JP5553013B2 - A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials. - Google Patents

A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials. Download PDF

Info

Publication number
JP5553013B2
JP5553013B2 JP2010262061A JP2010262061A JP5553013B2 JP 5553013 B2 JP5553013 B2 JP 5553013B2 JP 2010262061 A JP2010262061 A JP 2010262061A JP 2010262061 A JP2010262061 A JP 2010262061A JP 5553013 B2 JP5553013 B2 JP 5553013B2
Authority
JP
Japan
Prior art keywords
layer
coated
crb
tool
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010262061A
Other languages
Japanese (ja)
Other versions
JP2012110998A (en
Inventor
宏彰 柿沼
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010262061A priority Critical patent/JP5553013B2/en
Priority to CN2011103757895A priority patent/CN102528105A/en
Publication of JP2012110998A publication Critical patent/JP2012110998A/en
Application granted granted Critical
Publication of JP5553013B2 publication Critical patent/JP5553013B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、硬質被覆層がすぐれた耐溶着性とすぐれた密着力を有する表面層によって構成され、したがって、特に各種のNi系合金やTi系合金などの硬質難削材の切削加工をより剥離やチッピングが起きやすい高速高送り切削条件で行った場合にも、溶着が発生することによる硬質被覆層の剥離を抑制し、長期に亘ってすぐれた耐剥離性と耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, the hard coating layer is composed of a surface layer having excellent welding resistance and excellent adhesion, and therefore, more difficult to cut hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys. Surface coating that suppresses the peeling of the hard coating layer due to the occurrence of welding and exhibits excellent peeling resistance and chipping resistance over a long period of time even under high-speed, high-feed cutting conditions where chipping is likely to occur The present invention relates to a cutting tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、被覆工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された工具基体の表面に、
(a)0.8〜5μmの平均層厚を有し、かつ、組成式:(Ti1−XAl)N(ただし、原子比で、Xは0.40〜0.75を示す)を満足する(Ti,Al)N層からなる下部層、
(b)0.1〜0.5μmの平均層厚を有するCrN(窒化クロム)層からなる密着接合層、
(c)0.8〜5μmの平均層厚を有するCrB(硼化クロム)層からなる上部層、
前記(a)〜(c)で構成された硬質被覆層を形成した被覆工具(以下、従来被覆工具という)が知られており、そして、この従来被覆工具は、Ti系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にも、長期に亘ってすぐれた耐摩耗性を発揮することが知られている。
In addition, as a coated tool, on the surface of a tool base composed of tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) based cermet,
(A) having an average layer thickness of 0.8 to 5 μm and a composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.75 in terms of atomic ratio) A lower layer consisting of a satisfactory (Ti, Al) N layer,
(B) an adhesive bonding layer comprising a CrN (chromium nitride) layer having an average layer thickness of 0.1 to 0.5 μm;
(C) an upper layer comprising a CrB 2 (chromium boride) layer having an average layer thickness of 0.8 to 5 μm;
A coated tool (hereinafter referred to as a conventional coated tool) in which a hard coating layer composed of (a) to (c) is formed is known, and this conventional coated tool is composed of a Ti-based alloy or a high Si-containing Al. -It is known that even when hard difficult-to-cut materials such as Si-based alloys are cut under high-speed cutting conditions with high heat generation, excellent wear resistance is exhibited over a long period of time.

さらに、前記従来被覆工具は、アークイオンプレーティング装置と直流スパッタリング装置を併設した物理蒸着装置に上記の工具基体を装入し、まず、ヒーターで装置内を加熱した状態で、装置内に反応ガスとして窒素ガスを導入し、アークイオンプレーティング装置のアノード電極と所定組成を有するTi−Al合金がセットされたカソード電極(蒸発源)との間にアーク放電を発生させることにより前記(a)の(Ti,Al)N層からなる下部層を成膜し、次いで、直流スパッタリング装置の装置内の雰囲気を、窒素雰囲気としたまま、カソード電極(蒸発源)として配置した金属Crのスパッタリングを開始することによって、前記(b)の密着接合層としてCrN層を成膜し、次いで、装置内の雰囲気をAr雰囲気として所定時間、CrB焼結体のスパッタリングを行うことにより、前記CrN層上に重ねて前記(c)のCrB層からなる上部層を成膜することにより製造されることも知られている。 Further, in the conventional coated tool, the above-mentioned tool base is inserted into a physical vapor deposition apparatus provided with an arc ion plating apparatus and a direct current sputtering apparatus, and first, the reaction gas is introduced into the apparatus while the apparatus is heated by a heater. As described in (a) above, nitrogen gas is introduced and an arc discharge is generated between the anode electrode of the arc ion plating apparatus and the cathode electrode (evaporation source) on which a Ti—Al alloy having a predetermined composition is set. A lower layer made of a (Ti, Al) N layer is formed, and then sputtering of metal Cr arranged as a cathode electrode (evaporation source) is started while the atmosphere in the DC sputtering apparatus is kept in a nitrogen atmosphere. Thus, a CrN layer is formed as the adhesive bonding layer of (b), and then the atmosphere in the apparatus is set to an Ar atmosphere for a predetermined time. By performing the sputtering of CrB 2 sintered body, it is also known to be produced by forming an upper layer composed of CrB 2 layers of the superimposed on the CrN layer (c).

また、硬質被覆層を成膜する手段としては、アークイオンプレーティング、直流スパッタリングばかりでなく、高出力パルススパッタリングを利用した成膜も提案されており、例えば、特許文献2、3に示されるように、パルスの瞬間印加電力を200W/cm以上、パルスの一波長長さを100μsec以下という条件で高出力パルススパッタリングを行うことにより(Al,M)(但し、Mは、Mg、Zn、Mn、Fe等)あるいはα−Alを、高成膜速度で成膜できることも知られている。 As means for forming a hard coating layer, not only arc ion plating and direct current sputtering but also film formation using high-power pulse sputtering has been proposed. For example, as shown in Patent Documents 2 and 3 (Al, M) 2 O 3 (where M is Mg, by applying high power pulse sputtering under the condition that the instantaneous applied power of the pulse is 200 W / cm 2 or more and the one wavelength length of the pulse is 100 μsec or less. It is also known that Zn, Mn, Fe, etc.) or α-Al 2 O 3 can be deposited at a high deposition rate.

特開2006−159340号公報JP 2006-159340 A 国際公開第2008/148673号International Publication No. 2008/148673 国際公開第2009/010330号International Publication No. 2009/010330

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆工具が強く望まれる傾向にあるが、前記従来被覆工具においては、これをTi系合金や高Si含有Al−Si系合金などの硬質難削材の切削加工を高熱発生を伴う高速切削条件で行った場合にはすぐれた耐摩耗性を発揮するものの、これを各種のNi系合金やTi系合金などの硬質難削材の切削加工を高速高送り切削条件で行った場合には、切削時に発生するきわめて高い発熱によって溶着が生じやすく、これを原因として硬質被覆層の剥離が起こり、比較的短時間で使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. There is a tendency that a versatile coated tool that is not limited to the above is strongly desired. However, in the conventional coated tool, cutting of hard difficult-to-cut materials such as Ti-based alloys and high Si-containing Al-Si based alloys is performed with high heat. Although it exhibits excellent wear resistance when performed under high-speed cutting conditions with generation, it performs cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys under high-speed, high-feed cutting conditions. In such a case, welding is likely to occur due to extremely high heat generated during cutting, and the hard coating layer is peeled off due to this, and the service life is reached in a relatively short time.

そこで、本発明者らは、前述のような観点から、前記の硬質難削材の高速高送り切削加工で硬質層がすぐれた耐溶着性、耐剥離性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。
まず、従来被覆工具(特許文献1)においては、CrB層を直流スパッタリングで成膜しており、これをTi系合金や高Si含有Al−Si系合金などの硬質難削材などの高速切削加工に用いた場合には特段の問題も生じないが、これを特に各種のNi系合金やTi系合金などの硬質難削材の切削加工を高速高送り切削条件で行うのに用いた場合には、表面組織が密であることから被削材との接触面積が大きく、きわめて高い発熱によって溶着が生じ、また、CrB層の結晶粒子間の結合も弱かったために、その溶着による硬質被覆層の剥離が起こることを突き止めた。
そこで、本発明者らは、溶着発生が起こりにくく、かつ、結晶粒相互の結合強度の高いCrB層組織に着目して研究を行ったところ、CrB層を成膜するに当たり、特許文献1に示される直流スパッタリングではなく、特定条件の高出力パルススパッタリングを採用することによって、各種のNi系合金やTi系合金などの硬質難削材の高速高送り切削条件における切削加工においても、表面組織がポーラスであることから、被削材との接触面積が小さいために発熱しにくく、溶着も生じにくい上に、CrB層の結晶粒相互の結合強度が強いために硬質被覆層の剥離が生じにくいCrB層を成膜し得ることを見出したのである。
Therefore, in order to develop a coated tool that exhibits excellent welding resistance and peeling resistance in which the hard layer is excellent in the high-speed high-feed cutting of the hard difficult-to-cut material from the above-described viewpoint, As a result of earnest research, the following findings were obtained.
First, in a conventional coated tool (Patent Document 1), a CrB 2 layer is formed by direct current sputtering, and this is subjected to high-speed cutting such as hard difficult-to-cut materials such as Ti-based alloys and high Si-containing Al-Si based alloys. When used for machining, there is no particular problem, but when this is used to cut hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys under high-speed, high-feed cutting conditions. Since the surface structure is dense, the contact area with the work material is large, welding is caused by extremely high heat generation, and the bond between the crystal grains of the CrB 2 layer is weak, so the hard coating layer by the welding It was found that peeling occurred.
Accordingly, the present inventors have welding occurs hardly occurs, and, as a result of research by focusing on high CrB 2 layer tissue binding strength of the crystal grains mutually, when forming the CrB 2 layers, Patent Document 1 By adopting high-power pulse sputtering under specific conditions instead of the direct current sputtering shown in Fig. 4, surface texture can be obtained even in cutting operations under high-speed, high-feed cutting conditions for various difficult-to-cut materials such as Ni-based alloys and Ti-based alloys. Is porous, it is difficult to generate heat due to the small contact area with the work material, and it is difficult for welding to occur. In addition, the bond strength between the crystal grains of the CrB 2 layer is strong, resulting in peeling of the hard coating layer. It has been found that a difficult CrB 2 layer can be formed.

具体的に言うならば、図1に、高出力パルススパッタリング装置の概略平面図を示すが、高出力パルススパッタリング装置にCr硼化物(以下、CrBで示す)粉末の焼結体(以下、CrB焼結体という)ターゲットを配置し、装置内雰囲気を、Ar雰囲気にし、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、工具基体の表面にCrB層を蒸着成膜すると、溶着が生じにくいためすぐれた耐溶着性を有するとともに、結晶粒相互の結合強度が強く、膜硬度が高い(例えば、荷重200mgで測定した場合のナノインデンテーション硬さが3800kgf/mm2以上)、CrB層が成膜されることを見出したのである。
それにより、この結果の被覆工具は、特に著しい高熱発生を伴う各種のNi系合金やTi系合金などの硬質難削材の高速高送り切削において、すぐれた耐溶着性、結晶粒相互の結合強度、硬さを有するCrB層からなる表面層によって、特に、溶着に起因する硬質被覆層の剥離が抑制されることで、すぐれた耐剥離性と耐摩耗性を長期に亘って発揮するようになる、ということを見出したのである。
More specifically, FIG. 1 shows a schematic plan view of a high-power pulse sputtering apparatus. A sintered body of Cr boride (hereinafter referred to as CrB 2 ) powder (hereinafter referred to as CrB 2 ) is used in the high-power pulse sputtering apparatus. ( Sintered 2 ) Target is placed, the atmosphere in the apparatus is Ar atmosphere, high power pulse sputtering is performed with a high average input power of 6 kW or more, and CrB 2 layer is deposited on the surface of the tool base. CrB has excellent welding resistance, strong bonding strength between crystal grains, and high film hardness (for example, nanoindentation hardness measured at a load of 200 mg is 3800 kgf / mm 2 or more), CrB It was found that two layers were formed.
As a result, the resulting coated tool has excellent welding resistance and bond strength between grains, especially in high-speed, high-feed cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys that generate significant heat. The surface layer composed of a CrB 2 layer having hardness suppresses the peeling of the hard coating layer caused by welding, so that excellent peeling resistance and wear resistance can be exhibited over a long period of time. I found out.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するCr硼化物層を被覆してなる切削工具であって、
前記Cr硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、5〜15nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径30〜70nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径100〜600nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
“A cutting tool in which a Cr boride layer having an average layer thickness of at least 0.5 to 5 μm is coated on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The Cr boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 30 consisting of an aggregate of primary crystal grains having an average grain size of 5 to 15 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜70 nm and tertiary crystal grains having an average grain size of 100 to 600 nm composed of aggregates of the secondary crystal grains. "
It has the characteristics.

つぎに、本発明の被覆工具について、詳細に説明する。   Next, the coated tool of the present invention will be described in detail.

硬質被覆層の平均層厚
炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に形成するCr硼化物層は、その平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、Ni系合金やTi系合金などの硬質難削材の高速高送り切削では溶着に起因する剥離は抑制できるが、高出力パルススパッタリングが有する皮膜への高い打ち込み効果に起因する大きな圧縮残留応力により、切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
Average thickness of hard coating layer Cr boride layer formed on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is self-tangled if the average layer thickness is less than 0.5 μm. On the other hand, when the average layer thickness exceeds 5 μm, welding is difficult in high-speed, high-feed cutting of hard difficult-to-cut materials such as Ni-based alloys and Ti-based alloys. Peeling can be suppressed, but chipping is likely to occur at the cutting edge due to a large compressive residual stress resulting from a high driving effect on the film of high-power pulse sputtering. It was determined to be 5 to 5 μm.

複合組織の効果及び結晶粒の平均粒径
該複合組織の効果は結晶粒の集合体をなすことにより、該一次結晶粒同士はもとより該二次結晶粒同士の結合力を利用することが出来る点である。該複合組織を構成する一次結晶粒の平均粒径は、5nm未満の結晶粒を有する被膜を成膜することは難しく、一方、その平均粒径が15nmを超えると転位運動を阻害する粒界が減ってしまうために、高い硬さを維持することが出来ない。また、該一次結晶粒の集合体からなる二次結晶粒の平均粒径が30nm未満であると複合組織の長所である結晶粒同士の強い結合力を得るための二次結晶粒を構成する一次結晶粒の数が十分ではなく、70nmを超えると三次結晶粒を構成する二次結晶粒の数が十分ではない。さらに、該二次結晶粒の集合体からなる三次結晶粒の平均粒径は100nm未満では切削時に被削材と接触する面積が大きくなるために、溶着が起きやすく、該複合組織ごと剥離してしまい、一方、600nmを超えると切削時の負荷に耐えることが出来なくなってしまう。
The effect of the composite structure and the average grain size of the crystal grains The effect of the composite structure is that the bonding force between the secondary crystal grains as well as the primary crystal grains can be used by forming an aggregate of crystal grains. It is. The average grain size of the primary crystal grains constituting the composite structure is difficult to form a film having crystal grains of less than 5 nm. On the other hand, when the average grain size exceeds 15 nm, there is a grain boundary that inhibits dislocation motion. Since it decreases, it cannot maintain high hardness. Further, if the average grain size of the secondary crystal grains composed of the aggregate of primary crystal grains is less than 30 nm, the primary crystal grains constituting the secondary crystal grains for obtaining a strong bonding force between the crystal grains, which is an advantage of the composite structure The number of crystal grains is not sufficient, and if it exceeds 70 nm, the number of secondary crystal grains constituting the tertiary crystal grains is not sufficient. Furthermore, if the average grain size of the tertiary crystal grains composed of the aggregate of secondary crystal grains is less than 100 nm, the area in contact with the work material at the time of cutting becomes large, so that welding easily occurs, and the entire composite structure peels off. On the other hand, if it exceeds 600 nm, it becomes impossible to withstand the load during cutting.

本発明の被覆工具の製造方法を次に説明する。
図1に、本発明の被覆工具を製造するための装置の一例として、高出力パルススパッタリング装置を示す。
即ち、図1に示す高出力パルススパッタリング装置において、該高出力パルススパッタリング装置の中央部に工具基体装着用回転テーブルを設け、回転テーブルを挟んで対向する2か所に、CrB粉末の焼結体(CrB焼結体)ターゲットを配置し、前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気をAr雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、CrB焼結体ターゲットに対し、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、0.5〜5μmの平均層厚でCrB層を蒸着成膜することによって製造することができる。
また、該CrB層の下地層として耐摩耗層である(Ti,Al)N層を被覆することも有効である。
例えば、この場合の製造方法は、前記回転テーブルを挟んで対向する2か所に、所定の組成を有するTi−Al合金ターゲットを配置し、また、Ti−Al合金ターゲットとは90度ずれた位置で、回転テーブルを挟んで対向する2か所にCrB粉末の焼結体(CrB焼結体)ターゲットを配置する。そして、装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、Ti−Al合金ターゲットに対する6kW以上の高い平均投入電力の高出力パルススパッタリングを行い、前記工具基体の表面に(Ti,Al)N層を0.5〜0.8μmの平均層厚で耐摩耗硬質層として蒸着成膜し、ついで、装置内の雰囲気を実質的にAr雰囲気に変え、該CrB層を蒸着成膜することによって製造することができる。
特に、前記特定の条件下の高出力パルススパッタリングによって成膜されたCrB層は、従来被覆工具のように密着接合層(CrN層)を介さずとも(Ti,Al)N層に対してすぐれた密着強度を有し、さらに、膜硬度が高まる。
Next, a method for manufacturing the coated tool of the present invention will be described.
FIG. 1 shows a high-power pulse sputtering apparatus as an example of an apparatus for producing the coated tool of the present invention.
That is, in the high-power pulse sputtering apparatus shown in FIG. 1, a tool base mounting rotary table is provided at the center of the high-power pulse sputtering apparatus, and CrB 2 powder is sintered at two locations across the rotary table. A body (CrB 2 sintered body) target is arranged, and a plurality of tool bases are mounted in a ring shape along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table. While rotating the rotary table with an Ar atmosphere as the inner atmosphere and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the CrB 2 sintered body target. perform high output pulse sputtering at a high average input power, it is prepared by the CrB 2 layer with an average layer thickness of 0.5~5μm deposited film Kill.
It is also effective to coat a (Ti, Al) N layer, which is a wear-resistant layer, as an underlayer for the CrB two layers.
For example, in the manufacturing method in this case, a Ti—Al alloy target having a predetermined composition is arranged at two locations facing each other across the rotary table, and the position is shifted by 90 degrees from the Ti—Al alloy target. Thus, a CrB 2 powder sintered body (CrB 2 sintered body) target is disposed at two locations facing each other across the rotary table. Then, while rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere, and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the Ti—Al alloy target High-power pulse sputtering with a high average input power is performed, and a (Ti, Al) N layer is deposited on the surface of the tool base as an abrasion-resistant hard layer with an average layer thickness of 0.5 to 0.8 μm. It can be manufactured by substantially changing the atmosphere in the apparatus to an Ar atmosphere and depositing the CrB 2 layer.
In particular, the CrB 2 layer formed by high-power pulse sputtering under the above specific conditions is superior to the (Ti, Al) N layer without using an adhesive bonding layer (CrN layer) as in the conventional coated tool. Further, the film hardness is increased.

さらに、前記高出力パルススパッタリングにおいては、そのスパッタリング条件として、好ましくは、パルス印加時の発生プラズマ密度が1018−3以上となるようにし、また、パルスの一波長の長さは200μsec以上でかつ一周期毎のパルスの非印加時間は10μsec以上となるスパッタリング条件でスパッタリングすることが好ましい。 Furthermore, in the high-power pulse sputtering, the sputtering conditions are preferably such that the generated plasma density at the time of applying the pulse is 10 18 m −3 or more, and the length of one wavelength of the pulse is 200 μsec or more. In addition, it is preferable to perform sputtering under sputtering conditions in which the pulse non-application time for each cycle is 10 μsec or more.

前記エネルギーレベルを高めた矩形パルスによる高出力パルススパッタリングでは、ターゲットに対する熱負荷を減ずることができるためターゲットの無用な温度上昇を抑制することができる。
また、前記高出力パルススパッタリングによって成膜された(Ti,Al)N層、CrB層は、何れも密着強度が大であり、高硬度を有している。
In high-power pulse sputtering using a rectangular pulse with an increased energy level, it is possible to reduce the thermal load on the target, and thus it is possible to suppress an unnecessary temperature increase of the target.
Further, the (Ti, Al) N layer and the CrB 2 layer formed by the high-power pulse sputtering both have high adhesion strength and high hardness.

本発明の被覆工具は、硬質被覆層として、被削材との接触面積が小さくなるポーラスな表面組織を有するとともに結晶粒相互の結合強度が強い結晶粒組織の複合組織であり、高い硬さを有するCrB層からなることから、硬質難削材の高熱発生を伴う高速高送り切削条件加工を行った場合に、溶着に起因する硬質被覆層の剥離を抑制でき、長期の使用に亘って、すぐれた耐摩耗性を発揮するものである。 The coated tool of the present invention is a composite structure of a crystal grain structure having a porous surface structure with a small contact area with a work material and a strong bond strength between crystal grains as a hard coating layer, and has a high hardness. Because it consists of CrB 2 layers, when performing high-speed high-feed cutting conditions with high heat generation of hard difficult-to-cut materials, it is possible to suppress peeling of the hard coating layer due to welding, and over a long period of use, It exhibits excellent wear resistance.

本発明被覆工具の表面被覆層を成膜するのに用いた高出力パルススパッタリング装置の概略平面図である。It is a schematic plan view of the high-power pulse sputtering apparatus used for forming the surface coating layer of the coated tool of the present invention. 本発明被覆インサート9のCr硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal cross section of the Cr boride layer of this invention covering insert 9 is shown. 従来被覆インサート9のCr硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the Cr boride layer of the conventional covering insert 9 is shown. 本発明被覆インサートの複合組織からなるCr硼化物層の水平断面模式図を示す。The horizontal cross-sectional schematic diagram of the Cr boride layer which consists of a composite structure of this invention covering insert is shown.

つぎに、本発明による被覆工具およびその製造方法を、実施例により具体的に説明する。   Next, the coated tool and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and ISO standard / CNMG120408 insert shape Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all of TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The tool bases B-1 to B-6 made of TiCN base cermet having the insert shape were formed.

(a)ついで、前記工具基体A−1〜A−8のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所にCrB焼結体ターゲットを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、
(c)装置内に反応ガスとしてArガスを導入して、装置内雰囲気を0.5Paとし、表3に示される所定のパルススパッタ条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のCrB層を硬質被覆層の表面層として成膜することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートという)1〜8をそれぞれ製造した。
(d)また、下地層として(Ti,Al)N層を導入した本発明被覆インサートインサート9〜16を、前記工具基体A−9〜A−10及びB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所に所定組成のTi−Al合金ターゲットとCrB焼結体ターゲットを配置し、
(e)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、装置内に反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Ti−Al合金ターゲットに表3の条件記号aに示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として成膜し、
(f)CrB焼結体ターゲットに表3に示される所定のパルススパッタ条件で高出力パルススパッタを行い、装置内に導入するガスを窒素ガスからArガスに切り替えると共に、装置内雰囲気を0.5Paとし、この条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のCrB層を硬質被覆層の表面層として成膜することにより製造した。
(A) Next, each of the tool bases A-1 to A-8 is ultrasonically cleaned in acetone and dried, and the center axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. Is mounted along the outer periphery at a predetermined distance in the radial direction from the inside, while in the high-power pulse sputtering apparatus, CrB 2 sintered body targets are arranged at four locations facing each other across the rotary table,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. The tool substrate is treated with Ar bombardment for 1 hour by applying a DC bias voltage,
(C) Ar gas is introduced as a reaction gas into the apparatus, the atmosphere in the apparatus is set to 0.5 Pa, sputtering is performed for a time corresponding to the layer thickness under the predetermined pulse sputtering conditions shown in Table 3, and Table 4 The surface coating inserts of the present invention (hereinafter referred to as the present invention coated inserts) 1 to 8 as the present invention coated tools are produced by forming the CrB 2 layer having the target layer thickness shown in FIG. did.
(D) Moreover, this invention covering insert insert 9-16 which introduce | transduced the (Ti, Al) N layer as a foundation layer, each of the said tool base | substrate A-9-A-10 and B-1 to B-6, In the state of ultrasonic cleaning in acetone and drying, it is mounted along the outer periphery at a predetermined distance in the radial direction from the central axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. In the high-power pulse sputtering apparatus, a Ti—Al alloy target having a predetermined composition and a CrB 2 sintered body target are arranged at four locations across the rotary table,
(E) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. By applying a DC bias voltage, the tool base was subjected to Ar bombardment treatment for 1 hour, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 0.6 Pa, and the Ti-Al alloy target was exposed to the Ti-Al alloy target. The high power pulse sputtering is performed under the predetermined pulse sputtering conditions indicated by the condition symbol a in FIG. 3, and the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 4 is hardened on the surface of the tool base. Deposited as a wear-resistant hard layer of the coating layer,
(F) High power pulse sputtering is performed on the CrB 2 sintered body target under the predetermined pulse sputtering conditions shown in Table 3, the gas introduced into the apparatus is switched from nitrogen gas to Ar gas, and the atmosphere in the apparatus is set to 0. Sputtering was performed for 5 Pa under the conditions corresponding to the layer thickness, and a CrB 2 layer having a target layer thickness shown in Table 4 was formed as a surface layer of the hard coating layer.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれアークイオンプレーティング装置と直流スパッタリング装置を併設した物理蒸着装置に装入し、装置内には、種々の成分組成をもったTi−Al合金ターゲット、金属Crターゲット、CrB焼結体ターゲットを装着し、
まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、装置内に反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、ヒーターで装置内を500℃に加熱した後、前記Ti−Al合金ターゲットとアノード電極との間にアーク放電を発生させ、前記工具基体の表面に下部層として表6に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として成膜する。ついで、前記Ti−Al合金のカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、前記直流スパッタリング装置のカソード電極(蒸発源)として配置した金属Crの直流スパッタリングを開始し、目標組成および目標層厚のCrN層を硬質被覆層の密着接合層として成膜する。そして、金属Crのカソード電極(蒸発源)とアノード電極との間のアーク放電を停止し、前記直流スパッタリング装置内の雰囲気をAr雰囲気として、前記直流スパッタリング装置のカソード電極(蒸発源)として配置したCrB焼結体の直流スパッタリングを開始し、もって前記CrN層に重ねて上部層として表5に示される所定の直流スパッタ条件で、表6に示す平均層厚のCrB層を蒸着することにより従来被覆工具としての従来表面被覆インサート(以下、従来被覆インサートという)1〜16をそれぞれ製造した。
For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 are ultrasonically cleaned in acetone and dried, respectively, and an arc ion plating apparatus and a direct current sputtering apparatus, respectively. In the apparatus, a Ti-Al alloy target having various component compositions, a metal Cr target, and a CrB 2 sintered body target are mounted.
First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, the inside of the apparatus is heated to 400 ° C. with a heater, and then a DC bias voltage of −200 V is applied to the tool base that rotates while rotating on the rotary table. By applying, the tool substrate was Ar bombarded for 1 hour, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 0.6 Pa, and the apparatus was heated to 500 ° C. with a heater, Arc discharge is generated between the Ti—Al alloy target and the anode electrode, and the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 6 is hard-coated on the surface of the tool base as a lower layer. Deposited as a wear-resistant hard layer. Next, the arc discharge between the cathode electrode (evaporation source) and the anode electrode of the Ti—Al alloy is stopped, and the direct current sputtering of the metal Cr arranged as the cathode electrode (evaporation source) of the direct current sputtering apparatus is started. A CrN layer having a target composition and a target layer thickness is formed as an adhesive bonding layer of the hard coating layer. Then, the arc discharge between the cathode electrode (evaporation source) of metal Cr and the anode electrode is stopped, and the atmosphere in the DC sputtering apparatus is set as an Ar atmosphere, and is arranged as the cathode electrode (evaporation source) of the DC sputtering apparatus. By starting direct current sputtering of the CrB 2 sintered body and depositing a CrB 2 layer having an average layer thickness shown in Table 6 under the predetermined direct current sputtering conditions shown in Table 5 as an upper layer on the CrN layer. Conventional surface-coated inserts (hereinafter referred to as conventional coated inserts) 1 to 16 as conventional coated tools were produced, respectively.

なお、参考のため、図1に示される本発明被覆インサート1〜16を製造した装置と同じ装置で、本発明被覆インサート1〜16と異なる組成、膜厚、スパッタ条件で成膜することにより、表6に示される参考被覆工具としての参考表面被覆インサート(以下、参考被覆インサートという)1〜4をそれぞれ製造した。   For reference, in the same apparatus as the apparatus for manufacturing the present invention coated inserts 1-16 shown in FIG. 1, by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated inserts 1-16, Reference surface-coated inserts (hereinafter referred to as reference coated inserts) 1 to 4 as reference coated tools shown in Table 6 were produced.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のCrB層について、その結晶粒組織を走査型電子顕微鏡(Carl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表4、表6に、その測定値を示す。
また、図2に、本発明被覆インサート9のCrB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図3に、従来被覆インサート9のCrB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図4に、本発明被覆インサートの複合組織からなるCr硼化物層の水平断面模式図を示す。
About the CrB two layers of the present invention coated inserts 1-16, the conventional coated inserts 1-16, and the reference coated inserts 1-4, the crystal grain structure of the CrB two layers is 100,000 times by a scanning electron microscope (Carl Zeiss, ultra55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 4 and 6 show the measured values.
FIG. 2 shows a scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the CrB 2 layer of the coated insert 9 of the present invention, and FIG. 3 shows the scanning of the horizontal section of the CrB 2 layer of the conventional coated insert 9. A scanning electron micrograph (magnification: 100,000 times) is shown in FIG. 4, and a horizontal cross-sectional schematic view of a Cr boride layer made of a composite structure of the coated insert of the present invention is shown.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のCrB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表4、表6に、その測定値を示す。
For the CrB two layers of the present invention coated inserts 1-16, conventional coated inserts 1-16, and reference coated inserts 1-4, the surface hardness was measured by an ultra-fine indentation hardness tester (manufactured by Elionix, ENT-1100a). It was measured by.
Tables 4 and 6 show the measured values.

また、前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、前記硬質被覆層のCrB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
In addition, the composition of the wear-resistant hard layers constituting the hard coating layers of the present invention coated inserts 1 to 16, the conventional coated inserts 1 to 16 and the reference coated inserts 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.
Further, when the average thicknesses of the CrB 2 layer and the wear-resistant hard layer of the hard coating layer were measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記の各種被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4について、
被削材:質量%で、Ti−6%Al−4%V合金の丸棒、
切削速度:100m/min.、
切り込み:1.5mm、
送り:0.4mm/rev.、
切削時間:5分、
の条件(切削条件Aという)でのTi系合金の乾式高速高送り切削加工試験(通常の切削速度は50m/min.切削送りは0.2mm/rev.)、
を行い、切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, in the state where all the above-mentioned various coated inserts are screwed to the tip of the tool steel tool with a fixing jig, the present coated inserts 1-16, the conventional coated inserts 1-16, and the reference coated insert 1 About ~ 4
Work material: Ti-6% Al-4% V alloy round bar by mass%,
Cutting speed: 100 m / min. ,
Incision: 1.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes
Dry high-speed high-feed cutting test of Ti-based alloy under the following conditions (referred to as cutting condition A) (normal cutting speed is 50 m / min, cutting feed is 0.2 mm / rev.),
The flank wear width of the cutting blade was measured.
The measurement results are shown in Table 7.

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

原料粉末として、平均粒径:5.5μmを有するWC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ6mm×12mmの寸法並びにねじれ角30度の2枚刃スクエア形状をもった工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powder, WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1.8 μm Co powder was prepared, and these raw material powders were blended in the blending composition shown in Table 8 respectively. Further, wax was added, ball milled in acetone for 24 hours, dried under reduced pressure, and then dried into various shapes at a pressure of 100 MPa. The green compact was press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding time, sintering under furnace cooling conditions, A tool bar forming round bar sintered body having a diameter of 6 mm is formed, and further, the diameter x length of the cutting edge portion is 6 mm x 12 mm and the helix angle 30 by grinding from the round bar sintered body. Tool bases (end mills) C-1 to C-8 having a two-blade square shape were manufactured.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、前記実施例1と同一の条件で、C−1〜C−4に表9に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆エンドミル(以下、本発明被覆エンドミルという)1〜4を、C−5〜C−8に表9に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層と、同じく表9に示される目標層厚のCrB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆エンドミル5〜8をそれぞれ製造した。 Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions, a hard coating layer composed of a surface layer composed of two CrB layers having the target layer thickness shown in Table 9 in C-1 to C-4 is formed by vapor deposition. Inventive surface-coated end mills (hereinafter referred to as the present invention-coated end mills) 1 to 4 are composed of (Ti, Al) N layers having the target composition and target layer thickness shown in Table 9 in C-5 to C-8. The coated end mills 5 to 8 of the present invention were manufactured by vapor-depositing a layer and a hard coating layer composed of a surface layer composed of two CrB layers having the target layer thickness shown in Table 9 respectively.

また、比較の目的で、前記工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、同じく表10に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層を硬質被覆層として蒸着することにより、従来被覆工具としての従来表面被覆エンドミル(以下、従来被覆エンドミルという)1〜8をそれぞれ製造した。
さらに、参考のため、前記工具基体(エンドミル)C−1,C−3,C−5,C−7の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、本発明被覆エンドミル1〜8と異なる組成、膜厚、スパッタ条件で成膜することにより、表10に示される参考被覆工具としての参考表面被覆エンドミル(以下、参考被覆エンドミルという)1〜4をそれぞれ製造した。
Further, for comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried under the same conditions as in Example 1 and also in Table 10. A conventional surface-coated end mill (hereinafter referred to as a conventional coated end mill) 1 as a conventional coated tool is obtained by depositing a wear-resistant hard layer comprising a (Ti, Al) N layer having a target composition and a target layer thickness as a hard coating layer. ~ 8 were produced respectively.
Further, for reference, the surfaces of the tool bases (end mills) C-1, C-3, C-5, and C-7 are ultrasonically cleaned in acetone and dried. The reference surface coating end mill (hereinafter referred to as a reference coating end mill) 1 to 1 as a reference coating tool shown in Table 10 by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated end mills 1 to 8 4 were produced respectively.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のCrB層について、その結晶粒組織を走査型電子顕微鏡(Curl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表9、表10に、その測定値を示す。
About the CrB 2 layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8, and the reference coated end mills 1 to 4, the crystal grain structure of the CrB two layers is 100,000 times by a scanning electron microscope (made by Curl Zeiss, ultra 55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 9 and 10 show the measured values.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のCrB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表9、表10に、その測定値を示す。
For the CrB two layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8, and the reference coated end mills 1 to 4, the surface hardness was measured by an ultra fine indentation hardness tester (ENT-1100a, manufactured by Elionix). It was measured by.
Tables 9 and 10 show the measured values.

また、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、前記硬質被覆層のCrB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
Further, the composition of the hard coating layer constituting the hard coating layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8 and the reference coated end mills 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.
Further, when the average thicknesses of the CrB 2 layer and the wear-resistant hard layer of the hard coating layer were measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4について、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:150m/min.、
溝深さ(切り込み):4mm、
テーブル送り:1400mm/分、
の条件(切削条件Bという)でのTi系合金の乾式高速高送り溝切削加工試験(通常の切削速度は75m/min.テーブル送りは960mm/分、.)、
を行い、溝切削加工試験における切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
この測定結果を表11にそれぞれ示した。
Next, for the present invention coated end mills 1-8, conventional coated end mills 1-8 and reference coated end mills 1-4,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-6% Al-4% V alloy) plate material,
Cutting speed: 150 m / min. ,
Groove depth (cut): 4 mm
Table feed: 1400mm / min,
A dry high-speed high-feed groove cutting test of a Ti-based alloy under the following conditions (referred to as cutting condition B) (normal cutting speed is 75 m / min, table feed is 960 mm / min,.),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge in the groove cutting test reached 0.1 mm, which is a guide for the service life.
The measurement results are shown in Table 11, respectively.

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

Figure 0005553013
Figure 0005553013

表3〜11に示される結果から、CrB層がすぐれた耐溶着性と硬さを有する本発明被覆工具は、各種のNi系合金やTi系合金などの硬質難削材の高熱発生を伴う高速高送り切削で、すぐれた耐剥離性と耐摩耗性を発揮する。
これに対して、従来被覆工具では、表6、表10に示されるように、該複合組織を形成していないため耐溶着性に劣り、硬質難削材の高熱発生を伴う高速高送り切削条件で硬質被覆層の剥離を抑制することができず、硬さも十分でないために耐摩耗性に劣る。また、本発明で規定する範囲から外れるCrB層を有する参考被覆工具においては、硬質難削材の高熱発生を伴う高速高送り切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3 to 11, the present coated tool having excellent welding resistance and hardness with a CrB 2 layer is accompanied by high heat generation of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys. High-speed, high-feed cutting provides excellent peel resistance and wear resistance.
On the other hand, in the conventional coated tool, as shown in Tables 6 and 10, since the composite structure is not formed, the welding resistance is inferior, and the high-speed and high-feed cutting conditions accompanied by the high heat generation of hard difficult-to-cut materials. Therefore, the peeling of the hard coating layer cannot be suppressed, and the hardness is not sufficient, so that the wear resistance is poor. In addition, in the reference coated tool having a CrB 2 layer deviating from the range specified in the present invention, the wear progress of the cutting edge portion is high in high-speed high-feed cutting with high heat generation of hard difficult-to-cut materials, and in a relatively short time. It is clear that the service life is reached.

前述のように、本発明の被覆工具およびその製造方法によれば、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴う前記硬質難削材の高速高送り切削加工でもすぐれた耐剥離性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, according to the coated tool and the manufacturing method thereof of the present invention, not only cutting under normal cutting conditions such as various steels and cast irons, but also high speeds of the hard difficult-to-cut materials with particularly high heat generation. It exhibits excellent peeling resistance and wear resistance even in high-feed cutting, and exhibits excellent cutting performance over a long period of time. It can cope with energy saving and cost reduction sufficiently satisfactorily.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するCr硼化物層を被覆してなる切削工具であって、
前記Cr硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、5〜15nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径30〜70nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径100〜600nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。
A cutting tool in which a Cr boride layer having an average layer thickness of at least 0.5 to 5 μm is coated on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The Cr boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 30 consisting of an aggregate of primary crystal grains having an average grain size of 5 to 15 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜70 nm and tertiary crystal grains having an average grain size of 100 to 600 nm composed of aggregates of the secondary crystal grains.
JP2010262061A 2010-11-25 2010-11-25 A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials. Active JP5553013B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010262061A JP5553013B2 (en) 2010-11-25 2010-11-25 A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
CN2011103757895A CN102528105A (en) 2010-11-25 2011-11-23 Surface coating cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010262061A JP5553013B2 (en) 2010-11-25 2010-11-25 A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.

Publications (2)

Publication Number Publication Date
JP2012110998A JP2012110998A (en) 2012-06-14
JP5553013B2 true JP5553013B2 (en) 2014-07-16

Family

ID=46336819

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010262061A Active JP5553013B2 (en) 2010-11-25 2010-11-25 A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.

Country Status (2)

Country Link
JP (1) JP5553013B2 (en)
CN (1) CN102528105A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102211395B1 (en) * 2019-05-22 2021-02-03 주식회사 도루코 Razor Blade and Manufacturing Method Thereof
KR102211399B1 (en) 2019-05-22 2021-02-03 주식회사 도루코 Razor Blade and Manufacturing Method Thereof

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE522722C2 (en) * 2001-03-28 2004-03-02 Seco Tools Ab Cutting tool coated with titanium diboride
JP4251990B2 (en) * 2002-01-18 2009-04-08 住友電工ハードメタル株式会社 Surface coated cutting tool
AU2003280758A1 (en) * 2003-07-31 2005-02-15 A.L.M.T.Corp. Diamond film coated tool and process for producing the same
JP2006001006A (en) * 2004-05-17 2006-01-05 Mitsubishi Materials Corp Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4621973B2 (en) * 2004-06-18 2011-02-02 三菱マテリアル株式会社 Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
CN100528430C (en) * 2004-06-18 2009-08-19 三菱麻铁里亚尔株式会社 Surface-coated cutware and process for producing the same
EP1757388B1 (en) * 2004-06-18 2015-11-04 Mitsubishi Materials Corporation Surface-coated cutware and process for producing the same
JP2007290066A (en) * 2006-04-24 2007-11-08 Mitsubishi Materials Corp Surface coated cemented carbide cutting tool having hard coating layer exhibiting excellent wear resistance in high speed cutting of soft work material hard to work
SE533395C2 (en) * 2007-06-08 2010-09-14 Sandvik Intellectual Property Ways to make PVD coatings
JP2009039838A (en) * 2007-08-10 2009-02-26 Mitsubishi Materials Corp Surface-coated cutting tool
JP4916021B2 (en) * 2007-09-26 2012-04-11 日立ツール株式会社 Film
JP5488824B2 (en) * 2010-08-12 2014-05-14 三菱マテリアル株式会社 Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials

Also Published As

Publication number Publication date
CN102528105A (en) 2012-07-04
JP2012110998A (en) 2012-06-14

Similar Documents

Publication Publication Date Title
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP6331003B2 (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP5440353B2 (en) Surface coated cutting tool
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5594569B2 (en) Surface coated cutting tool
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP2008006574A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy
WO2020184352A1 (en) Surface-coated cutting tool
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2012115967A (en) Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP5499861B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP5440352B2 (en) Surface coated cutting tool
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4120489B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20130927

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20140416

Free format text: JAPANESE INTERMEDIATE CODE: A971007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20140430

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140513

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5553013

Country of ref document: JP