JP2011235393A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2011235393A
JP2011235393A JP2010108906A JP2010108906A JP2011235393A JP 2011235393 A JP2011235393 A JP 2011235393A JP 2010108906 A JP2010108906 A JP 2010108906A JP 2010108906 A JP2010108906 A JP 2010108906A JP 2011235393 A JP2011235393 A JP 2011235393A
Authority
JP
Japan
Prior art keywords
layer
thickness
thin
thin layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2010108906A
Other languages
Japanese (ja)
Inventor
Takahito Tabuchi
貴仁 田渕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2010108906A priority Critical patent/JP2011235393A/en
Publication of JP2011235393A publication Critical patent/JP2011235393A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer which exhibits excellent wear resistance under high-speed cutting conditions for a heat-resistant alloy such as an Ni-based alloy or a Co-based alloy.SOLUTION: In the surface coated cutting tool, the hard coating layer formed of alternately laminated structure of a multilayer region having the layer thickness of 100-500 nm wherein a thin layer (A) of layer thickness of 1-50 nm and a thin layer (B) of layer thickness of 1-50 nm are alternately laminated, and a single layer region having the layer thickness of 100-500 nm is formed by vapor deposition on a surface of its tool base. The thin layer A is [AlCr]N (x is 0.30-0.80 in atomic ratio) layer, and the thin layer B is [TiSi]N (y is 0.01-0.30 in atomic ratio) layer. The single layer is composed of the same kind layer as the thin layer (A), and an intermediate layer formed of a single layer having the layer thickness of 0.3-1 μm with the same composition and component as the thin layer B is provided on the vicinity of the surface of the hard coating layer.

Description

本発明は、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた硬度と靭性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   The present invention provides a surface-coated cutting tool that exhibits excellent hardness and toughness even when a heat-resistant alloy such as a Ni-base alloy or a Co-base alloy is cut under high-speed cutting conditions with high heat generation. (Hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that are detachably attached to the tip of the cutting tool for turning and planing of various steel and cast iron materials, drilling of the work material, etc. Drills, miniature drills, and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting processing in the same manner as in the past is known.

また、具体的な被覆工具としては、例えば、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の表面に、AlとCrとの複合窒化物層(以下、(Al,Cr)N層という)とTiとSiとの複合窒化物層(以下、(Ti,Si)N層という)との多層構造をそなえた硬質被覆層を蒸着形成した被覆工具(以下、従来被覆工具という)が知られており、この従来被覆工具が、合金鋼の高速切削加工において高硬度・高酸化開始温度を示すことも知られている。   Further, as a specific coated tool, for example, a composite nitride layer of Al and Cr (hereinafter referred to as (Al, WC) is formed on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide. A coated tool (hereinafter referred to as a conventional coated tool) formed by vapor-depositing a hard coating layer having a multilayer structure of a Cr (N layer) and a composite nitride layer of Ti and Si (hereinafter referred to as a (Ti, Si) N layer). It is also known that this conventional coated tool exhibits high hardness and high oxidation start temperature in high-speed cutting of alloy steel.

そして、前記従来被覆工具は、例えば、蒸着形成する硬質被覆層の種類に応じた成分組成を有するAl−Cr系合金およびTi−Si系合金からなるカソード電極(蒸発源)を配置したアークイオンプレーティング装置において、装置内に工具基体を装入し、装置内を窒素ガス反応雰囲気とし、また、加熱した状態で、カソード電極(蒸発源)とアノード電極との間に、アーク放電を発生させ、前記工具基体には、バイアス電圧を印加した条件で、工具基体の表面に、(Al,Cr)N層および(Ti,Si)N層を交互に蒸着形成することにより製造されることも知られている(例えば、特許文献1参照)。   In the conventional coated tool, for example, an arc ion plate in which a cathode electrode (evaporation source) made of an Al—Cr alloy and a Ti—Si alloy having a composition according to the type of hard coating layer to be deposited is disposed. In the coating apparatus, a tool base is inserted into the apparatus, the inside of the apparatus is set to a nitrogen gas reaction atmosphere, and in a heated state, an arc discharge is generated between the cathode electrode (evaporation source) and the anode electrode, It is also known that the tool base is manufactured by alternately depositing (Al, Cr) N layers and (Ti, Si) N layers on the surface of the tool base under the condition that a bias voltage is applied. (For example, refer to Patent Document 1).

特表2008−534297号公報Special table 2008-534297

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化の傾向にあり、さらに、各種の被削材に対する切削工具の汎用化も求められているが、前記従来被覆工具においては、これを、合金鋼の高速切削に用いた場合には特段の問題は生じないが、例えば、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合には、被削材である耐熱合金の熱伝導率が低く、切削熱によって切削工具の刃先の表面温度が高くなるため、耐スキトリ摩耗性および靭性が十分でなくチッピングや欠損を生じやすく、その結果、硬質被覆層の耐摩耗性が十分に発揮されず、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting work. There is also a demand for general-purpose cutting tools for various work materials. However, in the above-mentioned conventional coated tools, no particular problem arises when this is used for high-speed cutting of alloy steel. For example, Ni When used for high-speed cutting with high heat generation of heat-resistant alloys such as base alloys and Co-base alloys, the heat conductivity of heat-resistant alloys that are work materials is low, and the surface temperature of the cutting edge of the cutting tool is reduced by the cutting heat. Therefore, the wear resistance and toughness are not sufficient and chipping and chipping are likely to occur. As a result, the wear resistance of the hard coating layer is not fully demonstrated and the service life is reached in a relatively short time. It is.

そこで、本発明者らは、前述のような観点から、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いたような場合にも、スキトリ摩耗の発生、溶着の発生、欠損、チッピングが生じることなく、硬質被覆層がすぐれた耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った。   In view of the above, the present inventors, from the viewpoint as described above, generate skit wear and cause welding even when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. In order to develop a coated tool that exhibits excellent wear resistance with a hard coating layer without generating, chipping, or chipping, we conducted intensive research.

前記従来被覆工具の硬質被覆層を構成する(Al,Cr)N層におけるAl成分には高温硬さを向上させ、Cr成分には高温靭性、高温強度を向上させ、(Ti,Si)N層におけるTi成分には高温靭性、高温強度を向上させ、Si成分には耐酸化性を向上させ、酸化による層の硬度低下を抑制する作用がある。また、前記(Al,Cr)N層と(Ti,Si)N層との交互積層を構成することにより硬さも向上するため、(Al,Cr)N層と(Ti,Si)N層との交互積層構造からなる硬質被覆層を設けることにより、通常の切削条件では、耐酸化性、耐摩耗性の改善が見られる。
しかし、Ni基合金、Co基合金等の耐熱合金の高速切削においては、切刃表面温度が高温になるため、交互積層構造からなる硬質被覆層内にはその層厚が増大するほど内部応力(歪み)が蓄積されるようになるが、この内部応力(歪み)が切削加工時の高熱によって開放される際に、スキトリ摩耗が進展し易く、寿命が短いという問題点があった。
The Al component in the (Al, Cr) N layer constituting the hard coating layer of the conventional coated tool improves the high-temperature hardness, the Cr component improves the high-temperature toughness and high-temperature strength, and the (Ti, Si) N layer In the Ti component, the high temperature toughness and high temperature strength are improved, and the Si component has the effect of improving the oxidation resistance and suppressing the decrease in the hardness of the layer due to oxidation. In addition, since the hardness is improved by forming the alternate stack of the (Al, Cr) N layer and the (Ti, Si) N layer, the (Al, Cr) N layer and the (Ti, Si) N layer By providing a hard coating layer composed of an alternately laminated structure, improvement in oxidation resistance and wear resistance can be seen under normal cutting conditions.
However, in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the cutting blade surface temperature becomes high, so that the internal stress ( However, when this internal stress (strain) is released by high heat during cutting, skid wear tends to progress and there is a problem that the life is short.

そこで、本発明者らは、(Al,Cr)N層と(Ti,Si)N層との積層構造についてさらに詳細に検討したところ、従来のように、硬質被覆層を(Al,Cr)N層と(Ti,Si)N層との規則的な交互積層構造として構成するのではなく、硬質被覆層を、(Al,Cr)N層からなる薄層Aと、(Ti,Si)N層からなる薄層Bとが交互に積層されている複層領域と、前記薄層Aからなる単一層からなる単層領域との交互積層構造として硬質被覆層を構成するとともに、前記硬質被覆層の表面付近に前記複層領域および単層領域よりも厚い(Ti,Si)N層からなる単一層したところ、以下のような知見を得たのである。   Then, the present inventors examined the laminated structure of the (Al, Cr) N layer and the (Ti, Si) N layer in more detail, and as before, the hard coating layer was changed to (Al, Cr) N. Rather than forming a regular alternating layered structure of layers and (Ti, Si) N layers, the hard coating layer is composed of a thin layer A composed of (Al, Cr) N layers and (Ti, Si) N layers. A hard coating layer is formed as an alternate laminated structure of a multilayer region in which thin layers B made of layers are alternately laminated and a single layer region made of a single layer made of the thin layer A. When a single layer composed of a (Ti, Si) N layer thicker than the multilayer region and the single layer region was formed near the surface, the following knowledge was obtained.

すなわち、(Al,Cr)N層からなる薄層Aと、(Ti,Si)N層からなる薄層Bとが交互に積層されている硬質被覆層の複層領域では、それぞれの層の粒の粗大化が防止され、膜強度が向上するとともに、すぐれた耐酸化性、高硬度を備え、さらに、薄層Aと薄層Bとの交互積層構造が、クラックの伝播・進展を防止することで、耐チッピング性、耐欠損性、耐摩耗性が向上する。
これに加えて、硬質被覆層中に(Al,Cr)N層からなる単一層からなる単層領域が形成されたことによって、層厚の増大にしたがって複層領域に蓄積された内部応力(歪み)は、単層領域の存在によって緩和されるようになるため、硬質被覆層全体としては、大きな内部応力(歪み)が発生することはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高速切削において、層間剥離の発生が抑制される。
さらに、硬質被覆層の表面付近に前記単層領域および複層領域よりも厚い(Ti,Si)N層からなる単一層を形成することにより、硬質被覆層に高硬度および耐熱性が付与され、耐スキトリ摩耗性を向上させることができる。
That is, in the multilayer region of the hard coating layer in which the thin layer A composed of (Al, Cr) N layers and the thin layer B composed of (Ti, Si) N layers are alternately laminated, the grains of the respective layers Is prevented, and the film strength is improved, and it has excellent oxidation resistance and high hardness. Further, the alternate laminated structure of the thin layer A and the thin layer B prevents the propagation and progress of cracks. Thus, chipping resistance, chipping resistance and wear resistance are improved.
In addition to this, the internal stress (strain) accumulated in the multilayer region as the layer thickness increases due to the formation of a single layer region consisting of a single layer of (Al, Cr) N layer in the hard coating layer. ) Is relaxed by the presence of the single layer region, so that the hard coating layer as a whole does not generate large internal stress (strain), and as a result, such as Ni-based alloy, Co-based alloy, etc. Generation of delamination is suppressed in high-speed cutting of a heat-resistant alloy.
Furthermore, high hardness and heat resistance are imparted to the hard coating layer by forming a single layer composed of a (Ti, Si) N layer thicker than the single layer region and the multilayer region near the surface of the hard coating layer, Scratch wear resistance can be improved.

本発明は、前記知見に基づいてなされたものであって、
「 工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された100〜500nmの層厚の複層領域と100〜500nmの層厚の単一層Aからなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成される層厚0.3〜4.0μmの下部層と、
0.3〜1μmの層厚の単一層Bからなる中間層と、
1〜50nmの層厚の薄層Cと1〜50nmの層厚の薄層Dとが交互に積層された100〜500nmの層厚の複層領域と100〜500nmの層厚の単一層Cからなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成される層厚0.2〜1.0μの上部層とからなり、かつ、
(a)前記薄層A、薄層C、単一層A、単一層Cは、
組成式:[Al1−xCr]N
で表した場合、xは0.30〜0.80(但し、原子比)を満足するAlとCrとの複合窒化物層からなり、
(b)前記薄層B、薄層D、単一層Bは、
組成式:[Ti1−ySi]N
で表した場合、yは0.01〜0.30(但し、原子比)を満足するTiとSiとの複合窒化物層からなることを特徴とする表面被覆切削工具。」
に特徴を有するものである。
なお、本発明において、スキトリ摩耗とは、マージン部が、加工穴壁面と摩擦することによって生じる、特にドリルにおいて生じる摩耗のことを意味している。
The present invention has been made based on the above findings,
"In a surface-coated cutting tool in which a hard coating layer is deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region having a thickness of 100 to 500 nm and a layer having a thickness of 100 to 500 nm, in which thin layers A having a thickness of 1 to 50 nm and thin layers B having a thickness of 1 to 50 nm are alternately stacked. A lower layer having a layer thickness of 0.3 to 4.0 μm, which includes a single layer region composed of a single layer A having a thickness and is configured as an alternately laminated structure of the multilayer region and the single layer region;
An intermediate layer consisting of a single layer B having a layer thickness of 0.3-1 μm;
From a single layer C having a layer thickness of 100 to 500 nm and a single layer C having a layer thickness of 100 to 500 nm in which thin layers C having a layer thickness of 1 to 50 nm and thin layers D having a layer thickness of 1 to 50 nm are alternately stacked. And an upper layer having a layer thickness of 0.2 to 1.0 μm configured as an alternate stacked structure of the multilayer region and the single layer region, and
(A) The thin layer A, the thin layer C, the single layer A, and the single layer C are:
Composition formula: [Al 1-x Cr x ] N
X is composed of a composite nitride layer of Al and Cr that satisfies 0.30 to 0.80 (however, the atomic ratio),
(B) The thin layer B, the thin layer D, and the single layer B are:
Composition formula: [Ti 1-y Si y ] N
A surface-coated cutting tool characterized in that y is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio). "
It has the characteristics.
In the present invention, skid wear means wear caused by friction of the margin portion with the wall surface of the machined hole, particularly in a drill.

本発明の被覆工具の硬質被覆層について、以下に説明する。   The hard coating layer of the coated tool of the present invention will be described below.

下部層および上部層における複層領域の薄層A、薄層C((Al,Cr)N層):
後述する薄層Bまたは薄層D((Ti,Si)N層)と交互に積層されて本発明の硬質被覆層の複層領域を形成する(Al,Cr)N層からなる薄層Aまたは薄層Cは、強度、層間密着性にすぐれることから、薄層Bまたは薄層Dと交互に積層されることにより、薄層Bまたは薄層Dに相対的に不足する特性を補完すると同時に、複合領域の強度を高め、層間密着性を高めるための層である。
(Al,Cr)N層からなる薄層Aおよび薄層Cを、
組成式:[Al1−xCr]N
で表した場合、xは0.30〜0.80(但し、原子比)を満足するAlとCrの複合窒化物層であり、Crの含有割合を示すXの値(但し、原子比)が、0.30未満であると、薄層Aまたは薄層Cの高温硬さが不十分となり、一方、xの値が0.80を超えると、薄層Aまたは薄層Cの高温靭性、高温強度が低下するようになるので、xの値は、0.30〜0.80(但し、原子比)と定めた。
Thin layer A, thin layer C ((Al, Cr) N layer) in the lower layer and upper layer:
A thin layer A or (Al, Cr) N layer which is alternately laminated with a thin layer B or a thin layer D ((Ti, Si) N layer) described later to form a multilayer region of the hard coating layer of the present invention. Since the thin layer C is excellent in strength and interlayer adhesion, it is alternately laminated with the thin layer B or the thin layer D, thereby complementing the relatively insufficient characteristics of the thin layer B or the thin layer D at the same time. This is a layer for increasing the strength of the composite region and improving the interlayer adhesion.
A thin layer A and a thin layer C composed of (Al, Cr) N layers,
Composition formula: [Al 1-x Cr x ] N
X is a composite nitride layer of Al and Cr that satisfies 0.30 to 0.80 (provided that the atomic ratio), and the value of X (provided that the atomic ratio) indicates the Cr content ratio. When the value is less than 0.30, the high-temperature hardness of the thin layer A or C is insufficient. On the other hand, when the value of x exceeds 0.80, the high-temperature toughness of the thin layer A or C is high. Since the strength decreases, the value of x is set to 0.30 to 0.80 (however, the atomic ratio).

下部層および上部層における複層領域の薄層B、薄層D((Ti,Si)N層):
前述した薄層Bまたは薄層D((Ti,Si)N層)と交互に積層されて本発明の硬質被覆層の複層領域を形成する(Ti,Si)N層からなる薄層Bまたは薄層Dは、Si成分によって、すぐれた耐酸化性を有するため、Ni基合金、Co基合金等の高速切削における高温下においても、すぐれた高硬度を維持する。
(Ti,Si)N層からなる薄層Bおよび薄層Dを、
組成式:[Ti1−ySi]N
で表した場合、yは0.01〜0.30(但し、原子比)を満足するTiとSiとの複合窒化物層からなるが、Siの含有割合を示すyの値(但し、原子比)が、0.01未満であると、前記薄層Bおよび薄層Dの有する高温硬さが不十分となり、一方、yの値が0.30を超えると、前記薄層Bおよび薄層Dの高温靭性、高温強度が低下するようになることから、yの値は、0.01〜0.30(但し、原子比)と定めた。
Thin layer B, thin layer D ((Ti, Si) N layer) in the lower layer and upper layer:
The thin layer B or (Ti, Si) N layer which is laminated with the thin layer B or the thin layer D ((Ti, Si) N layer) described above to form the multilayer region of the hard coating layer of the present invention. Since the thin layer D has excellent oxidation resistance due to the Si component, the thin layer D maintains excellent high hardness even at high temperatures in high-speed cutting such as Ni-based alloys and Co-based alloys.
A thin layer B and a thin layer D made of a (Ti, Si) N layer,
Composition formula: [Ti 1-y Si y ] N
Y is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio), but the value of y indicating the Si content ratio (however, the atomic ratio) ) Is less than 0.01, the high-temperature hardness of the thin layer B and the thin layer D becomes insufficient. On the other hand, when the value of y exceeds 0.30, the thin layer B and the thin layer D Since the high-temperature toughness and high-temperature strength of the steel sheet are lowered, the value of y is determined to be 0.01 to 0.30 (however, the atomic ratio).

薄層A、薄層B、薄層C、薄層Dの層厚:
薄層Aと薄層Bもしくは薄層Cと薄層Dとを交互に積層して構成した複層領域では、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上するとともに、この積層構造によってクラックの伝播・進展が防止されることで耐欠損性、耐チッピング性が向上するが、前記薄層A、薄層B、薄層C、薄層Dのそれぞれの層厚が1nm未満では、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する前述したようなすぐれた特性を発揮することができず、一方、それぞれの層厚が50nmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層B、薄層C、薄層Dのそれぞれの層厚を、1〜50nmと定めた。
また、薄層Aと薄層Bもしくは薄層Cと薄層Dとを交互に積層した複層領域は、その領域厚みが100nm未満では、薄層Bもしくは薄層Dの備える高硬度を充分発揮して耐摩耗性の向上を図ることができず、一方、その領域厚みが500nmを超えると、チッピング、欠損を発生しやすくなるので、薄層Aと薄層Bもしくは薄層Cと薄層Dとを交互に積層した複層領域の領域厚みは、100〜500nmであることが望ましい。
Layer thickness of thin layer A, thin layer B, thin layer C, thin layer D:
In the multi-layered region formed by alternately laminating the thin layer A and the thin layer B or the thin layer C and the thin layer D, each layer is adjacent to each other to form a layer having a different composition. The coarsening of particle growth is prevented, the particle is refined, the film strength is improved, and the crack propagation and progress are prevented by this laminated structure, thereby improving the chip resistance and chipping resistance. However, if the thickness of each of the thin layer A, thin layer B, thin layer C, and thin layer D is less than 1 nm, it is difficult to clearly form each thin layer as having a predetermined composition. The above-mentioned excellent properties of the thin layer cannot be exhibited. On the other hand, if the thickness of each layer exceeds 50 nm, the film strength is reduced due to the coarsening of the particles, so that the chipping resistance and chipping resistance are reduced. Since it decreases, thin layer A, thin layer B, thin layer The respective thicknesses of the thin layer D, was defined as 1 to 50 nm.
In addition, the multi-layer region in which the thin layer A and the thin layer B or the thin layer C and the thin layer D are alternately laminated exhibits the high hardness provided by the thin layer B or the thin layer D when the region thickness is less than 100 nm. On the other hand, if the thickness of the region exceeds 500 nm, chipping and chipping are liable to occur. Therefore, thin layer A and thin layer B or thin layer C and thin layer D It is desirable that the region thickness of the multi-layered region in which and are alternately stacked is 100 to 500 nm.

下部層および上部層の単層領域における単一層A、単一層C((Al,Cr)N層):
前記複層領域と交互に積層される単層領域における単一層Aおよび単一層Cの成分・組成は、複層領域における薄層Aおよび薄層Cと同様であり、この単一層が強度、密着性にすぐれることも前記薄層Aおよび薄層Bと同様である。
しかし、この単層領域は、前述したような作用効果に加えて、複層領域において増大蓄積された内部応力(歪み)を、単層領域の存在によって緩和できるという点で大きな技術的な意義があり、また、切削加工時に硬質被覆層に加わった衝撃力を、この単層領域で緩和する作用もある。
したがって、硬質被覆層全体としては、その内部に大きな内部応力(歪み)が形成されることはなく、その結果として、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削において、層間剥離の発生が抑制される。
ただ、単層領域の領域厚さが100nm未満の場合、内部応力の緩和作用、衝撃力の緩和作用が十分期待できず、一方、その厚さが500nmを超えると、硬質被覆層全体として耐酸化性、高温硬さが低下するようになることから、単層領域の領域厚さは、100〜500nmと定めた。
Single layer A, single layer C ((Al, Cr) N layer) in the single layer region of the lower and upper layers:
The composition and composition of the single layer A and the single layer C in the single layer region alternately laminated with the multilayer region are the same as the thin layer A and the thin layer C in the multilayer region, and this single layer has strength and adhesion. It is the same as the thin layer A and the thin layer B that it has excellent properties.
However, in addition to the above-described effects, this single layer region has a great technical significance in that the increased internal stress (strain) accumulated in the multiple layer region can be mitigated by the presence of the single layer region. There is also an effect of relaxing the impact force applied to the hard coating layer during the cutting process in this single layer region.
Therefore, as a whole hard coating layer, large internal stress (strain) is not formed in the inside, as a result, in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloy, Co-base alloy, Generation of delamination is suppressed.
However, when the thickness of the single-layer region is less than 100 nm, the internal stress relaxation action and impact force relaxation action cannot be sufficiently expected. On the other hand, when the thickness exceeds 500 nm, the hard coating layer as a whole is resistant to oxidation. Therefore, the region thickness of the single layer region is determined to be 100 to 500 nm.

中間層の単一層B((Ti,Si)N層):
本発明のもっとも特徴的な技術的事項である硬質被覆層の表面近傍に形成される単一層Bの成分・組成は、複層領域における前述した薄層Bおよび薄層Dと同様であり、この単一層が高硬度であり、耐熱性にすぐれることも薄層Bおよび薄層Dと同様である。
しかしながら、この中間層は、前述した単層領域および複層領域よりも厚く形成するとともに、硬質被覆層中の表面付近、すなわち、露出することなく、しかも、工具基体の影響が及びにくい表面から特定の深さに形成することにより、スキトリ摩耗の進展を抑制する作用を発揮する。
ただ、中間層の厚さが0.3μm未満の場合、前記作用が十分期待できず、一方、1.0μmを超えると、硬質被覆層全体として高温靭性、高温強度が低下するようになることから、中間層の厚さは、0.3〜1.0μmと定めた。
Intermediate single layer B ((Ti, Si) N layer):
The component / composition of the single layer B formed in the vicinity of the surface of the hard coating layer, which is the most characteristic technical matter of the present invention, is the same as the thin layer B and the thin layer D described above in the multilayer region. The single layer is high in hardness and excellent in heat resistance, similar to the thin layer B and the thin layer D.
However, this intermediate layer is formed thicker than the single layer region and the multiple layer region described above, and is specified from the surface in the hard coating layer, that is, the surface that is not exposed and is not easily affected by the tool base. By forming it at a depth of 3 mm, the effect of suppressing the progress of skid wear is exhibited.
However, when the thickness of the intermediate layer is less than 0.3 μm, the above-mentioned effect cannot be expected sufficiently. On the other hand, when the thickness exceeds 1.0 μm, the high temperature toughness and high temperature strength of the hard coating layer as a whole are lowered. The thickness of the intermediate layer was determined to be 0.3 to 1.0 μm.

下部層および上部層の層厚:
中間層は、前述のようにスキトリ摩耗の進展を抑制するという作用を発揮するが、硬質被覆層の表面に露出していると摩耗が進行し易いため好ましくなく、また、基体に近すぎると中間層と基体との熱膨張係数の違いなどから耐剥離性が低下するため好ましくない。
そこで、下部層の厚さは、0.3〜3.0μm、上部層の厚さは、0.1〜1.0μmと定めた。
Lower and upper layer thickness:
As described above, the intermediate layer exerts the effect of suppressing the progress of skid wear, but it is not preferable if it is exposed on the surface of the hard coating layer because the wear tends to proceed. It is not preferable because the peel resistance is lowered due to the difference in thermal expansion coefficient between the layer and the substrate.
Therefore, the thickness of the lower layer was determined to be 0.3 to 3.0 μm, and the thickness of the upper layer was determined to be 0.1 to 1.0 μm.

本発明の表面被覆切削工具は、硬質被覆層が、薄層Aと薄層Bとが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されているとともに、表面近傍に(TiSi)Nからなる前記複層領域および単層領域よりも厚い単一層を形成したことにより、複層領域ではそれぞれの薄層の膜強度が向上し、すぐれた靭性、耐溶着性を備え、また、クラックの伝播・進展が抑制されることで、耐チッピング性、耐欠損性、耐摩耗性が改善されるとともに、これに加えて、単層領域の存在によって、特に複層領域で形成・蓄積しやすい内部応力(歪み)が緩和されることによって、これに起因して発生する層間剥離が防止され、さらに、切削加工時に加わる機械的衝撃をも緩和することができ、しかも、表面近傍に設けた(TiSi)Nからなる単一層がスキトリ摩耗を抑制する作用を発揮するので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、長期に亘ってすぐれた切削性能を発揮する。   In the surface-coated cutting tool of the present invention, the hard coating layer is configured as an alternately laminated structure of a multilayer region in which thin layers A and thin layers B are alternately laminated and a single layer region composed of a single layer. At the same time, by forming the multilayer region composed of (TiSi) N and a single layer thicker than the single layer region in the vicinity of the surface, the film strength of each thin layer is improved in the multilayer region, and excellent toughness, It has weldability and suppresses the propagation and propagation of cracks, thereby improving chipping resistance, chipping resistance, and wear resistance. The internal stress (strain) that tends to form and accumulate in the layer region is alleviated, so that delamination caused by this can be prevented, and the mechanical impact applied during cutting can also be alleviated. Moreover, it was provided near the surface. Since a single layer made of TiSi) N exerts the effect of suppressing skit wear, excellent cutting over a long period of time when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. Demonstrate performance.

硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming a hard coating layer is shown, (a) is a schematic plan view, and (b) is a schematic front view. 本発明の被覆工具の硬質被覆層の断面模式図である。It is a cross-sectional schematic diagram of the hard coating layer of the coated tool of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

[工具基体の成形]
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.02のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−5を形成した。
[Tool body forming]
As raw material powders, WC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the composition shown in Table 1. The mixture is wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After the sintering, honing of R: 0.02 was applied to the cutting edge portion to form tool bases A-1 to A-5 made of a WC-based cemented carbide having a chip shape of ISO standard / CNMG120408.

<本発明被覆チップの製造工程>
[工具基体の装置への装着と前処理]
(a)ついで、前記工具基体A−1〜A−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもった(Al,Cr)N層形成用Al−Cr合金、対向する他方側のカソード電極(蒸発源)として、それぞれ、表2に示される目標組成に対応した成分組成をもった(Ti,Si)N層形成用Ti−Si合金を前記回転テーブルを挟んで配置する。
なお、Al−Cr合金からなるカソード電極(蒸発源)は、薄層A、薄層C、単一層A、単一層Cの蒸着形成および工具基体のボンバード洗浄用に用い、Ti−Si合金からなるカソード電極(蒸発源)は、薄層B、薄層D、単一層Bの蒸着形成に用いる。
[工具基体表面のボンバード洗浄工程]
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、例えば、Al−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
[硬質皮膜層の下部層の形成]
(c)(単層領域の形成)ついで、装置内に反応ガスとして窒素ガスを導入し10Paの反応雰囲気を維持したまま、前記回転テーブル上で6〜48rpmの速度で自転しながら、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する複層領域が形成された工具基体に、−30Vの直流バイアス電圧を印加し、Al−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体の表面に、表2、3に示される目標組成および目標層厚の単層領域を蒸着形成する。
(d)(複層領域の形成)さらに、装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記回転テーブル上で、6〜48rpmの速度で自転しながら、同時に、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する工具基体に−70Vの直流バイアス電圧を印加し、Al−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、同時に、回転テーブルを挟んでAl−Cr合金カソード電極に相対向して配置したTi−Si合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、Al−Cr合金カソード電極近傍に位置する工具基体には薄層Aを、また、Ti−Si合金カソード電極近傍に位置する工具基体には薄層Bを蒸着し、ついで、回転テーブルが回転することによって、薄層Aが蒸着された工具基体に対しては薄層Bを蒸着し、薄層Bが蒸着された工具基体に対しては薄層Cを蒸着し、同様にして、薄層Aと薄層Bとを交互に繰り返し蒸着することにより、工具基体の表面に、表2、3に示される目標組成および目標層厚の薄層Aと薄層Bとを交互に積層した複層領域を形成する。
(e)そして、前記(c)、(d)の工程を、表3に示される目標とする硬質被覆層の下部層の層厚になるまで交互に繰り返し行う。
[硬質皮膜層の中間層の形成]
(f)ついで、装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記回転テーブル上で、6〜48rpmの速度で自転しながら、同時に、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する工具基体に−30Vの直流バイアス電圧を印加し、Ti−Si合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、工具基体の表面に、表2、3に示される目標組成および目標層厚の単一層B(中間層)を形成する。
[硬質皮膜層の上部層の形成]
(g)ついで、前記(c)〜(e)と同様の方法で、表2、3に示される目標組成および目標層厚の薄層Cと薄層Dとを交互に積層した複層領域と、表2、3に示される目標組成および目標層厚の単一層Cからなる単層領域とを、表3に示される目標とする硬質被覆層の上部層の層厚になるまで交互に繰り返して蒸着形成する。
以上の工程により、図2に示されるような、複層領域と単層領域との交互積層構造からなる下部層と上部層とを有するとともに、下部層と上部層との間に(TiSi)N層からなる中間層を有する硬質被覆層が蒸着形成されたISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具としての本発明被覆チップ1〜10をそれぞれ製造した。
<Manufacturing process of the present coated chip>
[Installation and pretreatment of tool base on the device]
(A) Next, each of the tool bases A-1 to A-5 is ultrasonically cleaned in acetone and dried, and the center axis on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer periphery at a predetermined distance in the radial direction from each other, and having a component composition corresponding to the target composition shown in Table 2 as the cathode electrode (evaporation source) on one side (Al, Cr) (Ti, Si) N-layer forming Ti- having an ingredient composition corresponding to the target composition shown in Table 2 as the N-layer forming Al-Cr alloy and the cathode electrode (evaporation source) on the other side facing each other A Si alloy is arranged with the rotary table in between.
The cathode electrode (evaporation source) made of an Al—Cr alloy is used for vapor deposition of the thin layer A, thin layer C, single layer A, single layer C and bombard cleaning of the tool base, and is made of a Ti—Si alloy. The cathode electrode (evaporation source) is used for vapor deposition of the thin layer B, the thin layer D, and the single layer B.
[Bombard cleaning process of tool base surface]
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool substrate that rotates while rotating on the rotary table is −1000 V A DC bias voltage is applied, for example, a current of 100 A is passed between an Al—Cr alloy cathode electrode and an anode electrode to generate an arc discharge, and the tool base surface is bombarded.
[Formation of lower layer of hard coating layer]
(C) (Formation of single layer region) Next, while introducing nitrogen gas as a reaction gas into the apparatus and maintaining the reaction atmosphere of 10 Pa, while rotating on the rotary table at a speed of 6 to 48 rpm, A DC bias voltage of −30 V is applied to the tool base on which a multi-layer region rotating (revolves) at a speed of 1 to 8 rpm around the rotation center axis is applied between the Al—Cr alloy cathode electrode and the anode electrode. Then, a current of 100 A is passed through to generate an arc discharge, whereby a single layer region having a target composition and a target layer thickness shown in Tables 2 and 3 is deposited on the surface of the tool base.
(D) (Formation of multi-layer region) Further, while introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 10 Pa, while rotating on the rotary table at a speed of 6 to 48 rpm, A DC bias voltage of −70 V is applied to the tool base that rotates (revolves) around the rotation center axis of the rotary table at a speed of 1 to 8 rpm, and a current of 100 A is applied between the Al—Cr alloy cathode electrode and the anode electrode. To generate arc discharge, and at the same time, a current of 100 A is passed between the Ti—Si alloy cathode electrode and the anode electrode, which are arranged opposite to the Al—Cr alloy cathode electrode with the rotary table interposed therebetween, thereby causing the arc discharge. The thin layer A is applied to the tool base located near the Al—Cr alloy cathode electrode, and the thin layer A is applied to the tool base located near the Ti—Si alloy cathode electrode. B is vapor-deposited, and then the rotating table is rotated to deposit a thin layer B on the tool base on which the thin layer A is vapor-deposited, and a thin layer on the tool base on which the thin layer B is vapor-deposited. C is vapor-deposited, and in the same manner, thin layer A and thin layer B are alternately and repeatedly vapor-deposited on the surface of the tool base to form thin layer A having the target composition and target layer thickness shown in Tables 2 and 3. A multilayer region in which the thin layers B are alternately laminated is formed.
(E) The steps (c) and (d) are alternately repeated until the thickness of the lower layer of the target hard coating layer shown in Table 3 is reached.
[Formation of intermediate layer of hard coating layer]
(F) Next, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 10 Pa, and while rotating on the rotary table at a speed of 6 to 48 rpm, A DC bias voltage of −30 V is applied to a tool base that rotates (revolves) at a speed of 1 to 8 rpm, and a current of 100 A flows between the Ti—Si alloy cathode electrode and the anode electrode to generate arc discharge. A single layer B (intermediate layer) having a target composition and a target layer thickness shown in Tables 2 and 3 is formed on the surface of the tool substrate.
[Formation of upper layer of hard coating layer]
(G) Next, in the same manner as the above (c) to (e), a multilayer region in which thin layers C and thin layers D having target compositions and target layer thicknesses shown in Tables 2 and 3 are alternately laminated, and The single layer region composed of the single layer C having the target composition and the target layer thickness shown in Tables 2 and 3 is alternately repeated until the layer thickness of the upper layer of the target hard coating layer shown in Table 3 is reached. Vapor deposition is formed.
Through the above steps, as shown in FIG. 2, the lower layer and the upper layer having an alternate stacked structure of a multilayer region and a single layer region are provided, and (TiSi) N is interposed between the lower layer and the upper layer. The present coated chips 1 to 10 as the present invention coated tool having a throwaway tip shape defined in ISO · CNMG120408 in which a hard coating layer having an intermediate layer consisting of layers was formed by vapor deposition were produced.

<比較被覆チップの製造工程>
[工具基体表面の前処理]
(h)比較の目的で、これら工具基体A−1〜A−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ、図1に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ、表4に示される目標組成に対応した成分組成をもったAl−Cr合金およびTi−Si合金を装着し、まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつ、カソード電極の前記Al−Cr合金とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体表面をAl−Cr合金でボンバード洗浄をする。
[硬質皮膜層の形成]
(i)(複層領域の形成)ついで、装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−70Vに下げて、前記Al−Cr合金のカソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体の表面に、表4に示される目標組成および目標層厚の(Al,Cr)N層を蒸着形成し、ついで、前記Ti−Si合金のカソード電極とアノード電極との間にアーク放電を発生させることによって、前記工具基体の表面に、表4に示される目標組成および目標層厚の(Ti,Si)N層を蒸着形成し、前記(Al,Cr)N層と(Ti,Si)N層の蒸着形成を交互に繰り返すことにより、表4に示される目標組成および目標層厚の交互積層からなる複層領域を形成する。
(j)(単層領域の形成)ついで、装置内に反応ガスとして窒素ガスを導入し10Paの反応雰囲気を維持したまま、前記回転テーブル上で6〜48rpmの速度で自転しながら、回転テーブルの回転中心軸の周りに1〜8rpmの速度で回転(公転)する複層領域が形成された工具基体に、−30Vの直流バイアス電圧を印加し、Al−Cr合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させることによって、前記工具基体の表面に、表4に示される目標組成および目標層厚の単層領域を蒸着形成する。
(k)ついで、前記(i)、(j)を、表4に示される目標層厚になるまで交互に繰り返し行うことにより、硬質被覆層を有するISO・CNMG120408に規定するスローアウエイチップ形状の比較被覆工具としての比較被覆チップ1〜10をそれぞれ製造した。
<Manufacturing process of comparative coated chip>
[Pretreatment of tool substrate surface]
(H) For the purpose of comparison, these tool bases A-1 to A-5 were ultrasonically cleaned in acetone and dried, respectively, and charged into the arc ion plating apparatus shown in FIG. As the cathode electrode (evaporation source), an Al—Cr alloy and a Ti—Si alloy each having a component composition corresponding to the target composition shown in Table 4 are mounted, and the inside of the apparatus is first evacuated to 0.5 Pa or less. The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of −1000 V, a −1000 V DC bias voltage was applied to the tool base, and the cathode electrode was placed between the Al—Cr alloy and the anode electrode. The surface of the tool base is bombarded with an Al—Cr alloy by generating an arc discharge by supplying a current of 100 A.
[Formation of hard coating layer]
(I) (Formation of Multilayer Area) Next, nitrogen gas is introduced as a reaction gas into the apparatus to make a reaction atmosphere of 10 Pa, and the bias voltage applied to the tool base is lowered to −70 V, and the Al— By generating an arc discharge between the cathode electrode and the anode electrode of the Cr alloy, an (Al, Cr) N layer having a target composition and a target layer thickness shown in Table 4 is deposited on the surface of the tool base. Then, by generating an arc discharge between the cathode electrode and the anode electrode of the Ti—Si alloy, the target composition and target layer thickness (Ti, Si) shown in Table 4 are formed on the surface of the tool base. By forming the N layer by vapor deposition and alternately repeating the vapor deposition of the (Al, Cr) N layer and the (Ti, Si) N layer, it is composed of the alternate lamination of the target composition and the target layer thickness shown in Table 4. Forming a layer region.
(J) (Formation of single layer region) Next, while introducing nitrogen gas as a reaction gas into the apparatus and maintaining a reaction atmosphere of 10 Pa, while rotating on the rotary table at a speed of 6 to 48 rpm, A DC bias voltage of −30 V is applied to the tool base on which a multi-layer region rotating (revolves) at a speed of 1 to 8 rpm around the rotation center axis is applied between the Al—Cr alloy cathode electrode and the anode electrode. Then, a current of 100 A is passed through to generate an arc discharge, thereby depositing a single layer region having a target composition and a target layer thickness shown in Table 4 on the surface of the tool base.
(K) Then, by repeating the above (i) and (j) alternately until the target layer thickness shown in Table 4 is reached, a comparison of the throwaway tip shapes defined in ISO · CNMG120408 having a hard coating layer Comparative coated tips 1 to 10 as coated tools were produced, respectively.

[評価試験]
つぎに、前記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および比較被覆チップ1〜10について、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 35 m/min.、
切り込み: 4 mm、
送り: 0.35 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続切削加工試験(通常の切削速度は、20m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 45 m/min.、
切り込み: 3 mm、
送り: 0.5 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、35m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
[Evaluation test]
Next, in the state where each of the various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the comparative coated chips 1 to 10 are as follows.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Four longitudinally-grooved round bars at equal intervals in the length direction of a Ni-based alloy having a composition of Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 35 m / min. ,
Cutting depth: 4 mm,
Feed: 0.35 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ni-based alloy under the conditions (cutting condition A) (normal cutting speed is 20 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% 4 fluted round bars,
Cutting speed: 45 m / min. ,
Cutting depth: 3 mm,
Feed: 0.5 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Co-based alloy under the conditions (cutting condition B) (normal cutting speed is 35 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

[工具基体の成形]
原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−4をそれぞれ製造した。
[Tool body forming]
As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 6 was added to the composition shown in FIG. 6 and added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round tool sintered body for forming a tool base is formed, and further, a diameter of the cutting edge portion × length is 10 mm × 22 mm and a twist angle is 45 degrees by grinding from the round bar sintered body. Made of WC-based cemented carbide with a 4-flute square shape Tool substrate (end mill) C-1~C-4 were prepared, respectively.

<本発明被覆エンドミルの製造工程>
ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、層厚方向に沿って表7に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域および前記薄層Aと同一成分・組成からなる単層領域との交互積層構造からなる硬質被覆層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。
<Production process of the coated end mill of the present invention>
Next, the surfaces of these tool bases (end mills) C-1 to C-4 were ultrasonically cleaned in acetone and dried, and then inserted into the arc ion plating apparatus shown in FIG. A multilayer region where the thin layer A and the thin layer B are alternately laminated and the thin layer A having the target composition and the target layer thickness shown in Table 7 along the layer thickness direction under the same conditions as in Example 1. The present coated end mills 1 to 8 as the present coated tool were manufactured by vapor deposition of hard coated layers having an alternately laminated structure with single layer regions composed of the same components and compositions.

<比較被覆エンドミルの製造>
また、比較の目的で、前記工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−4の表面に、表8に示される目標組成および目標層厚の(Al,Cr)N層と(Ti,Si)N層との交互積層からなる複層領域と(Al,Cr)N層からなる単層領域とを交互積層することにより形成された硬質被覆層を有する比較被覆工具としての比較被覆エンドミル1〜8をそれぞれ製造した。
<Manufacture of comparative coated end mill>
For comparison purposes, the surfaces of the tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then loaded into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, the (Al, Cr) N layer having the target composition and target layer thickness shown in Table 8 and (Ti) are formed on the surfaces of the tool bases (end mills) C-1 to C-4. , Si) N comparison layer end mill as a comparative coating tool having a hard coating layer formed by alternately laminating a multilayer region composed of alternating layers with N layers and a single layer region composed of (Al, Cr) N layers 1 to 8 were produced.

[評価試験]
つぎに、前記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 55 m/min.、
溝深さ(切り込み): 0.7 mm、
テーブル送り: 60 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、35m/min.および0.5mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7、8にそれぞれ示した。
[Evaluation test]
Next, for the present invention coated end mills 1-8 and comparative coated end mills 1-8,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 55 m / min. ,
Groove depth (cut): 0.7 mm,
Table feed: 60 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed and groove depth are 35 m / min. And 0.5 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

<本発明被覆ドリルの製造>
前記の実施例2で製造した丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−4をそれぞれ製造した。
<Manufacture of the present invention coated drill>
Using the round bar sintered body produced in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming part was 8 mm x 48 mm and the helix angle was 30 degrees by grinding. WC base cemented carbide tool bases (drills) D-1 to D-4 each having a two-blade shape were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成および目標層厚の、薄層Aと薄層Bとが交互に積層された複層領域、および、単層領域との交互積層構造からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone, and dried to the arc ion plating apparatus shown in FIG. A multilayer region in which thin layers A and thin layers B are alternately laminated with the target composition and target layer thickness shown in Table 9 along the layer thickness direction under the same conditions as in Example 1 And this invention covering drill 1-8 as this invention covering tool was manufactured by carrying out vapor deposition formation of the upper layer which consists of an alternate lamination structure with a single layer field, respectively.

<比較被覆ドリルの製造>
また、比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、前記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表10に示される目標組成および目標層厚の(Al,Cr)N層と(Ti,Si)N層との交互積層構造からなる複層領域と(Ti,Si)N層からなる単層領域とを交互に積層してなる硬質被覆層を蒸着形成することにより、比較被覆工具としての比較被覆ドリル1〜8をそれぞれ製造した。
<Manufacture of comparative coated drills>
For the purpose of comparison, the surfaces of the above-mentioned tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1, the target compositions and target layer thicknesses (Al, Cr) shown in Table 10 were formed on the surfaces of the tool bases (drills) D-1 to D-4. ) Evaporating and forming a hard coating layer formed by alternately laminating a multi-layer region composed of an alternately laminated structure of N layers and (Ti, Si) N layers and a single layer region composed of (Ti, Si) N layers. Thus, comparative coated drills 1 to 8 as comparative coated tools were produced, respectively.

[評価試験]
つぎに、本発明被覆ドリル1〜8および比較被覆ドリル1〜8について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 40 m/min.、
送り: 0.2 mm/rev、
穴深さ: 15 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、25m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
また、本発明被覆ドリル1〜8および比較被覆ドリル1〜8について、上記と同じ被削材を60穴加工した後、マージン部の溝側から二番取り面側への摩耗量を測定することにより、耐スキトリ摩耗性を評価した。その結果を表11に示した。
[Evaluation test]
Next, for the present invention coated drills 1-8 and comparative coated drills 1-8,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 40 m / min. ,
Feed: 0.2 mm / rev,
Hole depth: 15 mm,
Wet high-speed drilling test of Ni-based alloy under the following conditions (normal cutting speed and feed are 25 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 9 and 10, respectively.
Moreover, about this invention coated drills 1-8 and comparative coated drills 1-8, after processing 60 holes of the same work material as described above, the amount of wear from the groove side of the margin portion to the second surface side is measured. Thus, the skid wear resistance was evaluated. The results are shown in Table 11.

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

Figure 2011235393
Figure 2011235393

この結果得られた本発明被覆工具としての本発明被覆チップ1〜10、本発明被覆エンドミル1〜8および本発明被覆ドリル1〜8の薄層A(薄層C)と薄層B(薄層D)とが交互に積層された複層領域および単層領域ならびに中間層を構成する単一層B、さらに、比較被覆チップ1〜10、比較被覆エンドミル1〜8および比較被覆ドリル1〜8の薄層Aと薄層Bとが交互に積層された複層領域および単層領域を構成する(Al,Cr)N層と(Ti,Si)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   Thin layer A (thin layer C) and thin layer B (thin layer) of the present coated tip 1-10, the present coated end mill 1-8, and the present coated drill 1-8 as the present coated tool obtained as a result. D) and the single layer B constituting the multi-layer region and the single-layer region and the intermediate layer which are alternately laminated, and the comparison coating tips 1 to 10, the comparison coating end mills 1 to 8 and the comparison coating drills 1 to 8 The composition of the (Al, Cr) N layer and the (Ti, Si) N layer constituting the multilayer region and the single layer region in which the layer A and the thin layer B are alternately laminated is measured using a transmission electron microscope. When measured by energy dispersive X-ray analysis, each showed substantially the same composition as the target composition.

また、前記硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of the said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of 5 places) substantially the same as target layer thickness.

表5、7〜11に示される結果から、本発明被覆工具は、その硬質被覆層が、薄層A(薄層C)と薄層B(薄層D)とが交互に積層された複層領域と、単一層からなる単層領域との交互積層構造として構成されているとともに、表面近傍に前記複層領域および単層領域よりも厚い(TiSi)N層の単一層からなる中間層を設けたことにより、複層領域によって、靭性、耐チッピング性、耐欠損性、耐溶着性、耐摩耗性が改善されるとともに、単層領域の存在によって、層間剥離が防止され、機械的衝撃の緩和が図られ、さらに、中間層の存在によりスキトリ摩耗を低減させることができるので、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合、長期に亘ってすぐれた切削性能(特に、耐剥離性、耐摩耗性)を発揮する。
これに対して、硬質被覆層が(Al,Cr)N層と(Ti,Si)N層との交互積層からなる複合領域と(Al,Cr)N層からなる単層領域との交互積層構造のみで構成された、中間層が存在しない比較被覆工具においては、Ni基合金、Co基合金等の耐熱合金の高速切削加工では、特に耐スキトリ摩耗性が十分でないために、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 and 7 to 11, the coated tool of the present invention is a multilayer in which the hard coating layer is formed by alternately laminating the thin layer A (thin layer C) and the thin layer B (thin layer D). And an intermediate layer composed of a single layer of (TiSi) N layer thicker than the multilayer region and the single layer region in the vicinity of the surface. As a result, the multi-layered area improves toughness, chipping resistance, fracture resistance, welding resistance, and wear resistance, and the presence of the single-layered area prevents delamination and reduces mechanical shock. Furthermore, the presence of the intermediate layer can reduce skit wear, so that it is excellent for a long time when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys. Cutting performance (especially peel resistance, wear resistance) Exhibit.
On the other hand, the hard coating layer has an alternate lamination structure of a composite region composed of alternating layers of (Al, Cr) N layers and (Ti, Si) N layers and a single layer region composed of (Al, Cr) N layers. In the comparative coated tool composed only of the intermediate layer, the high-speed cutting process of the heat-resistant alloy such as Ni-base alloy and Co-base alloy is not sufficient in skit wear resistance. It is clear that the service life is reached.

前述のように、本発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Since it shows excellent cutting performance over a long period of time, it can satisfactorily cope with the FA of the cutting apparatus, labor saving and energy saving of cutting, and cost reduction.

Claims (1)

工具基体表面に硬質被覆層が蒸着形成された表面被覆切削工具において、
前記硬質被覆層が、1〜50nmの層厚の薄層Aと1〜50nmの層厚の薄層Bとが交互に積層された100〜500nmの層厚の複層領域と100〜500nmの層厚の単一層Aからなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成される層厚0.3〜4.0μmの下部層と、
0.3〜1μmの層厚の単一層Bからなる中間層と、
1〜50nmの層厚の薄層Cと1〜50nmの層厚の薄層Dとが交互に積層された100〜500nmの層厚の複層領域と100〜500nmの層厚の単一層Cからなる単層領域とを備えるとともに前記複層領域と単層領域との交互積層構造として構成される層厚0.2〜1.0μの上部層と
からなり、かつ、
(a)前記薄層A、薄層C、単一層A、単一層Cは、
組成式:[Al1−xCr]N
で表した場合、xは0.30〜0.80(但し、原子比)を満足するAlとCrとの複合窒化物層からなり、
(b)前記薄層B、薄層D、単一層Bは、
組成式:[Ti1−ySi]N
で表した場合、yは0.01〜0.30(但し、原子比)を満足するTiとSiとの複合窒化物層からなることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is vapor-deposited on the surface of a tool substrate,
The hard coating layer includes a multilayer region having a thickness of 100 to 500 nm and a layer having a thickness of 100 to 500 nm, in which thin layers A having a thickness of 1 to 50 nm and thin layers B having a thickness of 1 to 50 nm are alternately stacked. A lower layer having a layer thickness of 0.3 to 4.0 μm, which includes a single layer region composed of a single layer A having a thickness and is configured as an alternately laminated structure of the multilayer region and the single layer region;
An intermediate layer consisting of a single layer B having a layer thickness of 0.3-1 μm;
From a single layer C having a layer thickness of 100 to 500 nm and a single layer C having a layer thickness of 100 to 500 nm in which thin layers C having a layer thickness of 1 to 50 nm and thin layers D having a layer thickness of 1 to 50 nm are alternately stacked. And an upper layer having a layer thickness of 0.2 to 1.0 μm configured as an alternate stacked structure of the multilayer region and the single layer region, and
(A) The thin layer A, the thin layer C, the single layer A, and the single layer C are:
Composition formula: [Al 1-x Cr x ] N
X is composed of a composite nitride layer of Al and Cr that satisfies 0.30 to 0.80 (however, the atomic ratio),
(B) The thin layer B, the thin layer D, and the single layer B are:
Composition formula: [Ti 1-y Si y ] N
A surface-coated cutting tool characterized in that y is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio).
JP2010108906A 2010-05-11 2010-05-11 Surface coated cutting tool Withdrawn JP2011235393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010108906A JP2011235393A (en) 2010-05-11 2010-05-11 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010108906A JP2011235393A (en) 2010-05-11 2010-05-11 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2011235393A true JP2011235393A (en) 2011-11-24

Family

ID=45323935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010108906A Withdrawn JP2011235393A (en) 2010-05-11 2010-05-11 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2011235393A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014049105A1 (en) * 2012-09-28 2014-04-03 Walter Ag Tool with tialcrsin pvd coating
RU2639192C1 (en) * 2017-03-10 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multi-layer coating for cutting tool
WO2018025977A1 (en) * 2016-08-01 2018-02-08 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
WO2020026390A1 (en) * 2018-08-01 2020-02-06 オーエスジー株式会社 Hard coating and member coated with hard coating
US11447873B2 (en) * 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10487388B2 (en) 2012-09-28 2019-11-26 Walter Ag Tool with TiAlCrSiN PVD coating
CN104662195A (en) * 2012-09-28 2015-05-27 瓦尔特公开股份有限公司 Tool with TiAlCrSiN PVD coating
US20150232978A1 (en) * 2012-09-28 2015-08-20 Walter Ag Tool with TiAlCrSiN PVD coating
JP2015530270A (en) * 2012-09-28 2015-10-15 バルター アクチェンゲゼルシャフト Tool with TiAlCrSiN coating by PVD
WO2014049105A1 (en) * 2012-09-28 2014-04-03 Walter Ag Tool with tialcrsin pvd coating
US10676810B2 (en) 2015-09-04 2020-06-09 Osg Corporation Hard coating and hard coating-covered member
CN108138306B (en) * 2015-09-04 2020-01-03 Osg株式会社 Hard coating and hard coating-coated member
CN108138306A (en) * 2015-09-04 2018-06-08 Osg株式会社 Hard film and hard film coating component
EP3490745A4 (en) * 2016-08-01 2019-12-25 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
JP2019528183A (en) * 2016-08-01 2019-10-10 三菱マテリアル株式会社 Multi-layer hard coating coated cutting tool
US20190193165A1 (en) * 2016-08-01 2019-06-27 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
WO2018025977A1 (en) * 2016-08-01 2018-02-08 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
JP7061603B2 (en) 2016-08-01 2022-04-28 三菱マテリアル株式会社 Multi-layer hard film coating cutting tool
US11014167B2 (en) 2016-08-01 2021-05-25 Mitsubishi Materials Corporation Multilayer hard film-coated cutting tool
RU2639192C1 (en) * 2017-03-10 2017-12-20 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный технический университет" Method of producing multi-layer coating for cutting tool
CN112601833A (en) * 2018-08-01 2021-04-02 Osg株式会社 Hard coating and hard coating-coated member
TWI720562B (en) * 2018-08-01 2021-03-01 日商Osg股份有限公司 Hard film and hard film-coated member
JPWO2020026390A1 (en) * 2018-08-01 2021-08-05 オーエスジー株式会社 Hard coating and hard coating covering member
JP6999038B2 (en) 2018-08-01 2022-01-18 オーエスジー株式会社 Hard coating and hard coating covering member
WO2020026390A1 (en) * 2018-08-01 2020-02-06 オーエスジー株式会社 Hard coating and member coated with hard coating
US11447873B2 (en) * 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member
US11447872B2 (en) 2018-08-01 2022-09-20 Osg Corporation Hard coating and hard-coating-covered member

Similar Documents

Publication Publication Date Title
JP5459507B2 (en) Surface coated cutting tool
JP5459506B2 (en) Surface coated cutting tool
JP2010207916A (en) Surface coated cutting tool
JP2011167793A (en) Surface coated cutting tool
JP2011235393A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP6331003B2 (en) Surface coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP2016185589A (en) Surface-coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP2010207917A (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
JP2012061555A (en) Surface coated cutting tool
JP5488823B2 (en) Surface coated cutting tool
JP2010137336A (en) Surface-coated cutting tool
JP2010137335A (en) Surface-coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP2011189471A (en) Surface coated cutting tool
JP2011167792A (en) Surface coated cutting tool
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
JP2012035380A (en) Surface-coated cutting tool
JP2016165787A (en) Surface-coated cutting tool

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20130806