JP2011189472A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2011189472A
JP2011189472A JP2010058921A JP2010058921A JP2011189472A JP 2011189472 A JP2011189472 A JP 2011189472A JP 2010058921 A JP2010058921 A JP 2010058921A JP 2010058921 A JP2010058921 A JP 2010058921A JP 2011189472 A JP2011189472 A JP 2011189472A
Authority
JP
Japan
Prior art keywords
layer
thin
tool
thin layer
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010058921A
Other languages
Japanese (ja)
Inventor
Takahito Tabuchi
貴仁 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010058921A priority Critical patent/JP2011189472A/en
Publication of JP2011189472A publication Critical patent/JP2011189472A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer for exhibiting excellent chipping resistance and abrasion resistance under a high speed cutting condition of a heat resistant alloy such as an Ni group alloy ad a Co group alloy. <P>SOLUTION: The surface coated cutting tool is provided by depositing and forming the hard coating layer composed of an alternately laminated structure of a double layer area of alternately laminating a thin layer A of a layer thickness of 1-50 nm and a thin layer B of a layer thickness of 1-50 nm and a single layer area constituted of a single layer of a layer thickness of 100-500 nm on a tool base body surface. The thin layer A is an [Al<SB>1-X-Y</SB>Ti<SB>X</SB>Si<SB>Y</SB>]N(X is 0.15-0.94 in the atomic ratio, and Y is 0.30-0.80 in the atomic ratio) layer, and the thin layer B is a [Ti<SB>1-Z</SB>Cr<SB>Z</SB>]N(Z is 0.10-0.90) layer, and the single layer is constituted of a layer of the same material kind as the thin layer A or the thin layer B. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

この発明は、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた靭性および耐溶着性を備え、その結果、すぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention has excellent toughness and welding resistance even when a heat-resistant alloy such as a Ni-base alloy and a Co-base alloy is cut under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent chipping resistance and wear resistance.

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills, miniature drills, and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting processing in the same manner as in the past is known.

また、具体的な被覆工具としては、例えば、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の表面に、AlとTiとSiとの複合窒化物層(以下、(Al,Ti,Si)N層という)からなる硬質被覆層を蒸着形成した被覆工具が知られており、この従来被覆工具が、合金鋼の高速切削加工において高硬度・高酸化開始温度を示すことが知られている。
また、TiとCrとの複合窒化物層(以下、(Ti,Cr)N層という)からなる硬質被覆層を蒸着形成した被覆工具も知られており、この従来被覆工具が、合金鋼の高速切削加工において高い靭性を持ち、切削時の潤滑性がよく耐溶着性にすぐれていることも知られている。
Further, as a specific coated tool, for example, a composite nitride layer of Al, Ti, and Si (hereinafter referred to as (( A coated tool in which a hard coating layer made of (Al, Ti, Si) N layer) is formed by vapor deposition is known, and this conventional coated tool exhibits high hardness and high oxidation start temperature in high-speed cutting of alloy steel. It has been known.
Also known is a coated tool in which a hard coating layer composed of a composite nitride layer of Ti and Cr (hereinafter referred to as a (Ti, Cr) N layer) is formed by vapor deposition. It is also known that it has high toughness in cutting, good lubricity during cutting, and excellent welding resistance.

そして、前記従来被覆工具は、例えば、蒸着形成する硬質被覆層の種類に応じた成分組成を有するAl−Ti−Si系合金あるいはTi−Cr系合金からなるカソード電極(蒸発源)を配置したアークイオンプレーティング装置において、装置内に工具基体を装入し、装置内を窒素ガス反応雰囲気とし、また、加熱した状態で、カソード電極(蒸発源)とアノード電極との間に、アーク放電を発生させ、前記工具基体には、バイアス電圧を印加した条件で、工具基体の表面に、(Al,Ti,Si)N層あるいは(Ti,Cr)N層を蒸着形成することにより製造されることも知られている。   The conventional coated tool is, for example, an arc in which a cathode electrode (evaporation source) made of an Al—Ti—Si alloy or a Ti—Cr alloy having a composition according to the type of hard coating layer to be deposited is disposed. In an ion plating apparatus, a tool base is inserted into the apparatus, and a nitrogen gas reaction atmosphere is generated in the apparatus. In addition, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode in a heated state. The tool base may be manufactured by vapor-depositing an (Al, Ti, Si) N layer or a (Ti, Cr) N layer on the surface of the tool base under a condition where a bias voltage is applied. Are known.

特開2007−119809号公報JP 2007-119809 A 特許第3996809号公報Japanese Patent No. 3996809

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化の傾向にあり、さらに、各種の被削材に対する切削工具の汎用化も求められているが、前記従来被覆工具においては、これを、合金鋼の高速切削に用いた場合には特段の問題は生じないが、例えば、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合には、被削材である耐熱合金の熱伝導率が低く、切削熱によって切削工具の刃先の表面温度が高くなるため、(Al,Ti,Si)N層では耐溶着性および靭性が十分でなくチッピングや欠損を生じやすく、その結果、硬質被覆層の耐摩耗性が十分に発揮されず、比較的短時間で使用寿命に至るのが現状であり、また、(Ti,Cr)N層は、被膜自体の硬度が低いため、適用範囲が狭いという問題がある。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. There is also a demand for general-purpose cutting tools for various work materials. However, in the above-mentioned conventional coated tools, no particular problem arises when this is used for high-speed cutting of alloy steel. For example, Ni When used for high-speed cutting with high heat generation of heat-resistant alloys such as base alloys and Co-base alloys, the heat conductivity of heat-resistant alloys that are work materials is low, and the surface temperature of the cutting edge of the cutting tool is reduced by the cutting heat. Therefore, the (Al, Ti, Si) N layer has insufficient welding resistance and toughness and is likely to cause chipping and chipping. As a result, the wear resistance of the hard coating layer is not fully exhibited, and is relatively short. Useful time The is at present, also, (Ti, Cr) N layer, the hardness of the coating film itself is low, there is a problem coverage is narrow.

そこで、本発明者等は、前述のような観点から、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いたような場合にも、溶着の発生、欠損、チッピングが生じることなく、硬質被覆層がすぐれた耐摩耗性を長期の使用にわたって発揮する被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the present inventors, from the above-mentioned viewpoint, even when used for high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the occurrence of welding, chipping and chipping. In order to develop a coated tool that exhibits excellent wear resistance with a hard coating layer over a long period of time without occurrence of cracks, we conducted intensive research.

例えば、前記従来被覆工具の硬質被覆層を構成する(Al,Ti,Si)N層におけるAl成分には高温硬さを向上させ、Ti成分には高温靭性、高温強度を向上させ、Si成分には耐酸化性を向上させ、酸化による層の硬度低下を抑制する作用があり、また、(Ti,Cr)N層におけるCr成分にも前記と同様な作用があり、さらに、前記(Al,Ti,Si)N層と(Ti,Cr)N層との交互積層を構成することにより硬さも向上するため、(Al,Ti,Si)N層と(Ti,Cr)N層との交互積層構造からなる硬質被覆層を設けることにより、通常の切削条件では、耐酸化性、耐摩耗性の改善が見られる。
しかし、Ni基合金、Co基合金等の耐熱合金の高速切削においては、切刃表面温度が高温になるため、交互積層構造からなる硬質被覆層内にはその層厚が増大するほど内部応力(歪み)が蓄積されるようになるが、この内部応力(歪み)が切削加工時の高熱によって開放される際に、交互積層を構成する各層間の剥離が生じ易くなるという問題点があった。
For example, the Al component in the (Al, Ti, Si) N layer constituting the hard coating layer of the conventional coated tool improves the high temperature hardness, the Ti component improves the high temperature toughness and the high temperature strength, and the Si component Has the effect of improving the oxidation resistance and suppressing the decrease in the hardness of the layer due to oxidation, and the Cr component in the (Ti, Cr) N layer has the same effect as described above. Furthermore, the (Al, Ti , Si) N layers and (Ti, Cr) N layers are alternately stacked, so that the hardness is improved, so that the (Al, Ti, Si) N layers and (Ti, Cr) N layers are alternately stacked. By providing a hard coating layer made of the above, improvement in oxidation resistance and wear resistance can be seen under normal cutting conditions.
However, in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the cutting blade surface temperature becomes high, so that the internal stress ( However, when this internal stress (strain) is released by high heat during the cutting process, there is a problem in that peeling between the layers constituting the alternate stack is likely to occur.

そこで、本発明者等は、(Al,Ti,Si)N層と(Ti,Cr)N層との積層構造についてさらに詳細に検討したところ、従来のように、硬質被覆層を(Al,Ti,Si)N層と(Ti,Cr)N層との規則的な交互積層構造として構成するのではなく、硬質被覆層を、(Al,Ti,Si)N層からなる薄層Aと、(Ti,Cr)N層からなる薄層Bとが交互に積層されている複層領域と、前記薄層Aまたは薄層Bからなる単一層からなる単層領域とで構成するとともに、前記複層領域と単層領域との交互積層構造として硬質被覆層を構成したところ、以下のような知見を得たのである。   Therefore, the present inventors examined the laminated structure of the (Al, Ti, Si) N layer and the (Ti, Cr) N layer in more detail. As in the prior art, the hard coating layer was (Al, Ti). , Si) N layers and (Ti, Cr) N layers are not configured as a regular alternating layered structure, but the hard coating layer is made of a thin layer A composed of (Al, Ti, Si) N layers, and ( A multilayer region in which thin layers B composed of Ti, Cr) N layers are alternately stacked and a single layer region composed of a single layer composed of the thin layer A or the thin layer B; When the hard coating layer was formed as an alternate laminated structure of regions and single layer regions, the following knowledge was obtained.

すなわち、(Al,Ti,Si)N層からなる薄層Aと、(Ti,Cr)N層からなる薄層Bとが交互に積層されている硬質被覆層の複層領域では、それぞれの層の粒の粗大化が防止され、膜強度が向上するとともに、すぐれた耐酸化性、高硬度を備え、さらに、薄層Aと薄層Bとの交互積層構造が、クラックの伝播・進展を防止することで、耐チッピング性、耐欠損性、耐摩耗性が向上する。
これに加えて、硬質被覆層中に(Al,Ti,Si)N層または(Ti,Cr)N層からなる単一層からなる単層領域が形成されたことによって、層厚の増大にしたがって複層領域に蓄積された内部応力(歪み)は、単層領域の存在によって緩和されるようになるため、硬質被覆層全体としては、大きな内部応力(歪み)が発生することはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高速切削において、層間剥離の発生が抑制されるようになることを見出したのである。
That is, in the multilayer region of the hard coating layer in which the thin layer A composed of (Al, Ti, Si) N layers and the thin layer B composed of (Ti, Cr) N layers are alternately laminated, the respective layers The coarsening of the grains is prevented, the film strength is improved, the oxidation resistance and the high hardness are provided, and the alternate laminated structure of the thin layer A and the thin layer B prevents the propagation and progress of cracks. By doing so, chipping resistance, chipping resistance, and wear resistance are improved.
In addition to this, a single layer region consisting of a single layer of (Al, Ti, Si) N layer or (Ti, Cr) N layer is formed in the hard coating layer. Since the internal stress (strain) accumulated in the layer region is relaxed by the presence of the single layer region, the hard coating layer as a whole does not generate large internal stress (strain), and as a result It has been found that the occurrence of delamination is suppressed in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys.

この発明は、前記知見に基づいてなされたものであって、
「 工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された100〜500nmの層厚の複層領域と、100〜500nmの層厚の単一層からなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成され、かつ、
(a)前記薄層Aは、
組成式:[Al1−x−yTiSi]N
で表した場合、xは0.15〜0.94、yは0.01〜0.15(但し、原子比)を満足するAlとTiとSiとの複合窒化物層からなり、
(b)前記薄層Bは、
組成式:[Ti1−zCr]N
で表した場合、zは0.10〜0.90(但し、原子比)を満足するTiとCrとの複合窒化物層からなり、
(c)前記単一層は、
前記薄層Aまたは薄層Bと同一材種からなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
"In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region having a layer thickness of 100 to 500 nm in which thin layers A having a layer thickness of 1 to 50 nm and thin layers B having a layer thickness of 1 to 50 nm are alternately stacked; Comprising a single layer region consisting of a single layer of a layer thickness, and configured as an alternately laminated structure of the multilayer region and the single layer region, and
(A) The thin layer A is
Composition formula: [Al 1-xy Ti x Si y ] N
X is 0.15 to 0.94, y is composed of a composite nitride layer of Al, Ti and Si that satisfies 0.01 to 0.15 (however, atomic ratio),
(B) The thin layer B is
Composition formula: [Ti 1-z Cr z ] N
Z is composed of a composite nitride layer of Ti and Cr satisfying 0.10 to 0.90 (however, atomic ratio),
(C) the single layer is
A surface-coated cutting tool comprising the same material type as the thin layer A or the thin layer B. "
It has the characteristics.

この発明の被覆工具の硬質被覆層について、以下に説明する。   The hard coating layer of the coated tool of this invention is demonstrated below.

複層領域の薄層A((Al,Ti,Si)N層):
薄層B((Ti,Cr)N層)と交互に積層されてこの発明の硬質被覆層の複層領域を形成する(Al,Ti,Si)N層からなる薄層Aは、Si成分によって、すぐれた耐酸化性を有するため、Ni基合金、Co基合金等の耐熱合金の高速切削における高温下においても、すぐれた高硬度を維持する。
(Al,Ti,Si)N層からなる薄層Aを、
組成式:[Al1−x−yTiSi]N
で表した場合、xは0.15〜0.94、yは0.01〜0.15(但し、原子比)を満足するAlとTiとSiの複合窒化物層からなるが、Tiの含有割合を示すxの値(但し、原子比)が、0.15未満であると、薄層Aの有する高靭性、潤滑性さが不十分となり、一方、xの値が0.94を超えると、薄層Aの高耐酸化温度が低下するようになることから、xの値は、0.15〜0.94(但し、原子比)と定めた。
また、Siの含有割合を示すyの値(但し、原子比)が、0.01未満であると、薄層Aの有する高温硬さが不十分となり、一方、yの値が0.15を超えると、薄層Aの高温靭性、高温強度が低下するようになることから、yの値は、0.01〜0.15(但し、原子比)と定めた。
Thin layer A ((Al, Ti, Si) N layer) in the multilayer region:
The thin layer A composed of (Al, Ti, Si) N layers, which are alternately laminated with the thin layers B ((Ti, Cr) N layers) to form the multilayer region of the hard coating layer of the present invention, is formed by the Si component. Since it has excellent oxidation resistance, it maintains excellent high hardness even at high temperatures in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys.
A thin layer A composed of an (Al, Ti, Si) N layer,
Composition formula: [Al 1-xy Ti x Si y ] N
X is 0.15 to 0.94, and y is 0.01 to 0.15 (provided that the atomic ratio is satisfied), but is composed of a composite nitride layer of Al, Ti, and Si. If the value of x indicating the ratio (however, the atomic ratio) is less than 0.15, the high toughness and lubricity of the thin layer A will be insufficient, while if the value of x exceeds 0.94 Since the high oxidation resistance temperature of the thin layer A is lowered, the value of x is set to 0.15 to 0.94 (however, the atomic ratio).
Further, if the value of y indicating the Si content ratio (however, the atomic ratio) is less than 0.01, the high-temperature hardness of the thin layer A becomes insufficient, while the value of y is 0.15. If exceeding, the high-temperature toughness and high-temperature strength of the thin layer A will decrease, so the value of y was determined to be 0.01 to 0.15 (however, atomic ratio).

複層領域の薄層B((Ti,Cr)N層):
薄層A((Al,Ti,Si)N層)と交互に積層されてこの発明の硬質被覆層の複層領域を形成する(Ti,Cr)N層からなる薄層Bは、高温強度、高温靭性、潤滑性にすぐれることから、薄層Aと交互に積層されることにより、云わば、薄層Aに相対的に不足する特性を補完すると同時に、複層領域の強度を高め、さらに、層間密着性を高めるための層である。
(Ti,Cr)N層からなる薄層Bを、
組成式:[Ti1−zCr]N
で表した場合、zは0.10〜0.90(但し、原子比)を満足するTiとCrの複合窒化物層であり、Crの含有割合を示すzの値(但し、原子比)が、0.10未満であると、薄層Bの高温強度が不十分となり、一方、Zの値が0.90を超えると、薄層Bの高温靭性、潤滑性が低下するようになるので、Zの値は、0.10〜0.90(但し、原子比)と定めた。
Thin layer B ((Ti, Cr) N layer) in the multilayer region:
The thin layer B consisting of the (Ti, Cr) N layer, which is alternately laminated with the thin layer A ((Al, Ti, Si) N layer) to form the multilayer region of the hard coating layer of the present invention, has a high temperature strength, Since it is excellent in high temperature toughness and lubricity, by alternately laminating with the thin layer A, so to speak, it complements the properties that are relatively lacking in the thin layer A, and at the same time increases the strength of the multilayer region, This is a layer for improving interlayer adhesion.
A thin layer B composed of a (Ti, Cr) N layer,
Composition formula: [Ti 1-z Cr z ] N
Z is a composite nitride layer of Ti and Cr that satisfies 0.10 to 0.90 (however, atomic ratio), and the value of z (however, atomic ratio) indicating the content ratio of Cr is , If it is less than 0.10, the high temperature strength of the thin layer B will be insufficient, while if the value of Z exceeds 0.90, the high temperature toughness and lubricity of the thin layer B will decrease. The value of Z was determined to be 0.10 to 0.90 (however, atomic ratio).

薄層A、薄層Bの層厚:
薄層Aと薄層Bとを交互に積層して構成した複層領域では、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、前記薄層Aおよび薄層Bのそれぞれの層厚が1nm未満では、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前記のすぐれた特性を発揮することができず、一方、それぞれの層厚が50nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの層厚を、1〜50nmと定めた。
また、薄層Aと薄層Bとを交互に積層した複層領域は、その領域厚みが100nm未満では、薄層Aの備える高硬度を充分発揮して耐摩耗性の向上を図ることができず、一方、その領域厚みが500nmを超えると、チッピング、欠損を発生しやすくなるので、薄層Aと薄層Bとを交互に積層した複層領域の領域厚みは、100〜500nmであることが望ましい。
Layer thickness of thin layer A and thin layer B:
In the multi-layer region formed by alternately laminating the thin layer A and the thin layer B, each layer is adjacent to each other to form a layer having a different composition, thereby preventing the growth of particle growth of each layer. As a result, the particles are refined, the film strength is improved, and crack propagation and progress are prevented by this laminated structure, so that the chipping resistance and chipping resistance are improved. When each layer thickness of the layer B is less than 1 nm, it is difficult to clearly form each thin layer as having a predetermined composition, and the above-described excellent characteristics of each thin layer cannot be exhibited. On the other hand, if the thickness of each layer exceeds 50 nm, the film strength is reduced due to the coarsening of the particles, so that the chipping resistance and chipping resistance are reduced. 1 to 50 nm.
In addition, the multilayer region in which the thin layer A and the thin layer B are alternately laminated can exhibit the high hardness provided by the thin layer A and improve the wear resistance when the region thickness is less than 100 nm. On the other hand, if the thickness of the region exceeds 500 nm, chipping and defects are likely to occur. Therefore, the region thickness of the multilayer region in which the thin layers A and B are alternately laminated is 100 to 500 nm. Is desirable.

単層領域((Al,Ti,Si)N層)または((Ti,Cr)N層):
単層領域における単一層の成分・組成は、前記薄層Aまたは薄層Bと同様であり、この単一層が高硬度、高温靭性にすぐれることも前記薄層Aまたは薄層Bと同様である。
しかし、この単層領域は、前記の作用効果に加えて、複層領域において増大蓄積された内部応力(歪み)を、単層領域の存在によって緩和できるという点で大きな技術的な意義があり、また、切削加工時に硬質被覆層に加わった衝撃力を、この単層領域で緩和する作用もある。
したがって、硬質被覆層全体としては、その内部に大きな内部応力(歪み)が形成されることはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削において、層間剥離の発生が抑制される。
ただ、単層領域の領域厚さが100nm未満の場合、内部応力の緩和作用、衝撃力の緩和作用が十分期待できず、一方、その厚さが500nmを超えると、硬質被覆層全体として耐酸化性、高温硬さが低下するようになることから、単層領域の領域厚さは、100〜500nmと定めた。
Single layer region ((Al, Ti, Si) N layer) or ((Ti, Cr) N layer):
The composition / composition of the single layer in the single layer region is the same as that of the thin layer A or thin layer B, and the single layer is excellent in high hardness and high temperature toughness as in the thin layer A or thin layer B. is there.
However, this single-layer region has a great technical significance in that, in addition to the above-described effects, internal stress (strain) increased and accumulated in the multi-layer region can be mitigated by the presence of the single-layer region, In addition, there is also an effect of relaxing the impact force applied to the hard coating layer during the cutting process in this single layer region.
Therefore, as a whole hard coating layer, large internal stress (strain) is not formed in the inside, as a result, in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloy, Co-base alloy, Generation of delamination is suppressed.
However, when the thickness of the single-layer region is less than 100 nm, the internal stress relaxation action and impact force relaxation action cannot be sufficiently expected. On the other hand, when the thickness exceeds 500 nm, the hard coating layer as a whole is resistant to oxidation. Therefore, the region thickness of the single layer region is determined to be 100 to 500 nm.

硬質被覆層の層厚:
前記複層領域と単層領域との交互積層として構成される硬質被覆層は、その全体層厚が0.3μm未満であると、長期の使用に亘ってすぐれた切削性能を十分に発揮できず、一方、全体層厚が5μmを超えると、チッピング、欠損等を発生しやすくなることから、硬質被覆層の全体層厚は、0.3〜5μmとすることが望ましい。
Hard coating layer thickness:
The hard coating layer configured as an alternate lamination of the multi-layer region and the single-layer region cannot sufficiently exhibit excellent cutting performance over a long period of use when the total layer thickness is less than 0.3 μm. On the other hand, if the total layer thickness exceeds 5 μm, chipping, defects and the like are likely to occur. Therefore, the total layer thickness of the hard coating layer is desirably 0.3 to 5 μm.

この発明の表面被覆切削工具は、硬質被覆層が、薄層Aと薄層Bとが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されていることにより、複層領域ではそれぞれの薄層の膜強度が向上し、すぐれた靭性、潤滑性を備え、また、クラックの伝播・進展が抑制されることで、耐チッピング性、耐欠損性、耐摩耗性が改善されるとともに、これに加えて、単層領域の存在によって、特に複層領域で形成・蓄積しやすい内部応力(歪み)が緩和されることによって、これに起因して発生する層間剥離が防止され、さらに、切削加工時に加わる機械的衝撃をも緩和することができるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、チッピングが発生することもなく長期に亘ってすぐれた耐摩耗性を発揮するのである。   In the surface-coated cutting tool of the present invention, the hard coating layer is configured as an alternately laminated structure of a multilayer region where thin layers A and thin layers B are alternately laminated and a single layer region consisting of a single layer. As a result, in the multi-layer region, the film strength of each thin layer is improved, it has excellent toughness and lubricity, and the propagation and propagation of cracks is suppressed, so that chipping resistance, chipping resistance, In addition to improved wearability, the presence of a single layer region alleviates internal stresses (strains) that are likely to form and accumulate, especially in the multi-layer region. Peeling is prevented and mechanical impact applied during cutting can be mitigated, so chipping occurs when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. Without long-term It is to exert excellent wear resistance me.

硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming a hard coating layer is shown, (a) is a schematic plan view, and (b) is a schematic front view. この発明の被覆工具の硬質被覆層の断面模式図である。It is a cross-sectional schematic diagram of the hard coating layer of the coating tool of this invention.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.02のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−5を形成した。 As raw material powders, WC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the composition shown in Table 1. The mixture is wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After the sintering, honing of R: 0.02 was applied to the cutting edge portion to form tool bases A-1 to A-5 made of a WC-based cemented carbide having a chip shape of ISO standard / CNMG120408.

(a)ついで、上記の工具基体A−1〜A−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった(Al,Ti,Si)N層形成用Al−Ti−Si合金、対向する他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった(Ti,Cr)N層形成用Ti−Cr合金を前記回転テーブルを挟んで配置する。
なお、Al−Ti−Si合金からなるカソード電極(蒸発源)は薄層Aの蒸着形成に用い、Ti−Cr合金からなるカソード電極(蒸発源)は、薄層B、単層領域の蒸着形成および工具基体のボンバード洗浄用に用いる。
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、例えば、Ti−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
(c)ついで、装置内に反応ガスとして窒素ガスを導入して9.3Paの反応雰囲気とすると共に、前記回転テーブル上で、6〜48rpmの速度で自転しながら、同時に、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する工具基体に−30Vの直流バイアス電圧を印加し、Ti−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、同時に、回転テーブルを挟んでTi−Cr合金カソード電極に相対向して配置したAl−Ti−Si合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、Ti−Cr合金カソード電極近傍に位置する工具基体には薄層Bを、また、Al−Ti−Si合金カソード電極近傍に位置する工具基体には薄層Aを蒸着し、ついで、回転テーブルが回転することによって、薄層Bが蒸着された工具基体に対しては薄層Aを蒸着し、薄層Aが蒸着された工具基体に対しては薄層Bを蒸着し、同様にして、薄層Aと薄層Bとを交互に繰り返し蒸着することにより、工具基体の表面に、表2、3に示される目標組成および目標層厚の薄層Aと薄層Bとを交互に積層した複層領域を形成する。
(d)ついで、装置内に反応ガスとして窒素ガスを導入し9.3Paの反応雰囲気を維持したまま、前記回転テーブル上で6〜48rpmの速度で自転しながら、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する複層領域が形成された工具基体に、−60Vの直流バイアス電圧を印加し、Al−Ti−Si合金カソード電極またはTi−Cr合金カソード電極とアノード電極との間に80Aの電流を流してアーク放電を発生させることによって、前記工具基体の表面に、表2、3に示される目標組成および目標層厚の単層領域を蒸着形成する。
(e)ついで、前記(c)、(d)を、目標とする硬質被覆層の全体層厚になるまで交互に繰り返し行うことにより、図2に示される複層領域と単層領域との交互積層構造からなる硬質被覆層を有する、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具としての本発明被覆チップ1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-5 is ultrasonically cleaned in acetone and dried, and the center on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from the shaft, each of the cathode electrodes (evaporation source) has a component composition corresponding to the target composition shown in Table 2 (Al, Ti , Si) Al-Ti-Si alloy for forming N layer, and cathode electrode (evaporation source) on the other side (Ti, Cr) N layer having a component composition corresponding to the target composition shown in Table 2, respectively. A forming Ti—Cr alloy is arranged with the rotary table in between.
The cathode electrode (evaporation source) made of an Al—Ti—Si alloy is used for vapor deposition formation of the thin layer A, and the cathode electrode (evaporation source) made of a Ti—Cr alloy is vapor deposition formation for the thin layer B, single layer region. And used for bombard cleaning of a tool substrate.
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool substrate that rotates while rotating on the rotary table is −1000 V A direct current bias voltage is applied and, for example, a current of 100 A is passed between a Ti—Cr alloy cathode electrode and an anode electrode to generate an arc discharge, whereby the tool base surface is bombarded.
(C) Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 9.3 Pa, and while rotating on the rotary table at a speed of 6 to 48 rpm, at the same time, the rotation center of the rotary table A -30V DC bias voltage is applied to the tool base that rotates (revolves) around the shaft at a speed of 1 to 8 rpm, and a current of 100 A flows between the Ti-Cr alloy cathode electrode and the anode electrode to cause arc discharge. At the same time, an arc discharge is generated by flowing a current of 100 A between the Al—Ti—Si alloy cathode electrode and the anode electrode arranged opposite to the Ti—Cr alloy cathode electrode across the rotary table, A thin layer B is applied to the tool base located in the vicinity of the Ti—Cr alloy cathode electrode, and a thin layer A is applied to the tool base located in the vicinity of the Al—Ti—Si alloy cathode electrode. Then, the rotating table rotates to deposit the thin layer A on the tool base on which the thin layer B is deposited, and the thin layer B on the tool base on which the thin layer A is deposited. The thin layer A and the thin layer B having the target composition and the target layer thickness shown in Tables 2 and 3 are formed on the surface of the tool base by alternately depositing the thin layer A and the thin layer B alternately. A multilayer region in which B is alternately laminated is formed.
(D) Next, while introducing nitrogen gas into the apparatus as a reaction gas and maintaining a reaction atmosphere of 9.3 Pa, while rotating at a speed of 6 to 48 rpm on the rotary table, around the rotation center axis of the rotary table A DC bias voltage of −60 V is applied to a tool substrate on which a multilayer region that rotates (revolves) at a speed of 1 to 8 rpm is applied, and an Al—Ti—Si alloy cathode electrode or a Ti—Cr alloy cathode electrode and an anode are applied. A current of 80 A is passed between the electrodes to generate an arc discharge, thereby forming a single layer region having a target composition and a target layer thickness shown in Tables 2 and 3 on the surface of the tool base.
(E) Next, by alternately repeating the steps (c) and (d) until the target total thickness of the hard coating layer is reached, the alternate between the multilayer region and the single layer region shown in FIG. The coated chips 1 to 10 of the present invention as the coated tool of the present invention in the form of a throwaway tip defined in ISO · CNMG120408 having a hard coating layer having a laminated structure were manufactured.

比較の目的で、これら工具基体A−1〜A−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成をもったAl−Ti−Si合金およびTi−Cr合金を装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体表面をTi−Cr合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Cr)N層を蒸着形成し、ついで、前記Al−Ti−Si合金のカソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体の表面に、表4に示される目標組成および目標層厚の(Al,Ti,Si)N層を蒸着形成し、前記(Ti,Cr)N層と(Al,Ti,Si)N層の蒸着形成を交互に繰り返すことにより、表4に示される目標組成および目標層厚の交互積層からなる硬質被覆層を有する、ISO・CNMG120408に規定するスローアウエイチップ形状の比較被覆工具としての比較被覆チップ1〜10をそれぞれ製造した。   For the purpose of comparison, these tool bases A-1 to A-5 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. As a source), an Al—Ti—Si alloy and a Ti—Cr alloy each having a component composition corresponding to the target composition shown in Table 4 are mounted, and the apparatus is first evacuated to a vacuum of 0.5 Pa or less. While being held, the inside of the apparatus is heated to 500 ° C. with a heater, a DC bias voltage of −1000 V is applied to the tool base, and a current of 100 A is applied between the Ti—Cr alloy of the cathode electrode and the anode electrode. The surface of the tool base is bombarded with a Ti—Cr alloy by flowing an arc discharge to introduce a nitrogen gas as a reaction gas into the apparatus, and a reaction atmosphere of 2 Pa is introduced. At the same time, by lowering the bias voltage applied to the tool base to -100V and generating an arc discharge between the cathode electrode and the anode electrode of the Ti-Cr alloy, (Ti, Cr) N layer having the target composition and target layer thickness shown in Table 4 is formed by vapor deposition, and then arc discharge is generated between the cathode electrode and the anode electrode of the Al-Ti-Si alloy. Then, an (Al, Ti, Si) N layer having a target composition and a target layer thickness shown in Table 4 is formed on the surface of the tool base by vapor deposition, and the (Ti, Cr) N layer and (Al, Ti, Si) are formed. By alternately repeating the deposition formation of the N layer, the throw-out specified in ISO / CNMG120408 having a hard coating layer composed of alternate lamination of the target composition and the target layer thickness shown in Table 4 is provided. Comparative coating chip 10 as a comparative coated tool Ichippu shape were produced, respectively.

つぎに、前記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および比較被覆チップ1〜10について、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 70 m/min.、
切り込み: 3.5 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続切削加工試験(通常の切削速度は、40m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 60 m/min.、
切り込み: 4 mm、
送り: 0.4 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、35m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the comparative coated chips 1 to 10 are as follows.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Four longitudinally-grooved round bars at equal intervals in the length direction of a Ni-based alloy having a composition of Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 70 m / min. ,
Cutting depth: 3.5 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ni-based alloy under the above conditions (cutting condition A) (normal cutting speed is 40 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% 4 fluted round bars,
Cutting speed: 60 m / min. ,
Cutting depth: 4 mm,
Feed: 0.4 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Co-based alloy under the conditions (cutting condition B) (normal cutting speed is 35 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 6 was added to the composition shown in FIG. 6 and added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round tool sintered body for forming a tool base is formed, and further, a diameter of the cutting edge portion × length is 10 mm × 22 mm and a twist angle is 45 degrees by grinding from the round bar sintered body. Made of WC-based cemented carbide with a 4-flute square shape Tool substrate (end mill) C-1~C-4 were prepared, respectively.

ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、層厚方向に沿って表7に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域、および、単層領域との交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool bases (end mills) C-1 to C-4 were ultrasonically cleaned in acetone and dried, and then inserted into the arc ion plating apparatus shown in FIG. A multi-layer region in which thin layers A and B are alternately laminated, and a single-layer region having the target composition and target layer thickness shown in Table 7 along the layer thickness direction under the same conditions as in Example 1. The coated end mills 1 to 8 of the present invention as the coated tool of the present invention were produced by vapor-depositing a hard coating layer having an alternately laminated structure.

また、比較の目的で、前記工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−4の表面に、表8に示される目標組成および目標層厚の(Ti,Cr)N層と(Al,Ti,Si)N層との交互積層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the (Ti, Cr) N layer having the target composition and target layer thickness shown in Table 8 and (Al) are formed on the surfaces of the tool bases (end mills) C-1 to C-4. , Ti, Si) Comparative coating end mills 1 to 8 as comparative coating tools were produced by vapor-depositing a hard coating layer composed of alternating layers with N layers.

つぎに、前記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 1.5 mm、
テーブル送り: 100 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、40m/min.および1.0mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7、8にそれぞれ示した。
Next, for the present invention coated end mills 1-8 and comparative coated end mills 1-8,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 60 m / min. ,
Groove depth (cut): 1.5 mm,
Table feed: 100 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed and groove depth are 40 m / min. And 1.0 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

前記の実施例2で製造した丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−4をそれぞれ製造した。   Using the round bar sintered body produced in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming part was 8 mm x 48 mm and the helix angle was 30 degrees by grinding. WC base cemented carbide tool bases (drills) D-1 to D-4 each having a two-blade shape were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域、および、単層領域との交互積層構造からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. A multilayer region in which thin layers A and thin layers B are alternately laminated with the target composition and target layer thickness shown in Table 9 along the layer thickness direction under the same conditions as in Example 1 And this invention covering drill 1-8 as this invention covering tool was manufactured by carrying out vapor deposition formation of the upper layer which consists of an alternate lamination structure with a single layer field, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表10に示される目標組成および目標層厚の(Ti,Cr)N層と(Al,Ti,Si)N層との交互積層構造からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1, the target compositions and target layer thicknesses (Ti, Cr) shown in Table 10 are formed on the surfaces of the tool bases (drills) D-1 to D-4. Comparative coating drills 1 to 8 as comparative coating tools were manufactured by vapor-depositing a hard coating layer having an alternately laminated structure of N layers and (Al, Ti, Si) N layers.

つぎに、前記本発明被覆ドリル1〜8および比較被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 30 m/min.、
送り: 0.2 mm/rev、
穴深さ: 30 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、15m/min.および0.1mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
Next, for the present invention coated drills 1-8 and comparative coated drills 1-8,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 30 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 30 mm,
Wet high-speed drilling test of Ni-based alloy under the conditions of (normal cutting speed and feed are 15 m / min. And 0.1 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2011189472
Figure 2011189472

Figure 2011189472
Figure 2011189472

この結果得られた本発明被覆工具としての本発明被覆チップ1〜10、本発明被覆エンドミル1〜8および本発明被覆ドリル1〜8の薄層Aと薄層Bとが交互に積層された複層領域および単層領域、さらに、比較被覆チップ1〜10、比較被覆エンドミル1〜8および比較被覆ドリル1〜8の薄層Aと薄層Bとの交互積層を構成する(Ti,Cr)N層と(Al,Ti,Si)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of the present invention, the coated chips 1 to 10, the coated end mills 1 to 8 and the coated drills 1 to 8 of the present invention coated tip 1-8 and the laminated layers A and B are alternately laminated. (Ti, Cr) N which constitutes the alternate lamination of the thin layer A and the thin layer B of the layer region and the single layer region, and the comparison coating tip 1 to 10, the comparison coating end mill 1 to 8 and the comparison coating drill 1 to 8 When the compositions of the layer and the (Al, Ti, Si) N layer were measured by energy dispersive X-ray analysis using a transmission electron microscope, the compositions were substantially the same as the target composition.

また、前記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表5、7〜10に示される結果から、本発明被覆工具は、その硬質被覆層が、薄層Aと薄層Bとが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されていることにより、複層領域によって、靭性、耐チッピング性、耐欠損性、耐溶着性、耐摩耗性が改善されるとともに、単層領域の存在によって、層間剥離が防止され、機械的衝撃の緩和が図られるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、長期に亘ってすぐれた切削性能(特に、耐チッピング性、耐摩耗性)を発揮する。
これに対して、硬質被覆層が(Ti,Cr)N層と(Al,Ti,Si)N層との交互積層のみで構成された、単層領域が存在しない比較被覆工具においては、Ni基合金、Co基合金等の耐熱合金の高速切削加工では、特に耐チッピング性、耐欠損性が十分でないために、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 and 7 to 10, the coated tool of the present invention has a hard coating layer in which a multi-layer region in which thin layers A and thin layers B are alternately laminated, and a single-layer region composed of a single layer. The multi-layered area improves toughness, chipping resistance, chipping resistance, fusing resistance, wear resistance, and the presence of a single-layer area. Therefore, when used for high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys, excellent cutting performance (especially withstand resistance) can be achieved. Demonstrates chipping and wear resistance).
On the other hand, in the comparative coating tool in which the hard coating layer is composed only of the alternate lamination of the (Ti, Cr) N layer and the (Al, Ti, Si) N layer and does not have a single layer region, the Ni base In high-speed cutting of heat-resistant alloys such as alloys and Co-base alloys, it is apparent that the service life is reached in a relatively short time because the chipping resistance and fracture resistance are not sufficient.

前述のように、本発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Since it shows excellent cutting performance over a long period of time, it can satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された100〜500nmの層厚の複層領域と、100〜500nmの層厚の単一層からなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成され、かつ、
(a)前記薄層Aは、
組成式:[Al1−x−yTixSiy]N
で表した場合、xは0.15〜0.94、yは0.01〜0.15(但し、原子比)を満足するAlとTiとSiとの複合窒化物層からなり、
(b)前記薄層Bは、
組成式:[Ti1−zCr]N
で表した場合、zは0.10〜0.90(但し、原子比)を満足するTiとCrとの複合窒化物層からなり、
(c)前記単一層は、
前記薄層Aまたは薄層Bと同一材種からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region having a layer thickness of 100 to 500 nm in which thin layers A having a layer thickness of 1 to 50 nm and thin layers B having a layer thickness of 1 to 50 nm are alternately stacked; Comprising a single layer region consisting of a single layer of a layer thickness, and configured as an alternately laminated structure of the multilayer region and the single layer region, and
(A) The thin layer A is
Composition formula: [Al 1-xy Ti x Si y ] N
X is 0.15 to 0.94, y is composed of a composite nitride layer of Al, Ti and Si that satisfies 0.01 to 0.15 (however, atomic ratio),
(B) The thin layer B is
Composition formula: [Ti 1-z Cr z ] N
Z is composed of a composite nitride layer of Ti and Cr satisfying 0.10 to 0.90 (however, atomic ratio),
(C) the single layer is
A surface-coated cutting tool comprising the same material type as the thin layer A or the thin layer B.
JP2010058921A 2010-03-16 2010-03-16 Surface coated cutting tool Withdrawn JP2011189472A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010058921A JP2011189472A (en) 2010-03-16 2010-03-16 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010058921A JP2011189472A (en) 2010-03-16 2010-03-16 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2011189472A true JP2011189472A (en) 2011-09-29

Family

ID=44794931

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010058921A Withdrawn JP2011189472A (en) 2010-03-16 2010-03-16 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2011189472A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
JP2021084154A (en) * 2019-11-27 2021-06-03 株式会社Moldino Coated cutting tool
CN113201724A (en) * 2021-04-25 2021-08-03 赣州澳克泰工具技术有限公司 Coated cutting tool and method of making same
JP7406079B2 (en) 2019-11-27 2023-12-27 株式会社Moldino coated cutting tools

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
CN108138306B (en) * 2015-09-04 2020-01-03 Osg株式会社 Hard coating and hard coating-coated member
US10676810B2 (en) 2015-09-04 2020-06-09 Osg Corporation Hard coating and hard coating-covered member
JP2021084154A (en) * 2019-11-27 2021-06-03 株式会社Moldino Coated cutting tool
JP7406079B2 (en) 2019-11-27 2023-12-27 株式会社Moldino coated cutting tools
JP7406078B2 (en) 2019-11-27 2023-12-27 株式会社Moldino coated cutting tools
CN113201724A (en) * 2021-04-25 2021-08-03 赣州澳克泰工具技术有限公司 Coated cutting tool and method of making same

Similar Documents

Publication Publication Date Title
JP5459507B2 (en) Surface coated cutting tool
JP5459506B2 (en) Surface coated cutting tool
JP2009039838A (en) Surface-coated cutting tool
JP2010207916A (en) Surface coated cutting tool
JP2011167793A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2011235393A (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP2017154200A (en) Surface-coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP2010207917A (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2012061555A (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
JP5488823B2 (en) Surface coated cutting tool
JP2010137335A (en) Surface-coated cutting tool
JP2011189471A (en) Surface coated cutting tool
JP2010137336A (en) Surface-coated cutting tool
WO2020184352A1 (en) Surface-coated cutting tool
JP2011167792A (en) Surface coated cutting tool
JP5975214B2 (en) Surface coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130604