JP2010207918A - Surface coated cutting tool - Google Patents

Surface coated cutting tool Download PDF

Info

Publication number
JP2010207918A
JP2010207918A JP2009053277A JP2009053277A JP2010207918A JP 2010207918 A JP2010207918 A JP 2010207918A JP 2009053277 A JP2009053277 A JP 2009053277A JP 2009053277 A JP2009053277 A JP 2009053277A JP 2010207918 A JP2010207918 A JP 2010207918A
Authority
JP
Japan
Prior art keywords
layer
thin layer
thin
cutting tool
tool
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2009053277A
Other languages
Japanese (ja)
Inventor
Takashi Koyama
孝 小山
Kazunori Sato
和則 佐藤
Daisuke Kazami
大介 風見
Shinichi Shikada
信一 鹿田
Takahito Tabuchi
貴仁 田渕
Yusuke Tanaka
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2009053277A priority Critical patent/JP2010207918A/en
Publication of JP2010207918A publication Critical patent/JP2010207918A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cutting tool having a hard coating layer which exhibits excellent chipping resistance and wear resistance under high-speed cutting conditions for a heat-resistant alloy such as an Ni-based alloy or a Co-based alloy. <P>SOLUTION: The surface coated cutting tool includes the hard coating layer, formed of a lower layer and an upper layer, and formed by vapor deposition on a surface of its tool base; wherein the lower layer is formed of alternate laminates of a thin layer A and a thin layer B, the upper layer is formed of alternate laminates of the thin layer A and a thin layer C, the thin layer A is either a (Cr, Al) N-layer or a (Cr, Al, Si) N-layer, the thin layer B is either a (Ti, Al) N-layer or a (Ti, Al, Si) N-layer, and the thin layer C is a (Ti, Si) N-layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

この発明は、Ni基合金、Co基合金等の耐熱合金の切削加工を、高い発熱を伴う高速切削条件で行った場合にも、硬質被覆層がすぐれた耐チッピング性、耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。   This invention exhibits excellent chipping resistance and wear resistance even when a heat-resistant alloy such as a Ni-base alloy and a Co-base alloy is cut under high-speed cutting conditions with high heat generation. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).

一般に、被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, for coated tools, throwaway inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various steel and cast iron, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving, shouldering, etc. of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.

また、具体的な被覆工具としては、例えば、炭化タングステン(以下、WCで示す)基超硬合金で構成された工具基体の表面に、CrとAl系の複合窒化物層(以下、(Cr,Al)N層という)の単層からなる硬質被覆層を蒸着形成した被覆工具(以下、従来被覆工具という)が知られており、この従来被覆工具が、耐酸化性、耐摩耗性に優れているが知られている。   Further, as a specific coated tool, for example, a Cr and Al-based composite nitride layer (hereinafter referred to as (Cr, WC) is formed on the surface of a tool base made of tungsten carbide (hereinafter referred to as WC) based cemented carbide. A coating tool (hereinafter referred to as a conventional coating tool) in which a hard coating layer consisting of a single layer of (Al) N layer) is formed by vapor deposition is known, and this conventional coating tool has excellent oxidation resistance and wear resistance. Is known.

そして、上記の従来被覆工具は、例えば、蒸着形成する硬質被覆層の種類に応じた成分組成を有するCr−Al合金からなるカソード電極(蒸発源)を配置したアークイオンプレーティング装置において、装置内に工具基体を装入し、装置内を窒素ガス反応雰囲気とし、また、加熱した状態で、上記カソード電極(蒸発源)とアノード電極との間に、順次、アーク放電を発生させ、上記工具基体には、バイアス電圧を印加した条件で、工具基体の表面に、(Cr,Al)N層を蒸着形成することにより製造されることも知られている。   The above conventional coated tool is, for example, an arc ion plating apparatus in which a cathode electrode (evaporation source) made of a Cr—Al alloy having a component composition corresponding to the type of hard coating layer to be deposited is disposed in the apparatus. A tool base is inserted into the apparatus, a nitrogen gas reaction atmosphere is set in the apparatus, and an arc discharge is sequentially generated between the cathode electrode (evaporation source) and the anode electrode in a heated state. In addition, it is also known that it is manufactured by vapor-depositing a (Cr, Al) N layer on the surface of a tool base under a condition where a bias voltage is applied.

特開2006−524748号公報JP 2006-524748 A

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化の傾向にあり、さらに、各種の被削材に対する切削工具の汎用化も求められているが、上記の従来被覆工具においては、これを、通常条件の切削加工に用いた場合には特段の問題は生じないが、例えば、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合には、被削材である耐熱合金の熱伝導率が低いため、切削熱によって切削工具の刃先の表面温度が高くなり、この高熱によって硬質被覆層の強度が低下し、チッピング、欠損等が発生し、或いは、耐摩耗性の低下によって、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting equipment has been remarkable, while the demand for labor saving and energy saving and further cost reduction for cutting work is strong, and with this, cutting work is becoming increasingly faster, Although there is a demand for generalization of cutting tools for various work materials, in the above-mentioned conventional coated tools, when this is used for cutting under normal conditions, no particular problem occurs, for example, When used for high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the heat conductivity of heat-resistant alloys that are work materials is low, so the surface of the cutting edge of the cutting tool due to cutting heat At present, the temperature rises, and the high heat reduces the strength of the hard coating layer, causing chipping, chipping, or the like, or reducing the wear resistance.

そこで、本発明者等は、上述のような観点から、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いたような場合にも、硬質被覆層がすぐれた強度・靭性を備え、すぐれた耐チッピング性・耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、次のような知見を得た。   In view of the above, the present inventors, from the above viewpoint, have a hard coating layer with excellent strength even when used in high-speed cutting with high heat generation of heat-resistant alloys such as Ni-base alloys and Co-base alloys.・ As a result of earnest research to develop a coated tool that exhibits toughness and excellent chipping resistance and wear resistance, the following findings were obtained.

(a)上記の従来被覆工具の硬質被覆層を構成する(Cr,Al)N層におけるAl成分には高温硬さを向上させ、また、Cr成分には、高温安定性を高める作用があるが、Ni基合金、Co基合金等の耐熱合金の高速切削においては、切刃表面温度が高温になるため、強度低下が生じるばかりか、耐摩耗性の低下も生じるため、長期の使用に亘って、満足できる工具特性を得ることはできなかった。 (A) Although the Al component in the (Cr, Al) N layer constituting the hard coating layer of the above conventional coated tool improves the high-temperature hardness, the Cr component has the effect of increasing the high-temperature stability. In high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, the cutting edge surface temperature becomes high, so that not only strength decreases but also wear resistance decreases. Satisfactory tool characteristics could not be obtained.

(b)そこで、本発明者等は、(Cr,Al)N層の単層からなる硬質被覆層に代えて、高温安定性の高い(Cr,Al)N層と強度・靭性に優れる(Ti,Al)N層との交互積層により下部層を形成し、また、高温安定性の高い(Cr,Al)N層と耐摩耗性・耐酸化性に優れる(Ti,Si)N層との交互積層により上部層を形成し、さらに、上記下部層と上記上部層とにより硬質被覆層を構成したところ、このような硬質被覆層は、強度・靭性及び耐摩耗性のいずれにも優れ、Ni基合金、Co基合金等の耐熱合金の高熱発生を伴う高速切削加工に用いた場合にも、すぐれた耐チッピング性とすぐれた耐摩耗性を発揮することを見出した。 (B) Therefore, the present inventors are superior in strength and toughness to a (Cr, Al) N layer having high temperature stability instead of a hard coating layer made of a single layer of (Cr, Al) N layer (Ti). , Al) N layers are alternately stacked to form a lower layer, and (Cr, Al) N layers having high temperature stability and (Ti, Si) N layers having excellent wear resistance and oxidation resistance are alternately formed. When an upper layer is formed by laminating and a hard coating layer is formed by the lower layer and the upper layer, such a hard coating layer is excellent in both strength, toughness, and wear resistance. It has been found that it exhibits excellent chipping resistance and excellent wear resistance even when used in high-speed cutting with high heat generation of heat-resistant alloys such as alloys and Co-based alloys.

(c)さらに、本発明者等は、上記(Cr,Al)N層、(Ti,Al)N層の構成成分の一部をSiで置換することにより、さらにより一段と、すぐれた耐摩耗性が発揮されることを見出した。 (C) Furthermore, the present inventors have further improved wear resistance by replacing some of the constituent components of the (Cr, Al) N layer and (Ti, Al) N layer with Si. Has been found to be demonstrated.

この発明は、上記の知見に基づいてなされたものであって、
「(1) 工具基体表面に、少なくとも、下部層と上部層とからなる硬質被覆層が蒸着形成された表面被覆切削工具であって、
(a)上記下部層は、0.003〜0.02μmの層厚の薄層Aと0.003〜0.02μmの層厚の薄層Bの交互積層からなる合計層厚1〜5μmの層であって、
(b)上記上部層は、0.003〜0.02μmの層厚の薄層Aと0.003〜0.02μmの層厚の薄層Cの交互積層からなる合計層厚1〜5μmの層であって、
(c)上記薄層Aは、
組成式:[Cr1−XAl]N
で表した場合、Xは0.40〜0.75(但し、原子比)を満足するCrとAlの複合窒化物層、
(d)上記薄層Bは、
組成式:[Ti1−PAl]N
で表した場合、Pは0.40〜0.70(但し、原子比)を満足するTiとAlの複合窒化物層、
(e)上記薄層Cは、
組成式:[Ti1−USi]N
で表した場合、Uは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層、
であることを特徴とする表面被覆切削工具。
(2) 前記(1)に記載の表面被覆切削工具において、
上部層の交互積層を構成する上記薄層Cは、下部層側から上部層表層に向かうにしたがって、その層厚が次第に増加するように形成されていることを特徴とする前記(1)に記載の表面被覆切削工具。
(3) 前記(1)または(2)に記載の表面被覆切削工具において、
上記薄層Aが、
組成式:[Cr1−X−YAlSi]N
で表した場合、Xは0.40〜0.75かつYは0.01〜0.1(但し、X、Yはいずれも原子比)を満足するCrとAlとSiの複合窒化物層であることを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4) 前記(1)乃至(3)のいずれかに記載の表面被覆切削工具において、
上記薄層Bが、
組成式:[Ti1−P−QAlSi]N
で表した場合、Pは0.40〜0.70かつQは0.01〜0.1(但し、P、Qはいずれも原子比)を満足するTiとAlとSiの複合窒化物層であることを特徴とする前記(1)乃至(3)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
This invention has been made based on the above findings,
“(1) A surface-coated cutting tool in which a hard coating layer composed of at least a lower layer and an upper layer is vapor-deposited on the surface of a tool base,
(A) The lower layer is a layer having a total layer thickness of 1 to 5 μm composed of alternating layers of a thin layer A having a thickness of 0.003 to 0.02 μm and a thin layer B having a thickness of 0.003 to 0.02 μm. Because
(B) The upper layer is a layer having a total layer thickness of 1 to 5 μm composed of alternating layers of a thin layer A having a thickness of 0.003 to 0.02 μm and a thin layer C having a thickness of 0.003 to 0.02 μm. Because
(C) The thin layer A is
Composition formula: [Cr 1-X Al X ] N
, X is a composite nitride layer of Cr and Al that satisfies 0.40 to 0.75 (wherein the atomic ratio),
(D) The thin layer B is
Composition formula: [Ti 1-P Al P ] N
, P is a composite nitride layer of Ti and Al that satisfies 0.40 to 0.70 (however, the atomic ratio),
(E) The thin layer C is
Composition formula: [Ti 1 -U Si U ] N
In this case, U is a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio),
A surface-coated cutting tool characterized in that
(2) In the surface-coated cutting tool according to (1),
The thin layer C constituting the alternate lamination of the upper layers is formed such that the layer thickness gradually increases from the lower layer side toward the upper layer surface layer. Surface coated cutting tool.
(3) In the surface-coated cutting tool according to (1) or (2),
The thin layer A is
Composition formula: [Cr 1-XY Al X Si Y ] N
X is 0.40 to 0.75 and Y is 0.01 to 0.1 (where X and Y are atomic ratios), and is a composite nitride layer of Cr, Al, and Si. The surface-coated cutting tool according to (1) or (2), wherein the surface-coated cutting tool is provided.
(4) In the surface-coated cutting tool according to any one of (1) to (3),
The thin layer B is
Composition formula: [Ti 1-P-Q Al P Si Q ] N
, P is 0.40 to 0.70 and Q is 0.01 to 0.1 (provided that P and Q are atomic ratios), and is a composite nitride layer of Ti, Al, and Si. The surface-coated cutting tool according to any one of (1) to (3), wherein the surface-coated cutting tool is provided. "
It has the characteristics.

まず、請求項1の発明の被覆工具の硬質被覆層に関し、詳細に説明する。   First, the hard coating layer of the coated tool of the invention of claim 1 will be described in detail.

下部層の薄層A:
(Cr,Al)N層からなる薄層Aは、比較的高硬度を有し、かつ、最も高温安定性の高い層であることから、切削加工時の高温下でも、耐酸化性および高温硬さを維持する役割を担う。また、基体成分であるCoの硬質被覆層中への拡散を抑制し、層の特性劣化を防止する。
(Cr,Al)N層からなる薄層Aを、
組成式:[Cr1−XAl]N
で表した場合、Xは0.40〜0.75(但し、原子比)を満足するCrとAlの複合窒化物層であり、Al成分には高温硬さ、同Cr成分には高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で耐酸化性を向上させる作用があるが、Alの含有割合を示すXの値(但し、原子比)が、0.40未満であると、薄層Aの有する高温硬さが不十分となり、一方、Xの値が0.75を超えると、薄層Aの高温靭性、高温強度が低下するようになるので、Xの値は、0.40〜0.75(但し、原子比)と定めた。
Lower layer A:
Since the thin layer A composed of the (Cr, Al) N layer has a relatively high hardness and has the highest stability at high temperatures, the oxidation resistance and the high temperature hardness can be achieved even at high temperatures during cutting. It plays a role to maintain the security. In addition, the diffusion of Co, which is a base component, into the hard coating layer is suppressed, and deterioration of the characteristics of the layer is prevented.
A thin layer A composed of a (Cr, Al) N layer,
Composition formula: [Cr 1-X Al X ] N
X is a composite nitride layer of Cr and Al that satisfies 0.40 to 0.75 (however, atomic ratio), Al component has high temperature hardness, Cr component has high temperature toughness, While improving the high temperature strength and improving the oxidation resistance in the state where Al and Cr coexist, the value of X indicating the Al content (however, the atomic ratio) is less than 0.40. When the value of X exceeds 0.75, the high temperature toughness and high temperature strength of the thin layer A will decrease, so the value of X is It was set to 0.40 to 0.75 (however, atomic ratio).

下部層の薄層B:
薄層Aとの交互積層構造を構成する(Ti,Al)N層からなる薄層Bは、強度、靭性にすぐれ、薄層Aとの交互積層を構成することにより、云わば、薄層Aに相対的に不足する特性を補完すると同時に、それぞれの層の構成粒子の粗大化が抑えられ各層の強度が向上する。
(Ti,Al)N層からなる薄層Aを、
組成式:[Ti1−PAl]N
で表した場合、Pは0.40〜0.70(但し、原子比)を満足するTiとAlの複合窒化物層であり、Alの含有割合を示すPの値(但し、原子比)が、0.40未満であると、薄層Bの有する高温硬さが不十分となり、一方、Pの値が0.70を超えると、薄層Bの高温靭性、高温強度が低下するようになるので、Pの値は、0.40〜0.70(但し、原子比)と定めた。
Lower layer B:
The thin layer B composed of the (Ti, Al) N layers constituting the alternating layered structure with the thin layer A is excellent in strength and toughness. In addition to complementing the relatively insufficient characteristics, the coarsening of the constituent particles of each layer is suppressed, and the strength of each layer is improved.
A thin layer A composed of a (Ti, Al) N layer,
Composition formula: [Ti 1-P Al P ] N
In this case, P is a composite nitride layer of Ti and Al that satisfies 0.40 to 0.70 (however, the atomic ratio), and the value of P indicating the Al content ratio (however, the atomic ratio) is If the value is less than 0.40, the high-temperature hardness of the thin layer B becomes insufficient. On the other hand, if the value of P exceeds 0.70, the high-temperature toughness and high-temperature strength of the thin layer B decrease. Therefore, the value of P was set to 0.40 to 0.70 (however, the atomic ratio).

薄層A、薄層Bの層厚、下部層の合計層厚:
薄層Aと薄層Bの交互積層を構成した場合には、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上することで耐欠損性、耐チッピング性が向上するが、上記薄層A及び薄層Bのそれぞれの層厚が0.003μm未満であると、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する上記のすぐれた特性を発揮することができず、一方、それぞれの層厚が0.02μmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Bのそれぞれの層厚を、0.003〜0.02μmと定めた。
また、薄層Aと薄層Bの交互積層構造として構成された下部層は、その合計層厚が1μm未満では、特に、薄層Bの備える強度、靭性を発揮して、耐欠損性、耐チッピング性の向上を図ることができず、一方、その合計層厚が5μmを超えると、アークイオンプレーティング法によって成膜された被膜に内在する残留応力により被膜剥離が発生しやすくなるので、薄層Aと薄層Bの交互積層構造として構成された下部層の合計層厚を1〜5μmと定めた。
Layer thickness of thin layer A and thin layer B, total layer thickness of lower layer:
When alternating layers of the thin layer A and the thin layer B are configured, each layer is adjacent to each other to form a layer having a different composition, so that the growth of particles in each layer is prevented from being coarsened. Fineness is achieved and the film strength is improved to improve chipping resistance and chipping resistance. However, if the thickness of each of the thin layer A and the thin layer B is less than 0.003 μm, each thin layer Not only can be clearly formed as having a predetermined composition, but the above-mentioned excellent characteristics of each thin layer cannot be exhibited, while when the thickness of each layer exceeds 0.02 μm, Since the chipping resistance and chipping resistance are reduced due to the decrease in film strength due to the coarsening of the particles, the thickness of each of the thin layer A and the thin layer B was determined to be 0.003 to 0.02 μm.
In addition, the lower layer configured as an alternating laminated structure of the thin layer A and the thin layer B exhibits the strength and toughness provided by the thin layer B, particularly when the total layer thickness is less than 1 μm, and has a fracture resistance, On the other hand, if the total layer thickness exceeds 5 μm, peeling of the film tends to occur due to residual stress inherent in the film formed by the arc ion plating method. The total layer thickness of the lower layer configured as an alternately laminated structure of layer A and thin layer B was determined to be 1 to 5 μm.

上部層の薄層A:
上部層における薄層Aの成分・組成、作用、層厚は、前記下部層における薄層Aの場合と同様である。また、上部層の薄層Aは、薄層Cと交互積層構造を構成し、薄層Cの有する耐摩耗性。耐酸化性を維持したまま、上部層に高温靭性、高温強度を付与する。
Upper layer A:
The component / composition, action, and layer thickness of the thin layer A in the upper layer are the same as those of the thin layer A in the lower layer. Further, the thin layer A of the upper layer forms an alternate laminated structure with the thin layer C, and the wear resistance of the thin layer C. High temperature toughness and high temperature strength are imparted to the upper layer while maintaining oxidation resistance.

上部層の薄層C:
薄層Aと交互積層構造を形成することにより上部層を構成する(Ti,Si)N層からなる薄層Cは、Si成分によって、耐酸化性が向上し、その結果、Ni基合金、Co基合金等の耐熱合金の高速切削における高温下においても、すぐれた高硬度を保持する。
(Ti,Si)N層からなる薄層Cを、
組成式:[Ti1−USi]N
で表した場合、Uは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層からなるが、Siの含有割合を示すUの値(但し、原子比)が、0.01未満であると、薄層Cの有する高温硬さが不十分となり、一方、Uの値が0.30を超えると、薄層Cの高温靭性、高温強度が低下するようになることから、Uの値は、0.01〜0.30(但し、原子比)と定めた。
Upper layer thin layer C:
The thin layer C composed of the (Ti, Si) N layer constituting the upper layer by forming the alternate layered structure with the thin layer A is improved in oxidation resistance by the Si component. As a result, the Ni-based alloy, Co Excellent hardness is maintained even at high temperatures in high-speed cutting of heat-resistant alloys such as base alloys.
A thin layer C composed of a (Ti, Si) N layer,
Composition formula: [Ti 1 -U Si U ] N
In this case, U is composed of a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, atomic ratio), but U value (however, atomic ratio) indicating the Si content ratio. However, if it is less than 0.01, the high-temperature hardness of the thin layer C becomes insufficient. On the other hand, if the value of U exceeds 0.30, the high-temperature toughness and high-temperature strength of the thin layer C decrease. Therefore, the value of U was set to 0.01 to 0.30 (however, the atomic ratio).

薄層A、薄層Cの層厚、上部層の合計層厚:
薄層Aと薄層Cの交互積層を構成した場合には、下部層の交互積層の場合と同様、それぞれの層が隣接して組成の異なる層を形成することにより、それぞれの層の粒子の成長の粗大化が防止され、粒子の微細化が図られ、膜強度が向上することで耐欠損性、耐チッピング性が向上するが、上記薄層A及び薄層Cのそれぞれの層厚が0.003μm未満であると、各薄層を所定組成のものとして明確に形成することが困難であるばかりか、各薄層の有する上記のすぐれた特性を発揮することができず、一方、それぞれの層厚が0.02μmを超えると、粒子の粗大化による膜強度の低下により、耐欠損性、耐チッピング性が低下することから、薄層A、薄層Cのそれぞれの層厚を、0.003〜0.02μmと定めた。
また、薄層Aと薄層Cの交互積層構造として構成された上部層は、その合計層厚が1μm未満では、薄層Cの備える高硬度を充分発揮して耐摩耗性の向上を図ることができず、一方、その合計層厚が5μmを超えると、アークイオンプレーティング法によって成膜された被膜に内在する残留応力により被膜剥離が発生しやすくなるので、薄層Aと薄層Cの交互積層構造として構成された上部層の合計層厚を1〜5μmと定めた。
Layer thickness of thin layer A and thin layer C, total layer thickness of upper layer:
When alternating layers of the thin layer A and the thin layer C are configured, as in the case of the alternate stacking of the lower layer, each layer is adjacent to each other to form a layer having a different composition. Growth coarsening is prevented, particles are refined, and film strength is improved to improve chipping resistance and chipping resistance. However, the thickness of each of the thin layer A and the thin layer C is 0. When the thickness is less than 0.003 μm, it is difficult to clearly form each thin layer as having a predetermined composition, and the above-mentioned excellent characteristics of each thin layer cannot be exhibited. If the layer thickness exceeds 0.02 μm, the chip strength and chipping resistance decrease due to the decrease in film strength due to the coarsening of the particles. 003 to 0.02 μm.
In addition, the upper layer configured as an alternate laminated structure of the thin layer A and the thin layer C, when the total layer thickness is less than 1 μm, sufficiently exhibits the high hardness provided by the thin layer C and improves the wear resistance. On the other hand, if the total layer thickness exceeds 5 μm, the film peels easily due to the residual stress inherent in the film formed by the arc ion plating method. The total layer thickness of the upper layer configured as an alternately laminated structure was determined to be 1 to 5 μm.

つぎに、請求項2の発明の被覆工具の硬質被覆層について説明すると、上部層の交互積層を構成する薄層Cは、蒸着形成後の残留応力が高く、そのため、下部層と上部層の残留応力差を原因として、切削加工時に上部層が剥離する恐れがある。
そこで、上部層の薄層Cを蒸着形成する際に、下部層側から上部層表層に向かうにしたがって、薄層Cの層厚が次第に増加するように形成することにより、残留応力のギャップを小さくし、下部層と上部層の残留応力差を原因とした層の剥離を防止することができる。
Next, the hard coating layer of the coated tool of the invention of claim 2 will be described. The thin layer C constituting the alternate lamination of the upper layer has a high residual stress after vapor deposition, and therefore, the residual of the lower layer and the upper layer. Due to the stress difference, the upper layer may peel off during the cutting process.
Therefore, when the thin layer C of the upper layer is formed by vapor deposition, the gap of the residual stress is reduced by forming the thin layer C so that the layer thickness gradually increases from the lower layer side to the upper layer surface layer. In addition, it is possible to prevent separation of the layers due to the difference in residual stress between the lower layer and the upper layer.

つぎに、請求項3の発明の被覆工具の硬質被覆層について説明する。
(Cr,Al)N層からなる薄層Aは、前記したとおり、比較的高硬度を有し、かつ、最も高温安定性の高い層であるが、薄層Aの構成成分であるCrの一部をSiで置換し、
組成式:[Cr1−X−YAlSi]N
で表した場合、Xは0.40〜0.75かつYは0.01〜0.1(但し、X、Yはいずれも原子比)を満足するCrとAlとSiの複合窒化物層で薄層Aを構成すると、Si成分が高温硬さと耐熱塑性変形性を向上させる作用があるため、薄層B及びこれと薄層Aとの交互積層で構成された下部層は、より一段とすぐれた耐摩耗性を発揮するようになる。
ただ、Siの含有割合を示すY値(原子比)が0.01未満では、高温硬さと耐熱塑性変形性の改善による耐摩耗性の向上効果を期待できず、一方、Y値が0.1を越えると、耐摩耗性向上効果に低下傾向がみられるようになることから、Y値を0.01〜0.1と定めた。
Next, the hard coating layer of the coated tool of the invention of claim 3 will be described.
As described above, the thin layer A composed of the (Cr, Al) N layer has a relatively high hardness and has the highest stability at high temperature. Part is replaced with Si,
Composition formula: [Cr 1-XY Al X Si Y ] N
X is 0.40 to 0.75 and Y is 0.01 to 0.1 (where X and Y are atomic ratios), and is a composite nitride layer of Cr, Al, and Si. When the thin layer A is constituted, the Si component has an effect of improving the high temperature hardness and the heat-resistant plastic deformation, so that the thin layer B and the lower layer constituted by alternately laminating this and the thin layer A are more excellent. Demonstrate wear resistance.
However, if the Y value (atomic ratio) indicating the Si content is less than 0.01, the effect of improving the wear resistance due to the improvement in high temperature hardness and heat plastic deformation cannot be expected, while the Y value is 0.1. If the value exceeds 1, the tendency to decrease in the wear resistance improving effect will be seen, so the Y value was determined to be 0.01 to 0.1.

つぎに、請求項4の発明の被覆工具の硬質被覆層について説明する。
(Ti,Al)N層からなる薄層Bは、強度、靭性にすぐれる層であるが、薄層Bの構成成分であるTiの一部をSiで置換し、
組成式:[Ti1−P−QAlSi]N
で表した場合、Pは0.40〜0.70かつQは0.01〜0.1(但し、P、Qはいずれも原子比)を満足するTiとAlとSiの複合窒化物層で薄層Bを構成すると、薄層Bは、すぐれた耐酸化性と高硬度を備えるようになるため、Ni基合金、Co基合金等の耐熱合金の高速切削加工という高温条件下で一段とすぐれた耐摩耗性を示す。
Siの含有割合を示すQ値(但し、原子比)が0.01未満の場合には、耐酸化性の向上を期待できず、一方、Q値が0.1を超えるような場合には、高温硬さが低下することから、Si成分の含有割合を示すQ値を、0.01〜0.1と定めた。
Next, the hard coating layer of the coated tool of the invention of claim 4 will be described.
The thin layer B composed of the (Ti, Al) N layer is a layer having excellent strength and toughness, but a part of Ti as a constituent component of the thin layer B is replaced with Si,
Composition formula: [Ti 1-P-Q Al P Si Q ] N
, P is 0.40 to 0.70 and Q is 0.01 to 0.1 (provided that P and Q are atomic ratios), and is a composite nitride layer of Ti, Al, and Si. When the thin layer B is configured, the thin layer B has excellent oxidation resistance and high hardness, and thus is further improved under high-temperature conditions such as high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys. Shows wear resistance.
When the Q value (however, the atomic ratio) indicating the content ratio of Si is less than 0.01, improvement in oxidation resistance cannot be expected. On the other hand, when the Q value exceeds 0.1, Since high temperature hardness falls, Q value which shows the content rate of Si component was defined as 0.01-0.1.

この発明の表面被覆切削工具は、硬質被覆層が、薄層Aと薄層Bの交互積層構造からなる下部層と、薄層Aと薄層Cの交互積層構造からなる上部層から構成される(請求項1)ことによって、Ni基合金、Co基合金等の耐熱合金の高速切削加工において、すぐれた耐チッピング性、耐摩耗性を発揮する。
また、薄層Cを構成する(Ti,Si)N層は、上部層の表層に向かうに従ってその層厚が大となるように形成される(請求項2)ことによって、蒸着形成後の下部層−上部層間の残留応力差が緩和され層の剥離が防止され、また、薄層Aの構成成分の一部をSiで置換すること(請求項3)、薄層Bの構成成分の一部をSiで置換すること(請求項4)によって、Ni基合金、Co基合金等の耐熱合金の高速切削加工でも、一段とすぐれた耐チッピング性、耐摩耗性を長期に亘って発揮するものである。
In the surface-coated cutting tool of the present invention, the hard coating layer is composed of a lower layer composed of an alternating laminate structure of thin layers A and B and an upper layer consisting of an alternating laminate structure of thin layers A and C. (Claim 1) Thus, excellent chipping resistance and wear resistance are exhibited in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys.
Further, the (Ti, Si) N layer constituting the thin layer C is formed such that the layer thickness increases toward the surface layer of the upper layer (Claim 2), whereby the lower layer after vapor deposition is formed. The residual stress difference between the upper layers is mitigated to prevent peeling of the layers, and a part of the constituents of the thin layer A is replaced with Si (Claim 3); By substituting with Si (Claim 4), even in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, excellent chipping resistance and wear resistance are exhibited over a long period of time.

この発明の被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises the coating tool of this invention is shown, (a) is a schematic plan view, (b) is a schematic front view. 比較被覆工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of the arc ion plating apparatus used in forming the hard coating layer which comprises a comparative coating tool.

つぎに、この発明の被覆工具を実施例により具体的に説明する。   Next, the coated tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、NbC粉末、Cr粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.02のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の工具基体A−1〜A−5を形成した。 As raw material powders, WC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended in the composition shown in Table 1. The mixture is wet mixed in a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The green compact is sintered in a 6 Pa vacuum at a temperature of 1400 ° C. for 1 hour. After sintering, honing of R: 0.02 was applied to the cutting edge portion to form tool bases A-1 to A-5 made of WC-base cemented carbide having ISO standard / CNMG120408 chip shape.

(a)ついで、上記の工具基体A−1〜A−5のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもったCr−Al(−Si)合金、対向する他方側のカソード電極(蒸発源)として、それぞれ表2に示される目標組成に対応した成分組成をもったTi−Al(−Si)合金、一方側のカソード電極(蒸発源)と他方側のカソード電極(蒸発源)の中間位置に、同じくそれぞれ表2に示される目標組成に対応した成分組成をもったTi−Si合金を前記回転テーブルを挟んで配置する。
なお、Cr−Al(−Si)合金からなるカソード電極(蒸発源)は、薄層Aの蒸着形成(及び工具基体のボンバード洗浄用)に用い、Ti−Al(−Si)合金からなるカソード電極(蒸発源)は薄層Bの蒸着形成(及び工具基体のボンバード洗浄用)に、また、Ti−Si合金からなるカソード電極(蒸発源)は薄層Cの蒸着形成に、それぞれ用いる。
(b)まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する工具基体に−1000Vの直流バイアス電圧を印加して、例えば、Ti−Al(−Si)合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面をボンバード洗浄する。
(c)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、Cr−Al(−Si)合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体の表面に、表2、3に示される目標組成および目標層厚の薄層Aを蒸着形成する。
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、Ti−Al(−Si)合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記工具基体の薄層Aの上に所定層厚の薄層Bを形成し、
(e)上記(c)と(d)を繰り返し行ない、薄層Aと薄層Bの交互積層構造からなる目標合計層厚の下部層を蒸着形成し、
(f)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気を維持したまま、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加し、Cr−Al(-Si)合金カソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、表2、3に示される目標組成および目標層厚の薄層Aを蒸着形成し、
(g)ついで、同じく装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気を維持したままで、前記回転テーブル上で自転しながら回転する工具基体に−100Vの直流バイアス電圧を印加した状態で、Ti−Si合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記薄層A上に所定層厚の薄層Cを形成し、
(h)上記(f)と(g)を繰り返し行ない、薄層Aと薄層C(なお、薄層Cを繰り返し蒸着するたびに、蒸着形成時間を長くすることによって、請求項2でいう、上部層表層に向かうにしたがって層厚が大となる薄層Cを形成することができる)の交互積層構造からなる目標合計層厚の上部層を蒸着形成し、
上記(a)〜(h)の工程により、工具基体の表面に、表2、3に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる下部層、及び、薄層Aと薄層Cの交互積層からなる上部層を蒸着形成することにより、ISO・CNMG120408に規定するスローアウエイチップ形状の本発明被覆工具としての本発明被覆チップ1〜10をそれぞれ製造した。
(A) Next, each of the tool bases A-1 to A-5 is ultrasonically cleaned in acetone and dried, and the center on the rotary table in the arc ion plating apparatus shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the shaft, as a cathode electrode (evaporation source) on one side, Cr—Al (having a component composition corresponding to the target composition shown in Table 2) -Si) alloy, Ti-Al (-Si) alloy having a component composition corresponding to the target composition shown in Table 2, respectively, as the cathode electrode (evaporation source) on the opposite side, cathode electrode on one side (evaporation) A Ti—Si alloy having a component composition corresponding to the target composition shown in Table 2 is disposed between the rotary table and an intermediate position between the source) and the cathode electrode (evaporation source) on the other side.
A cathode electrode (evaporation source) made of a Cr—Al (—Si) alloy is used for vapor deposition formation of the thin layer A (and for bombard cleaning of a tool base), and a cathode electrode made of a Ti—Al (—Si) alloy. The (evaporation source) is used for vapor deposition formation of the thin layer B (and for cleaning the bombardment of the tool substrate), and the cathode electrode (evaporation source) made of a Ti—Si alloy is used for vapor deposition formation of the thin layer C.
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.5 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the tool substrate that rotates while rotating on the rotary table is −1000 V A direct current bias voltage is applied, for example, a current of 100 A is passed between a Ti—Al (—Si) alloy cathode electrode and an anode electrode to generate arc discharge, and the tool base surface is bombarded.
(C) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table, and Cr— A current of 100 A is passed between the Al (-Si) alloy cathode electrode and the anode electrode to generate an arc discharge, so that a thin layer having the target composition and target layer thickness shown in Tables 2 and 3 is formed on the surface of the tool base. A is deposited.
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V is applied to the tool base that rotates while rotating on the rotary table. A predetermined current in a range of 50 to 200 A is passed between the cathode electrode and the anode electrode of Ti—Al (—Si) alloy to generate arc discharge, and a predetermined layer is formed on the thin layer A of the tool base. Forming a thin thin layer B;
(E) The above (c) and (d) are repeated, and a lower layer having a target total layer thickness composed of an alternating laminated structure of the thin layers A and B is formed by vapor deposition.
(F) Next, a nitrogen gas was introduced as a reaction gas into the apparatus and a DC bias voltage of −100 V was applied to the rotating tool base while rotating on the rotary table while maintaining a reaction atmosphere of 2 Pa, Cr -A current of 100 A is passed between the Al (-Si) alloy cathode electrode and the anode electrode to generate arc discharge, and a thin layer A having the target composition and target layer thickness shown in Tables 2 and 3 is formed by vapor deposition.
(G) Next, a DC bias voltage of −100 V was applied to the rotating tool base while rotating on the rotary table while introducing a nitrogen gas as a reaction gas into the apparatus and maintaining a reaction atmosphere of 2 Pa. In this state, a predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti—Si alloy to generate an arc discharge, and a thin layer C having a predetermined layer thickness is formed on the thin layer A. Form the
(H) Repeat the above (f) and (g), and thin layer A and thin layer C (in addition, each time the thin layer C is repeatedly deposited, the deposition forming time is lengthened, so in claim 2, An upper layer having a target total layer thickness consisting of an alternating laminated structure) can be formed by vapor deposition.
Through the steps (a) to (h), a lower layer composed of alternating layers of the thin layer A and the thin layer B having the target composition and the target layer thickness shown in Tables 2 and 3 is formed on the surface of the tool base. The present coated chips 1 to 10 of the present invention coated tool having a throwaway tip shape defined in ISO · CNMG120408 were produced by vapor-depositing and forming an upper layer composed of alternately laminated layers A and thin layers C, respectively.

比較の目的で、これら工具基体A−1〜A−5を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表4に示される目標組成に対応した成分組成をもったCr−Al合金を装着し、
まず、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記工具基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Cr−Al合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって工具基体表面を前記Cr−Al合金でボンバード洗浄し、
ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記工具基体に印加するバイアス電圧を−100Vに下げて、前記Cr−Al合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記工具基体の表面に、表4に示される目標組成および目標層厚の(Cr,Al)N層を蒸着形成することにより、
表4に示される目標組成および目標層厚の硬質被覆層を蒸着形成したISO・CNMG120408に規定するスローアウエイチップ形状の比較被覆工具としての比較被覆チップ1〜5をそれぞれ製造した。
For the purpose of comparison, these tool bases A-1 to A-5 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. As a source), a Cr—Al alloy having a component composition corresponding to the target composition shown in Table 4 is installed,
First, while evacuating the inside of the apparatus and maintaining the vacuum at 0.5 Pa or less, the inside of the apparatus was heated to 500 ° C. with a heater, a DC bias voltage of −1000 V was applied to the tool base, and the cathode electrode A current of 100 A is passed between the Cr—Al alloy and the anode electrode to generate arc discharge, and the tool base surface is bombarded with the Cr—Al alloy,
Next, nitrogen gas is introduced into the apparatus as a reaction gas to obtain a reaction atmosphere of 2 Pa, and the bias voltage applied to the tool base is lowered to −100 V, so that the gap between the cathode electrode and the anode electrode of the Cr—Al alloy is reduced. By generating an arc discharge and depositing a (Cr, Al) N layer having a target composition and a target layer thickness shown in Table 4 on the surface of the tool base,
Comparative coated tips 1 to 5 as comparative coated tools having a throwaway tip shape defined in ISO · CNMG120408 on which a hard coating layer having a target composition and a target layer thickness shown in Table 4 was formed by vapor deposition were manufactured.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆チップ1〜10および比較被覆チップ1〜5について、
被削材:質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 100 m/min.、
切り込み: 1.5 mm、
送り: 0.15 mm/rev.、
切削時間: 5 分、
の条件(切削条件A)でのNi基合金の乾式高速断続切削加工試験(通常の切削速度は、30m/min.)、
被削材:質量%で、Co−23%Cr−6%Mo−2%Ni−1%Fe−0.6%Si−0.4%Cの組成を有するCo基合金の長さ方向等間隔4本縦溝入り丸棒、
切削速度: 80 m/min.、
切り込み: 1.5 mm、
送り: 0.10 mm/rev.、
切削時間: 5 分、
の条件(切削条件B)でのCo基合金の乾式高速断続切削加工試験(通常の切削速度は、25m/min.)、
を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表5に示した。
Next, in the state where each of the above various coated chips is screwed to the tip of the tool steel tool with a fixing jig, the present coated chips 1 to 10 and the comparative coated chips 1 to 5 are as follows.
Work Material: Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9% Ti-0.5% Al-0.3% by mass% Four longitudinally-grooved round bars at equal intervals in the length direction of a Ni-based alloy having a composition of Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 100 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Ni-based alloy under the above conditions (cutting condition A) (normal cutting speed is 30 m / min.),
Work material: Equal intervals in the length direction of Co-based alloy having a composition of Co-23% Cr-6% Mo-2% Ni-1% Fe-0.6% Si-0.4% C in mass% 4 fluted round bars,
Cutting speed: 80 m / min. ,
Cutting depth: 1.5 mm,
Feed: 0.10 mm / rev. ,
Cutting time: 5 minutes,
A dry high-speed intermittent cutting test of a Co-based alloy under the conditions (cutting condition B) (normal cutting speed is 25 m / min.),
In each cutting test, the flank wear width of the cutting edge was measured. The measurement results are shown in Table 5.

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

原料粉末として、平均粒径0.8μmのWC粉末、同2.3μmのCr粉末、同1.5μmのVC粉末および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表6に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、工具基体形成用丸棒焼結体を形成し、さらに前記の丸棒焼結体から、研削加工にて、切刃部の直径×長さが10mm×22mmの寸法、並びにねじれ角45度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体(エンドミル)C−1〜C−4をそれぞれ製造した。 As raw material powders, WC powder having an average particle size of 0.8 μm, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, and 1.8 μm Co powder were prepared. 6 was added to the composition shown in FIG. 6 and added with wax, mixed in a ball mill for 24 hours in acetone, dried under reduced pressure, and then press-molded into various compacts of a predetermined shape at a pressure of 100 MPa. The body is heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a heating rate of 7 ° C./min in a vacuum atmosphere of 6 Pa, held at this temperature for 1 hour, and then sintered under furnace cooling conditions. Then, a round tool sintered body for forming a tool base is formed, and further, a diameter of the cutting edge portion × length is 10 mm × 22 mm and a twist angle is 45 degrees by grinding from the round bar sintered body. Made of WC-based cemented carbide with a 4-flute square shape Tool substrate (end mill) C-1~C-4 were prepared, respectively.

ついで、これらの工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表7に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる下部層、薄層Aと薄層Cの交互積層からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆エンドミル1〜8をそれぞれ製造した。   Next, the surfaces of these tool bases (end mills) C-1 to C-4 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, along the layer thickness direction, the lower layer consisting of alternating layers of thin layers A and B with the target composition and target layer thickness shown in Table 7, alternating between thin layers A and C The coated end mills 1 to 8 of the present invention as the coated tool of the present invention were produced by vapor deposition of the upper layer composed of the laminated layers.

また、比較の目的で、上記の工具基体(エンドミル)C−1〜C−4の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(エンドミル)C−1〜C−4の表面に、表8に示される目標組成および目標層厚の(Cr,Al)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆エンドミル1〜4をそれぞれ製造した。   For the purpose of comparison, the surfaces of the tool bases (end mills) C-1 to C-4 are ultrasonically cleaned in acetone and dried, and then mounted on the arc ion plating apparatus shown in FIG. Then, under the same conditions as in Example 1, the surface of the tool base (end mill) C-1 to C-4 is composed of (Cr, Al) N layers having the target composition and target layer thickness shown in Table 8. Comparative coating end mills 1 to 4 as comparative coating tools were manufactured by depositing a hard coating layer, respectively.

つぎに、上記本発明被覆エンドミル1〜8および比較被覆エンドミル1〜4について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−14%Co−4.5%Mo−2.5%Ti−2%Fe−1.2%Al−0.7%Mn−0.4%Siの組成を有するNi基合金の板材、
切削速度: 60 m/min.、
溝深さ(切り込み): 2.0 mm、
テーブル送り: 200 mm/分、
の条件でのNi基合金の乾式高速溝切削加工試験(通常の切削速度および溝深さは、それぞれ、25m/min.および1.2mm)、
を行い、切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表7、8にそれぞれ示した。
Next, the present invention coated end mills 1 to 8 and comparative coated end mills 1 to 4,
Work Material-Plane Dimensions: 100mm x 250mm, Thickness: 50mm, Mass%, Ni-19% Cr-14% Co-4.5% Mo-2.5% Ti-2% Fe-1.2 Ni-base alloy plate material having a composition of% Al-0.7% Mn-0.4% Si,
Cutting speed: 60 m / min. ,
Groove depth (cut): 2.0 mm,
Table feed: 200 mm / min,
Ni-base alloy dry high-speed grooving test under the conditions (normal cutting speed and groove depth are 25 m / min. And 1.2 mm, respectively),
The cutting groove length was measured until the flank wear width of the outer peripheral edge of the cutting edge reached 0.1 mm, which is a guide for the service life. The measurement results are shown in Tables 7 and 8, respectively.

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

上記の実施例2で製造した丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが8mm×48mmの寸法、並びにねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体(ドリル)D−1〜D−4をそれぞれ製造した。   Using the round bar sintered body manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming portion is 8 mm x 48 mm and the helix angle is 30 degrees by grinding. WC base cemented carbide tool bases (drills) D-1 to D-4 each having a two-blade shape were manufactured.

ついで、これらの工具基体(ドリル)D−1〜D−4の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、層厚方向に沿って表9に示される目標組成および目標層厚の薄層Aと薄層Bの交互積層からなる下部層、薄層Aと薄層Cの交互積層からなる上部層を蒸着形成することにより、本発明被覆工具としての本発明被覆ドリル1〜8をそれぞれ製造した。   Next, the cutting edges of these tool bases (drills) D-1 to D-4 are subjected to honing, ultrasonically cleaned in acetone, and dried, and then applied to the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1 above, the lower layer consisting of alternating layers of thin layers A and B with the target composition and target layer thickness shown in Table 9 along the layer thickness direction, thin layer A The present invention-coated drills 1 to 8 as the present invention-coated tools were produced by vapor-depositing and forming an upper layer composed of alternating layers of the thin layer C.

また、比較の目的で、上記の工具基体(ドリル)D−1〜D−4の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、工具基体(ドリル)D−1〜D−4の表面に、表10に示される目標組成および目標層厚の(Cr,Al)N層からなる硬質被覆層を蒸着することにより、比較被覆工具としての比較被覆ドリル1〜4をそれぞれ製造した。   For the purpose of comparison, the surface of the tool base (drill) D-1 to D-4 is subjected to honing, ultrasonically cleaned in acetone, and dried, and the arc ions shown in FIG. In the plating apparatus, under the same conditions as in Example 1 above, the target composition and target layer thickness (Cr, Al) shown in Table 10 are formed on the surfaces of the tool bases (drills) D-1 to D-4. The comparative coating drills 1-4 as a comparative coating tool were each manufactured by vapor-depositing the hard coating layer which consists of N layers.

つぎに、上記本発明被覆ドリル1〜8および比較被覆ドリル1〜4について、
被削材−平面寸法:100mm×250mm、厚さ:50mmの、質量%で、Ni−19%Cr−18.5%Fe−5.2%Cd−5%Ta−3%Mo−0.9%Ti−0.5%Al−0.3%Si−0.2%Mn−0.05%Cu−0.04%Cの組成を有するNi基合金の板材、
切削速度: 50 m/min.、
送り: 0.20 mm/rev、
穴深さ: 20 mm、
の条件でのNi基合金の湿式高速穴あけ切削加工試験(通常の切削速度および送りは、それぞれ、25m/min.および0.12mm/rev)、
を行い(水溶性切削油使用)、先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表9、10にそれぞれ示した。
Next, for the present invention coated drills 1-8 and comparative coated drills 1-4,
Work Material—Plane Size: 100 mm × 250 mm, Thickness: 50 mm, Mass%, Ni-19% Cr-18.5% Fe-5.2% Cd-5% Ta-3% Mo-0.9 Ni-based alloy plate having a composition of% Ti-0.5% Al-0.3% Si-0.2% Mn-0.05% Cu-0.04% C,
Cutting speed: 50 m / min. ,
Feed: 0.20 mm / rev,
Hole depth: 20 mm,
Wet high-speed drilling test of Ni-based alloy under the following conditions (normal cutting speed and feed are 25 m / min. And 0.12 mm / rev, respectively),
(Using water-soluble cutting oil), and the number of drilling operations was measured until the flank wear width of the cutting edge surface reached 0.3 mm. The measurement results are shown in Tables 9 and 10, respectively.

Figure 2010207918
Figure 2010207918

Figure 2010207918
Figure 2010207918

この結果得られた本発明被覆工具としての本発明被覆チップ1〜10、本発明被覆エンドミル1〜8および本発明被覆ドリル1〜8の硬質被覆層を構成する薄層Aおよび薄層Bの交互積層構造からなる下部層、薄層Aおよび薄層Cの交互積層構造からなる上部層、さらに、比較被覆チップ1〜5、比較被覆エンドミル1〜4および比較被覆ドリル1〜4の硬質被覆層を構成する(Cr,Al)N層の組成を、透過型電子顕微鏡を用いてのエネルギー分散X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   As a result of the present invention coated tool, the present coated chips 1 to 10, the present coated end mills 1 to 8 and the thin coated layers constituting the hard coated layers of the coated drills 1 to 8 are alternately arranged. A lower layer made of a laminated structure, an upper layer made of an alternating laminated structure of thin layers A and C, and hard coating layers of comparative coated tips 1 to 5, comparative coated end mills 1 to 4 and comparative coated drills 1 to 4 The composition of the constituent (Cr, Al) N layer was measured by an energy dispersive X-ray analysis method using a transmission electron microscope, and each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の平均層厚を走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Moreover, when the average layer thickness of said hard coating layer was cross-sectional measured using the scanning electron microscope, all showed the average value (average value of five places) substantially the same as target layer thickness.

表5、7〜10に示される結果から、本発明被覆工具は、その硬質被覆層が薄層Aおよび薄層Bの交互積層構造からなる下部層、薄層Aおよび薄層Cの交互積層構造からなる上部層で構成され(請求項1)、Ni基合金、Co基合金等の耐熱合金の高速切削加工において、すぐれた耐チッピング性および耐摩耗性を発揮するとともに、薄層Cを構成する(Ti,Si)N層は、上部層の表層に向かうに従ってその層厚が大となるように形成される(請求項2)ことによって、蒸着形成後の下部層−上部層間の残留応力差が緩和され層の剥離が防止され、薄層Aの構成成分であるCrの一部をSiで置換すること(請求項3)、あるいは、薄層Bの構成成分であるTiの一部をSiで置換すること(請求項4)によって、Ni基合金、Co基合金等の耐熱合金の高速切削加工でも、より一段と、すぐれた耐チッピング性および耐摩耗性を発揮する。
これに対して、硬質被覆層が(Cr,Al)N層の単層で構成された比較被覆工具においては、Ni基合金、Co基合金等の耐熱合金の高速切削加工では、耐チッピング性、耐摩耗性の不足により、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 and 7 to 10, the coated tool of the present invention has an alternate laminated structure of a lower layer, a thin layer A, and a thin layer C whose hard coating layer is composed of an alternately laminated structure of thin layers A and B. (Claim 1), and exhibits excellent chipping resistance and wear resistance in high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys, and constitutes a thin layer C. The (Ti, Si) N layer is formed so that its layer thickness increases toward the surface layer of the upper layer (Claim 2), so that the residual stress difference between the lower layer and the upper layer after the deposition is formed. Relaxation is prevented and peeling of the layer is prevented, and a part of Cr as a constituent of thin layer A is replaced with Si (Claim 3), or a part of Ti as a constituent of thin layer B is replaced with Si. By substituting (Claim 4), Ni-based alloy, Co-based Even at high cutting of heat resistant alloys etc., exhibit more further, excellent chipping resistance and wear resistance.
On the other hand, in the comparative coated tool in which the hard coating layer is composed of a single layer of (Cr, Al) N layer, in high-speed cutting of heat-resistant alloys such as Ni-based alloys and Co-based alloys, chipping resistance, It is clear that due to the lack of wear resistance, the service life is reached in a relatively short time.

上述のように、この発明の被覆工具は、一般鋼や普通鋳鉄などの切削加工は勿論のこと、高い発熱を伴うNi基合金、Co基合金等の耐熱合金の高速切削加工に用いた場合でも、長期に亘ってすぐれた耐チッピング性、耐摩耗性を発揮し、すぐれた切削性能を示すものであるから、切削加工装置のFA化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated tool of the present invention can be used for high-speed cutting of heat-resistant alloys such as Ni-base alloys and Co-base alloys with high heat generation as well as cutting of general steel and ordinary cast iron. Since it exhibits excellent chipping resistance and wear resistance over a long period of time and exhibits excellent cutting performance, it is possible to use FA for cutting equipment, labor saving and energy saving of cutting, and cost reduction It is possible to cope with the above sufficiently.

Claims (4)

工具基体表面に、少なくとも、下部層と上部層とからなる硬質被覆層が蒸着形成された表面被覆切削工具であって、
(a)上記下部層は、0.003〜0.02μmの層厚の薄層Aと0.003〜0.02μmの層厚の薄層Bの交互積層からなる合計層厚1〜5μmの層であって、
(b)上記上部層は、0.003〜0.02μmの層厚の薄層Aと0.003〜0.02μmの層厚の薄層Cの交互積層からなる合計層厚1〜5μmの層であって、
(c)上記薄層Aは、
組成式:[Cr1−XAl]N
で表した場合、Xは0.40〜0.75(但し、原子比)を満足するCrとAlの複合窒化物層、
(d)上記薄層Bは、
組成式:[Ti1−PAl]N
で表した場合、Pは0.40〜0.70(但し、原子比)を満足するTiとAlの複合窒化物層、
(e)上記薄層Cは、
組成式:[Ti1−USi]N
で表した場合、Uは0.01〜0.30(但し、原子比)を満足するTiとSiの複合窒化物層、
であることを特徴とする表面被覆切削工具。
A surface-coated cutting tool in which a hard coating layer composed of at least a lower layer and an upper layer is vapor-deposited on the surface of a tool substrate,
(A) The lower layer is a layer having a total layer thickness of 1 to 5 μm composed of alternating layers of a thin layer A having a thickness of 0.003 to 0.02 μm and a thin layer B having a thickness of 0.003 to 0.02 μm. Because
(B) The upper layer is a layer having a total layer thickness of 1 to 5 μm composed of alternating layers of a thin layer A having a thickness of 0.003 to 0.02 μm and a thin layer C having a thickness of 0.003 to 0.02 μm. Because
(C) The thin layer A is
Composition formula: [Cr 1-X Al X ] N
, X is a composite nitride layer of Cr and Al that satisfies 0.40 to 0.75 (wherein the atomic ratio),
(D) The thin layer B is
Composition formula: [Ti 1-P Al P ] N
, P is a composite nitride layer of Ti and Al that satisfies 0.40 to 0.70 (however, the atomic ratio),
(E) The thin layer C is
Composition formula: [Ti 1 -U Si U ] N
In this case, U is a composite nitride layer of Ti and Si that satisfies 0.01 to 0.30 (however, the atomic ratio),
A surface-coated cutting tool characterized in that
請求項1に記載の表面被覆切削工具において、
上部層の交互積層を構成する上記薄層Cは、下部層側から上部層表層に向かうにしたがって、その層厚が次第に増加するように形成されていることを特徴とする請求項1に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1,
The said thin layer C which comprises the alternate lamination | stacking of an upper layer is formed so that the layer thickness may increase gradually as it goes to the upper layer surface layer from the lower layer side. Surface coated cutting tool.
請求項1または2に記載の表面被覆切削工具において、
上記薄層Aが、
組成式:[Cr1−X−YAlSi]N
で表した場合、Xは0.40〜0.75かつYは0.01〜0.1(但し、X、Yはいずれも原子比)を満足するCrとAlとSiの複合窒化物層であることを特徴とする請求項1または2に記載の表面被覆切削工具。
The surface-coated cutting tool according to claim 1 or 2,
The thin layer A is
Composition formula: [Cr 1-XY Al X Si Y ] N
X is 0.40 to 0.75 and Y is 0.01 to 0.1 (where X and Y are atomic ratios), and is a composite nitride layer of Cr, Al, and Si. The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is provided.
請求項1乃至3のいずれか一項に記載の表面被覆切削工具において、
上記薄層Bが、
組成式:[Ti1−P−QAlSi]N
で表した場合、Pは0.40〜0.70かつQは0.01〜0.1(但し、P、Qはいずれも原子比)を満足するTiとAlとSiの複合窒化物層であることを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。
In the surface coating cutting tool as described in any one of Claims 1 thru | or 3,
The thin layer B is
Composition formula: [Ti 1-P-Q Al P Si Q ] N
, P is 0.40 to 0.70 and Q is 0.01 to 0.1 (provided that P and Q are atomic ratios), and is a composite nitride layer of Ti, Al, and Si. The surface-coated cutting tool according to any one of claims 1 to 3, wherein the surface-coated cutting tool is provided.
JP2009053277A 2009-03-06 2009-03-06 Surface coated cutting tool Withdrawn JP2010207918A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009053277A JP2010207918A (en) 2009-03-06 2009-03-06 Surface coated cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009053277A JP2010207918A (en) 2009-03-06 2009-03-06 Surface coated cutting tool

Publications (1)

Publication Number Publication Date
JP2010207918A true JP2010207918A (en) 2010-09-24

Family

ID=42968673

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009053277A Withdrawn JP2010207918A (en) 2009-03-06 2009-03-06 Surface coated cutting tool

Country Status (1)

Country Link
JP (1) JP2010207918A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886552A (en) * 2011-07-22 2013-01-23 三菱综合材料株式会社 Surface-coated drill having excellent lubricating property and abrasion resistance
WO2013165091A1 (en) * 2012-05-02 2013-11-07 한국야금 주식회사 Hard film for cutting tool
WO2013165092A1 (en) * 2012-05-02 2013-11-07 한국야금 주식회사 Hard coating for cutting tool
JP2014087858A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Cutting tool
CN114807834A (en) * 2021-01-18 2022-07-29 重庆理工大学 CrAlN/CrAlSiN/TaC composite coating with low friction coefficient and high wear resistance and preparation method thereof

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102886552A (en) * 2011-07-22 2013-01-23 三菱综合材料株式会社 Surface-coated drill having excellent lubricating property and abrasion resistance
CN102886552B (en) * 2011-07-22 2016-01-06 三菱综合材料株式会社 The surface coated drill of lubrication property and excellent in abrasion resistance
WO2013165091A1 (en) * 2012-05-02 2013-11-07 한국야금 주식회사 Hard film for cutting tool
WO2013165092A1 (en) * 2012-05-02 2013-11-07 한국야금 주식회사 Hard coating for cutting tool
KR101351843B1 (en) 2012-05-02 2014-01-16 한국야금 주식회사 Hard coating film for cutting tools
KR101351845B1 (en) 2012-05-02 2014-01-16 한국야금 주식회사 Hard coating film for cutting tools
CN104271792A (en) * 2012-05-02 2015-01-07 韩国冶金株式会社 Hard coating for cutting tool
CN104302805A (en) * 2012-05-02 2015-01-21 韩国冶金株式会社 Hard film for cutting tool
US9394601B2 (en) 2012-05-02 2016-07-19 Korloy Inc. Hard film for cutting tool
US9422627B2 (en) 2012-05-02 2016-08-23 Korloy Inc. Hard film for cutting tool
JP2014087858A (en) * 2012-10-29 2014-05-15 Mitsubishi Materials Corp Cutting tool
CN114807834A (en) * 2021-01-18 2022-07-29 重庆理工大学 CrAlN/CrAlSiN/TaC composite coating with low friction coefficient and high wear resistance and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5459507B2 (en) Surface coated cutting tool
JP5459506B2 (en) Surface coated cutting tool
JP2009039838A (en) Surface-coated cutting tool
JP2010207916A (en) Surface coated cutting tool
JP2011167793A (en) Surface coated cutting tool
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2011235393A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP2015110256A (en) Surface-coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP2017154200A (en) Surface-coated cutting tool
JP2010207917A (en) Surface coated cutting tool
JP2011167794A (en) Surface coated cutting tool
JP2011189472A (en) Surface coated cutting tool
JP5440346B2 (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP2012061555A (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
WO2020184352A1 (en) Surface-coated cutting tool
JP5488823B2 (en) Surface coated cutting tool
JP2010137335A (en) Surface-coated cutting tool
JP2008006574A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting of heat resistant alloy

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20120605