JPH10309605A - Coated hard alloy tool - Google Patents

Coated hard alloy tool

Info

Publication number
JPH10309605A
JPH10309605A JP12089497A JP12089497A JPH10309605A JP H10309605 A JPH10309605 A JP H10309605A JP 12089497 A JP12089497 A JP 12089497A JP 12089497 A JP12089497 A JP 12089497A JP H10309605 A JPH10309605 A JP H10309605A
Authority
JP
Japan
Prior art keywords
group
hard alloy
coated hard
base material
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12089497A
Other languages
Japanese (ja)
Inventor
Yasuhisa Hashimoto
泰久 橋本
Kazuo Yamagata
一夫 山縣
Nobuyuki Kitagawa
信行 北川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP12089497A priority Critical patent/JPH10309605A/en
Publication of JPH10309605A publication Critical patent/JPH10309605A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a coated hard alloy tool having a coating layer which is as hard as possible and excellent in wear resistance. SOLUTION: In such multilayer coat that at least two kinds of compound selected from a group which consists of nitride, carbide, carbon nitride and oxide of a periodic table IVa, Va group element, Al, B, Ga and these mutual alloy or solid solution, are laminated in alternating on a base metal by 0.2 to 100 nm of coating thickness and 0.5 to 10 μm of coating thickness in total, at least one kind selected from a group consisting of Ge, Sn and Pb is added to at least one kind of compound layer.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、耐摩耗性の要求さ
れる切削工具やその他の耐摩工具として利用される被覆
硬質合金工具の中で耐摩耗性、特に耐溶着性に優れた被
覆硬質合金工具に関する。
BACKGROUND OF THE INVENTION The present invention relates to a coated hard alloy having excellent wear resistance, particularly excellent welding resistance, among coated hard alloy tools used as cutting tools or other wear-resistant tools requiring wear resistance. For tools.

【0002】[0002]

【従来の技術】従来、切削用の工具としては、超硬合金
(WC−Co合金にTiやTa、Nbの炭窒化物を添加
した合金)が用いられてきたが、近年は切削の高速化に
伴い、超硬合金、サーメット或いはアルミナ系や窒化珪
素系のセラミックを母材としてその表面にPVD法で元
素周期律表のIVa、Va、VIa族金属やAl等の炭
化物、窒化物、炭窒化物、ホウ窒化物、酸化物からなる
膜を3〜20μmの厚さに被覆した硬質合金工具の使用
割合が増大している。特にPVD法による被覆では、母
材強度の劣化を招かずに耐摩耗性を高め得るということ
から、ドリル、エンドミル、フライス用スローアウェイ
チップなど強度の要求される切削工具に、かかる表面被
覆法が多用されている。
2. Description of the Related Art Conventionally, as a cutting tool, a cemented carbide (an alloy obtained by adding a carbon nitride of Ti, Ta, or Nb to a WC-Co alloy) has been used. Accordingly, carbides, nitrides, carbonitrides such as metals such as IVa, Va, VIa group metals and Al of the periodic table of elements are formed on the surface of a cemented carbide, cermet or alumina-based or silicon nitride-based ceramic by PVD method. The use ratio of hard alloy tools coated with a film made of a material, boronitride or oxide to a thickness of 3 to 20 μm is increasing. In particular, in the case of coating by the PVD method, since the wear resistance can be increased without deteriorating the strength of the base material, such a surface coating method is used for cutting tools requiring high strength such as drills, end mills, indexable inserts for milling. It is heavily used.

【0003】例えば、切削工具の耐摩耗性、耐欠損性を
改良するために、超硬合金やサーメット等の硬質合金の
表面をPVD法又はCVD法により(Tia Alb Si
c )Cx 1-x 〔0.3≦a≦0.8,0.2≦b≦
0.7,0≦x≦1,0.01≦c≦0.2〕で表され
る0.5〜10μmの硬質被膜で被覆した被覆硬質合金
が提案されている。しかし、この場合は、耐摩耗性の改
良は充分とはいえなかった。更に、耐摩耗性を向上させ
る目的で1層の厚みを0.2〜100nmまで薄くし、
硬質物質を交互に成膜すると、お互いの相互作用によ
り、内部歪みが増大し、高い硬質の膜が形成されること
が判明しこの方法が実用化されている(特開平8−12
7862号公報)。すなわち、この方法は多層膜と基材
との歪み整合の安定化を意図して積層部と基材との間に
特定の中間層を配置することを特徴としているが、耐摩
耗性の改善は充分ではない。
For example, wear resistance of the cutting tool, in order to improve the chipping resistance, the surface of the hard alloy of cemented carbide or cermet PVD or CVD (Ti a Al b Si
c ) C x N 1-x [0.3 ≦ a ≦ 0.8, 0.2 ≦ b ≦
A coated hard alloy coated with a hard coating of 0.5 to 10 μm represented by [0.7, 0 ≦ x ≦ 1, 0.01 ≦ c ≦ 0.2] has been proposed. However, in this case, improvement in wear resistance was not sufficient. Furthermore, in order to improve the wear resistance, the thickness of one layer is reduced to 0.2 to 100 nm,
It has been found that when hard materials are alternately formed, the internal strain increases due to mutual interaction, and a high hard film is formed. This method has been put to practical use (Japanese Patent Laid-Open No. 8-12).
No. 7862). In other words, this method is characterized by disposing a specific intermediate layer between the laminated portion and the substrate for the purpose of stabilizing the strain matching between the multilayer film and the substrate. Not enough.

【0004】[0004]

【発明が解決しようとする課題】上記の歪み整合の安定
化を図る方法では、該中間層と積層部の少なくとも最も
基材側の層とが連続した結晶格子を有し、両者の相互作
用によって大きな歪みが生じ高い硬度が得られるという
ものであるが、歪み整合の安定化という点では、基材と
多層膜との界面から離れた部分では異種元素との相互作
用が弱くなりひずみ構造が安定化しにくいという問題が
あった。本発明は従来法の上記種々の問題点を解決する
ためになされたものであって、特に歪み整合の安定化を
はかる方法を更に発展させ、より硬く耐摩耗性に優れた
被覆層をもつ被覆硬質合金工具を提供することを目的と
する。
According to the above-mentioned method for stabilizing the strain matching, the intermediate layer and at least the layer closest to the base material of the laminated portion have a continuous crystal lattice, and the two layers interact with each other. Although large strain is generated and high hardness is obtained, in terms of stabilizing the strain matching, the interaction with the dissimilar elements is weaker at the part away from the interface between the base material and the multilayer film, and the strain structure is stable. There was a problem that it was difficult to convert. The present invention has been made in order to solve the above-mentioned various problems of the conventional method, and in particular, has further developed a method for stabilizing the strain matching, and has a coating having a harder and more wear-resistant coating layer. It is an object to provide a hard alloy tool.

【0005】[0005]

【課題を解決するための手段】本発明は上記の目的は下
記の構成を有する各発明により達成することができる。 (1)周期律表IVa、Va族元素、Al,B,Ga及
びこれら相互の合金又は固溶体の、窒化物、炭化物、炭
窒化物及び酸化物からなる群から選ばれた少なくとも2
種の化合物を、0.2〜100nmの膜厚で母材上に交
互に積層して全体の膜厚が0.5〜0μmになる多層膜
のうち、少なくとも1種の化合物層にGe、Sn及びP
bからなる群から選ばれる少なくとも1種を添加したこ
とを特徴とする被覆硬質合金工具。 (2)Ge、Sn及びPbからなる群から選ばれる少な
くとも1種の添加量を原子比で最大20%としたことを
特徴とする上記(1)に記載の被覆硬質合金工具。 (3)Ge、Sn及びPbからなる群から選ばれる少な
くとも1種の添加量を原子比で0.01〜5%としたこ
とを特徴とする上記(2)に記載の被覆合金硬質工具。
The object of the present invention can be attained by the inventions having the following constitutions. (1) At least two elements selected from the group consisting of nitrides, carbides, carbonitrides, and oxides of the periodic table IVa, Va group elements, Al, B, Ga and their alloys or solid solutions.
At least one compound layer is made of Ge or Sn in at least one compound layer of a multilayer film having a total thickness of 0.5 to 0 μm by alternately laminating seed compounds in a thickness of 0.2 to 100 nm on a base material. And P
A coated hard alloy tool, wherein at least one member selected from the group consisting of b is added. (2) The coated hard alloy tool as described in (1) above, wherein the addition amount of at least one selected from the group consisting of Ge, Sn, and Pb is set to an atomic ratio of at most 20%. (3) The coated alloy hard tool according to the above (2), wherein the amount of addition of at least one selected from the group consisting of Ge, Sn and Pb is 0.01 to 5% in atomic ratio.

【0006】(4)母材と多層コーティング膜の界面に
IVa族元素の窒化物、炭化物、炭窒化物若しくは酸化
物からなる薄膜を配したことを特徴とする上記(1)な
いし(3)のいずれかに記載の被覆硬質合金工具。 (5)多層コーティング膜の最表面にIVa族元素の窒
化物、炭化物、炭窒化物若しくは酸化物からなる薄膜を
配したことを特徴とする上記(1)ないし(3)のいず
れかに記載の被覆硬質合金工具。 (6)母材と多層コーティング膜の界面および多層コー
ティング膜の最上面にIVa族元素の窒化物、炭化物炭
窒化物若しくは酸化物からなる薄膜を配したことを特徴
とする上記(1)に記載の被覆硬質合金工具。 (7)母材が超硬合金、サーメット、アルミナ系又は窒
化珪素系のセラミックであることを特徴とする上記
(1)ないし(6)のいずれかに記載の被覆硬質合金工
具。
(4) A thin film made of a nitride, carbide, carbonitride or oxide of a group IVa element is disposed at the interface between the base material and the multilayer coating film. The coated hard alloy tool according to any one of the above. (5) The method according to any of (1) to (3) above, wherein a thin film made of a nitride, carbide, carbonitride or oxide of a Group IVa element is disposed on the outermost surface of the multilayer coating film. Coated hard alloy tool. (6) A thin film made of a nitride, carbide or carbonitride or oxide of a group IVa element is disposed on the interface between the base material and the multilayer coating film and on the uppermost surface of the multilayer coating film. Coated hard alloy tools. (7) The coated hard alloy tool according to any one of the above (1) to (6), wherein the base material is a cemented carbide, cermet, alumina-based or silicon nitride-based ceramic.

【0007】本発明者らは、連続した結晶格子の構造を
持つ多層膜の応力ひずみについて以下のように考察し
た。結晶格子が連続した多層膜ではお互いの相互作用に
より大きなひずみが生じ高い硬度が得られる一方、ひず
み整合の安定化が十分でないと高い内部応力に起因する
膜の脆化現象も現れてしまう。ここで特にひずみ整合の
安定化は多層膜の界面から離れるほど重要である。とい
うのも界面から離れた部分では異種元素との相互作用が
弱いので、ひずみ構造が安定化しにくい。ここでこのひ
ずみ構造を安定化する方法について考察を重ねたとこ
ろ、IVa族元素、Va族元素、Al,B,Gaの窒化
物、炭化物、炭窒化物、酸化物といった多層膜を形成す
る硬質物質にGe、Sn、Pbといった元素を添加する
ことでひずみ整合を安定化できるという結論に達し、高
い硬度を保ち、耐摩耗性の良い被覆硬質合金工具を得る
ことができた。
The present inventors have considered the stress-strain of a multilayer film having a continuous crystal lattice structure as follows. In a multilayer film having a continuous crystal lattice, a large strain is generated due to mutual interaction and a high hardness is obtained. On the other hand, if the stabilization of the strain matching is not sufficient, a brittle phenomenon of the film due to a high internal stress also appears. Here, the stabilization of the strain matching becomes more important as the distance from the interface of the multilayer film increases. This is because the interaction with the dissimilar element is weak in a portion away from the interface, so that it is difficult to stabilize the strained structure. Here, the method of stabilizing the strained structure was examined repeatedly, and it was found that hard materials for forming a multilayer film such as group IVa elements, group Va elements, nitrides of Al, B, and Ga, carbides, carbonitrides, and oxides were used. It has been concluded that the addition of elements such as Ge, Sn and Pb can stabilize the strain matching, and a coated hard alloy tool having high hardness and good wear resistance could be obtained.

【0008】添加元素濃度(原子比)は0.005%か
ら効果があり、特に0.01〜5%でその効果が著しい
が、20%をこえると耐摩耗性の向上は期待できないこ
とがわかった。また、母材との界面や、最表層にIVa
族元素の窒化物、炭化物、炭窒化物、もしくは酸化物か
らなる薄膜を配すると、たとえ多層膜の部分に亀裂が入
ってもその進展を阻害する効果があり耐摩耗性が向上す
ることも発見した。
The effect of the additive element concentration (atomic ratio) is effective from 0.005%, and the effect is remarkable especially in the range of 0.01 to 5%. However, when the concentration exceeds 20%, improvement in wear resistance cannot be expected. Was. In addition, at the interface with the base material and the outermost layer, IVa
It has also been discovered that if a thin film made of a nitride, carbide, carbonitride, or oxide of a group III element is provided, even if a crack is formed in the multilayer film, the effect of inhibiting the progress of the crack and the abrasion resistance are improved. did.

【0009】[0009]

【発明の実施の形態】上記発明(1)において、各硬質
層の膜厚を0.2〜100nmと限定したのは、0.2
nm未満では積層構造を得るのが困難で本発明の目的と
する効果が得られず、100nmを超えると積層構造に
よる高硬度があらわれないからである。積層の全体の膜
厚を0.5〜10μmと限定したのは、0.5μm未満
では耐摩耗性の効果が得られず、一方10μmを超える
と耐欠損性が低下するからである。
BEST MODE FOR CARRYING OUT THE INVENTION In the above invention (1), the thickness of each hard layer is limited to 0.2 to 100 nm.
If the thickness is less than 100 nm, it is difficult to obtain a laminated structure, and the intended effect of the present invention cannot be obtained. If the thickness exceeds 100 nm, high hardness due to the laminated structure does not appear. The reason why the total thickness of the laminate is limited to 0.5 to 10 μm is that if it is less than 0.5 μm, the effect of wear resistance cannot be obtained, and if it exceeds 10 μm, the fracture resistance decreases.

【0010】上記発明(2)及び(3)において、添加
元素濃度を原子比で最大20%と限定したのは、20%
を超えるもそれ以上の耐摩耗性の向上が得られないから
であり、同様に原子比で0.01〜5%としたのは、
0.01%未満では効果がかなり低下し、膜の脆性が改
善されないためであり5%を超えると耐摩耗性がゆるや
かに低下するという問題が生じるからである。上記発明
(4)において、該特定の薄膜を母材と多層コーティン
グ膜の界面に配するのは、それにより亀裂が防止され、
更に耐摩耗性が向上するという効果が得られるからであ
り、上記発明(5)において、該特定の薄膜を多層コー
ティング膜の最表面に配するのは、化学的にはそれほど
安定とはいえない添加元素が大気にふれるのを防ぐとい
う効果が奏せられるからである。上記薄膜の厚さは0.
1〜5μmの範囲とするのがよい。0.1μm未満では
上記効果がなく、また5μmを超えると耐摩耗性が低下
するという問題が生じる。また本発明において母材とし
て用いられる超硬合金、サーメット、アルミナ系又は窒
化珪素系のセラミックは通常この種の被覆硬質合金工具
の母材として用いられる任意の材料を用いることがで
き、ほぼ同様の効果を達成することができる。
In the above inventions (2) and (3), the concentration of the additive element is limited to a maximum of 20% in atomic ratio,
This is because no further improvement in wear resistance can be obtained even when the atomic ratio exceeds 0.01%.
If the content is less than 0.01%, the effect is considerably reduced, and the brittleness of the film is not improved. If the content is more than 5%, a problem occurs that the wear resistance is gradually reduced. In the above invention (4), disposing the specific thin film at the interface between the base material and the multilayer coating film prevents cracks,
This is because the effect of further improving abrasion resistance is obtained. In the above invention (5), disposing the specific thin film on the outermost surface of the multilayer coating film is not chemically very stable. This is because the effect of preventing the added element from touching the atmosphere can be obtained. The thickness of the thin film is 0.
The thickness is preferably in the range of 1 to 5 μm. If the thickness is less than 0.1 μm, the above effect is not obtained. Further, the cemented carbide, cermet, alumina-based or silicon nitride-based ceramic used as the base material in the present invention can be any material used as the base material of this type of coated hard alloy tool, and almost the same. The effect can be achieved.

【0011】[0011]

【実施例】以下、本発明の実施例について詳細に述べ
る。 (実施例1)型番SDKN42MTの形状のISO P
30超硬合金母材に、表1に示されるようにTiGeN
(原子比でTi:95%、Ge:5%)とAlGeN
(原子比でAl:95%、Ge:5%)を積層間隔0.
5nm(サンプルA1)と10nm(サンプルB1)で
積層した工具を製作した。
Embodiments of the present invention will be described below in detail. (Example 1) ISO P having shape of model number SDKN42MT
As shown in Table 1, TiGeN
(Ti: 95%, Ge: 5% in atomic ratio) and AlGeN
(Atomic ratio: Al: 95%, Ge: 5%) with a lamination interval of 0.1.
A laminated tool of 5 nm (sample A1) and 10 nm (sample B1) was manufactured.

【0012】またHfPbC(原子比でHf:99%、
Pb:1%)とNbGeO(原子比でNb:80%、G
e:20%)を積層間隔1nm(サンプルC1)と10
nm(サンプルD1)で積層した工具及びZrSnCN
(原子比でZr:99.9%、Sn:0.1%)とVS
nPbN(原子比でV:90%、Sn:5%、Pb:5
%)を積層間隔0.2nm(サンプルE1)と100n
m(サンプルF1)を製作した。また、TiPbN(原
子比でTi:90%、Pb:10%)とTiAlN(原
子比でTi:50%、Al:50%)を積層間隔0.5
nm(サンプルG1)と10nm(サンプルH1)で積
層した工具を製作した。なおすべてのサンプルのトータ
ルの膜厚は3μmと統一した。
HfPbC (Hf: 99% in atomic ratio,
Pb: 1%) and NbGeO (Nb: 80% by atomic ratio, G
e: 20%) with a lamination interval of 1 nm (sample C1) and 10 nm.
nm (sample D1) and ZrSnCN
(Zr: 99.9%, Sn: 0.1% in atomic ratio) and VS
nPbN (V: 90%, Sn: 5%, Pb: 5 in atomic ratio)
%) With a stacking interval of 0.2 nm (sample E1) and 100 n
m (sample F1). TiPbN (Ti: 90%, Pb: 10% in atomic ratio) and TiAlN (Ti: 50%, Al: 50% in atomic ratio) have a stacking interval of 0.5%.
A tool laminated with a thickness of 10 nm (sample G1) and a thickness of 10 nm (sample H1) was manufactured. The total film thickness of all the samples was set to 3 μm.

【0013】また一方従来の技術を用いて得たサンプ
ル、TiNとAlNを積層間隔0.5nm(サンプル比
1)、10nm(サンプル比2)、HfCとNbOを積
層間隔1nm(サンプル比3)、10nm(サンプル比
4)、ZrCNとVNを積層間隔0.2nm(サンプル
比5)、100nm(サンプル比6)及びTiNとTi
AlNを積層間隔0.5nm(サンプル比7)、10n
m(サンプル比8)も比較のため製作した。
On the other hand, a sample obtained by the conventional technique, TiN and AlN were stacked at a stacking interval of 0.5 nm (sample ratio 1), 10 nm (sample ratio 2), HfC and NbO were stacked at a stacking interval of 1 nm (sample ratio 3), 10 nm (sample ratio 4), stacking interval of ZrCN and VN 0.2 nm (sample ratio 5), 100 nm (sample ratio 6), TiN and Ti
AlN is deposited at a stacking interval of 0.5 nm (sample ratio: 7), 10 n
m (sample ratio 8) was also prepared for comparison.

【0014】これらサンプルを使って合金鋼のブロック
を下記条件で切削し、各工具の摩耗量を測定した。 切削条件 被削材 : SCM435(硬さ:HB250) 切削速度 : 200m/min 送り : 0.25mm/刃 切り込み : 1.5mm 切削形態 : 乾式 切削長 : 2m 切削方法 : フライス切削
Using these samples, a block of alloy steel was cut under the following conditions, and the wear of each tool was measured. Cutting conditions Work material: SCM435 (Hardness: HB250) Cutting speed: 200m / min Feed: 0.25mm / tooth Cutting depth: 1.5mm Cutting form: Dry cutting length: 2m Cutting method: Milling

【0015】[0015]

【表1】 [Table 1]

【0016】この結果から本発明品である上記表の左側
のサンプルのほうがGe、Sn、Pb元素を添加しない
サンプルより耐摩耗性が高いことがわかる。
From these results, it can be seen that the sample on the left side of the above table, which is a product of the present invention, has higher wear resistance than the sample to which Ge, Sn, and Pb elements are not added.

【0017】(実施例2)次に母材と多層コーティング
膜の界面にIVa族元素の窒化物、炭化物、炭窒化物も
しくは酸化物からなる薄膜を配したことの効果を確かめ
るため実施例1のサンプルと同じ被覆膜と母材界面の間
に表2に示されるようにTiN,ZrC,HfO,Ti
CN,TiZrN層を形成したサンプルを作成し、実施
例1と同じ条件で切削し耐摩耗性を評価した。本実施例
においてもトータルの被覆膜厚さは3μmに統一した。
(Example 2) Next, in order to confirm the effect of disposing a thin film made of a nitride, carbide, carbonitride or oxide of a Group IVa element at the interface between the base material and the multilayer coating film, the effect of Example 1 was confirmed. As shown in Table 2, TiN, ZrC, HfO, Ti
Samples on which CN and TiZrN layers were formed were prepared, cut under the same conditions as in Example 1, and the wear resistance was evaluated. Also in this example, the total coating film thickness was unified to 3 μm.

【0018】[0018]

【表2】 [Table 2]

【0019】この結果から亀裂防止層として母材と多層
コーティング膜の界面にIVa族元素の窒化物、炭化
物、炭窒化物、もしくは酸化物からなる薄膜を付与した
上記表2の左側のサンプルのほうが亀裂防止層のないサ
ンプル(表右)より耐摩耗性に優れていることがわか
る。
From these results, the sample on the left side of Table 2 above in which a thin film made of a nitride, carbide, carbonitride, or oxide of a group IVa element was provided at the interface between the base material and the multilayer coating film as a crack prevention layer was obtained. It can be seen that the sample having no crack prevention layer (the right side of the table) has superior wear resistance.

【0020】(実施例3)次に多層コーティング膜の上
部にIVa族元素の窒化物、炭化物、炭窒化物もしくは
酸化物からなる薄膜を配したことの効果を確かめるため
実施例1のサンプルと同じ被覆膜の最表面に、表3に示
されるように、TiN,ZrC,HfO,TiCN層を
形成したサンプルを作成し、実施例1と同じ条件で切削
し耐摩耗性を評価した。本実験においてもトータルの被
覆膜厚さは3μmに統一した。
Example 3 Next, the same as the sample of Example 1 to confirm the effect of disposing a thin film made of a nitride, carbide, carbonitride or oxide of a group IVa element on the multilayer coating film. As shown in Table 3, a sample having a TiN, ZrC, HfO, and TiCN layer formed on the outermost surface of the coating film was prepared, and cut under the same conditions as in Example 1 to evaluate abrasion resistance. Also in this experiment, the total coating film thickness was unified to 3 μm.

【0021】[0021]

【表3】 [Table 3]

【0022】この結果から多層コーティング膜の上部に
IVa族元素の窒化物、炭化物、炭窒化物、もしくは酸
化物からなる薄膜を配した上記表3の左側のサンプルの
ほうが表面層のないサンプル(表右)より耐摩耗性に優
れていることがわかる。
From the results, the sample on the left side of Table 3 above in which a thin film made of a nitride, carbide, carbonitride, or oxide of a Group IVa element was disposed on the multilayer coating film had no surface layer. It can be seen that the abrasion resistance is better than (right).

【0023】(実施例4)次に母材と多層コーティング
膜の界面および多層コーティング膜の上部にIVa族元
素の窒化物、炭化物、炭窒化物、もしくは酸化物からな
る薄膜を配したことの効果を確かめるため実施例1のサ
ンプルと同じ被覆膜と母材界面の間と該被覆膜の最表面
に表4に示されるようにTiN,ZrC,HfO,Ti
CN層を形成したサンプルを作成し、実施例1と同じ条
件で切削し耐摩耗性を評価した。本実施例においてもト
ータルの被覆膜厚さは3μmに統一した。
Example 4 Next, the effect of disposing a thin film made of a nitride, carbide, carbonitride or oxide of a group IVa element on the interface between the base material and the multilayer coating film and on the multilayer coating film As shown in Table 4, TiN, ZrC, HfO, and Ti were formed between the interface between the coating film and the base material and the outermost surface of the coating film as in the sample of Example 1 to confirm that
A sample on which a CN layer was formed was prepared, cut under the same conditions as in Example 1, and the wear resistance was evaluated. Also in this example, the total coating film thickness was unified to 3 μm.

【0024】[0024]

【表4】 [Table 4]

【0025】この結果から上記表4の左側のサンプルの
ほうが多層コーティング膜の最表面層および母材と多層
コーティング膜の界面にIVa族元素の窒化物、炭化
物、炭窒化物、もしくは酸化物からなる薄膜のないサン
プル(表右)より耐摩耗性に優れていることがわかる。
From the results, the sample on the left side of Table 4 above is composed of a nitride, carbide, carbonitride or oxide of an IVa group element on the outermost surface layer of the multilayer coating film and the interface between the base material and the multilayer coating film. It can be seen that the abrasion resistance is superior to the sample without the thin film (right side).

【0026】(実施例5)次に添加元素濃度が耐摩耗性
に及ぼす影響を確かめるため、型番SDKN42MTの
形状のISOP39超硬合金母材に、表5に示されるよ
うにTiGeN(原子比でTi:99.9%、Ge:
0.1%)とAlGeN(原子比でAl:95%、G
e:5%)を積層間隔0.5nmで積層した工具(サン
プルα)、TiGeN(原子比でTi:95%、Ge:
5%)とAlGeN(原子比でAl:95%、Ge:5
%)を積層間隔0.5nmで積層した工具(サンプル
β)、およびTiGeN(原子比でTi:80%、G
e:20%)とAlGeN(原子比でAl:95%、G
e:5%)を積層間隔0.5nmで積層した工具(サン
プルγ)、およびTiGeN(原子比でTi:75%、
Ge:25%)とAlGeN(原子比でAl:95%、
Ge:5%)を積層間隔0.5nmで積層した工具(サ
ンプルδ)を作成し、実施例1と同じ条件で切削し耐摩
耗性を評価した。本実施例においてもトータルの被覆膜
厚さは3μmに統一した。なお表5には、更にサンプル
比1のデータを併記した。
(Example 5) Next, in order to confirm the effect of the concentration of the added element on the wear resistance, an ISOP39 cemented carbide base material having the shape of model number SDKN42MT was added to TiGeN (Ti in atomic ratio) as shown in Table 5. : 99.9%, Ge:
0.1%) and AlGeN (Al: 95% by atomic ratio, G
e: 5%) with a lamination interval of 0.5 nm (sample α), TiGeN (Ti: 95% by atomic ratio, Ge:
5%) and AlGeN (atomic ratio: Al: 95%, Ge: 5
%) At a lamination interval of 0.5 nm (sample β), and TiGeN (Ti: 80% by atomic ratio, G
e: 20%) and AlGeN (Al: 95% by atomic ratio, G
e: 5%) with a stacking interval of 0.5 nm (sample γ), and TiGeN (Ti: 75% by atomic ratio,
Ge: 25%) and AlGeN (Al: 95% by atomic ratio,
Ge (5%) was laminated at a lamination interval of 0.5 nm to prepare a tool (sample δ), which was cut under the same conditions as in Example 1 to evaluate wear resistance. Also in this example, the total coating film thickness was unified to 3 μm. Table 5 also shows data of sample ratio 1.

【0027】[0027]

【表5】 [Table 5]

【0028】この結果より添加元素の量が原子比で20
%まではその効果が認められ特に5%以下で顕著である
ことがわかる。また0.01%でも顕著な効果が認めら
れる。
From these results, it was found that the amount of the added element was 20 in atomic ratio.
%, The effect is recognized, and it is apparent that the effect is particularly remarkable at 5% or less. At 0.01%, a remarkable effect is observed.

【0029】[0029]

【発明の効果】以上述べたように、本発明の被覆硬質合
金工具は、従来の多層被覆焼結合金と比較して耐摩耗性
が大幅に向上するという効果があり、それにより工具の
寿命も向上するという顕著な効果がある。
As described above, the coated hard alloy tool of the present invention has an effect that the wear resistance is greatly improved as compared with the conventional multilayer coated sintered alloy, and the tool life is thereby improved. There is a remarkable effect of improving.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 周期律表IVa、Va族元素、Al,
B,Ga及びこれら相互の合金又は固溶体の、窒化物、
炭化物、炭窒化物及び酸化物からなる群から選ばれた少
なくとも2種の化合物を、0.2〜100nmの膜厚で
母材上に交互に積層して全体の膜厚が0.5〜10μm
になる多層膜のうち、少なくとも1種の化合物層にG
e、Sn及びPbからなる群から選ばれる少なくとも1
種を添加したことを特徴とする被覆硬質合金工具。
1. The periodic table IVa, a Va group element, Al,
Nitrides of B, Ga and their alloys or solid solutions,
At least two types of compounds selected from the group consisting of carbides, carbonitrides and oxides are alternately stacked on the base material in a thickness of 0.2 to 100 nm to form a total thickness of 0.5 to 10 μm.
Of at least one compound layer in the multilayer film
at least one selected from the group consisting of e, Sn and Pb
A coated hard alloy tool characterized by adding a seed.
【請求項2】 Ge、Sn及びPbからなる群から選ば
れる少なくとも1種の添加量を原子比で最大20%とし
たことを特徴とする請求項1に記載の被覆硬質合金工
具。
2. The coated hard alloy tool according to claim 1, wherein the addition amount of at least one element selected from the group consisting of Ge, Sn and Pb is set to an atomic ratio of at most 20%.
【請求項3】 Ge、Sn及びPbからなる群から選ば
れる少なくとも1種の添加量を原子比で0.01〜5%
としたことを特徴とする請求項2に記載の被覆合金硬質
工具。
3. The amount of at least one selected from the group consisting of Ge, Sn and Pb is 0.01 to 5% by atomic ratio.
The coated alloy hard tool according to claim 2, wherein:
【請求項4】 母材と多層コーティング膜の界面にIV
a族元素の窒化物、炭化物、炭窒化物若しくは酸化物か
らなる薄膜を配したことを特徴とする請求項1ないし請
求項3のいずれかに記載の被覆硬質合金工具。
4. An IV is formed at the interface between the base material and the multilayer coating film.
The coated hard alloy tool according to any one of claims 1 to 3, wherein a thin film made of a nitride, carbide, carbonitride or oxide of a group a element is provided.
【請求項5】 多層コーティング膜の最表面にIVa族
元素の窒化物、炭化物、炭窒化物若しくは酸化物からな
る薄膜を配したことを特徴とする請求項1ないし請求項
4のいずれかに記載の被覆硬質合金工具。
5. The multilayer coating film according to claim 1, wherein a thin film made of a nitride, carbide, carbonitride or oxide of a group IVa element is disposed on the outermost surface. Coated hard alloy tools.
【請求項6】 母材と多層コーティング膜の界面および
多層コーティング膜の最上面にIVa族元素の窒化物、
炭化物炭窒化物若しくは酸化物からなる薄膜を配したこ
とを特徴とする請求項1に記載の被覆硬質合金工具。
6. A nitride of a group IVa element on the interface between the base material and the multilayer coating film and on the uppermost surface of the multilayer coating film.
The coated hard alloy tool according to claim 1, wherein a thin film made of a carbide carbonitride or an oxide is provided.
【請求項7】 母材が超硬合金、サーメット、アルミナ
系又は窒化珪素系のセラミックであることを特徴とする
請求項1ないし請求項6のいずれかに記載の被覆硬質合
金工具。
7. The coated hard alloy tool according to claim 1, wherein the base material is a cemented carbide, cermet, alumina-based or silicon nitride-based ceramic.
JP12089497A 1997-05-12 1997-05-12 Coated hard alloy tool Pending JPH10309605A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12089497A JPH10309605A (en) 1997-05-12 1997-05-12 Coated hard alloy tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12089497A JPH10309605A (en) 1997-05-12 1997-05-12 Coated hard alloy tool

Publications (1)

Publication Number Publication Date
JPH10309605A true JPH10309605A (en) 1998-11-24

Family

ID=14797631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12089497A Pending JPH10309605A (en) 1997-05-12 1997-05-12 Coated hard alloy tool

Country Status (1)

Country Link
JP (1) JPH10309605A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534297A (en) * 2005-04-01 2008-08-28 エーリコン・トレイディング・アーゲー・トリューバッハ Multilayer hard material coating for tools
WO2015076220A1 (en) * 2013-11-21 2015-05-28 株式会社神戸製鋼所 Hard coating film and target for forming hard coating film
JP2019118997A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534297A (en) * 2005-04-01 2008-08-28 エーリコン・トレイディング・アーゲー・トリューバッハ Multilayer hard material coating for tools
WO2015076220A1 (en) * 2013-11-21 2015-05-28 株式会社神戸製鋼所 Hard coating film and target for forming hard coating film
JP2015101736A (en) * 2013-11-21 2015-06-04 株式会社神戸製鋼所 Hard film, and target for forming hard film
EP3072990A4 (en) * 2013-11-21 2017-06-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Hard coating film and target for forming hard coating film
US9850567B2 (en) 2013-11-21 2017-12-26 Kobe Steel, Ltd. Hard coating and target for forming hard coating
JP2019118997A (en) * 2018-01-04 2019-07-22 三菱マテリアル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP4185172B2 (en) Coated hard tool
EP1952920B1 (en) Cutting tip of cutting edge replacement type
JP5866650B2 (en) Surface coated cutting tool
EP0980917B1 (en) Aluminium oxide-coated tool member
US8968866B2 (en) Surface-coated cutting tool
JPH08134629A (en) Hyperfine particle laminated film and laminated high hardness material for tool with same
IL180060A (en) Coated cemented carbide cutting tool milling insert
WO2017217012A1 (en) Surface-coated cutting tool
JP3374599B2 (en) Hard wear-resistant composite coated cutting tool
JPH10309605A (en) Coated hard alloy tool
JP3712242B2 (en) Coated cutting tool / Coated wear resistant tool
JP5240607B2 (en) Surface coated cutting tool
JP3712241B2 (en) Coated cutting tool / Coated wear resistant tool
KR102112084B1 (en) Hard coating layer for cutting tools
JP2556088B2 (en) Surface coated tungsten carbide based cemented carbide cutting tip
JP3016702B2 (en) Coated hard alloy
JP2556116B2 (en) Surface-coated tungsten carbide based cemented carbide cutting tool with excellent wear resistance
JPH11350111A (en) Super hard film-coated tool member
JPH10310878A (en) Cutting tool made of surface-coated cemented carbide having hard coating layer excellent in wear resistance
JP2010274330A (en) Surface coated cutting tool
JPH10263903A (en) Titanium carbide coating tool
JPH09323202A (en) Cutting tool made of surface covered tungsten carbide basic cemented carbide of which hard covered layer has excellent resistance against chipping
JPH05212604A (en) Ceramics cutting tool coated with hard layer
JP5240608B2 (en) Surface coated cutting tool
CN118302560A (en) Cutting tool having hard coating layer excellent in wear resistance and toughness