labor and energy, and reduce costs It can respond satisfactorily.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された工具基体の表面に硬質被覆層を形成してなる表面被覆切削工具において、
前記硬質被覆層が、
(a)前記工具基体表面に形成された0.55〜5.5μmの平均層厚を有し、かつ、
組成式:Ti(C1−e)(ここで、eはCとNとの合量に占めるCの含有割合を示し、原子比で、0.1≦e≦0.9)を満足するTiの炭窒化物層からなる下地層と、
(b)0.1〜1.0μmの平均層厚を有し、かつ、
組成式:Ti(O1−a−b)(ここで、aはOとCとNとの合量に占めるOの含有割合を示し、原子比で、0.05≦a≦0.5である。また、bはOとCとNとの合量に占めるCの含有割合を示し、原子比で、0.1≦b≦0.4)を満足するTiの複合炭窒酸化物層からなる薄層Aと、
(c)0.05〜0.5μmの平均層厚を有し、かつ、
組成式:(Al1−CMg)(O1−d)(ここで、cはAlとMgとの合量に占めるMgの含有割合を示し、原子比で、0.10≦c≦0.50である。また、dはOとNとの合量に占めるNの含有割合を示し、原子比で、0.01≦d≦0.50)を満足するAlとMgとの複合窒酸化物層からなる薄層Bであり、
前記下地層の直上には前記薄層Aが形成され、かつ、前記薄層Aおよび薄層Bは交互積層を形成し、前記下地層の層厚の方がその上部に形成した交互積層の合計層厚よりも厚く、前記薄層Aの層厚は薄層Bの層厚よりも厚く、硬質被覆層全体の合計層厚が1.0〜10.0μmであることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool formed by forming a hard coating layer on the surface of a tool base composed of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The hard coating layer is
(A) having an average layer thickness of 0.55 to 5.5 μm formed on the surface of the tool substrate; and
Composition formula: Ti (C e N 1-e ) (where e represents the content ratio of C in the total amount of C and N, and the atomic ratio satisfies 0.1 ≦ e ≦ 0.9) An underlayer comprising a Ti carbonitride layer,
(B) having an average layer thickness of 0.1 to 1.0 μm, and
Composition formula: Ti (O a C b N 1-ab ) (where a represents the content of O in the total amount of O, C and N, and the atomic ratio is 0.05 ≦ a ≦ In addition, b represents the content ratio of C in the total amount of O, C, and N, and the composite carbonitride of Ti that satisfies the atomic ratio of 0.1 ≦ b ≦ 0.4) A thin layer A comprising an oxide layer;
(C) having an average layer thickness of 0.05 to 0.5 μm, and
Composition formula: (Al 1-C Mg C ) (O 1-d N d ) (where c represents the content ratio of Mg in the total amount of Al and Mg, and the atomic ratio is 0.10 ≦ c ≦ 0.50 In addition, d represents the content ratio of N in the total amount of O and N, and the composite of Al and Mg satisfying the atomic ratio of 0.01 ≦ d ≦ 0.50) A thin layer B composed of a nitrided oxide layer,
The thin layer A is formed immediately above the underlayer, and the thin layer A and the thin layer B form an alternating laminate, and the layer thickness of the underlayer is the sum of the alternately laminated layers formed thereon. The surface coating cutting is characterized in that the layer thickness of the thin layer A is larger than the layer thickness of the thin layer B, and the total thickness of the hard coating layer is 1.0 to 10.0 μm. tool.
JP2014063115A 2014-03-26 2014-03-26 Surface coated cutting tool Expired - Fee Related JP6206288B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014063115A JP6206288B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014063115A JP6206288B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool

Publications (2)

Publication Number Publication Date
JP2015182207A JP2015182207A (en) 2015-10-22
JP6206288B2 true JP6206288B2 (en) 2017-10-04

Family

ID=54349349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014063115A Expired - Fee Related JP6206288B2 (en) 2014-03-26 2014-03-26 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP6206288B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0941127A (en) * 1995-08-03 1997-02-10 Kobe Steel Ltd Hard film
SE519921C2 (en) * 1999-05-06 2003-04-29 Sandvik Ab PVD coated cutting tool and method for its manufacture
US6689450B2 (en) * 2001-03-27 2004-02-10 Seco Tools Ab Enhanced Al2O3-Ti(C,N) multi-coating deposited at low temperature
JP4340579B2 (en) * 2004-04-13 2009-10-07 住友電工ハードメタル株式会社 Surface coated cutting tool
SE528108C2 (en) * 2004-07-13 2006-09-05 Sandvik Intellectual Property Coated cemented carbide inserts, especially for turning steel, and ways of manufacturing the same
US8071211B2 (en) * 2006-10-02 2011-12-06 Sumitomo Electric Industries, Ltd. Surface-coated cutting tool
JP5400692B2 (en) * 2010-04-22 2014-01-29 株式会社神戸製鋼所 Wear-resistant member provided with hard coating and method for producing the same

Also Published As

Publication number Publication date
JP2015182207A (en) 2015-10-22

Similar Documents

Publication Publication Date Title
JP6011249B2 (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
WO2014061292A1 (en) Surface-coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP5979438B2 (en) Surface coated cutting tool
JP5783462B2 (en) Surface coated cutting tool
JP5234499B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP6206289B2 (en) Surface coated cutting tool
JP5979437B2 (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP2016165787A (en) Surface-coated cutting tool
JP2011240438A (en) Surface coated cutting tool excellent in heat resistance and fusion resistance
JP2014188637A (en) Surface-coated cutting tool
JP6233588B2 (en) Surface coated cutting tool
JP6206288B2 (en) Surface coated cutting tool
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
JP2016175161A (en) Surface-coated cutting tool
JP5975338B2 (en) Surface coated cutting tool
JP6471546B2 (en) Surface coated cutting tool
JP5975339B2 (en) Surface coated cutting tool
JP5975342B2 (en) Surface coated cutting tool
JP5686254B2 (en) Surface coated cutting tool
JP6221872B2 (en) Surface coated cutting tool
JP2014188636A (en) Surface-coated cutting tool
JP5796354B2 (en) Surface coated cutting tool with excellent heat resistance and welding resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160929

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170821

R150 Certificate of patent or registration of utility model

Ref document number: 6206288

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees