JP2012115967A - Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material - Google Patents

Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material Download PDF

Info

Publication number
JP2012115967A
JP2012115967A JP2010270102A JP2010270102A JP2012115967A JP 2012115967 A JP2012115967 A JP 2012115967A JP 2010270102 A JP2010270102 A JP 2010270102A JP 2010270102 A JP2010270102 A JP 2010270102A JP 2012115967 A JP2012115967 A JP 2012115967A
Authority
JP
Japan
Prior art keywords
layer
hard
tool
cutting
nbb
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010270102A
Other languages
Japanese (ja)
Inventor
Hiroaki Kakinuma
宏彰 柿沼
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010270102A priority Critical patent/JP2012115967A/en
Priority to CN2011103755298A priority patent/CN102554293A/en
Publication of JP2012115967A publication Critical patent/JP2012115967A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool in which a hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting a hard difficult-to-cut material.SOLUTION: The cutting tool is formed by coating an uppermost surface of a tool substrate constituted of a tungsten carbide based cemented carbide or titanium carbonitride based cermet with at least an Nb boride layer with an average layer thickness of 0.5-5 μm. In the cutting tool, the Nb boride layer is constituted as a composition structure of a crystalline grain structure with multiple average grain sizes. The composition structure is constituted of: a secondary crystalline grain constituted of an aggregate of a primary crystalline grain with an average grain size of 5-20 nm and having an average grain size of 40-80 nm; and a tertiary crystalline grain constituted of an aggregate of the secondary crystalline grain and having an average grain size of 150-800 nm.

Description

本発明は、硬質被覆層がすぐれた耐溶着性とすぐれた密着力を有する表面層によって構成され、したがって、特に各種のNi系合金やTi系合金などの硬質難削材の断続切削加工を行った場合にも、溶着が発生することによる硬質被覆層の剥離を抑制し、長期に亘ってすぐれた耐剥離性と耐チッピング性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   In the present invention, the hard coating layer is constituted by a surface layer having excellent adhesion resistance and excellent adhesion, and therefore, intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys is performed. In this case, it also relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that suppresses peeling of the hard coating layer due to the occurrence of welding and exhibits excellent peeling resistance and chipping resistance over a long period of time. is there.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットなどで構成された工具基体の表面に、六方晶の結晶構造を有し、X線回折において最強回折強度を(001)面に有し、残留圧縮応力が0.1GPa以上であるNbBを被覆した切削工具が知られている。 Further, the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet has a hexagonal crystal structure, and X-ray A cutting tool coated with NbB 2 having the strongest diffraction intensity in diffraction on the (001) plane and having a residual compressive stress of 0.1 GPa or more is known.

さらに、前記従来被覆工具は、スパッタリング蒸発源にNbBターゲットを装着し、蒸発原に対向する位置に独立したアノードを設置した製膜装置に上記の工具基体を装入し、ヒーター加熱で基材温度を500℃にし、排気を行い、容器内圧力が4×10−3Paに達した後、Arガスを真空容器内に導入し、工具基体に−400Vのバイアス電圧を印加してイオンによる基材のクリーニングを30分間実施したのち、カソード電力は4kWにて放電を開始し、工具基体にかけるバイアス電圧やAr流量などの成膜条件を最適化することで成膜時のイオン化率を高めながら、皮膜の結晶配向性を制御すること、同時に工具基体にバイアス電圧を印加して硼化物皮膜を被覆することにより製造されることも知られている。 Further, in the conventional coated tool, the above-mentioned tool base is placed in a film forming apparatus in which an NbB 2 target is mounted on a sputtering evaporation source, and an independent anode is installed at a position facing the evaporation source, and the substrate is heated by heating. After the temperature was set to 500 ° C., the exhaust was performed, and the internal pressure of the container reached 4 × 10 −3 Pa, Ar gas was introduced into the vacuum container, and a bias voltage of −400 V was applied to the tool base to apply the ion base. After cleaning the material for 30 minutes, the cathode power starts discharging at 4 kW, and the ionization rate during film formation is increased by optimizing the film formation conditions such as bias voltage and Ar flow rate applied to the tool base. It is also known that the film is manufactured by controlling the crystal orientation of the film and simultaneously applying a bias voltage to the tool substrate to coat the boride film.

また、硬質被覆層を成膜する手段としては、アークイオンプレーティング、直流スパッタリングばかりでなく、高出力パルススパッタリングを利用した成膜も提案されており、例えば、特許文献2、3に示されるように、パルスの瞬間印加電力を200W/cm以上、パルスの一波長長さを100μsec以下という条件で高出力パルススパッタリングを行うことにより(Al,M)(但し、Mは、Mg、Zn、Mn、Fe等)あるいはα−Alを、高成膜速度で成膜できることも知られている。 As means for forming a hard coating layer, not only arc ion plating and direct current sputtering but also film formation using high-power pulse sputtering has been proposed. For example, as shown in Patent Documents 2 and 3 (Al, M) 2 O 3 (where M is Mg, by applying high power pulse sputtering under the condition that the instantaneous applied power of the pulse is 200 W / cm 2 or more and the one wavelength length of the pulse is 100 μsec or less. It is also known that Zn, Mn, Fe, etc.) or α-Al 2 O 3 can be deposited at a high deposition rate.

特開2008−238281号公報JP 2008-238281 A 国際公開第2008/148673号International Publication No. 2008/148673 国際公開第2009/010330号International Publication No. 2009/010330

近年の切削加工装置の高性能化および自動化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化し、かつ被削材の種類に限定されない汎用性のある被覆工具が強く望まれる傾向にあるが、前記従来被覆工具においては、これをAl-Si系合金などの硬質難削材の切削加工を行った場合には長寿命を示すものの、これを熱伝導率が低く、切削時に工具刃先に熱が留まりやすい、各種のNi系合金やTi系合金などの硬質難削材の断続切削加工を行った場合には、切削時に発生するきわめて高い発熱による工具刃先への溶着が起きると共に、被削材と被覆工具が幾度も離れることにより、硬質被覆層が溶着ごと剥離してしまうため、比較的短時間にて使用寿命に至るのが現状である。   The performance and automation of cutting machines in recent years have been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. Accordingly, cutting speed has been increased and types of work materials have been increased. There is a tendency that a general-purpose coated tool that is not limited to the above is strongly desired. However, in the conventional coated tool, when a hard difficult-to-cut material such as an Al-Si alloy is cut, a long life is obtained. Although shown, this occurs during cutting when intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys that have low thermal conductivity and heat tends to stay at the tool tip during cutting. As a result, welding to the tool edge occurs due to extremely high heat generation, and the hard coating layer peels off along with the welding because the work material and the coated tool are separated several times, leading to a service life in a relatively short time. Is the current situation.

そこで、本発明者らは、前述のような観点から、前記の硬質難削材の断続切削加工において硬質層がすぐれた耐溶着性、耐剥離性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。
まず、従来被覆工具(特許文献1)においては、NbB層を直流スパッタリングで成膜しており、これをAl-Si系合金などの硬質難削材などの切削加工に用いた場合には特段の問題も生じないが、これを特に各種のNi系合金やTi系合金などの硬質難削材の断続切削加工に用いた場合には、表面組織が密であることから被削材との接触面積が大きく、きわめて高い発熱によって溶着が生じ、また、NbB層の結晶粒子間の結合も弱かったために、その溶着による硬質被覆層の剥離が起こることを突き止めた。
そこで、本発明者らは、溶着発生が起こりにくく、かつ、結晶粒相互の結合強度の高いNbB層組織に着目して研究を行ったところ、NbB層を成膜するに当たり、特許文献1に示される直流スパッタリングではなく、特定条件の高出力パルススパッタリングを採用することによって、各種のNi系合金やTi系合金などの硬質難削材の断続切削加工においても、表面組織がポーラスであることから、被削材との接触面積が小さいために発熱しにくく、溶着も生じにくい上に、NbB層の結晶粒相互の結合強度が強いために硬質被覆層の剥離が生じにくいNbB層を成膜し得ることを見出したのである。
In view of the above, the present inventors have conducted intensive research in order to develop a coated tool that exhibits excellent welding resistance and peeling resistance in which the hard layer is excellent in intermittent cutting of the hard difficult-to-cut material. As a result, the following knowledge was obtained.
First, in the conventional coated tool (Patent Document 1), the NbB 2 layer is formed by direct current sputtering, and when this is used for cutting hard difficult-to-cut materials such as Al-Si alloys, it is special. However, when this is used for intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys, the contact with the work material due to the dense surface structure. It has been found that the hard coating layer is peeled off due to the welding because the area is large, the heat generation is caused by extremely high heat generation, and the bonds between the crystal grains of the NbB two layers are weak.
Accordingly, the present inventors have welding occurs hardly occurs, and, as a result of research by focusing on high NbB 2 layer tissue binding strength of the crystal grains mutually, when forming the NbB 2 layers, Patent Document 1 By adopting high-power pulse sputtering under specific conditions instead of the direct current sputtering shown in Fig. 4, the surface structure is porous even in intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys. In addition, since the contact area with the work material is small, it is difficult to generate heat and welding, and the NbB 2 layer is less likely to be peeled off due to the strong bond strength between the crystal grains of the NbB 2 layer. It was found that a film can be formed.

具体的に言うならば、図1に、高出力パルススパッタリング装置の概略平面図を示すが、高出力パルススパッタリング装置にNb硼化物(以下、NbBで示す)粉末の焼結体(以下、NbB焼結体という)ターゲットを配置し、装置内雰囲気を、Ar雰囲気にし、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、工具基体の表面にNbB層を蒸着成膜すると、溶着が生じにくいためすぐれた耐溶着性を有するとともに、結晶粒相互の結合強度が強く、膜硬度が高い(例えば、荷重200mgで測定した場合のナノインデンテーション硬さが3700kgf/mm2以上)、NbB層が成膜されることを見出したのである。
それにより、この結果の被覆工具は、特に著しい高熱発生を伴う各種のNi系合金やTi系合金などの硬質難削材の断続切削において、すぐれた耐溶着性、結晶粒相互の結合強度、硬さを有するNbB層からなる表面層によって、特に、溶着に起因する硬質被覆層の剥離が抑制されることで、すぐれた耐剥離性と耐摩耗性を長期に亘って発揮するようになる、ということを見出したのである。
More specifically, FIG. 1 shows a schematic plan view of a high-power pulse sputtering apparatus. In the high-power pulse sputtering apparatus, a sintered body of Nb boride (hereinafter referred to as NbB 2 ) powder (hereinafter referred to as NbB). ( Sintered 2 ) Target is placed, the atmosphere in the apparatus is Ar atmosphere, high power pulse sputtering is performed with a high average input power of 6 kW or more, and NbB 2 layer is deposited on the surface of the tool base. NbB has excellent welding resistance, strong bond strength between crystal grains, and high film hardness (for example, a nanoindentation hardness of 3700 kgf / mm 2 or more when measured at a load of 200 mg). It was found that two layers were formed.
As a result, the resulting coated tool has excellent welding resistance, bonding strength between grains, hard hardness, especially in intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys that generate significant heat. By the surface layer comprising the NbB 2 layer having a thickness, particularly, the peeling of the hard coating layer caused by the welding is suppressed, so that excellent peeling resistance and wear resistance are exhibited over a long period of time. I found out.

本発明は、前記知見に基づいてなされたものであって、
「 炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するNb硼化物層を被覆してなる切削工具であって、
前記Nb硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、5〜20nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径40〜80nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径150〜800nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings,
A cutting tool in which an Nb boride layer having an average layer thickness of at least 0.5 to 5 μm is coated on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet,
The Nb boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 40 composed of an aggregate of primary crystal grains having an average grain size of 5 to 20 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜80 nm and tertiary crystal grains having an average grain size of 150 to 800 nm composed of aggregates of the secondary crystal grains. "
It has the characteristics.

つぎに、本発明の被覆工具について、詳細に説明する。   Next, the coated tool of the present invention will be described in detail.

硬質被覆層の平均層厚
炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に形成するNb硼化物層は、その平均層厚が0.5μm未満では、自身のもつすぐれた耐摩耗性を長期に亘って発揮するには不十分であり、一方、その平均層厚が5μmを越えると、Ni系合金やTi系合金などの硬質難削材の断続切削では溶着に起因する剥離は抑制できるが、高出力パルススパッタリングが有する皮膜への高い打ち込み効果に起因する大きな圧縮残留応力により、切刃部にチッピングが発生し易くなることから、その平均層厚を0.5〜5μmと定めた。
Average layer thickness of hard coating layer The Nb boride layer formed on the outermost surface of a tool base made of tungsten carbide-based cemented carbide or titanium carbonitride-based cermet is self-tangled when the average layer thickness is less than 0.5 μm. On the other hand, if the average layer thickness exceeds 5 μm, the intermittent cutting of hard difficult-to-cut materials such as Ni-based alloys and Ti-based alloys is caused by welding. Peeling can be suppressed, but chipping is likely to occur at the cutting edge due to a large compressive residual stress caused by a high driving effect on the film of high power pulse sputtering, so the average layer thickness is 0.5 to It was set to 5 μm.

複合組織の効果及び結晶粒の平均粒径
該複合組織の効果は結晶粒の集合体をなすことにより、該一次結晶粒同士はもとより該二次結晶粒同士の結合力を利用することが出来る点である。該複合組織を構成する一次結晶粒の平均粒径は、5nm未満の結晶粒を有する被膜を成膜することは難しく、一方、その平均粒径が20nmを超えると転位運動を阻害する粒界が減ってしまうために、高い硬さを維持することが出来ない。また、該一次結晶粒の集合体からなる二次結晶粒の平均粒径が40nm未満であると複合組織の長所である結晶粒同士の強い結合力を得るための二次結晶粒を構成する一次結晶粒の数が十分ではなく、80nmを超えると三次結晶粒を構成する二次結晶粒の数が十分ではない。さらに、該二次結晶粒の集合体からなる三次結晶粒の平均粒径は150nm未満では切削時に被削材と接触する面積が大きくなるために、溶着が起きやすく、該複合組織ごと剥離してしまい、一方、800nmを超えると切削時の負荷に耐えることが出来なくなってしまう。
The effect of the composite structure and the average grain size of the crystal grains The effect of the composite structure is that the bonding force between the secondary crystal grains as well as the primary crystal grains can be used by forming an aggregate of crystal grains. It is. The average grain size of the primary crystal grains constituting the composite structure is difficult to form a film having crystal grains of less than 5 nm. On the other hand, when the average grain size exceeds 20 nm, there is a grain boundary that inhibits dislocation movement. Since it decreases, it cannot maintain high hardness. Further, when the average grain size of the secondary crystal grains composed of the aggregate of the primary crystal grains is less than 40 nm, the primary crystal grains constituting the secondary crystal grains for obtaining a strong bonding force between the crystal grains, which is an advantage of the composite structure The number of crystal grains is not sufficient, and if it exceeds 80 nm, the number of secondary crystal grains constituting the tertiary crystal grains is not sufficient. Furthermore, if the average grain size of the tertiary crystal grains composed of the aggregate of secondary crystal grains is less than 150 nm, the area in contact with the work material at the time of cutting becomes large, so that welding easily occurs, and the entire composite structure peels off. On the other hand, if it exceeds 800 nm, it becomes impossible to withstand the load during cutting.

本発明の被覆工具の製造方法を次に説明する。
図1に、本発明の被覆工具を製造するための装置の一例として、高出力パルススパッタリング装置を示す。
即ち、図1に示す高出力パルススパッタリング装置において、該高出力パルススパッタリング装置の中央部に工具基体装着用回転テーブルを設け、回転テーブルを挟んで対向する2か所に、NbB粉末の焼結体(NbB焼結体)ターゲットを配置し、前記回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って複数の工具基体をリング状に装着し、この状態で装置内雰囲気をAr雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、NbB焼結体ターゲットに対し、6kW以上の高い平均投入電力で高出力パルススパッタリングを行い、0.5〜5μmの平均層厚でNbB層を蒸着成膜することによって製造することができる。
また、該NbB層の下地層として耐摩耗層である(Ti,Al)N層を被覆することも有効である。
例えば、この場合の製造方法は、前記回転テーブルを挟んで対向する2か所に、所定の組成を有するTi−Al合金ターゲットを配置し、また、Ti−Al合金ターゲットとは90度ずれた位置で、回転テーブルを挟んで対向する2か所にNbB粉末の焼結体(NbB焼結体)ターゲットを配置する。そして、装置内雰囲気を窒素雰囲気として前記回転テーブルを回転させると共に、蒸着形成される耐摩耗硬質層の層厚均一化を図る目的で工具基体自体も自転させながら、Ti−Al合金ターゲットに対する6kW以上の高い平均投入電力の高出力パルススパッタリングを行い、前記工具基体の表面に(Ti,Al)N層を0.8〜5μmの平均層厚で耐摩耗硬質層として蒸着成膜し、ついで、装置内の雰囲気を実質的にAr雰囲気に変え、該NbB層を蒸着成膜することによって製造することができる。
Next, a method for manufacturing the coated tool of the present invention will be described.
FIG. 1 shows a high-power pulse sputtering apparatus as an example of an apparatus for producing the coated tool of the present invention.
That is, in the high-power pulse sputtering apparatus shown in FIG. 1, a tool base mounting rotary table is provided at the center of the high-power pulse sputtering apparatus, and the NbB 2 powder is sintered at two locations facing each other across the rotary table. A body (NbB 2 sintered body) target is arranged, and a plurality of tool bases are mounted in a ring shape along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table. While rotating the rotary table with an Ar atmosphere as the inner atmosphere and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the NbB 2 sintered body target perform high output pulse sputtering at a high average input power, it is prepared by the NbB 2 layer with an average layer thickness of 0.5~5μm deposited film Kill.
It is also effective to coat a (Ti, Al) N layer which is a wear-resistant layer as an underlayer of the NbB two layers.
For example, in the manufacturing method in this case, a Ti—Al alloy target having a predetermined composition is arranged at two locations facing each other across the rotary table, and the position is shifted by 90 degrees from the Ti—Al alloy target. Thus, NbB 2 powder sintered bodies (NbB 2 sintered body) targets are arranged at two locations facing each other across the rotary table. Then, while rotating the rotary table with the atmosphere inside the apparatus as a nitrogen atmosphere, and rotating the tool base itself for the purpose of uniforming the thickness of the wear-resistant hard layer formed by vapor deposition, 6 kW or more with respect to the Ti—Al alloy target High-power pulse sputtering with a high average input power is performed, and a (Ti, Al) N layer is vapor-deposited as an abrasion-resistant hard layer with an average layer thickness of 0.8 to 5 μm on the surface of the tool base. The inner atmosphere can be substantially changed to an Ar atmosphere, and the NbB 2 layer can be formed by vapor deposition.

さらに、前記高出力パルススパッタリングにおいては、そのスパッタリング条件として、好ましくは、パルス印加時の発生プラズマ密度が1018−3以上となるようにし、また、パルスの一波長の長さは200μsec以上でかつ一周期毎のパルスの非印加時間は10μsec以上となるスパッタリング条件でスパッタリングすることが好ましい。 Furthermore, in the high-power pulse sputtering, the sputtering conditions are preferably such that the generated plasma density at the time of applying the pulse is 10 18 m −3 or more, and the length of one wavelength of the pulse is 200 μsec or more. In addition, it is preferable to perform sputtering under sputtering conditions in which the pulse non-application time for each cycle is 10 μsec or more.

前記エネルギーレベルを高めた矩形パルスによる高出力パルススパッタリングでは、ターゲットに対する熱負荷を減ずることができるためターゲットの無用な温度上昇を抑制することができる。
また、前記高出力パルススパッタリングによって成膜された(Ti,Al)N層、NbB層は、何れも密着強度が大であり、高硬度を有している。
In high-power pulse sputtering using a rectangular pulse with an increased energy level, it is possible to reduce the thermal load on the target, and thus it is possible to suppress an unnecessary temperature increase of the target.
Further, the (Ti, Al) N layer and the NbB 2 layer formed by the high-power pulse sputtering both have high adhesion strength and high hardness.

本発明の被覆工具は、硬質被覆層として、被削材との接触面積が小さくなるポーラスな表面組織を有するとともに結晶粒相互の結合強度が強い結晶粒組織の複合組織であり、高い硬さを有するNbB層からなることから、特に各種のNi系合金やTi系合金などの硬質難削材の断続切削加工を行った場合にも、溶着に起因する硬質被覆層の剥離を抑制でき、長期の使用に亘って、すぐれた耐摩耗性を発揮するものである。 The coated tool of the present invention is a composite structure of a crystal grain structure having a porous surface structure with a small contact area with a work material and a strong bond strength between crystal grains as a hard coating layer, and has a high hardness. Since it consists of two NbB layers, it is possible to suppress the peeling of the hard coating layer due to welding, especially when intermittent cutting of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys is performed. It exhibits excellent wear resistance over use.

本発明被覆工具の表面被覆層を成膜するのに用いた高出力パルススパッタリング装置の概略平面図である。It is a schematic plan view of the high-power pulse sputtering apparatus used for forming the surface coating layer of the coated tool of the present invention. 本発明被覆インサート9のNb硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal cross section of the Nb boride layer of this invention covering insert 9 is shown. 従来被覆インサート9のNb硼化物層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を示す。The scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the Nb boride layer of the conventional covering insert 9 is shown. 本発明被覆インサートの複合組織からなるNb硼化物層の水平断面模式図を示す。The horizontal cross-section schematic diagram of the Nb boride layer which consists of a composite structure of this invention covering insert is shown.

つぎに、本発明による被覆工具およびその製造方法を、実施例により具体的に説明する。   Next, the coated tool and the manufacturing method thereof according to the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったWC基超硬合金製の工具基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and ISO standard / CNMG120408 insert shape Alloy tool bases A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、MoC粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のインサート形状をもったTiCN基サーメット製の工具基体B−1〜B−6を形成した。 In addition, as raw material powders, all of TiCN (weight ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder having an average particle diameter of 0.5 to 2 μm Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The tool bases B-1 to B-6 made of TiCN base cermet having the insert shape were formed.

(a)ついで、前記工具基体A−1〜A−8のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所にNbB焼結体ターゲットを配置し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、
(c)装置内に反応ガスとしてArガスを導入して、装置内雰囲気を0.5Paとし、表3に示される所定のパルススパッタ条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のNbB層を硬質被覆層の表面層として成膜することにより、本発明被覆工具としての本発明表面被覆インサート(以下、本発明被覆インサートという)1〜8をそれぞれ製造した。
(d)また、下地層として(Ti,Al)N層を導入した本発明被覆インサート9〜16を、前記工具基体A−9〜A−10及びB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示される高出力パルススパッタリング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部に沿って装着し、一方、高出力パルススパッタリング装置内には、回転テーブルを挟んで対向する4か所に所定組成のTi−Al合金ターゲットとNbB焼結体ターゲットを配置し、
(e)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を400℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−200Vの直流バイアス電圧を印加することによって、前記工具基体を1時間Arボンバード処理し、装置内に反応ガスとして窒素ガスを導入して0.6Paの反応雰囲気とすると共に、前記Ti−Al合金ターゲットに表3の条件記号aに示される所定のパルススパッタ条件で高出力パルススパッタを行い、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Al)N層を硬質被覆層の耐摩耗硬質層として成膜し、
(f)NbB焼結体ターゲットに表3に示される所定のパルススパッタ条件で高出力パルススパッタを行い、装置内に導入するガスを窒素ガスからArガスに切り替えると共に、装置内雰囲気を0.5Paとし、この条件で層厚に対応した時間でスパッタリングを行い、同じく表4に示される目標層厚のNbB層を硬質被覆層の表面層として成膜することにより製造した。
(A) Next, each of the tool bases A-1 to A-8 is ultrasonically cleaned in acetone and dried, and the center axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. The NbB 2 sintered body target is disposed at four positions facing each other across the rotary table in the high-power pulse sputtering apparatus, while being mounted along the outer peripheral portion at a predetermined distance away from the radial direction from
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. The tool substrate is treated with Ar bombardment for 1 hour by applying a DC bias voltage,
(C) Ar gas is introduced as a reaction gas into the apparatus, the atmosphere in the apparatus is set to 0.5 Pa, sputtering is performed for a time corresponding to the layer thickness under the predetermined pulse sputtering conditions shown in Table 3, and Table 4 The NbB 2 layer having the target layer thickness shown in FIG. 1 is formed as a surface layer of the hard coating layer, thereby manufacturing the surface coating inserts of the present invention (hereinafter referred to as the present coating inserts) 1 to 8 as the coating tools of the present invention. did.
(D) Moreover, this invention covering insert 9-16 which introduce | transduced the (Ti, Al) N layer as a base layer is made to each said tool base | substrate A-9-A-10 and B-1 to B-6 with acetone. In the ultrasonically cleaned and dried state, mounted along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the high-power pulse sputtering apparatus shown in FIG. In the high-power pulse sputtering apparatus, a Ti—Al alloy target and an NbB 2 sintered body target having a predetermined composition are arranged at four locations facing each other across the rotary table,
(E) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 400 ° C. with a heater, and then the tool base that rotates while rotating on the rotary table is −200V. By applying a DC bias voltage, the tool base was subjected to Ar bombardment treatment for 1 hour, nitrogen gas was introduced into the apparatus as a reaction gas to make a reaction atmosphere of 0.6 Pa, and the Ti-Al alloy target was exposed to the Ti-Al alloy target. The high power pulse sputtering is performed under the predetermined pulse sputtering conditions indicated by the condition symbol a in FIG. 3, and the (Ti, Al) N layer having the target composition and target layer thickness shown in Table 4 is hardened on the surface of the tool base. Deposited as a wear-resistant hard layer of the coating layer,
(F) High-power pulse sputtering was performed on the NbB 2 sintered compact target under the predetermined pulse sputtering conditions shown in Table 3, the gas introduced into the apparatus was switched from nitrogen gas to Ar gas, and the atmosphere in the apparatus was set to 0. Sputtering was performed for 5 Pa under the conditions corresponding to the layer thickness, and the NbB 2 layer having the target layer thickness shown in Table 4 was formed as a surface layer of the hard coating layer.

また、比較の目的で、これら工具基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、該基体とターゲットとの距離が50mmであり、蒸発原に対向する位置に独立したアノードを設けたスパッタリング装置に装入し、装置内にはNbB焼結体ターゲットを装着し、
まず、装置内を排気して4×10−3Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、装置内にArガスを導入して、回転テーブル上で自転しながら回転する工具基体に−400Vの直流バイアス電圧を印加することによって、前記工具基体を30分Arボンバード処理し、前記直流スパッタリング装置のカソード電極(蒸発源)として配置したNbB焼結体の直流スパッタリングを開始したと同時に表5に示される所定の直流スパッタ条件またはパルススパッタ条件で、表6に示す平均層厚のNbB層を蒸着することにより従来被覆工具としての従来表面被覆インサート(以下、従来被覆インサートという)1〜16をそれぞれ製造した。
For comparison purposes, these tool bases A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, and the distance between the base and the target was 50 mm. Yes, a sputtering apparatus provided with an independent anode at a position facing the evaporation source, and an NbB 2 sintered body target mounted in the apparatus,
First, while the inside of the apparatus is evacuated and kept at a vacuum of 4 × 10 −3 Pa or less, the inside of the apparatus is heated to 500 ° C. with a heater, and then Ar gas is introduced into the apparatus and rotates on the rotary table. While applying a DC bias voltage of −400 V to the rotating tool base, the tool base was subjected to Ar bombardment for 30 minutes, and the direct current of the NbB 2 sintered body arranged as the cathode electrode (evaporation source) of the DC sputtering apparatus. A conventional surface-coated insert (hereinafter referred to as a conventional coated tool) as a conventional coated tool by depositing NbB 2 layers having an average layer thickness shown in Table 6 under the predetermined direct current sputtering condition or pulse sputtering condition shown in Table 5 at the same time when the sputtering is started. 1 to 16 were manufactured.

なお、参考のため、図1に示される本発明被覆インサート1〜16を製造した装置と同じ装置で、本発明被覆インサート1〜16と異なる組成、膜厚、スパッタ条件で成膜することにより、表6に示される参考被覆工具としての参考表面被覆インサート(以下、参考被覆インサートという)1〜4をそれぞれ製造した。   For reference, in the same apparatus as the apparatus for manufacturing the present invention coated inserts 1-16 shown in FIG. 1, by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated inserts 1-16, Reference surface-coated inserts (hereinafter referred to as reference coated inserts) 1 to 4 as reference coated tools shown in Table 6 were produced.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のNbB層について、その結晶粒組織を走査型電子顕微鏡(Carl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表4、表6に、その測定値を示す。
また、図2に、本発明被覆インサート9のNbB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図3に、従来被覆インサート9のNbB層の水平断面の走査型電子顕微鏡写真(倍率:10万倍)を、図4に、本発明被覆インサートの複合組織からなるNb硼化物層の水平断面模式図を示す。
About the NbB 2 layers of the present invention coated inserts 1-16, the conventional coated inserts 1-16, and the reference coated inserts 1-4, the crystal grain structure of the NbB two layers is 100,000 times by a scanning electron microscope (Carl Zeiss, ultra55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 4 and 6 show the measured values.
2 shows a scanning electron micrograph (magnification: 100,000 times) of the horizontal section of the NbB 2 layer of the coated insert 9 of the present invention, and FIG. 3 shows a scan of the horizontal section of the NbB 2 layer of the conventional coated insert 9. A scanning electron micrograph (magnification: 100,000 times) is shown in FIG. 4, and a horizontal cross-sectional schematic diagram of an Nb boride layer made of a composite structure of the coated insert of the present invention is shown.

前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4のNbB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表4、表6に、その測定値を示す。
For the NbB two layers of the present invention coated inserts 1-16, the conventional coated inserts 1-16 and the reference coated inserts 1-4, the surface hardness was measured by an ultra-fine indentation hardness tester (ENTIONX Corporation, ENT-1100a). It was measured by.
Tables 4 and 6 show the measured values.

また、前記本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、前記硬質被覆層のNbB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
In addition, the composition of the wear-resistant hard layers constituting the hard coating layers of the present invention coated inserts 1 to 16, the conventional coated inserts 1 to 16 and the reference coated inserts 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.
Further, when the average layer thicknesses of the NbB 2 layer and the wear-resistant hard layer of the hard coating layer were measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記の各種被覆インサートを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆インサート1〜16、従来被覆インサート1〜16および参考被覆インサート1〜4について、
被削材:質量%で、Ti−6%Al−4%V合金の丸棒、
切削速度:120m/min.、
切り込み:1.0mm、
送り:0.2mm/rev.、
切削時間:5分、
の条件(切削条件Aという)でのTi系合金の乾式断続切削加工試験を行い、切刃の逃げ面摩耗幅を測定した。
この測定結果を表7に示した。
Next, in the state where all the above-mentioned various coated inserts are screwed to the tip of the tool steel tool with a fixing jig, the present coated inserts 1-16, the conventional coated inserts 1-16, and the reference coated insert 1 About ~ 4
Work material: Ti-6% Al-4% V alloy round bar by mass%,
Cutting speed: 120 m / min. ,
Cutting depth: 1.0 mm,
Feed: 0.2 mm / rev. ,
Cutting time: 5 minutes
A dry interrupted cutting test of a Ti-based alloy under the above conditions (referred to as cutting condition A) was performed, and the flank wear width of the cutting edge was measured.
The measurement results are shown in Table 7.

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

原料粉末として、平均粒径:5.5μmを有するWC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表8に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が6mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さがそれぞれ6mm×12mmの寸法並びにねじれ角30度の2枚刃スクエア形状をもった工具基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powder, WC powder having an average particle size of 5.5 μm, 0.8 μm fine WC powder, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1.8 μm Co powder was prepared, and these raw material powders were blended in the blending composition shown in Table 8 respectively. Further, wax was added, ball milled in acetone for 24 hours, dried under reduced pressure, and then dried into various shapes at a pressure of 100 MPa. The green compact was press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding time, sintering under furnace cooling conditions, A tool bar forming round bar sintered body having a diameter of 6 mm is formed, and further, the diameter x length of the cutting edge portion is 6 mm x 12 mm and the helix angle 30 by grinding from the round bar sintered body. Tool bases (end mills) C-1 to C-8 having a two-blade square shape were manufactured.

ついで、これらの工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示される蒸着装置に装入し、前記実施例1と同一の条件で、C−1〜C−4に表9に示される目標層厚のNbB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明表面被覆エンドミル(以下、本発明被覆エンドミルという)1〜4を、C−5〜C−8に表9に示される目標組成および目標層厚の(Ti,Al)N層からなる耐摩耗硬質層と、同じく表9に示される目標層厚のNbB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、本発明被覆エンドミル5〜8をそれぞれ製造した。 Subsequently, the surfaces of these tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the vapor deposition apparatus shown in FIG. Under the same conditions, a hard coating layer composed of a surface layer composed of two NbB layers having the target layer thickness shown in Table 9 in C-1 to C-4 is formed by vapor deposition. Inventive surface-coated end mills (hereinafter referred to as the present invention-coated end mills) 1 to 4 are composed of (Ti, Al) N layers having the target composition and target layer thickness shown in Table 9 in C-5 to C-8. The coated end mills 5 to 8 according to the present invention were manufactured by vapor-depositing a layer and a hard coating layer composed of a surface layer composed of NbB 2 layers having the target layer thicknesses similarly shown in Table 9.

また、比較の目的で、前記工具基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、同じく表10に示される目標層厚のNbB層からなる表面層で構成された硬質被覆層を蒸着形成することにより、従来被覆工具としての従来表面被覆エンドミル(以下、従来被覆エンドミルという)1〜8をそれぞれ製造した。
さらに、参考のため、前記工具基体(エンドミル)C−1,C−3,C−5,C−7の表面をアセトン中で超音波洗浄し、乾燥した状態で、前記実施例1と同一の条件で、本発明被覆エンドミル1〜8と異なる組成、膜厚、スパッタ条件で成膜することにより、表10に示される参考被覆工具としての参考表面被覆エンドミル(以下、参考被覆エンドミルという)1〜4をそれぞれ製造した。
Further, for comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried under the same conditions as in Example 1 and also in Table 10. Conventional surface-coated end mills (hereinafter referred to as conventional coated end mills) 1 to 8 as conventional coated tools are manufactured by vapor-depositing and forming a hard coating layer composed of a surface layer composed of two NbB layers having the target layer thicknesses shown. did.
Further, for reference, the surfaces of the tool bases (end mills) C-1, C-3, C-5, and C-7 are ultrasonically cleaned in acetone and dried. The reference surface coating end mill (hereinafter referred to as a reference coating end mill) 1 to 1 as a reference coating tool shown in Table 10 by forming a film with a composition, film thickness, and sputtering conditions different from those of the present invention coated end mills 1 to 8 4 were produced respectively.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のNbB層について、その結晶粒組織を走査型電子顕微鏡(Curl zeiss社製、ultra55)により10万倍の視野で観察し、その結果を平面と仮定し、該結晶粒の面積を粒子断面の面積として算出する。さらに、一次結晶粒、二次結晶粒および三次結晶粒の平均粒径を該結晶粒の粒子断面面積を円の面積として算出した場合の直径を10点測定し、その平均値とした。
表9、表10に、その測定値を示す。
About the NbB 2 layers of the present invention coated end mills 1-8, the conventional coated end mills 1-8, and the reference coated end mills 1-4, the crystal grain structure of the NbB two layers is 100,000 times by a scanning electron microscope (made by Curl Zeiss, ultra 55). Observation with a visual field, the result is assumed to be a plane, and the area of the crystal grain is calculated as the area of the grain cross section. Furthermore, the average diameter of primary crystal grains, secondary crystal grains, and tertiary crystal grains was measured at 10 points when the cross-sectional area of the crystal grains was calculated as the area of a circle, and the average value was obtained.
Tables 9 and 10 show the measured values.

前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4のNbB層について、その表面硬さを超微小押し込み硬さ試験機(エリオニクス社製、ENT-1100a)により測定した。
表9、表10に、その測定値を示す。
For the NbB two layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8 and the reference coated end mills 1 to 4, the surface hardness is measured by an ultra-fine indentation hardness tester (ENT-1100a, manufactured by Elionix). It was measured by.
Tables 9 and 10 show the measured values.

また、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4の硬質被覆層を構成する耐摩耗硬質層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
さらに、前記硬質被覆層のNbB層および耐摩耗硬質層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。
Further, the composition of the hard coating layer constituting the hard coating layers of the present invention coated end mills 1 to 8, the conventional coated end mills 1 to 8 and the reference coated end mills 1 to 4 is expressed by energy dispersion X using a transmission electron microscope. When measured by the line analysis method, each showed substantially the same composition as the target composition.
Further, when the average layer thicknesses of the NbB 2 layer and the wear-resistant hard layer of the hard coating layer were measured by cross-section using a scanning electron microscope, the average value was substantially the same as the target layer thickness (average value of 5 locations). )showed that.

つぎに、前記本発明被覆エンドミル1〜8、従来被覆エンドミル1〜8および参考被覆エンドミル1〜4について、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったTi系合金(質量%で、Ti−6%Al−4%V合金)の板材、
切削速度:160m/min.、
溝深さ(切り込み):3mm、
テーブル送り:960mm/分、
の条件(切削条件Bという)でのTi系合金の乾式溝切削加工試験を行い、溝切削加工試験における切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。
この測定結果を表11にそれぞれ示した。
Next, for the present invention coated end mills 1-8, conventional coated end mills 1-8 and reference coated end mills 1-4,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm Ti-based alloy (mass%, Ti-6% Al-4% V alloy) plate material,
Cutting speed: 160 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 960 mm / min,
The dry grooving test of the Ti-based alloy under the above conditions (referred to as cutting condition B) is performed, and the flank wear width of the outer peripheral edge of the cutting edge in the grooving test is 0.1 mm, which is a guide for the service life The length of the cutting groove was measured.
The measurement results are shown in Table 11, respectively.

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

Figure 2012115967
Figure 2012115967

表3〜11に示される結果から、NbB層がすぐれた耐溶着性と硬さを有する本発明被覆工具は、各種のNi系合金やTi系合金などの硬質難削材の高熱発生を伴う断続切削で、すぐれた耐剥離性と耐摩耗性を発揮する。
これに対して、従来被覆工具では、表6、表10に示されるように、該複合組織を形成していないため耐溶着性に劣り、硬質難削材の高熱発生を伴う断続切削条件で硬質被覆層の剥離を抑制することができず、硬さも十分でないために耐摩耗性に劣る。また、本発明で規定する範囲から外れるNbB層を有する参考被覆工具においては、硬質難削材の高熱発生を伴う断続切削加工では切刃部の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 3-11, the coated tool of the present invention having excellent NbB 2 layer welding resistance and hardness is accompanied by high heat generation of hard difficult-to-cut materials such as various Ni-based alloys and Ti-based alloys. Exhibits excellent peeling and wear resistance by intermittent cutting.
On the other hand, as shown in Tables 6 and 10, in the conventional coated tool, the composite structure is not formed, so that the welding resistance is inferior, and the hard tool is hard under intermittent cutting conditions accompanied by high heat generation. Since peeling of the coating layer cannot be suppressed and the hardness is not sufficient, the wear resistance is poor. In addition, in the reference coated tool having the NbB 2 layer that is out of the range specified in the present invention, in the intermittent cutting process with the high heat generation of the hard difficult-to-cut material, the progress of wear of the cutting edge is fast, and the service life is relatively short. It is clear that

前述のように、本発明の被覆工具およびその製造方法によれば、各種の鋼や鋳鉄などの通常の切削条件での切削加工は勿論のこと、特に高い発熱を伴う前記硬質難削材の断続切削加工でもすぐれた耐剥離性と耐摩耗性を発揮し、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置の高性能化および自動化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, according to the coated tool of the present invention and the manufacturing method thereof, not only cutting under normal cutting conditions such as various types of steel and cast iron, but also the discontinuity of the hard difficult-to-cut material with particularly high heat generation. Since it exhibits excellent peeling resistance and wear resistance even in cutting processing, and exhibits excellent cutting performance over a long period of time, higher performance and automation of cutting equipment, and labor saving and energy saving of cutting processing In addition, it can cope with the cost reduction sufficiently satisfactorily.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットからなる工具基体の最表面に、少なくとも、0.5〜5μmの平均層厚を有するNb硼化物層を被覆してなる切削工具であって、
前記Nb硼化物層は、複数の平均粒径を有する結晶粒組織の複合組織として構成され、該複合組織は、5〜20nmの平均粒径を有する一次結晶粒の集合体からなる平均粒径40〜80nmの二次結晶粒と、該二次結晶粒の集合体からなる平均粒径150〜800nmの三次結晶粒とから構成されていることを特徴とする表面被覆切削工具。
A cutting tool formed by coating an outermost surface of a tool base made of a tungsten carbide-based cemented carbide or a titanium carbonitride-based cermet with an Nb boride layer having an average layer thickness of at least 0.5 to 5 μm,
The Nb boride layer is configured as a composite structure of a crystal grain structure having a plurality of average grain sizes, and the composite structure has an average grain size of 40 composed of an aggregate of primary crystal grains having an average grain size of 5 to 20 nm. A surface-coated cutting tool comprising secondary crystal grains of ˜80 nm and tertiary crystal grains having an average grain size of 150 to 800 nm composed of aggregates of the secondary crystal grains.
JP2010270102A 2010-12-03 2010-12-03 Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material Withdrawn JP2012115967A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010270102A JP2012115967A (en) 2010-12-03 2010-12-03 Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material
CN2011103755298A CN102554293A (en) 2010-12-03 2011-11-23 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010270102A JP2012115967A (en) 2010-12-03 2010-12-03 Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material

Publications (1)

Publication Number Publication Date
JP2012115967A true JP2012115967A (en) 2012-06-21

Family

ID=46401657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010270102A Withdrawn JP2012115967A (en) 2010-12-03 2010-12-03 Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material

Country Status (2)

Country Link
JP (1) JP2012115967A (en)
CN (1) CN102554293A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117020283B (en) * 2023-07-20 2024-03-08 珩星电子(连云港)股份有限公司 PCD internal cooling reverse boring milling cutter and preparation process thereof

Also Published As

Publication number Publication date
CN102554293A (en) 2012-07-11

Similar Documents

Publication Publication Date Title
JP5838769B2 (en) Surface coated cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2010094744A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent wear resistance
JP5182501B2 (en) Surface-coated cutting tool with excellent fracture resistance due to hard coating layer
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2007152542A (en) Surface coated cutting tool which is made of cubic boron nitride base ultra high pressure sintered material and has hard coated layer showing excellent chipping resistance in heavy cutting of high hardness steel
JP2012139795A (en) Surface coated cutting tool with hard coating layer exhibiting superior resistance against peeling and chipping in high speed cutting of soft hard-to-cut material
JP5553013B2 (en) A surface-coated cutting tool that provides excellent peeling resistance and excellent chipping resistance in high-speed, high-feed cutting of hard difficult-to-cut materials.
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2012115967A (en) Surface coated cutting tool in which hard covering layer exhibits superior peeling resistance and superior chipping resistance in intermittently cutting hard difficult-to-cut material
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP5239950B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance due to excellent hard coating layer in heavy cutting of highly welded work
JP4725770B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance with a hard coating layer in high-speed cutting of highly reactive materials
JP4621975B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed cutting and hard coating layer
JP2006001004A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP2006001005A (en) Cutting tool made of surface coated cemented carbide with hard coating layer exhibiting excellent wear resistance in high speed cutting of high hardness steel
JP4120490B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in heavy cutting
JP4120489B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4310693B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4683266B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP4883474B2 (en) Cutting tool made of surface-coated cubic boron nitride-based ultra-high pressure sintered material that exhibits excellent wear resistance in high-speed cutting of hardened steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140204