JP3991262B2 - A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting - Google Patents

A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting Download PDF

Info

Publication number
JP3991262B2
JP3991262B2 JP2002060208A JP2002060208A JP3991262B2 JP 3991262 B2 JP3991262 B2 JP 3991262B2 JP 2002060208 A JP2002060208 A JP 2002060208A JP 2002060208 A JP2002060208 A JP 2002060208A JP 3991262 B2 JP3991262 B2 JP 3991262B2
Authority
JP
Japan
Prior art keywords
content point
highest
lowest
cutting
hard coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2002060208A
Other languages
Japanese (ja)
Other versions
JP2003326402A (en
Inventor
暁裕 近藤
和則 佐藤
裕介 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002060208A priority Critical patent/JP3991262B2/en
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to AT03701078T priority patent/ATE502710T1/en
Priority to DE60336453T priority patent/DE60336453D1/en
Priority to KR1020047011137A priority patent/KR100707755B1/en
Priority to US10/501,805 priority patent/US7094479B2/en
Priority to PCT/JP2003/000220 priority patent/WO2003061884A1/en
Priority to EP03701078A priority patent/EP1470879B1/en
Priority to CNB038066130A priority patent/CN100408237C/en
Publication of JP2003326402A publication Critical patent/JP2003326402A/en
Application granted granted Critical
Publication of JP3991262B2 publication Critical patent/JP3991262B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Description

【0001】
【発明の属する技術分野】
この発明は、すぐれた高温特性を有し、したがって特に各種の鋼や鋳鉄などの高熱発生を伴う高速切削加工で、すぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法に関するものである。
【0002】
【従来の技術】
一般に、切削工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。
【0003】
さらに、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置内に炭化タングステン(以下、WCで示す)基超硬合金や炭窒化チタン(以下、TiCNで示す)基サーメットからなる切削工具を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するAl−Ti合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記切削工具には、例えば−100Vのバイアス電圧を印加した条件で、前記切削工具の表面に、
組成式:(AlZTi1-Z )N(ただし、原子比で、Zは0.4〜0.65を示す)を満足するAlとTiの複合窒化物[以下、(Al,Ti)Nで示す]層からなる硬質被覆層を1〜15μmの平均層厚で形成する方法が知られている。
【0004】
【発明が解決しようとする課題】
近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来切削工具においては、これを通常の切削加工条件で用いた場合には問題はないが、これを高い発熱を伴う高速切削条件で用いた場合には、これを構成する硬質被覆層の摩耗が著しく促進されるようになることから、比較的短時間で使用寿命に至るのが現状である。
【0005】
【課題を解決するための手段】
そこで、本発明者等は、上述のような観点から、特に上記の従来切削工具の硬質被覆層である(Al,Ti)N層に着目し、高速切削加工ですぐれた耐摩耗性を発揮する(Al,Ti)N層を開発すべく、研究を行った結果、
(a)上記の図2に示されるアークイオンプレーティング装置を用いて形成された従来硬質被覆層である(Al,Ti)N層は、層厚全体に亘って均質な高温硬さと耐熱性、および靭性を有するが、例えば図1(a)に概略平面図で、同(b)に概略正面図で示される構造のアークイオンプレーティング装置、すなわち装置中央部に切削工具装着用回転テーブルを設け、前記回転テーブルを挟んで、一方側に相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金、他方側に相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金をカソード電極(蒸発源)として対向配置したアークイオンプレーティング装置を用い、この装置の前記回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に前記切削工具を装着し、この状態で装置内の反応雰囲気を窒素ガス雰囲気として前記回転テーブルを回転させると共に、蒸着形成される硬質被覆層の層厚均一化を図る目的で切削工具自体も自転させながら、前記の両側のカソード電極(蒸発源)とアノード電極との間にアーク放電を発生させる条件で(Al,Ti)N層を形成すると、前記切削工具の表面には、回転テーブル上の中心軸から半径方向に離れた位置に配置された前記切削工具が上記の一方側の相対的にAl含有量の高い(Ti含有量の低い)Al−Ti合金のカソード電極(蒸発源)に最も接近した時点で層中にAl最高含有点が形成され、また前記切削工具が上記の他方側の相対的にTi含有量の高い(Al含有量の低い)Ti−Al合金のカソード電極に最も接近した時点で層中にAl最低含有点が形成されることから、上記回転テーブルの回転によって層中には厚さ方向にそって前記Al最高含有点とAl最低含有点が所定間隔をもって交互に繰り返し現れると共に、前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造をもった(Al,Ti)N層が形成されるようになること。
【0006】
(b)上記(a)の繰り返し連続変化成分濃度分布構造の(Al,Ti)N層おいて、例えば対向配置のカソード電極(蒸発源)のそれぞれの合金組成を調製すると共に、切削工具が装着されている回転テーブルの回転速度を制御して、
上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.70〜0.95を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.40〜0.65を示す)、
をそれぞれ満足し、
かつ隣り合う上記Al最高含有点とAl最低含有点の厚さ方向の間隔が0.01〜0.1μm、
となるようにすると、上記Al最高含有点部分では、上記の従来(Al,Ti)N層に比してAl含有量が相対的に高くなることから、より一段とすぐれた高温硬さと耐熱性(高温特性)を示し、一方上記Al最低含有点部分では、前記Al最高含有点部分に比してAl含有量が低く、Ti含有量の高いものとなるので、高靭性が確保され、かつこれらAl最高含有点とAl最低含有点の間隔をきわめて小さくしたことから、層全体の特性として高靭性を保持した状態ですぐれた高温特性を具備するようになり、したがって、かかる構成の(Al,Ti)N層を硬質被覆層として形成してなる切削工具は、高い発熱を伴う鋼や鋳鉄などの高速切削加工ですぐれた耐摩耗性を発揮するようになること。
以上(a)および(b)に示される研究結果を得たのである。
【0007】
この発明は、上記の研究結果に基づいてなされたものであって、アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置にWC基超硬合金および/またはTiCN基サーメットからなる切削工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として、上記回転テーブルを挟んで対向配置したAl最高含有点(Ti最低含有点)形成用Al−Ti合金のカソード電極およびAl最低含有点(Ti最高含有点)形成用Ti−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
もって、上記回転テーブル上で自転しながら回転する上記切削工具の表面に、厚さ方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.70〜0.95を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.40〜0.65を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
(Al,Ti)N層からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着することからなる、高速切削加工ですぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法に特徴を有するものである。
【0008】
つぎに、この発明の硬質被覆層形成方法において、形成される硬質被覆層の構成を上記の通りに限定した理由を説明する。
(a)Al最高含有点の組成
硬質被覆層を構成する(Al,Ti)N層におけるAlは、高靭性を有するTiN層の高温硬さおよび耐熱性(高温特性)を向上させる目的で含有するものであり、したがってAl最高含有点でのAlの割合(X)がTiとの合量に占める割合(原子比)で0.70未満では所望のすぐれた高温特性を確保することができず、一方その割合が同じく0.95を越えると、Tiの割合が低くなり過ぎて、急激に靭性が低下し、切刃にチッピング(微小欠け)などが発生し易くなることから、その割合を0.70〜0.95と定めた。
【0009】
(b)Al最低含有点の組成
上記の通りAl最高含有点は高温特性のすぐれたものであるが、反面靭性の劣るものであるため、このAl最高含有点の靭性不足を補う目的で、Ti含有割合が高く、これによって高靭性を有するようになるAl最低含有点を厚さ方向に交互に介在させるものであり、したがってAlの割合(Y)がTiとの合量に占める割合(原子比)で0.65を越えると、所望のすぐれた靭性を確保することができず、一方その割合が同じく0.40未満になると、相対的にTiの割合が多くなり過ぎて、Al最低含有点に所望の高温特性を具備せしめることができなくなることから、その割合を0.40〜0.65と定めた。
【0010】
(c)Al最高含有点とAl最低含有点間の間隔
その間隔が0.01μm未満ではそれぞれの点を上記の組成で明確に形成することが困難であり、この結果層に所望の高温特性と靭性を確保することができなくなり、またその間隔が0.1μmを越えるとそれぞれの点がもつ欠点、すなわちAl最高含有点であれば靭性不足、Al最低含有点であれば高温特性不足が層内に局部的に現れ、これが原因で切刃にチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、その間隔を0.01〜0.1μmと定めた。
【0011】
(d)硬質被覆層の全体平均層厚
その層厚が1μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃にチッピングが発生し易くなることから、その平均層厚を1〜15μmと定めた。
【0012】
【発明の実施の形態】
つぎに、この発明の硬質被覆層形成方法を実施例により具体的に説明する。
まず、原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の切削工具A−1〜A−10を製造した。
【0013】
さらに、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(重量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、これらの圧粉体のうち、切削工具B−1〜B−6用の圧粉体については、2kPaの窒素雰囲気中、温度:1500℃に1時間保持後炉冷の条件で焼結し、また、切削工具B−7〜B−9用の圧粉体については、
室温から1300℃までを1Paの真空雰囲気、
1300℃から1350℃までを1kPaの窒素雰囲気、
1350℃から1400℃までを1Paの真空雰囲気、
1400℃から1450℃までを2kPaの窒素雰囲気、
そして1450℃から1500℃までを1Paの真空雰囲気、
として焼結温度である1500℃まで昇温し、前記焼結温度で3kPaの窒素雰囲気として1時間保持した後炉冷の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN系サーメット製の切削工具B−1〜B−9を製造した。
この結果得られた切削工具B−1〜B−9について、その縦断面を走査型電子顕微鏡を用いて観察したところ、切削工具B−1〜B−6は、いずれも表面から内部まで均質な(Ti)と(Zr、Ta、Nb、Mo、およびWのうちの1種以上)との複合炭窒化物からなる硬質相と、CoおよびNiを主成分とする結合相の2相組織を示し、一方切削工具B−7〜B−9は、内部は前記2相組織と同じ組織を示したが、表面部に表面から1〜3μmの深さ位置に亘って前記結合相が存在しない層、すなわち前記複合炭窒化物だけからなる表面層の存在が観察された。
【0014】
ついで、上記の切削工具A−1〜A−10およびB−1〜B−9のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に自転自在に装着し、一方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最低含有点形成用Ti−Al合金、他方側のカソード電極(蒸発源)として、種々の成分組成をもったAl最高含有点形成用Al−Ti合金を前記回転テーブルを挟んで対向配置し、またボンバート洗浄用金属Tiも装着し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する切削工具に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記切削工具表面をTiボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する前記切削工具に−100Vの直流バイアス電圧を印加して、それぞれのカソード電極(前記Al最低含有点形成用Ti−Al合金およびAl最高含有点形成用Al−Ti合金)とアノード電極との間に100Aの電流を流してアーク放電を発生させる条件で本発明法1〜19を実施し、もって前記切削工具の表面に、厚さ方向に沿って表3,4に示される目標組成のAl最低含有点とAl最高含有点とが交互に同じく表3,4に示される目標間隔で繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、かつ同じく表3,4に示される目標全体層厚の硬質被覆層を蒸着形成した。
【0015】
また、比較の目的で、これら切削工具A−1〜A−10およびB−1〜B−9を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示される通常のアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として種々の成分組成をもったAl−Ti合金を装着し、装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、Arガスを装置内に導入して10PaのAr雰囲気とし、この状態で前記切削工具に−800Vのバイアス電圧を印加して前記切削工具表面をArガスボンバート洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記切削工具に印加するバイアス電圧を−100Vに下げて、前記カソード電極とアノード電極との間にアーク放電を発生させる条件で、従来法1〜19を実施し、もって前記切削工具A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5,6に示される目標組成および目標層厚を有し、かつ層厚方向に沿って実質的に組成変化のない(Al,Ti)N層からなる硬質被覆層を蒸着形成した。
【0016】
つぎに、上記本発明法1〜19および従来法1〜19により得られた切削工具ついて、これを工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、
被削材:JIS・SCM440の丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件での合金鋼の乾式高速連続旋削加工試験、
被削材:JIS・S45Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.25mm/rev.、
切削時間:10分、
の条件での炭素鋼の乾式高速断続旋削加工試験、さらに、
被削材:JIS・FC300の長さ方向等間隔4本縦溝入り丸棒、
切削速度:300m/min.、
切り込み:1.5mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件での鋳鉄の乾式高速断続旋削加工試験を行い、いずれの旋削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表3〜6に示した。
【0017】
【表1】

Figure 0003991262
【0018】
【表2】
Figure 0003991262
【0019】
【表3】
Figure 0003991262
【0020】
【表4】
Figure 0003991262
【0021】
【表5】
Figure 0003991262
【0022】
【表6】
Figure 0003991262
【0023】
なお、上記の本発明法1〜19により得られた切削工具の硬質被覆層におけるAl最低含有点とAl最高含有点の組成、並びに従来法1〜19により得られた切削工具の硬質被覆層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示し、さらに、本発明法1〜19の硬質被覆層におけるAl最低含有点とAl最高含有点間の間隔、およびこれの全体層厚、並びに従来法1〜19の硬質被覆層の厚さを、走査型電子顕微鏡を用いて断面測定したところ、いずれも目標値と実質的に同じ値を示した。
【0024】
【発明の効果】
表3〜6に示される結果から、本発明法1〜19により厚さ方向にAl最低含有点とAl最高含有点とが交互に所定間隔をおいて繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有する硬質被覆層を形成してなる切削工具は、いずれも鋼や鋳鉄の切削加工を高い発熱を伴う高速で行っても、すぐれた耐摩耗性を発揮するのに対して、従来法1〜19により厚さ方向に沿って実質的に組成変化のない(Ti,Al)N層からなる硬質被覆層を形成してなる切削工具においては、いずれも高温を伴う高速切削加工では硬質被覆層の高温特性不足が原因で切刃の摩耗進行が速く、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の硬質被覆層形成方法によれば、特に各種の鋼や鋳鉄などの高速切削加工でもすぐれた耐摩耗性を発揮する硬質被覆層を形成することができ、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
【図面の簡単な説明】
【図1】この発明の硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。
【図2】従来の硬質被覆層を形成するのに用いた通常のアークイオンプレーティング装置の概略説明図である。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for forming a hard coating layer on a cutting tool surface that has excellent high-temperature characteristics and thus exhibits excellent wear resistance particularly in high-speed cutting with high heat generation such as various types of steel and cast iron. Is.
[0002]
[Prior art]
In general, for cutting tools, a throw-away tip that is used by attaching to the tip of a cutting tool for turning and planing of various steels and cast irons, drilling of the work material, etc. Drills and miniature drills, and solid type end mills used for chamfering, grooving and shouldering of the work material, etc. A slow-away end mill tool that performs cutting work in the same manner as an end mill is known.
[0003]
Further, for example, a tungsten carbide (hereinafter referred to as WC) based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) is included in an arc ion plating apparatus which is one type of physical vapor deposition apparatus shown in the schematic explanatory diagram of FIG. ) A cathode electrode (evaporation source) in which a cutting tool composed of a base cermet is inserted and the inside of the apparatus is heated to a temperature of, for example, 500 ° C. with a heater, and an anode electrode and an Al—Ti alloy having a predetermined composition is set. For example, an arc discharge is generated under the condition of current: 90 A, for example, and nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of 2 Pa, for example. Under the condition that a bias voltage is applied, on the surface of the cutting tool,
Composition formula: (Al Z Ti 1-Z ) N ( provided that an atomic ratio, Z is showing a 0.4 to 0.65) composite nitride of Al and Ti to satisfy the following, (Al, Ti) N The method of forming the hard coating layer which consists of a layer with the average layer thickness of 1-15 micrometers is known.
[0004]
[Problems to be solved by the invention]
In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there is a strong demand for labor saving, energy saving, and cost reduction for cutting, and with this, cutting tends to be faster. In cutting tools, there is no problem when they are used under normal cutting conditions, but when they are used under high-speed cutting conditions with high heat generation, the wear of the hard coating layer that constitutes them is extremely high. Since it is promoted, the service life is reached in a relatively short time.
[0005]
[Means for Solving the Problems]
Therefore, the present inventors pay particular attention to the (Al, Ti) N layer, which is a hard coating layer of the above-described conventional cutting tool, from the above-mentioned viewpoint, and exhibit excellent wear resistance in high-speed cutting. As a result of research to develop (Al, Ti) N layer,
(A) The (Al, Ti) N layer, which is a conventional hard coating layer formed by using the arc ion plating apparatus shown in FIG. 2 described above, has a uniform high temperature hardness and heat resistance over the entire layer thickness, For example, an arc ion plating apparatus having a structure shown in a schematic plan view in FIG. 1 (a) and a schematic front view in FIG. 1 (b), that is, a rotary table for mounting a cutting tool is provided at the center of the apparatus. An Al—Ti alloy with a relatively high Al content (low Ti content) on one side and a Ti with a relatively high Ti content (low Al content) on the other side across the rotary table An arc ion plating apparatus in which an Al alloy is used as a cathode electrode (evaporation source) is used, and the cutting tool is placed on the rotary table of the apparatus at a position radially away from the central axis of the rotary table. In this state, while rotating the rotary table with the reaction atmosphere in the apparatus as a nitrogen gas atmosphere, and rotating the cutting tool itself for the purpose of uniformizing the thickness of the hard coating layer formed by vapor deposition, When an (Al, Ti) N layer is formed between the cathode electrode (evaporation source) and the anode electrode on both sides under conditions that generate an arc discharge, the surface of the cutting tool is formed in the radial direction from the central axis on the rotary table. When the cutting tool arranged at a position distant from the cathode is closest to the cathode electrode (evaporation source) of the Al-Ti alloy having a relatively high Al content (low Ti content) on one side, When the highest Al content point is formed, and when the cutting tool is closest to the cathode electrode of the Ti-Al alloy having a relatively high Ti content (low Al content) on the other side, A Since the lowest content point is formed, the rotation of the rotary table causes the Al highest content point and the Al lowest content point to appear alternately at predetermined intervals along the thickness direction in the layer. (Al, Ti) N layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the point to the Al minimum content point and from the Al minimum content point to the Al maximum content point is formed. To be like that.
[0006]
(B) In the (Al, Ti) N layer having the repeated continuous change component concentration distribution structure of (a) above, for example, each alloy composition of the cathode electrode (evaporation source) arranged opposite to each other is prepared, and a cutting tool is mounted. Control the rotation speed of the rotating table,
The Al highest content point is a composition formula: (Al x Ti 1-x ) N (wherein X is 0.70 to 0.95 in atomic ratio),
The Al minimum content point is a composition formula: (Al Y Ti 1-Y ) N (however, in atomic ratio, Y represents 0.40 to 0.65),
Each satisfied,
And the interval in the thickness direction of the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm,
Then, in the Al highest content point portion, the Al content is relatively higher than that of the conventional (Al, Ti) N layer, so that the high temperature hardness and heat resistance (excellently higher) On the other hand, the Al minimum content point portion has a lower Al content and a higher Ti content than the Al highest content point portion, so that high toughness is ensured, and these Al Since the distance between the highest content point and the lowest Al content point is made extremely small, it has excellent high-temperature characteristics while maintaining high toughness as the characteristics of the entire layer, and thus (Al, Ti) having such a configuration. Cutting tools formed with the N layer as a hard coating layer should exhibit excellent wear resistance in high-speed cutting such as steel and cast iron with high heat generation.
The research results shown in (a) and (b) above were obtained.
[0007]
The present invention has been made on the basis of the above research results. The WC-based cemented carbide and the WC-based cemented carbide are disposed on the rotary table in the arc ion plating apparatus at a position radially away from the central axis of the rotary table. // A cutting tool made of TiCN-based cermet is mounted so as to rotate freely.
The reaction atmosphere in the arc ion plating apparatus is a nitrogen gas atmosphere, the cathode electrode of the Al-Ti alloy for forming the Al highest content point (Ti lowest content point) and the Al lowest content point arranged oppositely across the rotary table ( An arc discharge is generated between the cathode electrode of the Ti-Al alloy for forming Ti and the anode electrode arranged in parallel with each of these cathode electrodes,
Therefore, the highest Al content point (Ti lowest content point) and the lowest Al content point (Ti highest content point) are predetermined along the thickness direction on the surface of the cutting tool rotating while rotating on the rotary table. Concentration distribution in which Al (Ti) content continuously exists alternately at intervals, and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point and from the Al lowest content point to the Al highest content point Has a structure,
Furthermore, the Al highest content point is the composition formula: (Al X Ti 1-X ) N (however, X is 0.70 to 0.95 in atomic ratio),
The Al minimum content point is a composition formula: (Al Y Ti 1-Y ) N (however, in atomic ratio, Y represents 0.40 to 0.65),
And the interval between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm.
Forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting, consisting of physical vapor deposition of a hard coating layer made of an (Al, Ti) N layer with an overall average layer thickness of 1 to 15 μm. It has a characteristic in the method to do.
[0008]
Next, the reason why the structure of the hard coating layer formed in the method of forming a hard coating layer of the present invention is limited as described above will be described.
(A) Al in the composition hard coating layer having the highest Al content point Al in the (Al, Ti) N layer is contained for the purpose of improving the high temperature hardness and heat resistance (high temperature characteristics) of the high toughness TiN layer. Therefore, if the proportion of Al (X) at the highest Al content point is less than 0.70 in terms of the total amount with Ti (atomic ratio), the desired excellent high temperature characteristics cannot be secured, On the other hand, if the ratio exceeds 0.95, the Ti ratio becomes too low, and the toughness is drastically reduced, and chipping (minute chipping) is likely to occur in the cutting edge. It was determined to be 70 to 0.95.
[0009]
(B) Composition of the lowest Al content point As described above, the highest Al content point is excellent in high-temperature characteristics, but on the other hand, it is inferior in toughness. The Al content is high and the Al minimum content point that has high toughness is alternately interposed in the thickness direction. Therefore, the proportion of Al (Y) in the total amount with Ti (atomic ratio) ) Exceeding 0.65, the desired excellent toughness cannot be ensured. On the other hand, when the ratio is also less than 0.40, the Ti ratio is relatively increased, and the Al minimum content point Therefore, the ratio was determined to be 0.40 to 0.65.
[0010]
(C) Interval between the highest Al content point and the lowest Al content point If the distance is less than 0.01 μm, it is difficult to clearly form each point with the above composition. When it becomes impossible to secure toughness and the interval exceeds 0.1 μm, each point has a defect, that is, if Al is the highest content point, the toughness is insufficient, and if the Al content is the lowest, the high temperature characteristics are insufficient. Therefore, the chipping is likely to occur on the cutting edge, and the progress of wear is promoted. Therefore, the interval is set to 0.01 to 0.1 μm.
[0011]
(D) Overall average layer thickness of hard coating layer If the layer thickness is less than 1 μm, the desired wear resistance cannot be ensured. On the other hand, if the average layer thickness exceeds 15 μm, chipping occurs on the cutting edge. Since it becomes easy, the average layer thickness was determined to be 1 to 15 μm.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Next, the method for forming a hard coating layer according to the present invention will be specifically described with reference to examples.
First, WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder, and Co powder all having an average particle diameter of 1 to 3 μm are used as raw material powders. These raw material powders were blended in the blending composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. The WC base was sintered in a vacuum of 1400 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 and a chip shape of ISO standard CNMG120408. Cutting tools A-1 to A-10 made of cemented carbide were produced.
[0013]
Furthermore, as raw material powders, TiCN (TiC / TiN = 50/50 by weight ratio) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. Of these green compacts, the green compacts for cutting tools B-1 to B-6 were sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour and then sintered under furnace cooling conditions. For the green compact for cutting tools B-7 to B-9,
1 Pa vacuum atmosphere from room temperature to 1300 ° C,
A nitrogen atmosphere of 1 kPa from 1300 ° C. to 1350 ° C.
A vacuum atmosphere of 1 Pa from 1350 ° C. to 1400 ° C.
2 kPa nitrogen atmosphere from 1400 ° C. to 1450 ° C.,
And a vacuum atmosphere of 1 Pa from 1450 ° C. to 1500 ° C.,
The temperature is raised to 1500 ° C., which is the sintering temperature, held at the above sintering temperature as a nitrogen atmosphere of 3 kPa for 1 hour, and then sintered under furnace cooling conditions. After sintering, the cutting edge portion has R: 0.03 The cutting tools B-1 to B-9 made of TiCN cermet having a chip shape of ISO standard / CNMG120408 were manufactured.
About the cutting tools B-1 to B-9 obtained as a result, when the longitudinal section thereof was observed using a scanning electron microscope, the cutting tools B-1 to B-6 were all homogeneous from the surface to the inside. 2 shows a two-phase structure of a hard phase composed of a composite carbonitride of (Ti) and (one or more of Zr, Ta, Nb, Mo, and W) and a binder phase mainly composed of Co and Ni. On the other hand, the cutting tools B-7 to B-9 showed the same structure as the two-phase structure on the inside, but the layer in which the binder phase does not exist in the surface portion over a depth position of 1 to 3 μm from the surface, That is, the presence of a surface layer composed only of the composite carbonitride was observed.
[0014]
Next, each of the cutting tools A-1 to A-10 and B-1 to B-9 was ultrasonically cleaned in acetone and dried, and then in the arc ion plating apparatus shown in FIG. On the rotary table, it is rotatably mounted at a position away from the central axis of the rotary table in the radial direction, and as a cathode electrode (evaporation source) on one side, Al minimum content point forming Ti having various component compositions -Al alloy, Al-Ti alloy for forming the highest Al content point having various composition as opposed cathode electrode (evaporation source) is arranged opposite to each other across the rotary table, and the metal Ti for bombard cleaning is also used. A cutting tool that is mounted and evacuated and heated to 500 ° C. with a heater while maintaining a vacuum of 0.5 Pa or less, and then rotated while rotating on the rotary table is −10 A DC bias voltage of 0 V is applied, and a current of 100 A is caused to flow between the metal Ti and the anode electrode of the cathode electrode to generate an arc discharge. Thus, the cutting tool surface is cleaned by Ti bombardment, and then placed in the apparatus. Nitrogen gas was introduced as a reaction gas to make a reaction atmosphere of 2 Pa, and a DC bias voltage of −100 V was applied to the cutting tool rotating while rotating on the rotary table, and each cathode electrode (the Al minimum) was applied. The present invention methods 1 to 19 are carried out under the condition that an arc discharge is generated by flowing a current of 100 A between the anode electrode and a Ti-Al alloy for content point formation and an Al-Ti alloy for Al content point formation) Therefore, on the surface of the cutting tool, the lowest Al content point and the highest Al content point of the target composition shown in Tables 3 and 4 along the thickness direction are alternately shown in Table 3 below. , 4 are repeatedly present at the target intervals, and the Al (Ti) content continuously changes from the Al highest content point to the Al lowest content point and from the Al lowest content point to the Al highest content point. A hard coating layer having a concentration distribution structure and having the target total layer thickness shown in Tables 3 and 4 was also formed by vapor deposition.
[0015]
Further, for the purpose of comparison, these cutting tools A-1 to A-10 and B-1 to B-9 were ultrasonically cleaned in acetone and dried, and each of the normal arc ions shown in FIG. Installed in the plating device, mounted with Al-Ti alloy with various component composition as cathode electrode (evaporation source), evacuated inside the device and kept at a vacuum of 0.5 Pa or less, using a heater After the interior is heated to 500 ° C., Ar gas is introduced into the apparatus to form an Ar atmosphere of 10 Pa. In this state, a bias voltage of −800 V is applied to the cutting tool to clean the surface of the cutting tool with Ar gas bombardment. Then, nitrogen gas is introduced into the apparatus as a reaction gas to make a reaction atmosphere of 2 Pa, and the bias voltage applied to the cutting tool is lowered to −100 V so that the cathode electrode and the anode The conventional methods 1 to 19 are carried out under the condition that arc discharge is generated between the cutting tools A-1 to A-10 and B-1 to B-6. A hard coating layer composed of an (Al, Ti) N layer having the target composition and the target layer thickness shown in FIG.
[0016]
Next, for the cutting tools obtained by the present invention methods 1 to 19 and the conventional methods 1 to 19, this is screwed with a fixing jig to the tip of the tool steel tool,
Work material: JIS / SCM440 round bar,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry high-speed continuous turning test of alloy steel under the conditions of
Work material: JIS · S45C lengthwise equal 4 round grooved round bars,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.25 mm / rev. ,
Cutting time: 10 minutes,
Carbon steel dry high-speed intermittent turning test,
Work material: JIS / FC300 lengthwise equidistant 4 bars with vertical grooves,
Cutting speed: 300 m / min. ,
Incision: 1.5mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
A dry high-speed intermittent turning test of cast iron was performed under the conditions described above, and the flank wear width of the cutting edge was measured in any turning test. The measurement results are shown in Tables 3-6.
[0017]
[Table 1]
Figure 0003991262
[0018]
[Table 2]
Figure 0003991262
[0019]
[Table 3]
Figure 0003991262
[0020]
[Table 4]
Figure 0003991262
[0021]
[Table 5]
Figure 0003991262
[0022]
[Table 6]
Figure 0003991262
[0023]
In addition, the composition of the Al minimum content point and the Al maximum content point in the hard coating layer of the cutting tool obtained by the present invention method 1-19, and the hard coating layer of the cutting tool obtained by the conventional methods 1-19 When the composition was measured using an Auger spectroscopic analyzer, each showed substantially the same composition as the target composition, and further, the interval between the Al minimum content point and the Al maximum content point in the hard coating layers of the present invention methods 1 to 19 When the cross-sectional measurement was performed using a scanning electron microscope, the entire layer thickness thereof and the thickness of the hard coating layer according to the conventional methods 1 to 19 were substantially the same as the target values.
[0024]
【The invention's effect】
From the results shown in Tables 3 to 6, according to the present invention methods 1 to 19, the Al lowest content point and the Al highest content point are alternately present at predetermined intervals in the thickness direction, and from the Al highest content point. The cutting tool formed by forming a hard coating layer having a component concentration distribution structure in which the Al (Ti) content continuously changes from the lowest Al content point to the highest Al content point. Even if cutting of steel or cast iron is performed at a high speed with high heat generation, it exhibits excellent wear resistance, whereas the conventional methods 1 to 19 have substantially no composition change along the thickness direction ( In cutting tools formed with a hard coating layer composed of a Ti, Al) N layer, both high-speed cutting processes involving high temperatures cause a rapid progress in wear of the cutting edge due to insufficient high-temperature characteristics of the hard coating layer. It is clear that the service life will be reached in a short time It is.
As described above, according to the hard coating layer forming method of the present invention, it is possible to form a hard coating layer that exhibits excellent wear resistance even in high-speed cutting such as various types of steel and cast iron. It can be used satisfactorily for labor saving, energy saving, and cost reduction.
[Brief description of the drawings]
FIG. 1 shows an arc ion plating apparatus used to form a hard coating layer of the present invention, wherein (a) is a schematic plan view and (b) is a schematic front view.
FIG. 2 is a schematic explanatory view of a normal arc ion plating apparatus used for forming a conventional hard coating layer.

Claims (1)

アークイオンプレーティング装置内の回転テーブル上に、前記回転テーブルの中心軸から半径方向に離れた位置に炭化タングステン基超硬合金および/または炭窒化チタン系サーメットからなる切削工具を自転自在に装着し、
上記アークイオンプレーティング装置内の反応雰囲気を窒素ガス雰囲気として、上記回転テーブルを挟んで対向配置したAl最高含有点(Ti最低含有点)形成用Al−Ti合金のカソード電極およびAl最低含有点(Ti最高含有点)形成用Ti−Al合金のカソード電極と、これらカソード電極のそれぞれに並設されたアノード電極との間にアーク放電を発生させ、
もって、上記回転テーブル上で自転しながら回転する上記切削工具の表面に、
厚さ方向にそって、Al最高含有点(Ti最低含有点)とAl最低含有点(Ti最高含有点)とが所定間隔をおいて交互に繰り返し存在し、かつ前記Al最高含有点から前記Al最低含有点、前記Al最低含有点から前記Al最高含有点へAl(Ti)含有量が連続的に変化する成分濃度分布構造を有し、
さらに、上記Al最高含有点が、組成式:(AlXTi1-X )N(ただし、原子比で、Xは0.70〜0.95を示す)、
上記Al最低含有点が、組成式:(AlYTi1-Y )N(ただし、原子比で、Yは0.40〜0.65を示す)、
をそれぞれ満足し、かつ隣り合う上記Al最高含有点とAl最低含有点の間隔が、0.01〜0.1μmである、
AlとTiの複合窒化物からなる硬質被覆層を1〜15μmの全体平均層厚で物理蒸着すること、
を特徴とする高速切削加工ですぐれた耐摩耗性を発揮する硬質被覆層を切削工具表面に形成する方法。
A cutting tool made of tungsten carbide-based cemented carbide and / or titanium carbonitride cermet is rotatably mounted on a rotary table in the arc ion plating apparatus at a position radially away from the center axis of the rotary table. ,
The reaction atmosphere in the arc ion plating apparatus is a nitrogen gas atmosphere, the cathode electrode of the Al-Ti alloy for forming the Al highest content point (Ti lowest content point) and the Al lowest content point arranged oppositely across the rotary table ( An arc discharge is generated between the cathode electrode of the Ti-Al alloy for forming Ti and the anode electrode arranged in parallel with each of these cathode electrodes,
Therefore, on the surface of the cutting tool that rotates while rotating on the rotary table,
Along the thickness direction, the highest Al content point (Ti lowest content point) and the lowest Al content point (Ti highest content point) are alternately present at predetermined intervals, and from the highest Al content point to the Al The lowest concentration point, having a component concentration distribution structure in which the Al (Ti) content continuously changes from the lowest Al content point to the highest Al content point,
Furthermore, the Al highest content point is the composition formula: (Al X Ti 1-X ) N (however, X is 0.70 to 0.95 in atomic ratio),
The Al minimum content point is a composition formula: (Al Y Ti 1-Y ) N (however, in atomic ratio, Y represents 0.40 to 0.65),
And the interval between the adjacent Al highest content point and Al lowest content point adjacent to each other is 0.01 to 0.1 μm.
Physically vapor-depositing a hard coating layer made of a composite nitride of Al and Ti with an overall average layer thickness of 1 to 15 μm,
A method of forming a hard coating layer on the surface of a cutting tool that exhibits excellent wear resistance in high-speed cutting processing.
JP2002060208A 2002-01-21 2002-03-06 A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting Expired - Lifetime JP3991262B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2002060208A JP3991262B2 (en) 2002-02-26 2002-03-06 A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
DE60336453T DE60336453D1 (en) 2002-01-21 2003-01-14 "SURFACE-COATED CUTTING UNIT WITH A HARD COATING LAYER HAVING EXCELLENT FRICTION CUT RESISTANCE IN HIGH-SPEED CUTTING, AND METHOD FOR FORMING THE HARD COATING LAYER ON THE CUTTING TOOL SURFACE"
KR1020047011137A KR100707755B1 (en) 2002-01-21 2003-01-14 Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
US10/501,805 US7094479B2 (en) 2002-01-21 2003-01-14 Surface-coated cutting tool member having hard coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool
AT03701078T ATE502710T1 (en) 2002-01-21 2003-01-14 ßSURFACE COATED CUTTING TOOL MEMBER WITH HARD COATING LAYER HAVING EXCELLENT FRICTIONAL RESISTANCE IN HIGH SPEED CUTTING AND METHOD FOR FORMING THE HARD COATING LAYER ON THE SURFACE OF THE CUTTING TOOL
PCT/JP2003/000220 WO2003061884A1 (en) 2002-01-21 2003-01-14 Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
EP03701078A EP1470879B1 (en) 2002-01-21 2003-01-14 Surface coated cutting tool member having hard coating layer exhibiting excellent abrasion resistance in high-speed cutting, and method for forming said hard coating layer on surface of cutting tool
CNB038066130A CN100408237C (en) 2002-01-21 2003-01-14 Surface-coated cutting tool member having coating layer exhibiting superior wear resistance during high speed cutting operation and method for forming hard coating layer on surface of cutting tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2002-49893 2002-02-26
JP2002049893 2002-02-26
JP2002060208A JP3991262B2 (en) 2002-02-26 2002-03-06 A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting

Publications (2)

Publication Number Publication Date
JP2003326402A JP2003326402A (en) 2003-11-18
JP3991262B2 true JP3991262B2 (en) 2007-10-17

Family

ID=29713665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002060208A Expired - Lifetime JP3991262B2 (en) 2002-01-21 2002-03-06 A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting

Country Status (1)

Country Link
JP (1) JP3991262B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4535254B2 (en) * 2004-09-07 2010-09-01 三菱マテリアル株式会社 Method for producing a surface-coated cemented carbide cutting tool that exhibits excellent wear resistance and chipping resistance in a high-speed cutting process.
JP6376466B2 (en) 2014-11-13 2018-08-22 三菱マテリアル株式会社 Surface coated cutting tool
JP6478100B2 (en) * 2015-01-28 2019-03-06 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6503818B2 (en) * 2015-03-20 2019-04-24 三菱マテリアル株式会社 Surface coated cutting tool

Also Published As

Publication number Publication date
JP2003326402A (en) 2003-11-18

Similar Documents

Publication Publication Date Title
JP3873276B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3928481B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance under high-speed heavy cutting conditions.
JP3928480B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3991262B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP4375527B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP3985227B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4244377B2 (en) Surface coated cermet cutting tool with excellent wear resistance with high hard coating layer in high speed cutting
JP2005028484A (en) Surface coated cemented carbide cutting tool having hard surface coating layer which is excellent in chipping resistance under heavy cutting condition
JP4120500B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4244379B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP4366987B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent chipping resistance under high-speed heavy cutting conditions.
JP4211500B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP3944903B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP3944902B2 (en) A method for forming a hard coating layer on the cutting tool surface that exhibits excellent chipping resistance in intermittent heavy cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3962913B2 (en) A method of forming a hard coating layer on the cutting tool surface that exhibits excellent wear resistance in high-speed cutting
JP3928487B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP3962910B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance due to hard coating layer in heavy cutting
JP3944900B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120499B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with high surface coating layer in high speed cutting
JP2004344990A (en) Cutting tool of surface-coated cemented carbide with hard coating layer achieving excellent abrasion resistance in high speed heavy cutting condition, and method for manufacturing the same
JP4485146B2 (en) Surface-coated cermet cutting tool with excellent wear resistance with a hard coating layer in high-speed cutting
JP4029323B2 (en) Surface coated cemented carbide cutting tool with excellent chipping resistance with hard coating layer under high speed heavy cutting conditions
JP4211509B2 (en) Surface coated cermet cutting tool with excellent wear resistance due to high hard cutting layer in high speed cutting
JP4379912B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070628

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070711

R150 Certificate of patent or registration of utility model

Ref document number: 3991262

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100803

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110803

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120803

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130803

Year of fee payment: 6

EXPY Cancellation because of completion of term