JP4539049B2 - A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting. - Google Patents

A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting. Download PDF

Info

Publication number
JP4539049B2
JP4539049B2 JP2003278735A JP2003278735A JP4539049B2 JP 4539049 B2 JP4539049 B2 JP 4539049B2 JP 2003278735 A JP2003278735 A JP 2003278735A JP 2003278735 A JP2003278735 A JP 2003278735A JP 4539049 B2 JP4539049 B2 JP 4539049B2
Authority
JP
Japan
Prior art keywords
tooth
layer
gear cutting
cemented carbide
cutting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003278735A
Other languages
Japanese (ja)
Other versions
JP2005040911A (en
Inventor
幸生 青木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003278735A priority Critical patent/JP4539049B2/en
Publication of JP2005040911A publication Critical patent/JP2005040911A/en
Application granted granted Critical
Publication of JP4539049B2 publication Critical patent/JP4539049B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23FMAKING GEARS OR TOOTHED RACKS
    • B23F21/00Tools specially adapted for use in machines for manufacturing gear teeth
    • B23F21/12Milling tools
    • B23F21/16Hobs

Description

この発明は、特に各種の鋼製歯車などの歯切加工を、高熱発生を伴う高速歯切条件で行なった場合にも、歯部に熱塑性変形の発生なく、この結果歯部が正常摩耗形態をとるようになることから、長期に亘ってすぐれた耐摩耗性を発揮する表面被覆超硬合金製むく歯切工具(以下、被覆超硬歯切工具という)に関するものである。   In particular, the present invention does not cause thermoplastic deformation in the tooth portion even when gear cutting of various steel gears is performed under high-speed gear cutting conditions with high heat generation. Therefore, the present invention relates to a surface-coated cemented carbide striping tool (hereinafter referred to as a coated cemented carbide cutting tool) that exhibits excellent wear resistance over a long period of time.

従来、一般に自動車や航空機、さらに各種駆動装置などの構造部材として各種歯車が用いられているが、これら歯車の歯形の歯切加工に被覆超硬歯切工具(ソリッドホブ)が用いられている。
また、被覆超硬歯切工具が、例えば図2に概略斜視図で示される通り、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状に機械加工された炭化タングステン基超硬合金製歯切工具本体(以下、超硬歯切基体という)の表面に、窒化チタン(以下、TiNで示す)層からなる硬質被覆層を0.9〜15μmの平均層厚で物理蒸着してなる被覆超硬歯切工具などが知られている。
特開平10−146720号公報
Conventionally, various gears are generally used as structural members for automobiles, aircrafts, and various drive devices, and coated carbide gear cutting tools (solid hobs) are used for gear cutting of gear teeth.
Further, as shown in the schematic perspective view of FIG. 2, for example, the coated cemented carbide cutting tool has a plurality of tooth grooves formed radially along the rotation axis and along the length direction. In addition, a tooth portion that is formed by a front and rear surface that faces the tooth gap and whose front surface is a rake face with respect to the rotation direction, and a top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) that are flank surfaces. Is formed on the surface of a tungsten carbide based cemented carbide cutting tool body (hereinafter referred to as a cemented carbide cutting base) machined into a shape continuously formed along the length direction. A coated carbide gear cutting tool formed by physically vapor-depositing a hard coating layer composed of a layer (indicated by TiN) with an average layer thickness of 0.9 to 15 μm is known.
Japanese Patent Laid-Open No. 10-146720

近年の歯切加工装置の高性能化はめざましく、一方で歯切加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、歯切加工は高速化の傾向にあるが、上記の従来被覆超硬歯切工具においては、これを通常の歯切加工条件で用いた場合には問題はないが、歯切加工を高熱発生を伴う高速条件で行なった場合には、特に歯部に熱塑性変形が発生し、これが原因で摩耗は偏摩耗形態をとるようになり、この結果摩耗の進行が著しく促進することから、比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of gear cutting machines has been remarkably improved. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for gear cutting, and with this, gear cutting has a tendency to increase in speed. In the above conventional coated carbide gear cutting tool, there is no problem when it is used under normal gear cutting conditions, but especially when gear cutting is performed under high speed conditions with high heat generation, the tooth Thermoplastic deformation occurs in the part, and this causes wear to take an uneven wear form. As a result, the progress of wear is remarkably accelerated, so that the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に高速歯切加工で歯部に熱塑性変形の発生のない被覆超硬歯切工具を開発すべく、上記の従来被覆超硬歯切工具に着目し、研究を行った結果、
(a)上記構造の被覆超硬歯切工具においては、歯部の頂面(歯先歯面)と両側面(左右歯面)からなる逃げ面に被削材が摺動当接し、一方同前後面のうちの前面のすくい面が切粉当接面となる状態で、前記逃げ面とすくい面の交わる切れ刃で歯切加工が行なわれ、この際歯部の逃げ面と被削材との間で多量の摩擦熱が発生するが、この発生した摩擦熱は一旦歯部内部に移動し、ここから主に歯部のすくい面を含む前後面から放熱されること。
(b)上記(a)の歯切加工形態において、歯切加工が高速になればなるほど、歯部の逃げ面と被削材との間で発生する摩擦熱は一段と大きくなり、これによって歯部の温度がさらに上昇し、歯部に熱塑性変形が発生するようになること。
(c)高速歯切加工で熱発生の著しい歯部逃げ面に、TiN層からなる硬質被覆層の下地層として、
組成式:(Ti1−X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)、を満足するTiとAlの複合窒化物[以下、(Ti,Al)Nで示す]層、
を介在させると、前記(Ti,Al)N層は、熱伝導性の良好なTiN層に比してAlの固溶含有によって熱伝導性が低下し、むしろ良好な断熱性を有するようになることから、歯部の逃げ面と被削材との間で発生した摩擦熱の歯部内部への伝熱が前記(Ti,Al)N層によって著しく抑制されること。
(d)上記(c)の歯部逃げ面に、TiN層の下地層として(Ti,Al)N層を介在してなる被覆超硬歯切工具においては、上記の通り高速歯切加工中、歯部の逃げ面と被削材との間で発生した摩擦熱は前記下地層である(Ti,Al)N層によって歯部内部への伝熱が抑制され、一方歯部内部の熱は熱伝導性の良好なTiN層だけが被覆された歯部のすくい面を含む前後面から放熱されるので、歯部内部の温度上昇が高い発熱を伴なう高速歯切加工にもかかわらず阻止され、この結果歯部の熱塑性変形がなくなるので、摩耗促進の原因となる偏摩耗が歯部に発生することがなくなり、正常摩耗形態をとるようになることから、長期に亘ってすぐれた耐摩耗性を発揮すること。
(e)しかし、上記の(d)において、断熱効果の高い(Ti,Al)N層をTiN層の下地層として歯部の逃げ面およびすくい面を含む前後面のいずれにも形成すると、歯部の熱が内部に篭るようになり、この歯部内部熱は高速加工では経時的に高いものとなって前記歯部が摩耗促進の原因となる熱塑性変形を起こすようになること。
以上(a)〜(e)に示される研究結果を得たのである。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coated carbide hobbing tool in order to develop a coated carbide hobbing tool that does not cause thermoplastic deformation in the tooth portion, particularly in high-speed gear cutting. As a result of conducting research with a focus on
(A) In the coated carbide gear cutting tool having the above structure, the work material slides into contact with the flank surface composed of the top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) of the tooth part. In the state where the front rake face of the front and rear faces is a chip contact surface, gear cutting is performed with a cutting blade where the flank face and the rake face intersect. A large amount of frictional heat is generated between them, but the generated frictional heat once moves into the tooth part and is radiated from the front and rear surfaces including the rake face of the tooth part.
(B) In the gear cutting mode of (a) above, the faster the gear cutting, the greater the frictional heat generated between the flank face of the tooth and the work material, thereby the tooth The temperature rises further, and thermoplastic deformation occurs in the teeth.
(C) As a base layer of a hard coating layer made of a TiN layer on the tooth flank where heat generation is remarkable in high-speed gear cutting,
A composite nitride of Ti and Al satisfying the composition formula: (Ti 1-X Al x ) N (wherein X is 0.40 to 0.65 in atomic ratio) [hereinafter referred to as (Ti, Al) N] layer,
When the Ti is interposed, the (Ti, Al) N layer has a lower thermal conductivity due to the solid solution of Al as compared with the TiN layer having a good thermal conductivity, and rather has a good heat insulating property. Therefore, heat transfer to the inside of the tooth portion of frictional heat generated between the flank face of the tooth portion and the work material is remarkably suppressed by the (Ti, Al) N layer.
(D) In the coated cemented carbide cutting tool in which the (Ti, Al) N layer is interposed as the underlying layer of the TiN layer on the tooth flank surface of (c) above, during high-speed gear cutting as described above, The frictional heat generated between the flank of the tooth part and the work material is suppressed from being transferred to the inside of the tooth part by the (Ti, Al) N layer as the underlayer, while the heat inside the tooth part is heat. Since only the TiN layer with good conductivity is radiated from the front and back surfaces including the rake face of the coated tooth, the temperature rise inside the tooth is prevented despite high-speed gear cutting with high heat generation. As a result, since there is no thermoplastic deformation of the tooth portion, uneven wear that causes wear promotion does not occur in the tooth portion, and it takes a normal wear form, so it has excellent wear resistance over a long period of time. To demonstrate.
(E) However, in (d) above, if the (Ti, Al) N layer having a high heat insulating effect is formed on both the front and back surfaces including the flank and rake face of the tooth portion as the underlying layer of the TiN layer, The heat of the teeth comes to the inside, and the internal heat of the teeth becomes high over time in high-speed machining, and the teeth are subjected to thermoplastic deformation that causes accelerated wear.
The research results shown in (a) to (e) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する超硬歯切基体の表面に、TiN層からなる硬質被覆層を0.9〜15μmの平均層厚で物理蒸着してなる被覆超硬歯切工具において、
上記歯部の逃げ面を構成する頂面(歯先歯面)および両側面(左右歯面)に、上記硬質被覆層の下地層として、0.1〜5μmの平均層厚を有し、かつ、組成式:(Ti1−X AlX )N(ただし、原子比で、Xは0.40〜0.65を示す)、を満足する(Ti,Al)N層からなる断熱層を物理蒸着してなる、高速歯切加工ですぐれた耐摩耗性を発揮する被覆超硬歯切工具に特徴を有するものである。
The present invention has been made on the basis of the above research results, and a plurality of tooth spaces are formed radially and along the length direction with respect to the rotation axis. The tooth part that consists of the front and rear faces that face the groove and the front face is a rake face with respect to the rotation direction, and the top face (tooth tip tooth face) and both side faces (left and right tooth faces) that are flank faces Coated carbide teeth formed by physically vapor-depositing a hard coating layer made of a TiN layer with an average layer thickness of 0.9 to 15 μm on the surface of a cemented carbide cutting base having a shape formed continuously along the direction In cutting tools,
The top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) constituting the flank of the tooth part have an average layer thickness of 0.1 to 5 μm as an underlayer of the hard coating layer, and Physical vapor deposition of a heat insulating layer composed of a (Ti, Al) N layer satisfying the following composition formula: (Ti 1-X Al x ) N (wherein X is 0.40 to 0.65 in atomic ratio) Thus, the present invention is characterized by a coated carbide gear cutting tool that exhibits excellent wear resistance in high-speed gear cutting.

つぎに、この発明の被覆超硬歯切工具を構成する硬質被覆層および下地層について、組成および平均層厚を上記の通りに限定した理由を説明する。
(a)硬質被覆層(TiN層)の平均層厚
硬質被覆層を構成するTiN層の平均層厚が0.9μm未満では、所望の耐摩耗性を確保することができず、一方その平均層厚が15μmを越えると、切刃部にチッピングが発生し易くなることから、その平均層厚を0.9〜15μmと定めた。
Next, the reason why the composition and the average layer thickness of the hard coating layer and the base layer constituting the coated carbide gear cutting tool of the present invention are limited as described above will be described.
(A) Average layer thickness of hard coating layer (TiN layer) If the average layer thickness of the TiN layer constituting the hard coating layer is less than 0.9 μm, the desired wear resistance cannot be ensured, whereas the average layer If the thickness exceeds 15 μm, chipping is likely to occur at the cutting edge, so the average layer thickness was set to 0.9 to 15 μm.

(b)下地層の組成および平均層厚
上記の通り下地層を構成する(Ti,Al)N層は、TiNのTiの一部をAlで置換含有したものからなり、Alの含有によってすぐれた断熱性を具備するようになるが、Alの含有割合を示すX値が、Tiとの合量に占める割合(原子比で、以下同じ)で、0.40未満では、高速歯切加工で発生した高熱の歯部内部への伝熱を阻止するのに十分な断熱性を確保することができず、一方その含有割合を示すX値が、同じく0.65を越えて高くなると、高温強度が急激に低下し、この結果下地層自体に割れが発生し易くなり、この割れが上記硬質被覆層に伝播し、チッピング発生の原因となることから、そのX値を0.40〜0.65と定めた。
また、その平均層厚が0.1μm未満では、高速歯切加工での断熱効果が不十分であり、一方その平均層厚が5μmを越えると、下地層自体に割れが発生し易くなり、この割れが上記硬質被覆層に伝播し、チッピング発生の原因となることから、その平均層厚を0.1〜5μmと定めた。
(B) Composition of the underlayer and average layer thickness As described above, the (Ti, Al) N layer constituting the underlayer is composed of a part of TiN Ti substituted with Al, and was excellent by the inclusion of Al. It has heat insulation, but the X value indicating the Al content ratio is the ratio of the total amount with Ti (atomic ratio, the same shall apply hereinafter). Insufficient heat insulation to prevent heat transfer to the inside of the heated tooth part, on the other hand, if the X value indicating its content rate is also higher than 0.65, the high temperature strength is increased. As a result, the base layer itself is easily cracked. As a result, the crack propagates to the hard coating layer and causes chipping. Therefore, the X value is 0.40 to 0.65. Determined.
Also, if the average layer thickness is less than 0.1 μm, the heat insulating effect in high-speed gear cutting is insufficient, while if the average layer thickness exceeds 5 μm, the underlayer itself is liable to crack. Since cracks propagate to the hard coating layer and cause chipping, the average layer thickness was determined to be 0.1 to 5 μm.

歯部の逃げ面だけに硬質被覆層であるTiN層の下地層として(Ti,Al)N層を介在させた本発明の被覆超硬歯切工具は、鋼製歯車の歯切加工を、高熱発生を伴う高速条件で行なった場合にも、前記下地層の作用で歯部内部の温度上昇が防止され、前記歯部が熱塑性変形することが阻止されることから、歯部は常に正常摩耗形態をとるようになり、この結果長期に亘ってすぐれた耐摩耗性を発揮するようになるのである。   The coated carbide gear cutting tool of the present invention, in which a (Ti, Al) N layer is interposed only as a base layer of a TiN layer, which is a hard coating layer, only on the flank face of the tooth portion, is capable of gear cutting of steel gears with high heat. Even when performed under high-speed conditions with generation, the temperature of the inside of the tooth portion is prevented by the action of the base layer, and the tooth portion is prevented from undergoing thermoplastic deformation. As a result, excellent wear resistance is exhibited over a long period of time.

つぎに、この発明の被覆超硬歯切工具を実施例により具体的に説明する。
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、(W,Ti)C[質量割合で、WC/TiC=50/50]粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を2KPaの窒素雰囲気中、温度:1400℃に1時間保持の条件で焼結して、直径:85mm×長さ:125mmの超硬合金製丸棒素材を形成し、この素材から機械加工にて、外径:80mm×長さ:120mmの全体寸法をもち、3条右捩れ×17溝の形状をもった図1に示されるソリッドホブ型の超硬歯切基体A〜Fをそれぞれ製造した。
Next, the coated carbide gear cutting tool of the present invention will be specifically described with reference to examples.
As raw material powders, WC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, (W, Ti) C [w / w, WC / TiC by mass ratio, all having an average particle diameter of 1 to 3 μm. = 50/50] powder and Co powder are prepared, and these raw material powders are blended in the blending composition shown in Table 1, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact is pressed and sintered in a nitrogen atmosphere of 2 KPa at a temperature of 1400 ° C. for 1 hour to form a cemented carbide round bar material of diameter: 85 mm × length: 125 mm. The solid hob-type carbide gear cutting base body A shown in FIG. 1 having an overall size of outer diameter: 80 mm × length: 120 mm and having a shape of three right-hand twists × 17 grooves by machining from this material. ~ F were produced respectively.

ついで、上記の超硬歯切基体A〜Fのそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1(a)に概略平面図、同(b)に概略正面図に示されるアークイオンプレーティング装置内の回転テーブル上に回転軸から半径方向に所定距離離れた位置に外周部にそって所定間隔をもって設置し、一方側のカソード電極(蒸発源)として、種々の成分組成をもった下地層形成用Ti−Al合金、他方側のカソード電極(蒸発源)として、硬質被覆層形成用およびボンバード洗浄用として金属Tiを前記回転テーブルを挟んで対向配置し、まず装置内を排気して0.5Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬歯切基体に−1000Vの直流バイアス電圧を印加して、カソード電極の前記金属Tiとアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬歯切基体表面をTiボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して10Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬歯切基体に−100Vの直流バイアス電圧を印加し、かつ前記金属Tiのカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬歯切基体の全面、すなわち回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)からなる歯部を含む全面に、表2に示される目標組成および目標層厚の下地層としての(Ti,Al)N層を蒸着形成し、ついで、このように下地層としての(Ti,Al)N層を前記超硬歯切基体の全面に形成した状態で、上記装置から取り出し、図2に示される通り放射状に、かつ全長に亘って形成された歯溝を挟んで対面したすくい面である歯部前面および歯部後面に沿って、円盤状回転ダイヤモンド砥石を用いて研削を行なって前記前後面の下地層としての前記(Ti,Al)N層を除去した後、再び上記装置内に装入し、前記硬質被覆層形成用金属Tiのカソード電極とアノード電極との間に100Aの電流を流してアーク放電を発生させる以外は、前記下地層である前記(Ti,Al)N層の形成条件と同じ条件で、逃げ面のみに下地層としての(Ti,Al)N層が形成された超硬歯切基体の全面に、同じく表2に示される目標層厚のTiN層からなる硬質被覆層を蒸着形成することにより、本発明被覆超硬歯切工具1〜6をそれぞれ製造した。   Next, each of the above-mentioned superhard gear cutting bases A to F is ultrasonically cleaned in acetone and dried, and is shown in a schematic plan view in FIG. 1A and a schematic front view in FIG. Installed on the rotary table in the arc ion plating apparatus at a predetermined distance in the radial direction from the rotation axis with a predetermined interval along the outer peripheral portion, and various component compositions as a cathode electrode (evaporation source) on one side Ti-Al alloy for underlayer formation, and cathode Ti (evaporation source) on the other side, metal Ti for hard coating layer formation and bombard cleaning, facing each other across the rotary table, first exhaust the inside of the device Then, while maintaining the vacuum at 0.5 Pa or less, the inside of the apparatus is heated to 500 ° C. by a heater, and then the DC bias voltage of −1000 V is applied to the carbide cutting base rotating while rotating on the rotary table. When applied, a current of 100 A is allowed to flow between the metal Ti of the cathode electrode and the anode electrode to generate an arc discharge, whereby the surface of the cemented carbide cutting substrate is cleaned by Ti bombardment, and then nitrogen as a reactive gas in the apparatus. A gas is introduced to make a reaction atmosphere of 10 Pa, a DC bias voltage of −100 V is applied to a carbide cutting base rotating while rotating on the rotary table, and the cathode electrode and anode electrode of the metal Ti A current of 100 A is passed between them to generate an arc discharge, so that the entire surface of the cemented carbide cutting base, that is, the front and rear surfaces whose front surfaces are raked with respect to the rotation direction, and the top surfaces (tooth tips) which are flank surfaces. (Ti, Al) N layer as a base layer having the target composition and target thickness shown in Table 2 is formed by vapor deposition on the entire surface including the tooth portion composed of the tooth surface) and both side surfaces (left and right tooth surfaces). Thus, in the state where the (Ti, Al) N layer as the base layer is formed on the entire surface of the cemented carbide cutting base, it is taken out from the apparatus, and is radially and over the entire length as shown in FIG. Grinding is performed using a disk-shaped rotating diamond grindstone along the tooth front surface and the tooth rear surface, which are rake faces facing each other with the formed tooth gap interposed therebetween, and the (Ti, Al ) After removing the N layer, it was charged in the apparatus again, and a current of 100 A was passed between the cathode electrode and the anode electrode of the hard coating layer forming metal Ti to generate an arc discharge. On the entire surface of the cemented carbide cutting substrate in which the (Ti, Al) N layer as the underlayer is formed only on the flank surface under the same conditions as the formation conditions of the (Ti, Al) N layer as the underlayer, It consists of TiN layer of the target layer thickness shown in 2. The coated carbide cutting tools 1 to 6 of the present invention were produced by vapor-depositing a hard coating layer, respectively.

また、比較の目的で、上記の超硬歯切基体A〜Fのそれぞれを、同じくアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に同じ条件で装入し、カソード電極(蒸発源)として硬質被覆層形成用およびボンバード洗浄用の金属Tiだけを装着するが、前記超硬歯切基体表面のTiボンバード洗浄は上記の本発明被覆超硬歯切工具1〜6の製造に際して適用した条件と同じ条件で行ない、上記下地層である(Ti,Al)N層の形成は行なわないが、同じく同一の条件で表3に示される目標層厚のTiN層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬歯切工具1〜6をそれぞれ製造した。   Moreover, for the purpose of comparison, each of the above-mentioned superhard gear cutting bases A to F is also ultrasonically cleaned in acetone and dried, and the same conditions are applied to the arc ion plating apparatus shown in FIG. It is inserted and only the metal Ti for hard coating layer formation and bombard cleaning is mounted as a cathode electrode (evaporation source). Ti bombard cleaning of the surface of the cemented carbide cutting base is performed by the above-described coated carbide cutting of the present invention described above. The same conditions as those applied in the manufacture of the tools 1 to 6 are performed, and the (Ti, Al) N layer as the underlayer is not formed, but TiN having the target layer thickness shown in Table 3 is also used under the same conditions. Conventionally coated cemented carbide cutting tools 1 to 6 were manufactured by vapor-depositing a hard coating layer composed of layers.

つぎに、上記の本発明被覆超硬歯切工具1〜6および従来被覆超硬歯切工具1〜6を用いて、材質がJIS・SCr420Hの低合金鋼にして、モジュール:2.0、圧力角:20度、歯数:29、ねじれ角:25度左捩れ、歯丈:4.7mm、歯幅:20.0mmの寸法および形状をもった歯車の加工を、
切削速度(回転速度):500m/min、
送り:1.2mm/rev.、
加工形態:クライム、シフトなし、ドライ(エアーブロー)、
の高速歯切加工条件(通常の切削速度は350m/min.)で行い、逃げ面摩耗幅が0.1mmに至るまでの歯車加工数を測定した。この測定結果を表2,3にそれぞれ示した。
Next, using the above coated carbide cutting tool 1-6 of the present invention and the conventional coated carbide cutting tool 1-6, the material is made of low alloy steel of JIS / SCr420H, module: 2.0, pressure Machining of gears with dimensions and shapes of angle: 20 degrees, number of teeth: 29, twist angle: 25 degrees left twist, tooth length: 4.7 mm, tooth width: 20.0 mm,
Cutting speed (rotational speed): 500 m / min,
Feed: 1.2 mm / rev. ,
Processing form: climb, no shift, dry (air blow),
The high-speed gear cutting conditions (normal cutting speed was 350 m / min.) Were performed, and the number of gears processed until the flank wear width reached 0.1 mm was measured. The measurement results are shown in Tables 2 and 3, respectively.

Figure 0004539049
Figure 0004539049

Figure 0004539049
Figure 0004539049

Figure 0004539049
Figure 0004539049

この結果得られた本発明被覆超硬歯切工具1〜6を構成する下地層の組成をオージェ分光分析装置を用いて測定したところ、それぞれ目標組成と実質的に同じ組成を示した。
また、これらの本発明被覆超硬歯切工具1〜6の硬質被覆層および下地層、並びに従来被覆超硬歯切工具1〜6の硬質被覆層の厚さを、それぞれ走査型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均層厚(5ヶ所測定の平均値)を示した。
When the composition of the foundation layer which comprises this invention coated cemented carbide cutting tool 1-6 obtained as a result of this was measured using the Auger spectroscopic analyzer, each showed the composition substantially the same as a target composition.
Moreover, the thickness of the hard coating layer and the ground layer of these coated carbide cutting tools 1 to 6 of the present invention, and the thickness of the hard coating layer of conventional coated carbide cutting tools 1 to 6 are respectively measured using a scanning electron microscope. As a result of cross-sectional measurement, all showed an average layer thickness (average value of five measurements) substantially the same as the target layer thickness.

なお、上記の本発明被覆超硬歯切工具においては、その使用寿命は歯部逃げ面の硬質被覆層であるTiN層の摩耗により決まるが、これの再生使用に際しては、前記逃げ面の下地層である(Ti,Al)N層は残したままで、使用後に残留した歯部すくい面あるいは歯部すくい面を含む前後面と、同逃げ面のTiN層だけを研削除去し、この状態で再生使用のための前記TiN層の蒸着形成を行なえばよく、したがって繰り返しの再生使用も可能となる。   In the above-described coated carbide cutting tool according to the present invention, the service life is determined by the wear of the TiN layer, which is the hard coating layer of the tooth flank. The (Ti, Al) N layer is left and the tooth rake face remaining after use, or the front and rear surfaces including the tooth rake face, and the TiN layer on the flank face are removed by grinding and reused in this state. Therefore, the TiN layer may be formed by vapor deposition, so that it can be reused repeatedly.

表2,3に示される結果から、歯部の逃げ面だけに硬質被覆層であるTiN層の下地層として(Ti,Al)N層を介在させた本発明被覆超硬歯切工具1〜6は、いずれも鋼製歯車の歯切加工を、高熱発生を伴う高速条件で行なった場合にも、前記下地層の作用で歯部内部の温度上昇が防止され、前記歯部が熱塑性変形することが阻止され、歯部は常に正常摩耗形態をとるようになり、この結果長期に亘ってすぐれた耐摩耗性を発揮するのに対して、すぐれた断熱性を発揮する前記下地層の形成がない従来被覆超硬歯切工具1〜6においては、高速歯切加工時に発生した高熱が歯部に伝達し、この結果歯部が熱塑性変形し、偏摩耗が発生することから、摩耗が急速に進行するようになり、比較的短時間で使用寿命に至ることが明らかである。
上述のように、この発明の被覆超硬歯切工具は、通常の条件での歯切加工は勿論のこと、特に各種の鋼歯車などの歯切加工を、高熱発生を伴う高速条件で行なった場合にも、歯部の熱塑性変形性が阻止され、長期に亘ってすぐれた耐摩耗性を示すものであるから、歯切加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
From the results shown in Tables 2 and 3, the coated carbide cutting tools 1 to 6 of the present invention in which a (Ti, Al) N layer is interposed as an underlayer of a TiN layer that is a hard coating layer only on the flank face of the tooth portion. In both cases, even when gear cutting of a steel gear is performed under high-speed conditions accompanied by high heat generation, the temperature of the tooth portion is prevented from being increased by the action of the base layer, and the tooth portion is thermoplastically deformed. The tooth portion always takes a normal wear form, and as a result, it exhibits excellent wear resistance over a long period of time, whereas there is no formation of the base layer that exhibits excellent heat insulation. In conventional coated carbide gear cutting tools 1-6, high heat generated during high-speed gear cutting is transmitted to the tooth part, and as a result, the tooth part undergoes thermoplastic deformation and uneven wear occurs, so wear progresses rapidly. It is clear that the service life is reached in a relatively short time.
As described above, the coated carbide gear cutting tool of the present invention performs not only gear cutting under normal conditions, but also gear cutting of various steel gears, etc., under high speed conditions accompanied by high heat generation. In this case, since the thermoplastic deformation of the tooth portion is prevented and excellent wear resistance is exhibited over a long period of time, it is possible to satisfactorily cope with labor saving and energy saving of gear cutting and further cost reduction. Is.

被覆超硬歯切工具を製造するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for manufacturing a coated carbide gear cutting tool is shown, (a) is a schematic plan view, and (b) is a schematic front view.

被覆超硬歯切工具の概略斜視図である。It is a schematic perspective view of a coated carbide gear cutting tool.

Claims (1)

回転軸に対して放射状に、かつ長さ方向に沿って複数の歯溝が形成され、それぞれの歯溝間に、前記歯溝に面し、回転方向に対して前面がすくい面となる前後面と、逃げ面となる頂面(歯先歯面)および両側面(左右歯面)で構成された歯部が、長さ方向に沿って連続的に複数形成された形状を有する炭化タングステン基超硬合金製歯切工具本体の表面に、窒化チタン層からなる硬質被覆層を0.9〜15μmの平均層厚で物理蒸着してなる表面被覆超硬合金製むく歯切工具において、
上記歯部の逃げ面を構成する頂面(歯先歯面)および両側面(左右歯面)に、上記硬質被覆層の下地層として、0.1〜5μmの平均層厚を有し、かつ、組成式:(Ti1−X Al)N(ただし、原子比で、Xは0.40〜0.65を示す)、を満足するTiとAlの複合窒化物層からなる断熱層を物理蒸着してなる、高速歯切加工ですぐれた耐摩耗性を発揮する表面被覆超硬合金製むく歯切工具。
A plurality of tooth spaces are formed radially along the length direction with respect to the rotation axis, and face the tooth spaces between each tooth space, and the front and rear surfaces are rake faces with respect to the rotation direction. And a tungsten carbide base having a shape in which a plurality of tooth portions composed of a top surface (tooth tip surface) and both side surfaces (left and right tooth surfaces) serving as flank surfaces are continuously formed along the length direction. In the surface cutting cemented carbide cutting tool made by physical vapor deposition of a hard coating layer made of a titanium nitride layer with an average layer thickness of 0.9 to 15 μm on the surface of the hard alloy cutting tool body,
The top surface (tooth tip tooth surface) and both side surfaces (left and right tooth surfaces) constituting the flank of the tooth part have an average layer thickness of 0.1 to 5 μm as an underlayer of the hard coating layer, and And a physical insulating layer composed of a composite nitride layer of Ti and Al satisfying the composition formula: (Ti 1-X Al X ) N (wherein X is 0.40 to 0.65 in atomic ratio). A surface-coated cemented carbide strip cutting tool that exhibits excellent wear resistance in high-speed gear cutting.
JP2003278735A 2003-07-24 2003-07-24 A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting. Expired - Fee Related JP4539049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003278735A JP4539049B2 (en) 2003-07-24 2003-07-24 A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003278735A JP4539049B2 (en) 2003-07-24 2003-07-24 A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting.

Publications (2)

Publication Number Publication Date
JP2005040911A JP2005040911A (en) 2005-02-17
JP4539049B2 true JP4539049B2 (en) 2010-09-08

Family

ID=34265055

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003278735A Expired - Fee Related JP4539049B2 (en) 2003-07-24 2003-07-24 A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting.

Country Status (1)

Country Link
JP (1) JP4539049B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103075490B (en) * 2011-10-25 2015-09-09 湖北开明高新科技有限公司 A kind of hardened face gear and hardened face gear renovation technique

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310325A (en) * 1991-04-05 1992-11-02 O S G Kk Manufacture of hard film covered high speed steel
JPH0524219U (en) * 1991-09-09 1993-03-30 三菱マテリアル株式会社 Hard layer composite coated drill

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310325A (en) * 1991-04-05 1992-11-02 O S G Kk Manufacture of hard film covered high speed steel
JPH0524219U (en) * 1991-09-09 1993-03-30 三菱マテリアル株式会社 Hard layer composite coated drill

Also Published As

Publication number Publication date
JP2005040911A (en) 2005-02-17

Similar Documents

Publication Publication Date Title
JP4725774B2 (en) Cutting tool made of surface-coated cubic boron nitride based sintered material whose hard coating layer exhibits excellent chipping resistance in intermittent heavy cutting of high hardness steel
JP4720989B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4539049B2 (en) A surface-coated cemented carbide barbing tool with excellent wear resistance in high-speed gear cutting.
JP4678589B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4539055B2 (en) A surface-coated cemented carbide stripping tool that exhibits excellent heat-resistant plastic deformation with high-speed gear cutting.
JP3959737B2 (en) A method of forming a hard coating layer that exhibits excellent chipping resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP2005001023A (en) Surface coated cemented carbide solid gear cutting tool having hard coating layer exhibiting excellent thermal plastic deformation resistance in high-speed gear cutting
JP4120467B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP4150913B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed heavy cutting conditions and manufacturing method thereof
JP4120243B2 (en) A method of forming a hard coating layer with excellent wear resistance in high-speed gear cutting on the surface of a cemented carbide peeling gear.
JP4706911B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP4007104B2 (en) A surface-coated stripping tool that provides excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP3956387B2 (en) A surface-coated cemented carbide striping tool with excellent wear resistance with a hard coating layer in high-speed gear cutting.
JP4150914B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3956386B2 (en) A surface-coated cemented carbide striping tool that exhibits excellent chipping resistance with a hard coating layer in high-speed gear cutting.
JP4706912B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP2012210672A (en) End mill exhibiting excellent wear resistance
JP4816844B2 (en) A surface-coated tungsten carbide-based cemented carbide cutting tool with excellent chipping resistance in high-speed gear cutting.
JP4716007B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of alloy steel
JP3543768B2 (en) Surface coated cemented carbide gear cutting tool with a hard coating layer that exhibits excellent heat-resistant plastic deformation properties
JP4720990B2 (en) Surface-coated cemented carbide cutting tool with excellent wear resistance due to high-speed gear cutting of highly reactive work materials
JP4120442B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same
JP3956390B2 (en) Surface coated high speed tool steel gear cutting tool with excellent wear resistance with hard coating layer in high speed gear cutting
JP4379911B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP4120458B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance of hard coating layer under high-speed cutting conditions and method for manufacturing the same

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060721

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100601

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100614

R150 Certificate of patent or registration of utility model

Ref document number: 4539049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130702

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees