JP7406078B2 - coated cutting tools - Google Patents

coated cutting tools Download PDF

Info

Publication number
JP7406078B2
JP7406078B2 JP2019213826A JP2019213826A JP7406078B2 JP 7406078 B2 JP7406078 B2 JP 7406078B2 JP 2019213826 A JP2019213826 A JP 2019213826A JP 2019213826 A JP2019213826 A JP 2019213826A JP 7406078 B2 JP7406078 B2 JP 7406078B2
Authority
JP
Japan
Prior art keywords
layer
atomic
content
less
content ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019213826A
Other languages
Japanese (ja)
Other versions
JP2021084154A (en
Inventor
正和 伊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Moldino Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moldino Tool Engineering Ltd filed Critical Moldino Tool Engineering Ltd
Priority to JP2019213826A priority Critical patent/JP7406078B2/en
Priority to CN202080067356.0A priority patent/CN114531856A/en
Priority to US17/762,809 priority patent/US20220331882A1/en
Priority to PCT/JP2020/039604 priority patent/WO2021106440A1/en
Priority to EP20892552.9A priority patent/EP4066970B1/en
Priority to KR1020227009568A priority patent/KR20220050204A/en
Publication of JP2021084154A publication Critical patent/JP2021084154A/en
Application granted granted Critical
Publication of JP7406078B2 publication Critical patent/JP7406078B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、エンドミル等の被覆切削工具に関する。 The present invention relates to a coated cutting tool such as an end mill.

AlCrSiの窒化物又は炭窒化物は、耐熱性と耐摩耗性に優れる膜種であり、被覆切削工具に適用されている。本願出願人は、特許文献1~3において、Siの含有比率を高めて皮膜組織を微細化したAlCrSiの窒化物又は炭窒化物を提案している。特許文献1~3に開示されている被覆切削工具の中でも、上層にTiSiの窒化物又は炭窒化物を設けた被覆切削工具は、耐摩耗性が非常に優れており、高硬度鋼の切削加工において優れた耐久性を有する。 Nitride or carbonitride of AlCrSi is a film type having excellent heat resistance and wear resistance, and is applied to coated cutting tools. In Patent Documents 1 to 3, the applicant of the present application has proposed AlCrSi nitride or carbonitride with a finer film structure by increasing the Si content ratio. Among the coated cutting tools disclosed in Patent Documents 1 to 3, coated cutting tools in which TiSi nitride or carbonitride is provided in the upper layer have extremely excellent wear resistance and are suitable for cutting high-hardness steel. It has excellent durability.

国際公開第2015/141743号International Publication No. 2015/141743 国際公開第2014/156699号International Publication No. 2014/156699 特開2016-078131号公報Japanese Patent Application Publication No. 2016-078131

本発明者は、Si含有比率が高く皮膜組織を微細化したAlCrSiの窒化物又は炭窒化物の上にTiSiの窒化物又は炭窒化物を設けた被覆切削工具は、高硬度鋼の切削加工においてcBN工具と比べても同等以上の耐摩耗性を示す傾向にあることを確認した。但し、工具径が1mm未満、更には工具径が0.5mm未満の小径工具に適用した場合、耐久性に改善の余地があることを本発明者は確認した。 The present inventor has discovered that a coated cutting tool in which TiSi nitride or carbonitride is provided on AlCrSi nitride or carbonitride with a high Si content and a fine film structure is suitable for cutting high-hardness steel. It was confirmed that compared to cBN tools, they tend to exhibit wear resistance equal to or higher than that of cBN tools. However, the present inventors have confirmed that there is room for improvement in durability when applied to small diameter tools with a tool diameter of less than 1 mm, and even less than 0.5 mm.

本発明の1つの態様は、基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の直上に設けられるB層と、を有する被覆切削工具である。
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり、面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
本発明の一態様によれば、基材の表面に硬質皮膜を有する被覆切削工具において、前記硬質皮膜は、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、のみからなり、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であることを特徴とする被覆切削工具が提供される。
本発明の一態様によれば、基材の表面に硬質皮膜を有する被覆切削工具において、前記硬質皮膜は、中間皮膜と、前記中間皮膜の上に設けられる金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、からなり、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする被覆切削工具が提供される。
本発明の一態様によれば、基材の表面に硬質皮膜を有する被覆切削工具において、前記硬質皮膜は、中間皮膜と、前記中間皮膜の上に設けられる金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記B層の上に設けられる硬質皮膜の層と、からなり、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする被覆切削工具が提供される。
本発明の一態様によれば、基材の表面に硬質皮膜を有する被覆切削工具において、前記硬質皮膜は、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記B層の上に設けられる硬質皮膜の層と、からなり、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする被覆切削工具が提供される。
本発明の一態様によれば、基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記A層と前記B層の間に設けられ、前記A層と前記B層の組成を含有する積層皮膜と、を有する被覆切削工具において、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする被覆切削工具が提供される。
本発明の一態様によれば、基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記A層と前記B層の間に設けられ、前記A層および前記B層のいずれとも異なる組成を有する硬質皮膜と、を有する被覆切削工具において、前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする被覆切削工具が提供される。
One aspect of the present invention is that the surface of the base material has a total content of aluminum (Al) of 50 atomic % or more and a chromium (Cr) content of 20 atomic % or more in the total amount of metal elements (including semimetals). , a face-centered cubic lattice that is a nitride or carbonitride with a total content of aluminum (Al) and chromium (Cr) of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less This is a coated cutting tool having a structured layer A and a layer B provided directly above the layer A.
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. It is a nitride or carbonitride with a chromium (Cr) content of 1 atomic % or more and 10 atomic % or less, and has a face-centered cubic lattice structure, and the thickness of the layer A is greater than 1.0 μm, and the The thickness of layer B is greater than 0.5 μm .
According to one aspect of the present invention, in a coated cutting tool having a hard coating on the surface of a base material, the hard coating has an aluminum (Al) content ratio of 50 at % in the total amount of metal (including semimetal) elements. The content ratio of chromium (Cr) is 20 at% or more, the total content ratio of aluminum (Al) and chromium (Cr) is 85 at% or more, and the content ratio of silicon (Si) is 4 at% or more and 15 at%. The B layer consists of only the following nitride or carbonitride face-centered cubic lattice structure A layer and the B layer provided on the A layer, and the B layer is made of metal (including metalloid) elements. In total, the content ratio of Ti (titanium) is 70 at % or more and no more than 90 at %, the content ratio of silicon (Si) is 5 at % or more and no more than 20 at %, and the content ratio of chromium (Cr) is 1 at % or more and 10 at % or less. % or less of nitride or carbonitride and has a face-centered cubic lattice structure.
According to one aspect of the present invention, in a coated cutting tool having a hard coating on the surface of a base material, the hard coating includes an intermediate coating and a total amount of metal (including metalloid) elements provided on the intermediate coating. The content ratio of aluminum (Al) is 50 atomic % or more, the content ratio of chromium (Cr) is 20 atomic % or more, the total content ratio of aluminum (Al) and chromium (Cr) is 85 atomic % or more, silicon (Si ), the A layer has a face-centered cubic lattice structure and is a nitride or carbonitride with a content ratio of 4 atomic % to 15 atomic %, and a B layer provided on the A layer, and the B layer is a total amount of metal (including metalloid) elements in which the content ratio of Ti (titanium) is 70 atom % or more and 90 atom % or less, the content ratio of silicon (Si) is 5 atom % or more and 20 atom % or less, and chromium (Cr ) is a nitride or carbonitride with a content ratio of 1 atomic % or more and 10 atomic % or less and has a face-centered cubic lattice structure, the thickness of the layer A is greater than 1.0 μm, and the layer B is A coated cutting tool is provided, characterized in that the thickness is greater than 0.5 μm .
According to one aspect of the present invention, in a coated cutting tool having a hard coating on the surface of a base material, the hard coating includes an intermediate coating and a total amount of metal (including metalloid) elements provided on the intermediate coating. The content ratio of aluminum (Al) is 50 atomic % or more, the content ratio of chromium (Cr) is 20 atomic % or more, the total content ratio of aluminum (Al) and chromium (Cr) is 85 atomic % or more, silicon (Si ) with a face-centered cubic lattice structure of nitride or carbonitride with a content ratio of 4 at% to 15 at%, a B layer provided on the A layer, and a B layer provided on the B layer. A hard coating layer is provided, and the B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less of the total amount of metal (including semimetal) elements, and a silicon (Si) content. A nitride or carbonitride having a ratio of 5 at% or more and 20 at% or less and a chromium (Cr) content of 1 at% or more and 10 at% or less and having a face-centered cubic lattice structure, and the film of layer A. There is provided a coated cutting tool characterized in that the thickness is greater than 1.0 μm, and the thickness of the B layer is greater than 0.5 μm .
According to one aspect of the present invention, in a coated cutting tool having a hard coating on the surface of a base material, the hard coating has an aluminum (Al) content ratio of 50 at % in the total amount of metal (including semimetal) elements. The content ratio of chromium (Cr) is 20 at% or more, the total content ratio of aluminum (Al) and chromium (Cr) is 85 at% or more, and the content ratio of silicon (Si) is 4 at% or more and 15 at%. It consists of a layer A having a face-centered cubic lattice structure which is a nitride or carbonitride as described below, a layer B provided on the layer A, and a hard coating layer provided on the layer B, and The B layer has a total amount of metal (including metalloid) elements, with a Ti (titanium) content of 70 at% or more and 90 at% or less, a silicon (Si) content of 5 at% or more and 20 at% or less, and chromium. (Cr) is a nitride or carbonitride with a content ratio of 1 atomic % or more and 10 atomic % or less, and has a face-centered cubic lattice structure, the thickness of the A layer is greater than 1.0 μm, and the B layer A coated cutting tool is provided, characterized in that the coating thickness of the coating is greater than 0.5 μm .
According to one aspect of the present invention, the surface of the base material has a total content of aluminum (Al) of 50 atomic % or more and a chromium (Cr) content of 20 atomic % in the total amount of metal elements (including semimetals) The face-centered cubic nitride or carbonitride has a total content of aluminum (Al) and chromium (Cr) of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less. It has a layer A having a lattice structure, a layer B provided on the layer A, and a laminated film provided between the layer A and the layer B and containing the composition of the layer A and the layer B. In the coated cutting tool, the B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more in the total amount of metal (including metalloid) elements. Nitride or carbonitride with a chromium (Cr) content of 1 at% or more and 10 at% or less , having a face-centered cubic lattice structure, and the thickness of the A layer is less than 1.0 μm. There is also provided a coated cutting tool characterized in that the thickness of the B layer is greater than 0.5 μm .
According to one aspect of the present invention, the surface of the base material has a total content of aluminum (Al) of 50 atomic % or more and a chromium (Cr) content of 20 atomic % in the total amount of metal elements (including semimetals) The face-centered cubic nitride or carbonitride has a total content of aluminum (Al) and chromium (Cr) of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less. A layer having a lattice structure, a B layer provided on the A layer, and a hard coating provided between the A layer and the B layer and having a composition different from both the A layer and the B layer; In the coated cutting tool, the B layer has a Ti (titanium) content of 70 atomic % or more and a silicon (Si) content of 5 atomic % or less in the total amount of metal (including metalloid) elements. % or more and 20 atomic % or less, and a nitride or carbonitride having a chromium (Cr) content of 1 atomic % or more and 10 atomic % or less , and has a face-centered cubic lattice structure, and the thickness of the layer A is 1. There is provided a coated cutting tool characterized in that the thickness of the B layer is greater than 0 μm and the thickness of the B layer is greater than 0.5 μm .

A層の膜厚が1.0μmよりも大きく、B層の膜厚が0.5μmよりも大きいことが好ましい。 It is preferable that the thickness of layer A is greater than 1.0 μm and the thickness of layer B is greater than 0.5 μm.

本発明の1つの態様によれば、耐久性に優れる被覆切削工具が提供される。 According to one aspect of the present invention, a coated cutting tool with excellent durability is provided.

上記態様では、被覆切削工具の耐久性を改善することが可能となる。よって、例えば高硬度なプリハードン鋼の加工においても、金型製作のリードタイム短縮、金型の高精度化、調質による変寸の低減効果が期待され、産業上極めて有効である。 In the above aspect, it is possible to improve the durability of the coated cutting tool. Therefore, even in the processing of high-hardness pre-hardened steel, for example, it is expected to shorten the mold production lead time, improve the precision of the mold, and reduce dimensional changes due to heat refining, and is extremely effective industrially.

本発明者は、皮膜組織を微細化したAlCrSiの窒化物又は炭窒化物をベースとした被覆切削工具について、上層に設けるTiSiの窒化物又は炭窒化物にCrを微量添加することで耐久性が一層向上することを見出し、発明に到達した。以下、本発明の詳細について説明する。 The present inventor has discovered that the durability of coated cutting tools based on AlCrSi nitride or carbonitride with a finer coating structure can be improved by adding a small amount of Cr to the TiSi nitride or carbonitride provided in the upper layer. They discovered that there was a further improvement and came up with an invention. The details of the present invention will be explained below.

本発明の実施形態に係る被覆切削工具は、基材と、基材の表面に配置されたA層と、A層の上に設けられるB層とを有する。本実施形態の被覆切削工具には、必要に応じて、基材と硬質皮膜との間に配置される中間皮膜、A層とB層の間に配置される中間皮膜、B層の上層に配置される保護皮膜等の他の膜が付与されていてもよい。 A coated cutting tool according to an embodiment of the present invention includes a base material, an A layer disposed on the surface of the base material, and a B layer provided on the A layer. The coated cutting tool of this embodiment includes an intermediate coating disposed between the base material and the hard coating, an intermediate coating disposed between the A layer and the B layer, and an intermediate coating disposed on the upper layer of the B layer, as necessary. Other coatings such as protective coatings may also be applied.

A層は、AlとCrを主体とする窒化物又は炭窒化物である。AlとCrを主体とする窒化物又は炭窒化物は優れた耐摩耗性と耐熱性を有する膜種であり、被覆切削工具に適用することで耐久性を高めることができる。A層の構成材料は、より好ましくは耐熱性に優れる窒化物である。
Alは耐熱性を付与する元素である。硬質皮膜に対して、より優れた耐熱性を付与するために、A層は、金属(半金属を含む、以下同様。)元素の含有比率(原子%、以下同様。)でAlを50%以上にする。更には、A層のAlの含有比率を55%以上とすることが好ましい。一方、A層のAlの含有比率が大きくなり過ぎると、六方最密充填構造(hcp構造、以下同様。)が主体となり、被覆切削工具の耐久性が低下する傾向にある。そのため、A層のAlの含有比率を70%以下とすることが好ましい。
The A layer is a nitride or carbonitride mainly composed of Al and Cr. Nitride or carbonitride, which is mainly composed of Al and Cr, is a film type that has excellent wear resistance and heat resistance, and its durability can be improved by applying it to coated cutting tools. The constituent material of layer A is more preferably a nitride having excellent heat resistance.
Al is an element that imparts heat resistance. In order to provide better heat resistance to the hard coating, the A layer contains 50% or more of Al in terms of the content ratio (atomic %, the same applies hereinafter) of metal (including metalloid) elements. Make it. Furthermore, it is preferable that the Al content ratio of the A layer is 55% or more. On the other hand, if the content ratio of Al in the A layer becomes too large, the hexagonal close-packed structure (hcp structure, hereinafter the same) becomes the main structure, and the durability of the coated cutting tool tends to decrease. Therefore, it is preferable that the content ratio of Al in the A layer is 70% or less.

CrはA層の結晶構造を面心立方格子構造(fcc構造、以下同様。)とし、被覆切削工具としての耐摩耗性と耐熱性を向上させる元素である。A層のCrの含有比率が少なくなり過ぎると、耐摩耗性と耐熱性が低下するとともに、hcp構造が主体となり、被覆切削工具の耐久性が低下する傾向にある。そのため、A層のCrの含有比率は20%以上にする。更には、A層のCrの含有比率は30%以上であることが好ましい。一方、A層のCrの含有比率が大きくなり過ぎると、耐熱性が低下する傾向になる。そのため、A層のCrの含有比率を45%以下とすることが好ましい。
A層は、耐熱性および耐摩耗性を高いレベルで両立させるため、AlとCrの合計の含有比率を85%以上とする。更には、A層のAlとCrの合計の含有比率を90%以上とすることが好ましい。A層のAlとCrの合計の含有比率は、96%以下であることが好ましく、95%以下であることがより好ましい。
Cr is an element that makes the crystal structure of the A layer a face-centered cubic lattice structure (FCC structure, hereinafter the same) and improves the wear resistance and heat resistance of the coated cutting tool. If the content ratio of Cr in the A layer becomes too low, the wear resistance and heat resistance will decrease, and the hcp structure will become the main component, and the durability of the coated cutting tool will tend to decrease. Therefore, the content ratio of Cr in the A layer is set to 20% or more. Furthermore, the content ratio of Cr in the A layer is preferably 30% or more. On the other hand, if the content ratio of Cr in the A layer becomes too large, the heat resistance tends to decrease. Therefore, it is preferable that the content ratio of Cr in the A layer is 45% or less.
In order to achieve both high levels of heat resistance and wear resistance, the A layer has a total content ratio of Al and Cr of 85% or more. Furthermore, it is preferable that the total content ratio of Al and Cr in the A layer is 90% or more. The total content ratio of Al and Cr in the A layer is preferably 96% or less, more preferably 95% or less.

Siは、AlとCrを主体とする窒化物又は炭窒化物の組織を微細化するために重要な元素である。Siを含有していないAlCrNおよびSi含有比率が小さいAlCrSiNは柱状粒子が粗大となる。このような組織形態の硬質皮膜は皮膜破壊の起点となる結晶粒界が多くなるため、被覆切削工具の逃げ面摩耗が増大する傾向にある。一方、一定量のSiを含有したAlCrSiNは組織が微細化し、例えば、電子顕微鏡による断面観察(20,000倍)において明確な柱状粒子が観察され難くなる。このような組織形態の硬質皮膜は、破壊の起点となる柱状粒界が少なくなり、被覆切削工具の逃げ面摩耗を抑制することができる。但し、A層のSiの含有比率が大きくなると非晶質およびhcp構造が主体となり易くなり、被覆切削工具の耐久性が低下する。被覆切削工具の耐久性を低下させずに皮膜組織を十分に微細化するには、A層は、Siの含有比率を4%以上15%以下とすることが重要である。更には、A層のSiの含有比率は5%以上であることが好ましい。更には、A層のSiの含有比率は10%以下であることが好ましい。 Si is an important element for refining the structure of nitrides or carbonitrides mainly composed of Al and Cr. AlCrN that does not contain Si and AlCrSiN that has a small Si content ratio have coarse columnar particles. A hard coating with such a structure has many grain boundaries, which are the starting points for coating failure, and therefore tends to increase flank wear of coated cutting tools. On the other hand, AlCrSiN containing a certain amount of Si has a fine structure and, for example, clear columnar particles are difficult to be observed in cross-sectional observation using an electron microscope (20,000x magnification). A hard coating with such a structure has fewer columnar grain boundaries, which can be a starting point for fracture, and can suppress flank wear of a coated cutting tool. However, when the content ratio of Si in the A layer increases, the amorphous and hcp structures tend to become the main components, and the durability of the coated cutting tool decreases. In order to sufficiently refine the film structure without reducing the durability of the coated cutting tool, it is important that the Si content ratio of the A layer is 4% or more and 15% or less. Furthermore, the content ratio of Si in the A layer is preferably 5% or more. Furthermore, the content ratio of Si in the A layer is preferably 10% or less.

A層は、Al、Cr、Si以外の他の金属元素を含有してもよい。例えば、A層は、周期律表の4a族、5a族、6a族の元素およびB、Cu、Y、Ybから選択される1種又は2種以上の元素を含有することができる。これらの元素は、硬質皮膜の特性を改善するために、AlTiN系やAlCrN系の硬質皮膜に添加されている元素であり、含有比率が過多にならなければ被覆切削工具の耐久性を著しく低下させることはない。
但し、A層がAlとCrとSi以外の金属元素を多く含有すると、AlとCrを主体とする窒化物又は炭窒化物の基礎特性が損なわれ被覆切削工具の耐久性が低下する恐れがある。そのため、A層はAlとCrとSi以外の金属元素を含有する場合でも、それらの合計の含有比率を10%以下とすることが好ましい。更には、A層はAlとCrとSi以外の金属元素を含有する場合でも、それらの合計の含有比率を5%以下とすることが好ましい。
The A layer may contain metal elements other than Al, Cr, and Si. For example, the A layer can contain one or more elements selected from elements of Groups 4a, 5a, and 6a of the periodic table, and B, Cu, Y, and Yb. These elements are added to AlTiN-based and AlCrN-based hard coatings in order to improve the properties of the hard coating, and if the content ratio is not excessive, it will significantly reduce the durability of coated cutting tools. Never.
However, if the A layer contains a large amount of metal elements other than Al, Cr, and Si, the basic properties of the nitride or carbonitride, which is mainly composed of Al and Cr, may be impaired and the durability of the coated cutting tool may be reduced. . Therefore, even when the A layer contains metal elements other than Al, Cr, and Si, the total content ratio thereof is preferably 10% or less. Furthermore, even when the A layer contains metal elements other than Al, Cr, and Si, it is preferable that the total content ratio of these metal elements is 5% or less.

本実施形態の被覆切削工具は、基材とA層との間に、金属、窒化物、炭窒化物、炭化物等の中間皮膜を設けてもよい。中間皮膜を設けることで、基材と硬質皮膜との間の密着性がより改善される場合がある。また、基材の表面をメタルボンバード処理してナノレベルの改質相を形成してもよい。中間皮膜は単層でもよいし、多層であってもよい。メタルボンバード処理した後に中間皮膜を設けてもよい。 In the coated cutting tool of this embodiment, an intermediate film of metal, nitride, carbonitride, carbide, etc. may be provided between the base material and the A layer. By providing an intermediate film, the adhesion between the base material and the hard film may be further improved. Alternatively, a nano-level modified phase may be formed by metal bombarding the surface of the base material. The intermediate film may be a single layer or a multilayer. An intermediate film may be provided after metal bombardment.

本実施形態におけるA層は、fcc構造であることが重要である。本実施形態において、fcc構造であるとは、X線回折パターン又は透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルにおいて、fcc構造に起因するピーク強度が最大強度を示すものである。hcp構造に起因する回折強度が最大強度を示す硬質皮膜は脆弱であるため、被覆切削工具として耐久性が乏しくなる。特に、湿式加工においては、耐久性が低下する傾向にある。A層は、X線回折パターンにおいて、hcp構造に起因する回折強度を有しないことが好ましい。A層は、fcc構造の中でも(200)面又は(111)面のピーク強度が最大になる皮膜組織を有することで優れた耐久性を示す傾向にあり好ましい。 It is important that the A layer in this embodiment has an fcc structure. In this embodiment, the FCC structure means that the peak intensity due to the FCC structure exhibits the maximum intensity in the intensity profile determined from the X-ray diffraction pattern or the selected area diffraction pattern of a transmission electron microscope. Since the hard coating exhibiting the maximum diffraction intensity due to the hcp structure is brittle, it has poor durability as a coated cutting tool. In particular, in wet processing, durability tends to decrease. Preferably, layer A does not have a diffraction intensity due to the hcp structure in its X-ray diffraction pattern. The A layer tends to exhibit excellent durability because it has a film structure in which the peak strength of the (200) plane or (111) plane is maximum among the fcc structures, and is therefore preferable.

A層の内部には、Siの含有比率が高く、hcp構造のAlNがミクロ組織に存在し得る。硬質皮膜のミクロ組織に存在するhcp構造のAlN量の定量化には、硬質皮膜の加工断面を観察した際、透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルを用いることができる。具体的には、透過型電子顕微鏡の制限視野回折パターンの強度プロファイルにおいて、Ih×100/Isの関係を評価する。 Inside the A layer, AlN having a high Si content and an hcp structure may exist in the microstructure. To quantify the amount of AlN in the hcp structure present in the microstructure of the hard coating, it is possible to use the intensity profile determined from the selected area diffraction pattern of a transmission electron microscope when observing the processed cross section of the hard coating. Specifically, the relationship of Ih×100/Is is evaluated in the intensity profile of a selected area diffraction pattern of a transmission electron microscope.

Ih=hcp構造のAlNの(010)面に起因するピーク強度
Is=fcc構造の、AlNの(111)面、CrNの(111)面、AlNの(2
00)面、CrNの(200)面、AlNの(220)面、およびCrNの(220)面
に起因するピーク強度と、hcp構造の、AlNの(010)面、AlNの(011)面
、およびAlNの(110)面に起因するピーク強度と、の合計
Ih = peak intensity due to the (010) plane of AlN with hcp structure Is = (111) plane of AlN, (111) plane of CrN, (2
00) plane, the (200) plane of CrN, the (220) plane of AlN, and the peak intensity due to the (220) plane of CrN, and the (010) plane of AlN, the (011) plane of AlN, of the hcp structure. and the peak intensity due to the (110) plane of AlN, the sum of

上記の関係を評価することで、X線回折によりhcp構造のAlNに起因するピーク強
度が確認されない硬質皮膜において、ミクロレベルで含まれるhcp構造のAlNを定量
的に評価することができる。
A層は、ミクロ組織に存在するhcp構造のAlNをより少なくして、Ih×100/Is≦25の関係を満たしていることが好ましい。Ih×100/Is≦25の関係を満たすことで、被覆切削工具の耐久性がより優れたものとなる。更には、A層は、Ih×100/Is≦20の関係を満たしていることが好ましい。
By evaluating the above relationship, it is possible to quantitatively evaluate the hcp-structured AlN contained at the micro level in a hard coating in which no peak intensity due to hcp-structured AlN is confirmed by X-ray diffraction.
It is preferable that the A layer satisfies the relationship Ih×100/Is≦25 by reducing the amount of hcp-structured AlN present in the microstructure. By satisfying the relationship Ih×100/Is≦25, the coated cutting tool will have better durability. Furthermore, it is preferable that the A layer satisfies the relationship Ih×100/Is≦20.

続いてB層について説明する。
B層はA層の上に配置される硬質皮膜である。B層は、耐摩耗性と耐熱性に優れる膜種であるTiSiの窒化物又は炭窒化物をベースとする。B層には、更に微量のCrが添加されている。本発明者はTiSiNの耐摩耗性を更に高めるために、第三元素の添加を検討した。そして、Si含有比率を抑制したTiSiNに対して、微量のCrを添加することで硬度が高まり、被覆切削工具の耐摩耗性が向上することを確認した。耐摩耗性が向上したメカニズムの詳細は不明であるが、CrがTiNのTiの一部に置換することで、TiとCrの原子半径差により格子に歪が生じて硬化したためと推察される。
Next, layer B will be explained.
Layer B is a hard coating placed on layer A. The B layer is based on TiSi nitride or carbonitride, which is a film type with excellent wear resistance and heat resistance. A trace amount of Cr is further added to the B layer. The present inventor investigated the addition of a third element in order to further improve the wear resistance of TiSiN. It was also confirmed that adding a small amount of Cr to TiSiN with a suppressed Si content increases the hardness and improves the wear resistance of the coated cutting tool. Although the details of the mechanism by which the wear resistance improved is unknown, it is presumed that Cr replaces a portion of Ti in TiN, causing strain in the lattice due to the difference in atomic radius between Ti and Cr, resulting in hardening.

B層のTiの含有比率が少なすぎたり多すぎたりすると耐摩耗性と耐熱性が低下する。そのため、B層は金属(半金属を含む)元素の総量でTi(チタン)の含有比率が60%以上90%以下とする。
B層のSiの含有比率が少なすぎると、皮膜組織の微細化が不十分となり硬質皮膜の耐摩耗性が低下する。また、B層のSiの含有比率が多すぎると、皮膜組織が微細になり過ぎて非晶質に近くなるために、硬質皮膜の耐摩耗性が低下する。そのため、B層は金属(半金属を含む)元素の総量でSi(シリコン)の含有比率が5%以上20%以下とする。
If the content ratio of Ti in layer B is too low or too high, wear resistance and heat resistance will decrease. Therefore, the content ratio of Ti (titanium) in the total amount of metal (including metalloid) elements in the B layer is set to be 60% or more and 90% or less.
If the content ratio of Si in the B layer is too low, the microstructure of the coating will not be sufficiently refined and the wear resistance of the hard coating will decrease. Moreover, if the content ratio of Si in the B layer is too high, the coating structure becomes too fine and becomes close to amorphous, resulting in a decrease in the wear resistance of the hard coating. Therefore, the content ratio of Si (silicon) in the total amount of metal (including metalloid) elements in the B layer is set to be 5% or more and 20% or less.

B層のCrの含有比率が少なすぎると硬質皮膜の耐摩耗性の改善効果が十分でない。一方、B層のCrの含有比率が多すぎると脆弱なCrの濃化相が多く析出して硬質皮膜の耐摩耗性が低下する。そのため、B層は金属(半金属を含む)元素の総量でCr(クロム)の含有比率が1%以上10%以下とする。更には、B層のCrの含有比率は2%以上であることが好ましい。更には、B層のCrの含有比率は8%以下であることが好ましい。B層のCrの含有比率は6%以下であることがより好ましい。 If the content ratio of Cr in the B layer is too low, the effect of improving the abrasion resistance of the hard coating will not be sufficient. On the other hand, if the content ratio of Cr in the B layer is too high, a large amount of brittle Cr concentrated phase will precipitate, reducing the wear resistance of the hard coating. Therefore, the content ratio of Cr (chromium) in the total amount of metal (including metalloid) elements in the B layer is set to be 1% or more and 10% or less. Furthermore, the content ratio of Cr in the B layer is preferably 2% or more. Furthermore, the content ratio of Cr in the B layer is preferably 8% or less. The content ratio of Cr in the B layer is more preferably 6% or less.

本発明におけるB層は、fcc構造であることが重要である。本発明において、fcc構造であるとは、X線回折パターン又は透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルにおいて、fcc構造に起因するピーク強度が最大強度を示すものである。hcp構造に起因する回折強度が最大強度を示す硬質皮膜は脆弱であるため、被覆切削工具として耐久性が乏しくなる。特に、湿式加工においては、耐久性が低下する傾向にある。B層は、X線回折パターンにおいて、hcp構造に起因する回折強度を有しないことが好ましい。B層は、fcc構造の中でも(200)面のピーク強度が最大になる皮膜組織を有することで優れた耐久性を示す傾向にあり好ましい。 It is important that the B layer in the present invention has an fcc structure. In the present invention, an FCC structure means that the peak intensity due to the FCC structure exhibits the maximum intensity in an intensity profile determined from an X-ray diffraction pattern or a selected area diffraction pattern of a transmission electron microscope. Since the hard coating exhibiting the maximum diffraction intensity due to the hcp structure is brittle, it has poor durability as a coated cutting tool. In particular, in wet processing, durability tends to decrease. It is preferable that layer B has no diffraction intensity due to the hcp structure in its X-ray diffraction pattern. Layer B is preferable because it has a film structure in which the peak strength of the (200) plane is maximum among the fcc structures, and thus tends to exhibit excellent durability.

B層は、B層を構成する硬質皮膜の平均結晶粒径が5nm以上50nm以下であることが好ましい。硬質皮膜のミクロ組織が微細になり過ぎると、硬質皮膜の組織が非晶質に近くなるため、硬質皮膜の靭性及び硬度が低下する。硬質皮膜の結晶性を高めて脆弱な非晶質相を低減するには、硬質皮膜の平均結晶粒径を5nm以上とする。また、硬質皮膜のミクロ組織が粗大になり過ぎると、硬質皮膜の硬度が低下して被覆切削工具の耐久性が低下する傾向にある。硬質皮膜に高い硬度を付与して被覆切削工具の耐久性を高めるためには、硬質皮膜の平均結晶粒径を50nm以下とする。更には、硬質皮膜の平均結晶粒径は30nm以下であることが好ましい。
硬質皮膜の平均結晶粒径は、X線回折の半価幅から測定することができる。
In the B layer, it is preferable that the average crystal grain size of the hard coating constituting the B layer is 5 nm or more and 50 nm or less. If the microstructure of the hard coating becomes too fine, the toughness and hardness of the hard coating will decrease because the structure of the hard coating will become close to amorphous. In order to increase the crystallinity of the hard coating and reduce the brittle amorphous phase, the average crystal grain size of the hard coating is set to 5 nm or more. Furthermore, if the microstructure of the hard coating becomes too coarse, the hardness of the hard coating decreases and the durability of the coated cutting tool tends to decrease. In order to impart high hardness to the hard coating and improve the durability of the coated cutting tool, the average grain size of the hard coating is set to 50 nm or less. Furthermore, it is preferable that the average crystal grain size of the hard coating is 30 nm or less.
The average crystal grain size of the hard coating can be measured from the half width of X-ray diffraction.

B層はA層の直上に設けても良い。密着性をより高めるために、A層とB層の間には、A層とB層の組成を含有する積層皮膜を設けても良い。また、A層とB層の組成以外の硬質皮膜をA層とB層の間に設けても良い。B層の上には他の硬質皮膜を設けても良い。 The B layer may be provided directly above the A layer. In order to further improve adhesion, a laminated film containing the compositions of layers A and B may be provided between layer A and layer B. Further, a hard coating having a composition other than that of the A layer and the B layer may be provided between the A layer and the B layer. Another hard coating may be provided on the B layer.

本発明の実施形態に係る被覆切削工具は、特に、工具径が2mm以下である小径エンドミルに適用されることで、耐久性の向上効果がより一層効果的に発揮される点で好ましい。更には、工具径が1mm以下の小径エンドミルに本実施形態の被覆切削工具の構成を適用することが好ましい。 The coated cutting tool according to the embodiment of the present invention is particularly preferably applied to a small-diameter end mill having a tool diameter of 2 mm or less, since the effect of improving durability is more effectively exhibited. Furthermore, it is preferable to apply the structure of the coated cutting tool of this embodiment to a small-diameter end mill having a tool diameter of 1 mm or less.

本発明の実施形態に係る被覆切削工具では、A層がB層よりも厚い膜であることが好ましい。基材側に設けられるA層をB層よりも厚い膜とすることで被覆切削工具の耐久性が高まる。また、A層の膜厚は1.0μmよりも大きく、B層の膜厚は0.5μmよりも大きいことが好ましい。
A層およびB層のいずれについても、膜厚を大きくしすぎると剥離が生じやすくなり、被覆切削工具の耐久性が低下する。A層およびB層の膜厚の上限は、中間層および表面層を含む硬質皮膜の構成によって異なる。一例を挙げるならば、A層の膜厚の上限は4μm未満、B層の膜厚の上限は3.5μm未満、A層とB層の合計膜厚の上限は5μm以下とすることが好ましい。
In the coated cutting tool according to the embodiment of the present invention, it is preferable that the A layer is a thicker film than the B layer. By making layer A provided on the base material side thicker than layer B, the durability of the coated cutting tool is increased. Further, it is preferable that the thickness of the A layer is greater than 1.0 μm, and the thickness of the B layer is greater than 0.5 μm.
If the film thickness of both the A layer and the B layer is increased too much, peeling will easily occur and the durability of the coated cutting tool will decrease. The upper limit of the thickness of layer A and layer B varies depending on the structure of the hard coating including the intermediate layer and the surface layer. For example, the upper limit of the thickness of layer A is preferably less than 4 μm, the upper limit of the thickness of layer B is less than 3.5 μm, and the upper limit of the total thickness of layers A and B is preferably 5 μm or less.

(実施例1)
<成膜装置>
硬質皮膜の成膜には、アークイオンプレーティング方式の成膜装置を用いた。本装置は、複数のカソード(アーク蒸発源)、真空容器および基材回転機構を含む。
本装置は、3基のカソードC1、C2、C3を備える。C1は、ターゲット外周にコイル磁石を配備したカソードである。C2およびC3は、ターゲット背面および外周に永久磁石を配備したカソードである。C2およびC3は、ターゲットの垂直方向の磁束密度がターゲット中央付近で14mT以上である。C2とC3に装着されるターゲットは、試料によって組成を変化させた。
真空容器内は、内部を真空ポンプにより排気される。成膜ガスは供給ポートより真空容器内に導入される。真空容器内に設置した各基材にはバイアス電源が接続される。バイアス電源は、各基材に負圧のDCバイアス電圧を印加する。
基材回転機構は、プラネタリーとプラネタリー上のプレート状治具、プレート状治具上のパイプ状治具を有する。プラネタリーは毎分3回転の速さで回転する。プレート状治具、パイプ状治具は夫々自公転する。
(Example 1)
<Film forming equipment>
An arc ion plating type film forming apparatus was used to form the hard coating. The apparatus includes a plurality of cathodes (arc evaporation sources), a vacuum container, and a substrate rotation mechanism.
The device includes three cathodes C1, C2, and C3. C1 is a cathode with a coil magnet arranged around the target. C2 and C3 are cathodes provided with permanent magnets on the back surface and outer periphery of the target. In C2 and C3, the magnetic flux density in the vertical direction of the target is 14 mT or more near the center of the target. The composition of the targets attached to C2 and C3 was varied depending on the sample.
The inside of the vacuum container is evacuated by a vacuum pump. The film forming gas is introduced into the vacuum container from the supply port. A bias power source is connected to each base material installed in the vacuum container. The bias power supply applies a negative DC bias voltage to each base material.
The base material rotation mechanism includes a planetary, a plate-shaped jig on the planetary, and a pipe-shaped jig on the plate-shaped jig. The planetary rotates at a speed of 3 revolutions per minute. The plate-shaped jig and the pipe-shaped jig each rotate around their own axis.

<基材>
物性評価および切削試験用の基材として、組成がWC(bal.)-Co(8質量%)-Cr(0.5質量%)-VC(0.3質量%)、WC平均粒度0.6μm、硬度93.9HRA、からなる超硬合金製の2枚刃ボールエンドミルを準備した。なお、WCは炭化タングステンを、Coはコバルトを、Crはクロムを、VCは炭化バナジウムを、それぞれ表す。
<Base material>
As a base material for physical property evaluation and cutting test, the composition was WC (bal.) - Co (8% by mass) - Cr (0.5% by mass) - VC (0.3% by mass), WC average particle size 0.6 μm A two-flute ball end mill made of cemented carbide having a hardness of 93.9HRA was prepared. Note that WC represents tungsten carbide, Co represents cobalt, Cr represents chromium, and VC represents vanadium carbide.

<加熱および真空排気工程>
各基材をそれぞれ真空容器内のパイプ状冶具に固定し、成膜前プロセスを以下のように実施した。まず、真空容器内を8×10-3Pa以下に真空排気した。その後、真空容器内に設置したヒーターにより、基材温度が500℃になるまで加熱し、真空排気を行った。これにより、基材温度を500℃、真空容器内の圧力を8×10-3Pa以下とした。
<Heating and vacuum evacuation process>
Each base material was fixed to a pipe-shaped jig in a vacuum container, and a pre-film formation process was performed as follows. First, the inside of the vacuum container was evacuated to 8×10 −3 Pa or less. Thereafter, the substrate was heated with a heater installed in the vacuum container until the temperature of the substrate reached 500° C., and the container was evacuated. As a result, the substrate temperature was set to 500° C., and the pressure inside the vacuum container was set to 8×10 −3 Pa or less.

<Arボンバード工程>
その後、真空容器内にArガスを導入し、容器内圧を0.67Paとした。その後、フィラメント電極に35Aの電流を供給し、基材に-200Vの負圧のバイアス電圧を印加し、Arボンバードを4分間実施した。
<Ar bombardment process>
Thereafter, Ar gas was introduced into the vacuum container, and the internal pressure of the container was set to 0.67 Pa. Thereafter, a current of 35 A was supplied to the filament electrode, a negative bias voltage of -200 V was applied to the base material, and Ar bombardment was performed for 4 minutes.

<Tiボンバード工程>
その後、真空容器内の圧力が8×10-3Pa以下になるように真空排気した。続いて、基材にバイアス電圧を印加して、Tiターゲットが装着されたC1に150Aのアーク電流を供給してTiボンバード処理を実施した。Tiボンバード処理により、基材の表面に、WとTiを含有する炭化物を1nm以上10nm以下で形成した。Tiボンバード処理により形成される炭化物の組成は、金属元素の含有比率でWが60原子%以上90原子%以下、Tiが10原子%以上40原子%以下であった。
<Ti bombardment process>
Thereafter, the vacuum vessel was evacuated so that the pressure inside the vacuum vessel became 8×10 −3 Pa or less. Subsequently, a bias voltage was applied to the base material, and an arc current of 150 A was supplied to C1 to which the Ti target was mounted, thereby carrying out Ti bombardment. Carbide containing W and Ti was formed on the surface of the base material with a thickness of 1 nm or more and 10 nm or less by Ti bombardment. The composition of the carbide formed by the Ti bombardment treatment was such that the content ratio of metal elements was 60 atomic % or more and 90 atomic % or less of W, and 10 atomic % or more and 40 atomic % or less of Ti.

<成膜工程>
Tiボンバード後、直ちにC1への電力供給を中断した。そして、真空容器内のガスを窒素に置き換え、真空容器内の圧力を5Pa、基材設定温度を520℃とした。AlCrSiターゲットが装着されたC2に150Aの電力を供給し、基材に印加する負圧のバイアス電圧を120V、カソード電圧を30VとしてA層を被覆した。
A層の被覆後、B層を被覆した。B層の被覆では、C3のターゲットして、TiSiCrターゲット、TiSiWターゲット、TiSiTaターゲット、またはTiSiターゲットを試料に応じて用いた。上記ターゲットが装着されたC3に150Aの電力を供給し、基材に印加する負圧のバイアス電圧を50V、カソード電圧を25VとしてB層を被覆した。その後、略250℃以下に基材を冷却して真空容器から取り出した。そして、被覆後の各試料はブラスト処理による刃先の研磨処理を行った。
<Film formation process>
Immediately after Ti bombardment, power supply to C1 was interrupted. Then, the gas in the vacuum container was replaced with nitrogen, the pressure in the vacuum container was set to 5 Pa, and the substrate temperature was set to 520°C. A power of 150 A was supplied to C2 equipped with the AlCrSi target, and the A layer was coated with a negative bias voltage of 120 V and a cathode voltage of 30 V applied to the base material.
After coating layer A, layer B was coated. In coating the B layer, a TiSiCr target, a TiSiW target, a TiSiTa target, or a TiSi target was used as the C3 target depending on the sample. A power of 150 A was supplied to C3 equipped with the target, and the B layer was coated with a negative bias voltage of 50 V and a cathode voltage of 25 V applied to the base material. Thereafter, the base material was cooled to approximately 250° C. or lower and taken out from the vacuum container. After coating, each sample was subjected to polishing of the cutting edge by blasting.

硬質皮膜の組成は、波長分散型電子線プローブ微小分析(WDS-EPMA)により測定した。測定条件は、加速電圧10kV、試料電流5×10-8A、取り込み時間10秒、分析領域直径1μm、分析深さが略1μmで5点測定してその平均値から求めた。 The composition of the hard coating was measured by wavelength dispersive electron probe microanalysis (WDS-EPMA). The measurement conditions were an accelerating voltage of 10 kV, a sample current of 5×10 −8 A, an acquisition time of 10 seconds, an analysis region diameter of 1 μm, and an analysis depth of approximately 1 μm. Measurements were made at five points and the average value was determined.

X線回折装置(スペクトリス株式会社製 EMPYREAN 垂直型ゴニオメーター)を用いて結晶構造を確認した。測定条件は、管電圧45kV、管電流40mA、X線源Cukα(λ=0.15418nm)、X線入射角3度、発散スリット1/2°、コリメーター0.27mm、2θ=20~70度とした。 The crystal structure was confirmed using an X-ray diffraction device (EMPYREAN vertical goniometer manufactured by Spectris Co., Ltd.). The measurement conditions were: tube voltage 45 kV, tube current 40 mA, X-ray source Cukα (λ = 0.15418 nm), X-ray incident angle 3 degrees, divergence slit 1/2 degrees, collimator 0.27 mm, 2θ = 20 to 70 degrees. And so.

作製した各試料の被覆切削工具を用いて切削加工を行い、切削加工後の母材露出面積から被覆切削工具の耐久性を評価した。切削条件を以下に示す。
(条件)
・工具:2枚刃超硬ボールエンドミル
・型番:EPDBEH2003-0.5-TH3 ボール半径0.15mm
・切削方法:ポケット加工(1mm×3mm×深さ0.4mm)
・被削材:ASP23(64HRC)
・切り込み:軸方向、0.013mm、径方向、0.013mm
・切削速度:37.7m/min
・一刃送り量:0.0045mm/刃
・切削油:ミストブロー(油性)
・加工個数:7ポケット
・評価方法:母材露出面積は、切削加工後、走査型電子顕微鏡を用いて倍率600倍で観察し、工具の超硬基材が露出した面積を算出した。母材露出面積の算出には市販の画像解析ソフトを用いた。評価結果を表1に纏める。
Cutting was performed using the coated cutting tool of each sample prepared, and the durability of the coated cutting tool was evaluated from the exposed area of the base material after cutting. The cutting conditions are shown below.
(conditions)
・Tool: 2-flute carbide ball end mill ・Model number: EPDBEH2003-0.5-TH3 Ball radius 0.15mm
・Cutting method: Pocket processing (1mm x 3mm x depth 0.4mm)
・Work material: ASP23 (64HRC)
・Cut: Axial direction, 0.013mm, radial direction, 0.013mm
・Cutting speed: 37.7m/min
・Single blade feed rate: 0.0045mm/blade ・Cutting oil: Mist blow (oil-based)
- Number of pieces processed: 7 pockets - Evaluation method: After cutting, the exposed area of the base material was observed using a scanning electron microscope at a magnification of 600 times, and the area where the carbide base material of the tool was exposed was calculated. Commercially available image analysis software was used to calculate the exposed area of the base material. The evaluation results are summarized in Table 1.

Figure 0007406078000001
Figure 0007406078000001

本発明例および比較例の何れもA層とB層はXRD回折においてfcc構造の単相であった。また、A層は、特許第6410797号と同様の方法で、A層の制限視野回折パターンの強度プロファイルを評価した場合、A層のIh×100/Isの値は20以下であった。また、B層はfcc(200)面のピーク強度が最大であり、平均結晶粒径は5nm以上50nm以下であった。
Siを一定量含有して皮膜組織を微細化したA層の上層にB層に微量のCrを添加した本発明例1~3はいずれも母材の露出面積が小さく優れた耐久性を示した。特に、A層とB層の総膜厚が厚い本発明例3は母材露出面積が小さくなり、より優れた耐久性を示した。
一方、比較例1のB層は微量のCrを添加しているがSiの含有量が多いため、本発明例に比べて母材露出面積が大きくなった。
比較例2、3はCrに変えてW(タングステン)とTa(タンタル)を微量添加したが、B層の硬化が十分でなく、本発明例に比べて母材露出面積が大きくなった。
比較例4は、B層にCrを微量添加していないため、本発明例に比べて母材露出面積が大きくなった。
比較例5は、A層のSi含有比率が小さいため皮膜組織の柱状粒子が大きく、本発明例1と同じB層を設けても母材露出面積が大きくなった。
比較例6は、B層のCrの含有比率が大きいためCrの濃化相が粗大となり、母材露出面積が大きくなった。
In both the inventive example and the comparative example, the A layer and the B layer had a single phase with an fcc structure in XRD diffraction. Further, when the intensity profile of the selected area diffraction pattern of layer A was evaluated using the same method as in Patent No. 6410797, the value of Ih×100/Is of layer A was 20 or less. Further, in the B layer, the fcc (200) plane had the highest peak intensity, and the average crystal grain size was 5 nm or more and 50 nm or less.
Examples 1 to 3 of the present invention, in which a trace amount of Cr was added to layer B on top of layer A, which contained a certain amount of Si and had a fine film structure, exhibited excellent durability with a small exposed area of the base material. . In particular, inventive example 3, in which the total thickness of the A layer and the B layer was thick, had a smaller exposed area of the base material and exhibited better durability.
On the other hand, although the B layer of Comparative Example 1 has a small amount of Cr added, it has a large Si content, so the exposed area of the base material was larger than that of the present invention example.
In Comparative Examples 2 and 3, small amounts of W (tungsten) and Ta (tantalum) were added instead of Cr, but the B layer was not sufficiently hardened, and the exposed area of the base material was larger than in the inventive example.
In Comparative Example 4, since a trace amount of Cr was not added to the B layer, the exposed area of the base material was larger than that of the inventive example.
In Comparative Example 5, the columnar particles in the film structure were large because the Si content ratio of the A layer was small, and even though the same B layer as in Inventive Example 1 was provided, the exposed area of the base material was large.
In Comparative Example 6, since the Cr content ratio of the B layer was high, the Cr concentrated phase became coarse and the exposed area of the base material became large.

Claims (8)

基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の直上に設けられるB層と、を有する被覆切削工具において、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
The surface of the base material has a total content of aluminum (Al) of 50 at % or more, a content ratio of chromium (Cr) of 20 at % or more, and aluminum (Al) and chromium ( A layer having a face-centered cubic lattice structure, which is a nitride or carbonitride with a total content ratio of Cr) of 85 atomic % or more and a silicon (Si) content of 4 atomic % or more and 15 atomic % or less; A coated cutting tool having a B layer provided directly above the layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% to 10 at% and a face-centered cubic lattice structure ,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
基材の表面に硬質皮膜を有する被覆切削工具において、
前記硬質皮膜は、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、のみからなり、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であることを特徴とする被覆切削工具。
In a coated cutting tool that has a hard coating on the surface of the base material,
The hard coating has a total content ratio of aluminum (Al) of 50 atomic % or more, a content ratio of chromium (Cr) of 20 atomic % or more, and a combination of aluminum (Al) and chromium (Cr) in the total amount of metal elements (including metalloids). ) A layer with a face-centered cubic lattice structure, which is a nitride or carbonitride with a total content ratio of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less, and the A layer Consisting only of a B layer provided on top of the
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A coated cutting tool characterized in that it is a nitride or carbonitride with a chromium (Cr) content of 1 atomic % or more and 10 atomic % or less, and has a face-centered cubic lattice structure.
基材の表面に硬質皮膜を有する被覆切削工具において、
前記硬質皮膜は、中間皮膜と、前記中間皮膜の上に設けられる金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、からなり、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
In a coated cutting tool that has a hard coating on the surface of the base material,
The hard coating has an aluminum (Al) content ratio of 50 atomic % or more and a chromium (Cr) content ratio of 20 atomic % or more in the total amount of the intermediate coating and metal (including metalloid) elements provided on the intermediate coating. A surface that is a nitride or carbonitride with a total content of aluminum (Al) and chromium (Cr) of 85 atom % or more, and a silicon (Si) content of 4 atom % or more and 15 atom % or less Consisting of an A layer with a centered cubic lattice structure and a B layer provided on the A layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% to 10 at% and a face-centered cubic lattice structure ,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
基材の表面に硬質皮膜を有する被覆切削工具において、
前記硬質皮膜は、中間皮膜と、前記中間皮膜の上に設けられる金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記B層の上に設けられる硬質皮膜の層と、からなり、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
In a coated cutting tool that has a hard coating on the surface of the base material,
The hard coating has an aluminum (Al) content ratio of 50 atomic % or more and a chromium (Cr) content ratio of 20 atomic % or more in the total amount of the intermediate coating and metal (including metalloid) elements provided on the intermediate coating. A surface that is a nitride or carbonitride with a total content of aluminum (Al) and chromium (Cr) of 85 atom % or more, and a silicon (Si) content of 4 atom % or more and 15 atom % or less Consisting of an A layer with a centered cubic lattice structure, a B layer provided on the A layer, and a hard coating layer provided on the B layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% to 10 at% and a face-centered cubic lattice structure ,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
基材の表面に硬質皮膜を有する被覆切削工具において、
前記硬質皮膜は、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記B層の上に設けられる硬質皮膜の層と、からなり、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
In a coated cutting tool that has a hard coating on the surface of the base material,
The hard coating has a total content ratio of aluminum (Al) of 50 atomic % or more, a content ratio of chromium (Cr) of 20 atomic % or more, and a combination of aluminum (Al) and chromium (Cr) in the total amount of metal elements (including metalloids). ) A layer with a face-centered cubic lattice structure, which is a nitride or carbonitride with a total content ratio of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less, and the A layer consisting of a B layer provided on the B layer and a hard coating layer provided on the B layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% to 10 at% and a face-centered cubic lattice structure ,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記A層と前記B層の間に設けられ、前記A層と前記B層の組成を含有する積層皮膜と、を有する被覆切削工具において、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
The surface of the base material has a total content of aluminum (Al) of 50 at % or more, a content ratio of chromium (Cr) of 20 at % or more, and aluminum (Al) and chromium ( A layer having a face-centered cubic lattice structure, which is a nitride or carbonitride with a total content ratio of Cr) of 85 atomic % or more and a silicon (Si) content of 4 atomic % or more and 15 atomic % or less; A coated cutting tool having a B layer provided on the layer, and a laminated film provided between the A layer and the B layer and containing the composition of the A layer and the B layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% to 10 at% and a face-centered cubic lattice structure ,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
基材の表面に、金属(半金属を含む)元素の総量でアルミニウム(Al)の含有比率が50原子%以上、クロム(Cr)の含有比率が20原子%以上、アルミニウム(Al)とクロム(Cr)の合計の含有比率が85原子%以上、ケイ素(Si)の含有比率が4原子%以上15原子%以下の窒化物又は炭窒化物である面心立方格子構造のA層と、前記A層の上に設けられるB層と、前記A層と前記B層の間に設けられ、前記A層および前記B層のいずれとも異なる組成を有する硬質皮膜と、を有する被覆切削工具において、
前記B層は、金属(半金属を含む)元素の総量でTi(チタン)の含有比率が70原子%以上90原子%以下、シリコン(Si)の含有比率が5原子%以上20原子%以下、クロム(Cr)の含有比率が1原子%以上10原子%以下の窒化物又は炭窒化物であり面心立方格子構造であり、
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きい
ことを特徴とする被覆切削工具。
On the surface of the base material, the total amount of metal (including metalloid) elements is 50 atomic % or more of aluminum (Al), 20 atomic % or more of chromium (Cr), and aluminum (Al) and chromium ( A layer having a face-centered cubic lattice structure, which is a nitride or carbonitride with a total content ratio of Cr) of 85 at% or more and a silicon (Si) content of 4 at% or more and 15 at% or less; A coated cutting tool having a B layer provided on the layer, and a hard coating provided between the A layer and the B layer and having a composition different from both the A layer and the B layer,
The B layer has a Ti (titanium) content of 70 atomic % or more and 90 atomic % or less, and a silicon (Si) content of 5 atomic % or more and 20 atomic % or less in the total amount of metal (including metalloid) elements. A nitride or carbonitride with a chromium (Cr) content ratio of 1 at% or more and 10 at% or less and a face-centered cubic lattice structure,
The thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
A coated cutting tool characterized by:
前記A層の膜厚は1.0μmよりも大きく、前記B層の膜厚は0.5μmよりも大きいことを特徴とする請求項に記載の被覆切削工具。 The coated cutting tool according to claim 2 , wherein the thickness of the layer A is greater than 1.0 μm, and the thickness of the layer B is greater than 0.5 μm.
JP2019213826A 2019-11-27 2019-11-27 coated cutting tools Active JP7406078B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019213826A JP7406078B2 (en) 2019-11-27 2019-11-27 coated cutting tools
CN202080067356.0A CN114531856A (en) 2019-11-27 2020-10-21 Coated cutting tool
US17/762,809 US20220331882A1 (en) 2019-11-27 2020-10-21 Coated cutting tool
PCT/JP2020/039604 WO2021106440A1 (en) 2019-11-27 2020-10-21 Coated cutting tool
EP20892552.9A EP4066970B1 (en) 2019-11-27 2020-10-21 Coated cutting tool
KR1020227009568A KR20220050204A (en) 2019-11-27 2020-10-21 clad cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019213826A JP7406078B2 (en) 2019-11-27 2019-11-27 coated cutting tools

Publications (2)

Publication Number Publication Date
JP2021084154A JP2021084154A (en) 2021-06-03
JP7406078B2 true JP7406078B2 (en) 2023-12-27

Family

ID=76086649

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019213826A Active JP7406078B2 (en) 2019-11-27 2019-11-27 coated cutting tools

Country Status (1)

Country Link
JP (1) JP7406078B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093085A (en) 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
JP2011189472A (en) 2010-03-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool
JP2011189471A (en) 2010-03-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool
WO2017037955A1 (en) 2015-09-04 2017-03-09 オーエスジー株式会社 Hard coating and hard coating-covered member

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011093085A (en) 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
JP2011189472A (en) 2010-03-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool
JP2011189471A (en) 2010-03-16 2011-09-29 Mitsubishi Materials Corp Surface coated cutting tool
WO2017037955A1 (en) 2015-09-04 2017-03-09 オーエスジー株式会社 Hard coating and hard coating-covered member

Also Published As

Publication number Publication date
JP2021084154A (en) 2021-06-03

Similar Documents

Publication Publication Date Title
RU2602577C2 (en) Nano-layered coating for high-quality tools
JP6410797B2 (en) Coated cutting tool and manufacturing method thereof
WO2017170536A1 (en) Coated cutting tool
JP6525310B2 (en) Coated tools
WO2019098363A1 (en) Coated cutting tool
EP4292735A1 (en) Coated tool
WO2019035220A1 (en) Coated cutting tool
JP2023179643A (en) Coated tool
JP5700171B2 (en) Coated cutting tool
WO2015076220A1 (en) Hard coating film and target for forming hard coating film
CN113613817B (en) Coated cutting tool
JP2016078131A (en) Coated cutting tool
WO2022202729A1 (en) Coated cutting tool
JP7406078B2 (en) coated cutting tools
JP7406079B2 (en) coated cutting tools
JPWO2019035219A1 (en) Coated cutting tools
WO2021106440A1 (en) Coated cutting tool
JP7410383B2 (en) coated cutting tools
WO2023181927A1 (en) Coated member
JP2019171495A (en) Surface-coated cutting tool excellent in thermal crack resistance and wear resistance
JP7164828B2 (en) coated cutting tools
CN112262007B (en) Cutting tool
US11524339B2 (en) Cutting tool
WO2023022230A1 (en) Coated tool
JP2024027836A (en) Coated tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230314

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230725

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231127

R150 Certificate of patent or registration of utility model

Ref document number: 7406078

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150