JP2010137336A - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
JP2010137336A
JP2010137336A JP2008317032A JP2008317032A JP2010137336A JP 2010137336 A JP2010137336 A JP 2010137336A JP 2008317032 A JP2008317032 A JP 2008317032A JP 2008317032 A JP2008317032 A JP 2008317032A JP 2010137336 A JP2010137336 A JP 2010137336A
Authority
JP
Japan
Prior art keywords
layer
thin layer
tool
thin
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2008317032A
Other languages
Japanese (ja)
Inventor
Takashi Koyama
孝 小山
Kazunori Sato
和則 佐藤
Daisuke Kazami
大介 風見
Shinichi Shikada
信一 鹿田
Takahito Tabuchi
貴仁 田渕
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2008317032A priority Critical patent/JP2010137336A/en
Publication of JP2010137336A publication Critical patent/JP2010137336A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)
  • Drilling Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-coated cutting tool having a hard coating layer, exhibiting superior chipping resistance and wear resistance over a long period of service even when a heat resisting alloy such as an Ni based alloy and a Co based alloy is machined at high speeds which generates high heat. <P>SOLUTION: In this surface-coated cutting tool, a substrate layer and an upper layer formed by alternately laminating a thin layer A and a thin layer B are formed, as a hard coating layer, on the surface of a tool base. The substrate layer and the thin layer A is composite nitride layers of Al, Cr, Si represented by the composition formula [Al<SB>X</SB>Cr<SB>Y</SB>Si<SB>Z</SB>]N. The thin layer B is a composite nitride layer of Al, Ti, Si represented by the composition formula [Al<SB>U</SB>Ti<SB>V</SB>Si<SB>W</SB>]N. The substrate layer A has a layer thickness of exceeding 0.05 μm and not over 2 μm. The thin layer A and the thin layer B each have one-layer average layer thickness of 0.005-0.05 μm. The total layer thickness of the thin layer A and the thin layer B is 1-5 μm. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性と耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention exhibits excellent chipping resistance and wear resistance even when cutting heat-resistant alloys such as Ni-base alloys and Co-base alloys under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、具体的な被覆工具としては、例えば、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の表面に、
組成式:[AlCrSi]N
で表した場合、X=0.45、Y=0.50、Z=0.05(ただし、X、Y、Zはいずれも原子比)を満足するAlとCrとSiの複合窒化物層(以下、(Al,Cr,Si)N層で示す)をA層とし、また、
組成式[AlTi]Nで表した場合、
U=0.5、V=0.5(ただし、U、Vはいずれも原子比)を満足するAlとTiの複合窒化物層(以下、(Al,Ti)N層で示す)をB層とし、
A層とB層とを交互に積層して硬質被覆層を構成することにより、高硬度鋼の高速切削加工において、すぐれた耐酸化性、高硬度を有し、かつ、耐摩耗性にすぐれた被覆工具(以下、従来被覆工具という)が得られることが知られている。
In addition, as a specific coated tool, for example, on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide,
Composition formula: [Al X Cr Y Si Z ] N
The composite nitride layer of Al, Cr, and Si satisfying X = 0.45, Y = 0.50, Z = 0.05 (where X, Y, and Z are atomic ratios) ( Hereinafter, (shown as an Al, Cr, Si) N layer) is an A layer,
When represented by the composition formula [Al U Ti V ] N,
B and B are composite nitride layers of Al and Ti that satisfy U = 0.5 and V = 0.5 (wherein U and V are both atomic ratios) (hereinafter referred to as (Al, Ti) N layers). age,
By forming the hard coating layer by alternately laminating the A layer and the B layer, it has excellent oxidation resistance, high hardness, and excellent wear resistance in high-speed cutting of high-hardness steel. It is known that a coated tool (hereinafter referred to as a conventional coated tool) can be obtained.

そして、上記の従来被覆工具は、例えば、図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の工具基体を装入し、装置内を、例えば500℃の温度に加熱した状態で、蒸着形成する硬質被覆層の種類に応じた成分組成を有するカソード電極(蒸発源)とアノード電極との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とし、一方、上記工具基体には、例えば−100Vのバイアス電圧を印加した条件で、前記工具基体の表面に、上記硬質被覆層を蒸着形成することにより製造されることも知られている。
特開2004−106183号公報
The above-mentioned conventional coated tool is, for example, loaded with the above-mentioned tool base into an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. In the state heated to the temperature of, for example, an arc discharge is generated between the cathode electrode (evaporation source) having a component composition corresponding to the type of the hard coating layer to be vapor-deposited and the anode electrode under the condition of current: 90 A, for example. At the same time, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa. On the other hand, the hard coating layer is formed on the surface of the tool base under the condition that a bias voltage of, for example, −100 V is applied to the tool base. It is also known that it is manufactured by vapor deposition.
JP 2004-106183 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化の傾向にあるが、上記の従来被覆工具においては、これを、例えば、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合には、(Al,Cr,Si)N層はすぐれた硬度を備えるものの、強度が十分でなく、また、(Al,Ti)N層はすぐれた層間密着強度を備えるものの高温硬度が十分でないため、チッピング、欠損の発生あるいは耐摩耗性の低下等によって、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting machines has been remarkable. On the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting. With this, cutting tends to be faster. In the conventional coated tool, for example, when it is used for high-speed cutting with high heat generation of a heat-resistant alloy such as a Ni-base alloy and a Co-base alloy, the (Al, Cr, Si) N layer is excellent. Although it has hardness, the strength is not sufficient, and the (Al, Ti) N layer has excellent interlayer adhesion strength, but the high temperature hardness is not sufficient, so chipping, generation of defects or reduction in wear resistance, etc. At present, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、Ni基合金、Co基合金等の耐熱合金の、高熱発生を伴う高速切削加工に用いたような場合にも、硬質被覆層が特にすぐれた高温強度、高温硬度を備え、長期間の使用に亘ってすぐれた耐チッピング性及び耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下のような知見を得た。   In view of the above, the inventors of the present invention have a particularly excellent hard coating layer even when the heat-resistant alloy such as a Ni-base alloy or a Co-base alloy is used for high-speed cutting with high heat generation. As a result of earnest research to develop a coated tool that has excellent high-temperature strength and high-temperature hardness and exhibits excellent chipping resistance and wear resistance over a long period of use, the following findings were obtained. .

(a)上記の従来被覆工具の硬質被覆層のA層を構成する(Al,Cr,Si)N層におけるAl成分には高温硬さ、同Cr成分には高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させ、さらに同Si成分には結晶粒の微細化によって高温硬さを向上させると同時に耐熱塑性変形性を向上させる作用があるが、高熱発生を伴う耐熱合金の高速切削加工においては、高温靭性、高温強度が充分であるとはいえないため、これがチッピング、欠損等の発生原因となりやすく、例え、Cr含有割合の増加により高温靭性、高温強度の改善を図ろうとしても、相対的なAl含有割合の減少によって、耐摩耗性が劣化してしまうため、(Al,Cr,Si)N層からなる硬質被覆層における耐チッピング性、耐欠損性の向上には限界があること。 (A) The Al component in the (Al, Cr, Si) N layer constituting the hard coating layer of the conventional coated tool described above improves the high temperature hardness, and the Cr component improves the high temperature toughness and high temperature strength. In addition, Al and Cr coexistingly improve the high-temperature oxidation resistance, and the Si component has the effect of improving the high-temperature hardness by refining crystal grains and at the same time improving the heat-resistant plastic deformation, In high-speed cutting of heat-resistant alloys with high heat generation, it cannot be said that high-temperature toughness and high-temperature strength are sufficient, so this is likely to cause chipping, fracture, etc. Even if an attempt is made to improve the high temperature strength, the wear resistance deteriorates due to the relative decrease in the Al content ratio, so the chip resistance in the hard coating layer made of the (Al, Cr, Si) N layer is reduced. Grayed property, that there is a limit to the improvement of the chipping resistance.

(b)一方、上記の従来被覆工具の硬質被覆層のB層を構成する(Al,Ti)N層におけるAl成分には前記と同様な作用があり、また、Ti成分には、高温靭性、高温強度を一段と向上させる作用があることから、上記A層とB層との交互積層を構成した場合には、B層がA層に不足する高温靭性、高温強度を補い、また、粒子の微細化によってさらに膜の強度が向上し、その結果、交互積層全体としての耐チッピング性、耐欠損性の向上が図られることになるが、このB層は高温耐酸化性が十分でないため、例えば、高熱発生を伴う耐熱合金の高速切削加工においてはB層に酸化損耗が生じやすく、さらに、上記A層とB層との薄層の交互積層が形成されている場合には、切削加工時の高熱によりA層自体も酸化されやすくなり、その結果、A層とB層の薄層の交互積層からなる硬質被覆層は、硬度の低下が生じるため、耐摩耗性も劣化しやすくなること。 (B) On the other hand, the Al component in the (Al, Ti) N layer constituting the B layer of the hard coating layer of the conventional coated tool has the same action as described above, and the Ti component has high temperature toughness, Since it has the effect of further improving the high-temperature strength, when the alternating layering of the A layer and the B layer is configured, the B layer supplements the high temperature toughness and high temperature strength that the A layer lacks, and the fineness of the particles As a result, the strength of the film is further improved, and as a result, the chipping resistance and the chipping resistance as an entire alternate laminate are improved. However, since this B layer has insufficient high-temperature oxidation resistance, for example, In high-speed cutting of a heat-resistant alloy with high heat generation, oxidation wear is likely to occur in the B layer. Further, when the thin layers of the A layer and the B layer are alternately formed, the high heat during the cutting is high. As a result, the A layer itself is easily oxidized. Fruit, hard coating layer comprising alternate lamination of a thin layer of the A layer and the B layer, since the reduction in hardness occurs, the wear resistance tends to deteriorate.

(c)そこで、上記B層において、その構成成分として微量のSi成分を添加含有させ、これを(Al,Ti,Si)N層で構成したところ、Al成分、Ti成分には前記と同様な作用があるとともに、Si成分によって、薄層Bの高温耐酸化性が向上するため、酸化による層の硬度低下が抑えられ、また、薄層Bには、上記(Al,Cr,Si)N層(以下、薄層Aという)との交互積層において層間密着性を高める作用もあるため、層全体としての強度が向上すること。 (C) Therefore, when a small amount of Si component is added and contained in the B layer as a constituent component, and this is composed of an (Al, Ti, Si) N layer, the Al component and Ti component are the same as described above. In addition to the action, the Si component improves the high-temperature oxidation resistance of the thin layer B, so that the decrease in the hardness of the layer due to oxidation is suppressed. The thin layer B includes the (Al, Cr, Si) N layer. In the alternate lamination with the thin layer A (hereinafter referred to as “thin layer A”), there is also an effect of improving interlayer adhesion, and therefore the strength of the entire layer is improved.

(d)したがって、工具基体表面に、相対的に層厚の大きな薄層Aと同様な組成を有する下地層を形成するとともに、この下地層の表面に、上記薄層Aと薄層Bの交互積層構造からなる上部層を形成すると、切削加工時の衝撃を強く受ける硬質被覆層の上層部分は、密着性、高温強度が高く、しかも、Si成分によって高温耐酸化性が向上した薄層Bと薄層Aとの交互積層構造で構成されているため、上部層は、薄層Aの有する特性を損なうことなく薄層Bの有するすぐれた高温耐酸化性、層間密着性を相兼ね備えるようになると同時に、交互積層構造による結晶粒の微細化によって上部層の強度が向上し、一方、硬質被覆層の下地層は、すぐれた耐酸化性と高硬度を有し、十分な耐摩耗性が担保されているため、硬質被覆層として、上記下地層と薄層Aと薄層Bの交互積層構造からなる上記上部層とを備えた被覆工具は、高熱発生を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合であっても、チッピング、欠損等を生じることなく長期の使用に亘ってすぐれた耐摩耗性を発揮すること。 (D) Accordingly, an underlayer having the same composition as the thin layer A having a relatively large layer thickness is formed on the surface of the tool base, and the thin layer A and the thin layer B are alternately formed on the surface of the underlayer. When the upper layer having a laminated structure is formed, the upper layer portion of the hard coating layer that is strongly subjected to impact during cutting is high in adhesion and high-temperature strength, and the thin layer B has improved high-temperature oxidation resistance by the Si component. Since the upper layer is composed of an alternating laminated structure with the thin layer A, the upper layer has both excellent high temperature oxidation resistance and interlayer adhesion that the thin layer B has without impairing the characteristics of the thin layer A. At the same time, the strength of the upper layer is improved by the refinement of crystal grains due to the alternate laminated structure, while the underlayer of the hard coating layer has excellent oxidation resistance and high hardness, and sufficient wear resistance is ensured. Therefore, as the hard coating layer, The coated tool having the upper layer composed of the alternating layer structure of the layer and the thin layer A and the thin layer B is used for high-speed cutting of a heat-resistant alloy such as a Ni-based alloy and a Co-based alloy with high heat generation. Even if it exists, it exhibits excellent wear resistance over long-term use without causing chipping or chipping.

この発明は、上記の知見に基づいてなされたものであって、
「 工具基体表面に、下地層と上部層とからなる硬質被覆層が蒸着形成された表面被覆切削工具であって、
(a)上記下地層は、0.05μmを超え2μm以下の層厚を有し、かつ、
組成式:[AlCrSi]N
で表した場合、Al,Cr,Siそれぞれの含有割合を示すX,Y,Z(いずれも原子比)は、0.45≦X≦0.70、0.25≦Y≦0.50、0.02≦Z≦0.15、X+Y+Z=1を満足するAlとCrとSiの複合窒化物層であり、
(b)上記上部層は、それぞれ、0.005〜0.05μmの一層平均層厚を有する薄層Aと薄層Bの交互積層構造からなり、しかも、薄層Aと薄層Bとの合計層厚は、1〜5μmであり、さらに、
(c)上記薄層Aは、
組成式:[AlCrSi]N
で表した場合、Al,Cr,Siそれぞれの含有割合を示すX,Y,Z(いずれも原子比)は、0.45≦X≦0.70、0.25≦Y≦0.50、0.02≦Z≦0.15、X+Y+Z=1を満足するAlとCrとSiの複合窒化物層であり、
(d)上記薄層Bは、
組成式:[AlTiSi]N
で表した場合、Al,Ti,Siそれぞれの含有割合を示すU,V,W(いずれも原子比)は、0.40≦U≦0.65、0.30≦V≦0.55、0.02≦W≦0.15、U+V+W=1を満足するAlとTiとSiの複合窒化物層である、
ことを特徴とする表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“A surface-coated cutting tool in which a hard coating layer composed of an underlayer and an upper layer is formed on the surface of a tool substrate by vapor deposition,
(A) The underlayer has a layer thickness of more than 0.05 μm and 2 μm or less, and
Composition formula: [Al X Cr Y Si Z ] N
X, Y, Z (all atomic ratios) indicating the content ratios of Al, Cr, Si are 0.45 ≦ X ≦ 0.70, 0.25 ≦ Y ≦ 0.50, 0 .02 ≦ Z ≦ 0.15, a composite nitride layer of Al, Cr and Si satisfying X + Y + Z = 1,
(B) Each of the upper layers has an alternately laminated structure of a thin layer A and a thin layer B each having an average layer thickness of 0.005 to 0.05 μm, and the total of the thin layer A and the thin layer B. The layer thickness is 1-5 μm,
(C) The thin layer A is
Composition formula: [Al X Cr Y Si Z ] N
X, Y, Z (all atomic ratios) indicating the content ratios of Al, Cr, Si are 0.45 ≦ X ≦ 0.70, 0.25 ≦ Y ≦ 0.50, 0 .02 ≦ Z ≦ 0.15, a composite nitride layer of Al, Cr and Si satisfying X + Y + Z = 1,
(D) The thin layer B is
Composition formula: [Al U Ti V Si W ] N
, U, V, and W (all atomic ratios) indicating the content ratios of Al, Ti, and Si are 0.40 ≦ U ≦ 0.65, 0.30 ≦ V ≦ 0.55, 0 .02 ≦ W ≦ 0.15 and a composite nitride layer of Al, Ti and Si satisfying U + V + W = 1.
A surface-coated cutting tool characterized by that. "
It has the characteristics.

つぎに、この発明の被覆工具の硬質被覆層に関し、より詳細に説明する。
(a)薄層A
(Al,Cr,Si)N層からなる薄層AにおけるAl成分には高温硬さ、同Cr成分には高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させ、さらに同Si成分には高温硬さと耐熱塑性変形性を向上させる作用がある。そして、Alの含有割合を示すX値(原子比)がCrとSiの合量に占める割合で0.45未満では、最低限の高温硬さおよび高温耐酸化性を確保することができず、摩耗促進の原因となり、一方同X値が0.70を超えると、高温靭性、高温強度が低下するようになり、チッピング・欠損発生の原因となることから、X値を0.45〜0.70と定めた。また、Crの含有割合を示すY値(原子比)がAlとSiの合量に占める割合で0.25未満では、最低限必要とされる高温靭性、高温強度を確保することができないため、チッピング・欠損の発生を抑制することができず、一方同Y値が0.50を超えると、相対的なAl含有割合の減少により、摩耗進行が促進することから、Y値を0.25〜0.50と定めた。さらに、Siの含有割合を示すZ値(原子比)がAlとCrの合量に占める割合で0.02未満では、高温硬さと耐熱塑性変形性の改善による耐摩耗性向上を期待することはできず、一方同Z値が0.15を越えると、耐摩耗性向上効果に低下傾向がみられるようになることから、Z値を0.02〜0.15と定めた。
なお、上記X、Y、Zについて、特に望ましい範囲は、0.55≦X≦0.65、0.25≦Y≦0.35、0.03≦Z≦0.10である。
Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
(A) Thin layer A
The Al component in the thin layer A composed of the (Al, Cr, Si) N layer is improved in high-temperature hardness, and the Cr component is improved in high-temperature toughness and high-temperature strength. In addition, the Si component has the effect of improving high temperature hardness and heat plastic deformation. And if X value (atomic ratio) which shows the content rate of Al is less than 0.45 in the ratio which occupies for the total amount of Cr and Si, the minimum high temperature hardness and high temperature oxidation resistance cannot be ensured, If this X value exceeds 0.70, the high temperature toughness and high temperature strength will decrease, leading to chipping and chipping. 70. Further, if the Y value (atomic ratio) indicating the Cr content is less than 0.25 in the total amount of Al and Si, the minimum required high temperature toughness and high temperature strength cannot be ensured. The occurrence of chipping and defects cannot be suppressed. On the other hand, if the Y value exceeds 0.50, the progress of wear is promoted due to the decrease in the relative Al content. It was set to 0.50. Furthermore, when the Z value (atomic ratio) indicating the Si content ratio is less than 0.02 in the total amount of Al and Cr, it is expected to improve the wear resistance by improving the high temperature hardness and the heat-resistant plastic deformability. On the other hand, if the Z value exceeds 0.15, the wear resistance improving effect tends to decrease, so the Z value was determined to be 0.02 to 0.15.
For X, Y, and Z, particularly desirable ranges are 0.55 ≦ X ≦ 0.65, 0.25 ≦ Y ≦ 0.35, and 0.03 ≦ Z ≦ 0.10.

(b)薄層B
薄層Aとの交互積層構造を構成する(Al,Ti,Si)N層からなる薄層Bは、云わば、薄層Aに不足する特性(特に、耐チッピング性、耐欠損性)を補完するために設けた層である。
すでに述べたように、薄層Aは、特に、Al成分、Si成分を含有することによりすぐれた耐摩耗性を備え、さらに、Cr成分を含有することに所定の耐チッピング性、耐欠損性を保持しているが、高熱発生を伴うNi基合金、Co基合金等の耐熱合金の高速切削条件下での使用に耐えるためには、薄層Aにはさらに一段とすぐれた高温耐酸化性、高温靭性、高温強度が求められ、これを確保するためには薄層Aにより多くのCrを含有させる必要があるが、そうすると、薄層AにおけるAl、Siの含有割合は、少なくならざるを得ず、その場合には、薄層Aは高温硬さおよび耐熱塑性変形性が不十分となり、ひいては、耐摩耗性の低下につながることから、薄層AにおいてCr含有割合の更なる増加を図ることは不可能である。
そこで、この発明では、(Al,Ti,Si)N層からなる薄層Bを、上記薄層Aと交互に積層し、薄層Aと薄層Bの交互積層構造からなる硬質被覆層を形成することにより、薄層Aの有するすぐれた高温硬さ、耐熱塑性変形性を損なうことなしに、薄層Aに不足する高温靭性、高温強度を、隣接する薄層Bの備えるすぐれた高温靭性、高温強度によって補い、また、交互積層構造による粒子の微細化によって上部層の膜強度がさらに向上し、もって、硬質被覆層全体として、すぐれた耐酸化性、耐チッピング性、耐欠損性、耐摩耗性を発揮せしめるのである。
薄層Bの組成式におけるAl成分の作用効果は、薄層Aの場合と同様であり、また、Ti成分には高温靭性、高温強度を一段と向上させる作用があるが、Alの含有割合を示すU値(原子比)が0.40未満、或いは、Tiの割合を示すV値(原子比)が0.55を超えると、最低限必要とされる所定の高温硬さを確保することができなくなるため耐摩耗性低下の原因となり、またU値が0.65を超えた場合は、或いは、V値が0.30未満であると、Ti成分添加による高温靭性、高温強度改善効果が期待できず、チッピング、欠損の発生を抑えることが困難となる。したがって、Alの含有割合示すU値は、0.40〜0.65、また、Tiの含有割合を示すV値は、0.30〜0.55と定めた。
また、Siの含有割合を示すW値(原子比)が0.02未満の場合には、高温耐酸化性の向上を期待できず、一方、W値が0.15を超えるような場合には、高温硬さが低下することから、Si成分の含有割合を示すW値を、0.02〜0.15と定めた。
なお、上記U、V、Wについて、特に望ましい範囲は、0.45≦U≦0.60、0.4≦V≦0.5、0.03≦W≦0.07である。
(B) Thin layer B
The thin layer B composed of the (Al, Ti, Si) N layers constituting the alternating layer structure with the thin layer A complements the characteristics (particularly chipping resistance and chipping resistance) that are lacking in the thin layer A. This is a layer provided for the purpose.
As already described, the thin layer A has excellent wear resistance especially by containing the Al component and Si component, and further has a predetermined chipping resistance and fracture resistance by containing the Cr component. In order to withstand the use of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation under high-speed cutting conditions, the thin layer A is further improved in high-temperature oxidation resistance and high temperature. Toughness and high-temperature strength are required, and in order to ensure this, it is necessary to contain more Cr in the thin layer A, but in that case, the content ratio of Al and Si in the thin layer A must be reduced. In that case, since the thin layer A has insufficient high-temperature hardness and heat-resistant plastic deformability, which leads to a decrease in wear resistance, it is possible to further increase the Cr content in the thin layer A. Impossible.
Therefore, in the present invention, the thin layer B composed of the (Al, Ti, Si) N layer is alternately laminated with the thin layer A to form a hard coating layer composed of the alternately laminated structure of the thin layer A and the thin layer B. The high-temperature toughness that the thin layer A has, the high-temperature toughness that the thin layer A lacks, the high-temperature toughness that the adjacent thin layer B has, The strength of the upper layer is further improved by supplementing with high-temperature strength, and the finer particles by the alternate layered structure. As a result, the hard coating layer as a whole has excellent oxidation resistance, chipping resistance, chipping resistance, and wear resistance. It demonstrates its sexuality.
The effect of the Al component in the composition formula of the thin layer B is the same as that of the thin layer A, and the Ti component has the effect of further improving the high temperature toughness and the high temperature strength, but shows the Al content ratio. If the U value (atomic ratio) is less than 0.40, or the V value (atomic ratio) indicating the proportion of Ti exceeds 0.55, the minimum required high temperature hardness can be secured. This causes a decrease in wear resistance, and if the U value exceeds 0.65, or if the V value is less than 0.30, the effect of improving the high temperature toughness and high temperature strength by adding the Ti component can be expected. Therefore, it becomes difficult to suppress the occurrence of chipping and defects. Therefore, the U value indicating the Al content ratio was set to 0.40 to 0.65, and the V value indicating the Ti content ratio was determined to be 0.30 to 0.55.
In addition, when the W value (atomic ratio) indicating the Si content is less than 0.02, improvement in high-temperature oxidation resistance cannot be expected. On the other hand, when the W value exceeds 0.15, Since the high-temperature hardness decreases, the W value indicating the content ratio of the Si component is determined to be 0.02 to 0.15.
For U, V, and W, particularly desirable ranges are 0.45 ≦ U ≦ 0.60, 0.4 ≦ V ≦ 0.5, and 0.03 ≦ W ≦ 0.07.

(c)層厚
薄層A、薄層Bそれぞれの一層平均層厚が0.005μm未満では、それぞれの薄層を所定組成のものとして明確に形成することが困難であるばかりか、粒子の微細化による膜強度向上効果が十分発揮されず、一方、薄層A、薄層Bそれぞれの層厚が0.05μmを超えた場合には、膜強度に低下傾向がみられると同時に、それぞれの薄層がもつ欠点、すなわち薄層Aであれば靭性不足、強度不足が、また、薄層Bであれば硬度不足が層内に局部的に現れ、硬質被覆層全体としての特性低下を招く恐れがあるので、薄層A、薄層Bそれぞれの一層平均層厚を0.005〜0.05μmと定めた。
すなわち、薄層Bは、薄層Aの有する特性のうちの不十分な特性を補うために設けたものであるが、薄層A、薄層Bそれぞれの層厚が0.005〜0.05μmの範囲内であれば、薄層Aと薄層Bの交互積層構造からなる硬質被覆層は、すぐれた高温硬さ、高温靭性、高温強度、耐熱塑性変形性を損なうことなく、すぐれた高温耐酸化性を具備したあたかも一つの層であるかのように作用するが、薄層A、薄層Bの層厚が0.2μmを超えると、薄層Aの靭性不足、強度不足が、また、薄層Bの硬度不足が顕在化する。
また、薄層Aと薄層Bの交互積層構造からなる層(上部層)は、その合計層厚が1μm未満ではすぐれた特性を発揮することはできず、また、合計層厚が5μmを超えると、チッピング、 欠損を発生しやすくなるので、薄層Aと薄層Bの交互積層構造からなる層(上部層)の合計層厚は、1〜5μmと定めた。
(C) Layer thickness If the average layer thickness of each of the thin layer A and the thin layer B is less than 0.005 μm, it is difficult to clearly form each thin layer as having a predetermined composition, as well as fine particles. On the other hand, when the thickness of each of the thin layer A and the thin layer B exceeds 0.05 μm, the film strength tends to decrease, and at the same time, There is a risk that the layer has defects, that is, if it is a thin layer A, insufficient toughness and insufficient strength, and if it is a thin layer B, insufficient hardness appears locally in the layer, leading to deterioration of the properties of the entire hard coating layer. Therefore, the average layer thickness of each of the thin layer A and the thin layer B was determined to be 0.005 to 0.05 μm.
That is, the thin layer B is provided in order to compensate for insufficient characteristics among the characteristics of the thin layer A, but the thickness of each of the thin layers A and B is 0.005 to 0.05 μm. Within the above range, the hard coating layer composed of the alternately laminated structure of the thin layer A and the thin layer B has excellent high-temperature acid resistance without impairing excellent high-temperature hardness, high-temperature toughness, high-temperature strength, and heat-resistant plastic deformation. It acts as if it had a single layer, but if the layer thickness of the thin layer A and the thin layer B exceeds 0.2 μm, the toughness of the thin layer A, the strength is insufficient, Insufficient hardness of the thin layer B becomes apparent.
In addition, the layer (upper layer) having an alternately laminated structure of the thin layer A and the thin layer B cannot exhibit excellent characteristics when the total layer thickness is less than 1 μm, and the total layer thickness exceeds 5 μm. Then, since chipping and defects are likely to occur, the total layer thickness of the layer (upper layer) composed of the alternately laminated structure of the thin layer A and the thin layer B is determined to be 1 to 5 μm.

(d)下地層
工具基体表面上に直接、薄層Aと薄層Bの交互積層を形成すると、該交互積層は、すぐれた高温硬さ、高温靭性、高温強度、耐熱塑性変形性を損なうことなく、すぐれた高温耐酸化性を具備したあたかも一つの層であるかのように作用し、切削時の強い衝撃によってもチッピング、欠損等を発生することはないが、長期の使用に亘ってすぐれた耐摩耗性を持続するためには、より硬度の高い硬質被覆層を設ける必要がある。そのため、工具基体表面に、上記交互積層に比してよりすぐれた硬度を有する(Al,Cr,Si)N層、即ち、A層を、交互積層の各層に比して相対的に層厚な下地層として形成することにより、該下地層によって、長期の使用に亘るすぐれた耐摩耗性を確保することができる。
ただ、下地層の層厚が0.05μm以下では、下地層を設けることによる効果を期待できず、一方、層厚が2μmを超えると、チッピング、欠損が発生しやすくなることから、下地層の層厚は、0.05μmを超え2μm以下と定めた。
(D) Underlayer When alternating layers of thin layer A and thin layer B are formed directly on the surface of the tool substrate, the alternating layer impairs excellent high-temperature hardness, high-temperature toughness, high-temperature strength, and heat-resistant plastic deformation. It works as if it is a single layer with excellent high-temperature oxidation resistance, and does not cause chipping or chipping due to strong impact during cutting, but it is excellent over long-term use. In order to maintain high wear resistance, it is necessary to provide a hard coating layer with higher hardness. For this reason, the (Al, Cr, Si) N layer, that is, the A layer having a hardness superior to that of the alternate lamination, is relatively thick on the surface of the tool base as compared with each layer of the alternate lamination. By forming it as a base layer, the base layer can ensure excellent wear resistance over a long period of use.
However, if the thickness of the underlayer is 0.05 μm or less, the effect of providing the underlayer cannot be expected. On the other hand, if the thickness exceeds 2 μm, chipping and defects are likely to occur. The layer thickness was determined to be more than 0.05 μm and 2 μm or less.

この発明の表面被覆切削工具は、硬質被覆層が下地層と上部層から構成され、しかも、該上部層は、(Al,Cr,Si)N層からなる薄層Aと、(Al,Ti,Si)N層からなる薄層Bの交互積層構造として構成されていることによって、すぐれた高温硬さ、高温靭性、高温強度、耐熱塑性変形性および高温耐酸化性を備え、さらに、下地層が薄層Aと同様な組成、かつ、層厚のものとして形成されていることによって耐摩耗性が担保されることから、特に高熱発生を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工でも、硬質被覆層がすぐれた高温硬さ、高温靭性、高温強度、耐熱塑性変形性に加えて、すぐれた高温耐酸化性およびすぐれた層間密着性を発揮し、この結果、チッピング、欠損、偏摩耗、剥離の発生もなく、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the surface-coated cutting tool of the present invention, the hard coating layer is composed of an underlayer and an upper layer, and the upper layer includes a thin layer A composed of an (Al, Cr, Si) N layer, and (Al, Ti, By being configured as an alternating layered structure of thin layers B composed of Si) N layers, it has excellent high temperature hardness, high temperature toughness, high temperature strength, heat plastic deformation and high temperature oxidation resistance. Since the wear resistance is ensured by being formed with the same composition and thickness as the thin layer A, high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with particularly high heat generation In processing, in addition to high-temperature hardness, high-temperature toughness, high-temperature strength, and heat-resistant plastic deformability, the hard coating layer exhibits excellent high-temperature oxidation resistance and excellent interlayer adhesion. As a result, chipping, chipping, No uneven wear or delamination Is intended to exert a long term wear resistance was.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.02のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−5を形成した。 As raw material powders, WC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. Compounded into the composition, wet-mixed with a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact was maintained in a vacuum of 6 Pa at a temperature of 1400 ° C. for 1 hour. After sintering, tool bases A-1 to A-5 made of WC-based cemented carbide having an ISO standard / CNMG120408 chip shape by performing honing of R: 0.02 on the cutting edge portion. Formed.

(a)ついで、上記の工具基体A−1〜A−10のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった下地層及び薄層A形成用Al−Cr−Si合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表2に示される目標組成に対応した成分組成をもった薄層B形成用Al−Ti−Si合金を前記回転テーブルを挟んで対向配置する。
なお、図1では、薄層A形成用カソード電極と下地層形成用カソード電極を兼用しているが、薄層A形成用カソード電極と下地層形成用カソード電極とをそれぞれ別個のものとして設けることも勿論可能である。
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、例えば、下地層及び薄層A形成用Al−Cr−Si合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
(c)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、かつ前記下地層及び薄層A形成用Al−Cr−Si合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体の表面に、表3に示される目標組成および目標層厚の下地層を蒸着形成する。
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、薄層B形成用Al−Ti−Si合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体(の下地層)上に所定層厚の薄層Bを形成し、その後、前記下地層及び薄層A形成用Al−Ti−Si合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Aを形成した後、更に、薄層Bと薄層Aの形成を交互に繰り返し行う。
上記(a)〜(d)の手順により、前記工具基体の表面に、表2に示される目標組成および目標層厚の下地層および同じく表2に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる上部層を蒸着形成することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具としての本発明被覆チップ1〜5をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-10 is ultrasonically cleaned in acetone and dried, and the center on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the shaft, as a cathode electrode (evaporation source) on one side, an underlayer and a thin layer each having a component composition corresponding to the target composition shown in Table 2 An Al—Cr—Si alloy for forming layer A, and an Al—Ti—Si alloy for forming thin layer B each having a component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on the other side Are arranged opposite to each other with the rotary table interposed therebetween.
In FIG. 1, the cathode electrode for forming the thin layer A and the cathode electrode for forming the underlayer are used together. However, the cathode electrode for forming the thin layer A and the cathode electrode for forming the underlayer are provided separately from each other. Of course it is possible.
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool substrate that rotates while rotating on the rotary table is −1000 V A direct current bias voltage is applied, for example, an arc discharge is generated by passing a current of 100 A between the Al—Cr—Si alloy cathode electrode and the anode electrode for forming the base layer and the thin layer A, and thereby the surface of the tool base is formed. Clean with bombard.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and An arc discharge is generated by passing a current of 100 A between the base layer and the Al-Cr-Si alloy for forming the thin layer A and the anode electrode, and the target composition and target layer shown in Table 3 are formed on the surface of the tool base. A thick underlayer is deposited.
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. An arc discharge is generated by flowing a predetermined current in the range of 50 to 200 A between the cathode electrode and the anode electrode of the Al—Ti—Si alloy for forming the thin layer B, and on the tool base (the underlying layer). After that, a thin layer B having a predetermined thickness is formed, and then a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Al—Ti—Si alloy for forming the base layer and the thin layer A. After arc discharge is generated to form the thin layer A having a predetermined thickness, the thin layer B and the thin layer A are alternately and repeatedly formed.
According to the procedures (a) to (d), the base layer having the target composition and target layer thickness shown in Table 2 and the thin layer A having the target composition and target thickness shown in Table 2 are formed on the surface of the tool base. The coated chips 1 to 5 of the present invention as the coated tool of the present invention in the form of a throwaway tip defined in ISO · CNMG120408 were produced by vapor deposition of the upper layer composed of the alternating layers of the thin layer B and the thin layer B, respectively.

また、比較の目的で、これら工具基体A−1〜A−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表3に示される目標組成に対応した成分組成をもったAl−Cr−Si合金及びAl−Ti合金を装着し、
まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Al−Cr−Si合金(あるいはAl−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Al−Cr−Si合金(あるいはAl−Ti合金)でボンバード洗浄し、
ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Al−Cr−Si合金(あるいはAl−Ti合金)のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の(Al,Cr,Si)N層(或いは、表3に示される目標組成および目標層厚の(Al,Ti)N層)を蒸着形成し、
ついで、前記Al−Ti合金(あるいはAl−Cr−Si合金)のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体の表面に、表3に示される目標組成および目標層厚の(Al,Ti)N層(或いは、表3に示される目標組成および目標層厚の(Al,Cr,Si)N層)を蒸着形成し、
上記の(Al,Cr,Si)N層と(Al,Ti)N層の蒸着形成を交互に繰り返すことにより、表3に示される目標組成および目標層厚の交互積層からなる硬質被覆層を有し、ISO・CNMG120408に規定するスローアウエイチップ形状の比較被覆工具としての比較被覆チップ1〜5をそれぞれ製造した。
For comparison purposes, these tool bases A-1 to A-5 were ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. As the (evaporation source), an Al—Cr—Si alloy and an Al—Ti alloy each having a component composition corresponding to the target composition shown in Table 3 were mounted,
First, while evacuating the inside of the apparatus and maintaining the vacuum at 0.5 Pa or less, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and the cathode electrode An arc discharge is generated by passing a current of 100 A between the Al—Cr—Si alloy (or Al—Ti alloy) and the anode electrode, so that the surface of the tool base is made of the Al—Cr—Si alloy (or Al—Ti alloy). )
Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the tool base is lowered to −100 V, and the Al—Cr—Si alloy (or Al—Ti alloy) is used. An arc discharge is generated between the cathode electrode and the anode electrode, and the (Al, Cr, Si) N layer (or Table 3) having the target composition and target layer thickness shown in Table 3 is formed on the surface of the tool base. (Al, Ti) N layer) having the target composition and target layer thickness shown in FIG.
Then, an arc discharge is generated between the cathode electrode and the anode electrode of the Al—Ti alloy (or Al—Cr—Si alloy), and the target composition and target layer shown in Table 3 are formed on the surface of the tool base. A (Al, Ti) N layer having a thickness (or an (Al, Cr, Si) N layer having a target composition and a target layer thickness shown in Table 3) is formed by vapor deposition.
By alternately repeating the deposition formation of the (Al, Cr, Si) N layer and the (Al, Ti) N layer, a hard coating layer having an alternate lamination of the target composition and the target layer thickness shown in Table 3 is provided. Then, comparative coated tips 1 to 5 as a comparative coated tool having a throwaway tip shape defined in ISO · CNMG120408 were manufactured.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜5および従来被覆チップ1〜5について、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 80 m/min.、
切り込み: 2.0 mm、
送り: 0.3 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続切削加工試験(通常の切削速度は、30m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 60 m/min.、
切り込み: 1.5 mm、
送り: 0.20 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、25m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表4に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 5 and the conventional coated chips 1 to 5 are as follows.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Four longitudinally-grooved round bars at equal intervals in the length direction of a Ni-based alloy having a composition of Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 80 m / min. ,
Cutting depth: 2.0 mm,
Feed: 0.3 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ni-based alloy under the above conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% 4 fluted round bars,
Cutting speed: 60 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.20 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Co-based alloy under the conditions (cutting condition B) (normal cutting speed is 25 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 4.

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

原料粉末として、平均粒径0.8μmのWC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表5に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、表5に示される、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 1.3 μm TaC powder, 1.2 μm NbC powder, 1.2 μm ZrC powder, 2.3 μm Cr 3 C 2 powder, Prepare 1.5 μm VC powder and 1.8 μm Co powder, mix these raw material powders with the blending composition shown in Table 5, add wax and ball mill mix in acetone for 24 hours, and dry under reduced pressure After that, it was press-molded into various green compacts of a predetermined shape at a pressure of 100 MPa, and these green compacts were in a range of 1370 to 1470 ° C. at a temperature increase rate of 7 ° C./min in a 6 Pa vacuum atmosphere. The temperature is raised to a predetermined temperature, held at this temperature for 1 hour, and then sintered under furnace cooling conditions to form a round bar sintered body for forming a tool base. Further, the round bar sintered body is ground. In processing, the diameter x length of the cutting edge shown in Table 5 Produced WC-based cemented carbide tool bases (end mills) C-1 to C-4 having a size of 10 mm × 22 mm and a four-blade square shape with a twist angle of 45 degrees.

ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表6に示される目標組成および目標層厚の下地層および同じく表6に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜4をそれぞれ製造した。   Next, the surfaces of these tool bases (end mills) C-1 to C-4 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, along the layer thickness direction, the target composition and the underlayer having the target layer thickness shown in Table 6 and the thin layers A and B having the target composition and the target layer thickness also shown in Table 6 The coated end mills 1 to 4 of the present invention as the coated tool of the present invention were produced by vapor-depositing upper layers composed of alternating layers.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−4の表面に、表7に示される目標組成および目標層厚の(Al,Cr,Si)N層と(Al,Ti)N層との交互積層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜4をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the (Al, Cr, Si) N layer having the target composition and target layer thickness shown in Table 7 is formed on the surface of the tool base (end mill) C-1 to C-4. Comparative coating end mills 1 to 4 as comparative coating tools were manufactured by vapor-depositing hard coating layers composed of alternating layers of and (Al, Ti) N layers.

つぎに、上記本発明被覆エンドミル1〜4および比較被覆エンドミル1〜4について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 3 mm、
テーブル送り: 300 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、25m/min.および1.2mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表6、7にそれぞれ示した。
Next, the present invention coated end mills 1-4 and comparative coated end mills 1-4,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 55 m / min. ,
Groove depth (cut): 3 mm,
Table feed: 300 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed and groove depth are 25 m / min. And 1.2 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 6 and 7, respectively.

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

上記の実施例2で製造した丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−4をそれぞれ製造した。   Using the round bar sintered body manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming portion is 8 mm x 48 mm and the helix angle is 30 degrees by grinding. WC base cemented carbide tool bases (drills) D-1 to D-4 each having a two-blade shape were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表8に示される目標組成および目標層厚の下地層および同じく表8に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜4をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. And under the same conditions as in Example 1 above, the underlayer of the target composition and target layer thickness shown in Table 8 and the thin layer of the target composition and target thickness shown in Table 8 along the layer thickness direction. The coated drills 1 to 4 of the present invention as the coated tools of the present invention were produced by vapor-depositing and forming upper layers composed of alternating layers of A and thin layers B, respectively.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表9に示される目標組成および目標層厚の(Al,Cr,Si)N層と(Al,Ti)N層との交互積層構造からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜4をそれぞれ製造した。   For the purpose of comparison, the surface of the tool base (drill) D-1 to D-4 is subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1 above, the target composition and target layer thickness (Al, Cr) shown in Table 9 are formed on the surfaces of the tool bases (drills) D-1 to D-4. , Si) N layers and (Al, Ti) N layers were vapor deposited to form a hard coating layer, thereby producing comparative coated drills 1 to 4 as comparative coated tools.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜4について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 45 m/min.、
送り: 0.30 mm/rev、
穴深さ: 20 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、25m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8、9にそれぞれ示した。
Next, for the present invention coated drills 1-8 and comparative coated drills 1-4,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 45 m / min. ,
Feed: 0.30 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling test of Ni-based alloy under the following conditions (normal cutting speed and feed are 25 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 8 and 9, respectively.

Figure 2010137336
Figure 2010137336

Figure 2010137336
Figure 2010137336

この結果得られた本発明被覆工具としての本発明被覆チップ1〜5、本発明被覆エンドミル1〜4および本発明被覆ドリル1〜4の硬質被覆層を構成する下地層と、薄層Aおよび薄層Bの交互積層構造からなる上部層、さらに、比較被覆チップ1〜5、比較被覆エンドミル1〜4および比較被覆ドリル1〜4の交互積層からなる硬質被覆層を構成する(Al,Cr,Si)N層及び(Al,Ti)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of the present invention coated tool as the present invention coated tool 1-5, the present invention coated end mills 1-4 and the present invention coated drills 1-4 constituting the hard coating layer, the thin layer A and the thin layer An upper layer composed of an alternately laminated structure of layers B, and further, a hard coating layer composed of alternate laminations of comparative coated tips 1 to 5, comparative coated end mills 1 to 4 and comparative coated drills 1 to 4 (Al, Cr, Si) ) The composition of the N layer and the (Al, Ti) N layer was measured by energy dispersive X-ray analysis using a transmission electron microscope, and each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表4、6〜9に示される結果から、本発明被覆工具は、その硬質被覆層が下地層と薄層Aと薄層Bの交互積層構造からなる上部層で構成され、硬質被覆層がすぐれた高温硬さ、高温靭性、高温強度、耐熱塑性変形性とともに、すぐれた高温耐酸化性と層間密着強度を兼ね備えたものであるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速条件下での切削加工に用いた場合であっても、チッピング・欠損の発生なく、長期に亘ってすぐれた耐摩耗性を発揮するのに対して、硬質被覆層が(Al,Cr,Si)N層と(Al,Ti)N層との交互積層で構成された比較被覆工具においては、Ni基合金、Co基合金等の耐熱合金の高速切削加工では、特に耐チッピング性、耐欠損性の不足により、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 4 and 6 to 9, the coated tool of the present invention has an excellent hard coating layer in which the hard coating layer is composed of an upper layer composed of an alternating layer structure of an underlayer, thin layer A, and thin layer B. High-temperature hardness, high-temperature toughness, high-temperature strength, heat-resistant plastic deformability, as well as excellent high-temperature oxidation resistance and interlayer adhesion strength. Even when it is used for cutting under high-speed conditions, the hard coating layer (Al, Cr, In comparative coated tools composed of alternating layers of Si) N layers and (Al, Ti) N layers, especially in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, chipping resistance and fracture resistance Due to lack of performance, the service life is reached in a relatively short time. Bet is clear.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Because it exhibits excellent wear resistance over a long period of time and exhibits excellent cutting performance, it is sufficiently satisfied with the FA of cutting equipment, labor saving and energy saving of cutting work, and further cost reduction It can respond.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises a comparative coating tool is shown, (a) is a schematic plan view, (b) is a schematic front view.

Claims (1)

工具基体表面に、下地層と上部層とからなる硬質被覆層が蒸着形成された表面被覆切削工具であって、
(a)上記下地層は、0.05μmを超え2μm以下の層厚を有し、かつ、
組成式:[AlCrSi]N
で表した場合、Al,Cr,Siそれぞれの含有割合を示すX,Y,Z(いずれも原子比)は、0.45≦X≦0.70、0.25≦Y≦0.50、0.02≦Z≦0.15、X+Y+Z=1を満足するAlとCrとSiの複合窒化物層であり、
(b)上記上部層は、それぞれ、0.005〜0.05μmの一層平均層厚を有する薄層Aと薄層Bの交互積層構造からなり、しかも、薄層Aと薄層Bとの合計層厚は、1〜5μmであり、さらに、
(c)上記薄層Aは、
組成式:[AlCrSi]N
で表した場合、Al,Cr,Siそれぞれの含有割合を示すX,Y,Z(いずれも原子比)は、0.45≦X≦0.70、0.25≦Y≦0.50、0.02≦Z≦0.15、X+Y+Z=1を満足するAlとCrとSiの複合窒化物層であり、
(d)上記薄層Bは、
組成式:[AlTiSi]N
で表した場合、Al,Ti,Siそれぞれの含有割合を示すU,V,W(いずれも原子比)は、0.40≦U≦0.65、0.30≦V≦0.55、0.02≦W≦0.15、U+V+W=1を満足するAlとTiとSiの複合窒化物層である、
ことを特徴とする表面被覆切削工具。
A surface-coated cutting tool in which a hard coating layer composed of an underlayer and an upper layer is vapor-deposited on the surface of a tool substrate,
(A) The underlayer has a layer thickness of more than 0.05 μm and 2 μm or less, and
Composition formula: [Al X Cr Y Si Z ] N
X, Y, Z (all atomic ratios) indicating the content ratios of Al, Cr, Si are 0.45 ≦ X ≦ 0.70, 0.25 ≦ Y ≦ 0.50, 0 .02 ≦ Z ≦ 0.15, a composite nitride layer of Al, Cr and Si satisfying X + Y + Z = 1,
(B) Each of the upper layers has an alternately laminated structure of a thin layer A and a thin layer B each having an average layer thickness of 0.005 to 0.05 μm, and the total of the thin layer A and the thin layer B. The layer thickness is 1-5 μm,
(C) The thin layer A is
Composition formula: [Al X Cr Y Si Z ] N
X, Y, Z (all atomic ratios) indicating the content ratios of Al, Cr, Si are 0.45 ≦ X ≦ 0.70, 0.25 ≦ Y ≦ 0.50, 0 .02 ≦ Z ≦ 0.15, a composite nitride layer of Al, Cr and Si satisfying X + Y + Z = 1,
(D) The thin layer B is
Composition formula: [Al U Ti V Si W ] N
, U, V, and W (all atomic ratios) indicating the content ratios of Al, Ti, and Si are 0.40 ≦ U ≦ 0.65, 0.30 ≦ V ≦ 0.55, 0 .02 ≦ W ≦ 0.15 and a composite nitride layer of Al, Ti and Si satisfying U + V + W = 1.
A surface-coated cutting tool characterized by that.
JP2008317032A 2008-12-12 2008-12-12 Surface-coated cutting tool Withdrawn JP2010137336A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008317032A JP2010137336A (en) 2008-12-12 2008-12-12 Surface-coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008317032A JP2010137336A (en) 2008-12-12 2008-12-12 Surface-coated cutting tool

Publications (1)

Publication Number Publication Date
JP2010137336A true JP2010137336A (en) 2010-06-24

Family

ID=42347912

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008317032A Withdrawn JP2010137336A (en) 2008-12-12 2008-12-12 Surface-coated cutting tool

Country Status (1)

Country Link
JP (1) JP2010137336A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152852A (en) * 2011-01-26 2012-08-16 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and method for manufacturing the same
JP2016078131A (en) * 2014-10-10 2016-05-16 日立金属株式会社 Coated cutting tool
JP5973001B2 (en) * 2013-02-07 2016-08-17 三菱重工工作機械株式会社 Surface coating material and cutting tool and machine tool using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012152852A (en) * 2011-01-26 2012-08-16 Sumitomo Electric Hardmetal Corp Surface coated cutting tool and method for manufacturing the same
JP5973001B2 (en) * 2013-02-07 2016-08-17 三菱重工工作機械株式会社 Surface coating material and cutting tool and machine tool using the same
US9528186B2 (en) 2013-02-07 2016-12-27 Mitsubishi Heavy Industries Machine Tool Co., Ltd. Surface-coating material, cutting tool in which said material is used, and working machine in which said material is used
JPWO2014123053A1 (en) * 2013-02-07 2017-02-02 三菱重工工作機械株式会社 Surface coating material and cutting tool and machine tool using the same
JP2016078131A (en) * 2014-10-10 2016-05-16 日立金属株式会社 Coated cutting tool

Similar Documents

Publication Publication Date Title
JP5459507B2 (en) Surface coated cutting tool
JP5459506B2 (en) Surface coated cutting tool
JP2010207916A (en) Surface coated cutting tool
JP2011167793A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2011235393A (en) Surface coated cutting tool
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP2017154200A (en) Surface-coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP2010207917A (en) Surface coated cutting tool
JP2010137336A (en) Surface-coated cutting tool
JP2010137335A (en) Surface-coated cutting tool
JP2012061555A (en) Surface coated cutting tool
JP5488823B2 (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP2011189471A (en) Surface coated cutting tool
JP2011167792A (en) Surface coated cutting tool
JP2014188637A (en) Surface-coated cutting tool
JP2012192517A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120306