JP2005126736A - Hard film - Google Patents

Hard film Download PDF

Info

Publication number
JP2005126736A
JP2005126736A JP2003360269A JP2003360269A JP2005126736A JP 2005126736 A JP2005126736 A JP 2005126736A JP 2003360269 A JP2003360269 A JP 2003360269A JP 2003360269 A JP2003360269 A JP 2003360269A JP 2005126736 A JP2005126736 A JP 2005126736A
Authority
JP
Japan
Prior art keywords
hard film
film
oxygen
hard
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003360269A
Other languages
Japanese (ja)
Inventor
Takashi Ishikawa
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2003360269A priority Critical patent/JP2005126736A/en
Priority to EP03026508A priority patent/EP1422311B1/en
Priority to AT03026508T priority patent/ATE355395T1/en
Priority to PT03026508T priority patent/PT1422311E/en
Priority to ES03026508T priority patent/ES2279050T3/en
Priority to DK03026508T priority patent/DK1422311T3/en
Priority to DE60312110T priority patent/DE60312110T2/en
Priority to US10/714,630 priority patent/US7166155B2/en
Priority to CNB2003101209355A priority patent/CN1304626C/en
Publication of JP2005126736A publication Critical patent/JP2005126736A/en
Priority to US11/558,329 priority patent/US7435487B2/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hard film and a hard film-coated tool excellent in high temperature oxidation resistance and extremely excellent in the adhesion with a base body in spite of having the high hardness. <P>SOLUTION: The hard film coated with an arc-discharge ion-plating method is composed of at least one layer, represented by (Al<SB>x</SB>Cr<SB>1-x-y</SB>Si<SB>y</SB>)(N<SB>1-α-β-γ</SB>B<SB>α</SB>C<SB>β</SB>O<SB>γ</SB>), wherein x, y, α, β and γ are respectively atomic ratio meeting 0.45<x<0.85, 0<y<0.35, 0≤α<0.15, 0≤β<0.65, 0.003<γ<0.2 and 0<α+β+γ<1.0. Further, this hard film has a rock salt structural type crystal structure in an X-ray diffraction measurement and a half-width of 2θ at a diffraction peak corresponding to a (111) face or a (200) face, is 0.5-2.0° and oxygen in this hard film exists more in the crystal grain boundaries than the inner part of the crystal grains. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、切削工具の表面に被覆する硬質皮膜、或いは金型、軸受け、ダイス、ロールなど高硬度が要求される耐摩耗部材の表面に被覆する硬質皮膜、もしくは内燃機関部品等の耐熱部材の表面に被覆する硬質皮膜に関する。   The present invention relates to a hard coating that covers the surface of a cutting tool, a hard coating that covers the surface of a wear-resistant member that requires high hardness such as a die, a bearing, a die, or a roll, or a heat-resistant member such as an internal combustion engine component. The present invention relates to a hard film that covers the surface.

AlCr系皮膜は、耐高温酸化特性に優れた硬質皮膜材として、特許文献1〜4に示す技術が開示されている。特許文献1は、金属成分としてAlCrとC、N、Oの1種より選択されるAlCr系硬質膜において、高硬度を有する非晶質膜に関する事例が開示されている。しかしこの非晶質膜の硬度は最大でもヌープ硬さで21GPa程度であり、耐摩耗効果は期待できず、また密着性に関しても十分ではない。特許文献2及び特許文献3に開示されている硬質皮膜は、AlCrの窒化物であり、約1000℃の耐高温酸化特性を有しているが、1000℃以上の耐酸化特性の検討は行われてはおらず、また硬度はビッカ−ス硬度で21GPa程度であり、高硬度化に関する改善が十分ではなく耐摩耗性に乏しい。特許文献4は、TiSi系皮膜とCrとAlを主成分とする窒化物、炭窒化物、窒酸化物、窒硼化物層が2層以上積層された耐摩耗皮膜被覆工具の提案がなされているが、密着性に課題を残す。   The techniques shown in Patent Documents 1 to 4 are disclosed as AlCr-based coatings as hard coating materials having excellent high-temperature oxidation resistance. Patent Document 1 discloses an example of an amorphous film having high hardness in an AlCr hard film selected from AlCr and one of C, N, and O as a metal component. However, the hardness of this amorphous film is at most about 21 GPa in Knoop hardness, so that it cannot be expected to have a wear resistance effect, and the adhesion is not sufficient. The hard coatings disclosed in Patent Document 2 and Patent Document 3 are nitrides of AlCr and have high-temperature oxidation resistance of about 1000 ° C., but the oxidation resistance characteristics of 1000 ° C. or higher have been studied. In addition, the hardness is about 21 GPa in terms of Vickers hardness, and the improvement for increasing the hardness is not sufficient and the wear resistance is poor. Patent Document 4 proposes a wear-resistant film-coated tool in which a TiSi-based film and two or more nitride, carbonitride, nitride oxide, and boron nitride layers mainly composed of Cr and Al are laminated. However, there is a problem in adhesion.

特許第3027502号公報Japanese Patent No. 3027502 特許第3039381号公報Japanese Patent No. 3039381 特開平2002−160129号公報Japanese Patent Laid-Open No. 2002-160129 特開平2002−331408号公報Japanese Patent Laid-Open No. 2002-331408

本発明は、耐高温酸化特性に優れ、高硬度を有しながら、基体との密着性に極めて優れる硬質皮膜並びに硬質皮膜被覆工具を提供することを目的とする。   An object of the present invention is to provide a hard film and a hard film-coated tool that are excellent in high-temperature oxidation resistance and have high hardness and extremely excellent adhesion to a substrate.

本発明は、アーク放電式イオンプレーティング法により被覆された硬質皮膜であり、該硬質皮膜は(AlxCr1−x−ySi)(N1−α−β−γαβγ)但し、x、y、α、β、γは夫々原子比率を示し、0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0、0≦α<0.15、0≦β<0.65、0.003<γ<0.2、0<α+β+γ<1.0で示される少なくとも1層以上からなり、X線回折測定において岩塩構造型の結晶構造を有し、(111)面又は(200)面の何れかの回折ピークの2θの半価幅が0.5度以上、2.0度以下であり、該硬質皮膜内の酸素は、結晶粒子内部よりも結晶粒子界面に多く存在することを特徴とする硬質皮膜である。上記構成を採用することにより、耐高温酸化特性を大幅に改善すると同時に、基体密着性に優れ、(AlCr)N系皮膜を著しく高硬度化することが可能となり、その結果優れた耐摩耗性を発揮する本発明の硬質皮膜を完成させた。 The present invention is a hard film coated by an arc discharge ion plating method, and the hard film is (Al x Cr 1-xy Si y ) (N 1-α-β-γ B α C β O γ ) where x, y, α, β, and γ represent atomic ratios, respectively, 0.45 <x <0.85, 0 ≦ y <0.35, 0.50 ≦ x + y <1.0, 0 ≦ It consists of at least one layer represented by α <0.15, 0 ≦ β <0.65, 0.003 <γ <0.2, 0 <α + β + γ <1.0. It has a crystal structure, the half width of 2θ of the diffraction peak of either the (111) plane or the (200) plane is 0.5 degree or more and 2.0 degree or less, and oxygen in the hard film is It is a hard film characterized by being present more at the crystal grain interface than inside the crystal grain. By adopting the above configuration, the high temperature oxidation resistance is greatly improved, and at the same time, the substrate adhesion is excellent and the (AlCr) N-based film can be remarkably increased in hardness, resulting in excellent wear resistance. The hard film of the present invention to be exhibited was completed.

本発明の硬質皮膜は、X線光電子分光分析において、525eVから535eVの範囲に少なくともAl、Cr及び/又はSiと酸素との結合エネルギーを有し、最表面から膜厚方向に500nm以内の深さ領域で酸素濃度が最大となる。また、本発明の硬質皮膜は、X線回折で測定される岩塩構造型の(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時、0.3<I(200)/I(111)<12であり、ナノインデンテーションによる硬度測定により求められる弾性回復率Eが、28%≦E≦40%である。   The hard coating of the present invention has a binding energy of at least Al, Cr and / or Si and oxygen in the range of 525 eV to 535 eV in X-ray photoelectron spectroscopy, and a depth within 500 nm from the outermost surface in the film thickness direction. The oxygen concentration is maximum in the region. Further, the hard coating of the present invention has a rock salt structure type (111) plane measured by X-ray diffraction with a diffraction intensity of I (111) and a (200) plane of I (200). 3 <I (200) / I (111) <12, and the elastic recovery rate E obtained by hardness measurement by nanoindentation is 28% ≦ E ≦ 40%.

本発明の硬質皮膜は酸素を含有し、その酸素の存在状態を制御することにより、耐高温酸化特性に優れ、高硬度を有しながら、基体との密着性に極めて優れる硬質皮膜並びに硬質皮膜被覆工具を提供することができた。本発明の硬質皮膜を工具に被覆することにより、耐摩耗性を大幅に改善することが可能であり、産業上の各分野において大幅な製造コスト低減が可能となった。   The hard film of the present invention contains oxygen, and by controlling the presence of the oxygen, the hard film and the hard film coating have excellent high-temperature oxidation resistance, high hardness, and extremely excellent adhesion to the substrate. The tool could be provided. By covering the tool with the hard coating of the present invention, it is possible to greatly improve the wear resistance, and it has become possible to greatly reduce the manufacturing cost in various industrial fields.

硬質皮膜内に残留する圧縮応力が増加すると、皮膜の高硬度化が計れる一方で、基体との密着性が劣化する傾向にある。従って、基体との密着性に優れた高硬度皮膜を得るには、皮膜内に残留する圧縮応力を低減させる必要がある。ここに高硬度化と密着性の両立について技術的な矛盾が存在し、従来の皮膜は、ある程度の基体との密着性を犠牲にしながら高硬度化を行なっていた。本発明は、AlCr系皮膜を用い、耐高温酸化特性に優れながら、高硬度化が基体との密着性に及ぼす影響を鋭意検討した結果、酸素を含有したAlCr系皮膜において、その酸素を結晶粒子内部よりも、結晶粒子界面に多くなるように制御することにより、高硬度でありながら残留圧縮応力を著しく低減させることを可能にした。同時に、耐高温酸化特性に関しても、結晶粒子界面に酸素が高濃度で存在するため、外部からの酸素の粒界拡散を抑制し、大幅に改善することが可能になる事実を突き止め、本発明を完成させた。   When the compressive stress remaining in the hard coating increases, the coating can be made harder, while the adhesion to the substrate tends to deteriorate. Therefore, in order to obtain a high-hardness film having excellent adhesion to the substrate, it is necessary to reduce the compressive stress remaining in the film. Here, there is a technical contradiction regarding compatibility between high hardness and adhesiveness, and the conventional film has been increased in hardness while sacrificing a certain degree of adhesiveness with the substrate. The present invention, as a result of intensive studies on the effect of high hardness on the adhesion to the substrate, while using an AlCr-based film and excellent in high-temperature oxidation resistance, results in the oxygen being crystal particles in an AlCr-based film containing oxygen. By controlling the crystal grain interface to be larger than the inside, the residual compressive stress can be remarkably reduced while maintaining high hardness. At the same time, regarding the high-temperature oxidation resistance, the fact that oxygen exists at a high concentration at the crystal grain interface can suppress the grain boundary diffusion of oxygen from the outside and find out the fact that it can be greatly improved. Completed.

本発明の硬質皮膜は、アークイオンプレーティング法による被覆により、基体との密着性に特に優れ、緻密で高硬度を有する硬質皮膜が得られる。本発明の硬質皮膜を構成する金属元素の組成は、(AlCr1−x−ySi)において、xが0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0を満足する必要がある。xの値が0.45以下では、皮膜硬度並びに耐高温酸化特性の改善効果が十分ではなく、xの値が0.85以上、yの値が0.35以上では、残留圧縮応力が過大になり、被覆後に剥離が発生発する。更に、六方晶の結晶構造が確認され、強度が急激に低下する。本発明の硬質皮膜を構成する非金属成分組成は、(N1−α−β−γαβγ)において、0≦α<0.15、0≦β<0.65、0.003<γ<0.2、0<α+β+γ<1.0を満足する必要がある。硼素の添加は被加工物との耐溶着性と高温環境下における摩擦係数を低減させる効果がある。αは、0.15以上では皮膜の脆化が確認され、密着性が低下した。好ましいαの上限値としては0.08である。炭素の添加は硬質皮膜の硬度を高め、室温における摩擦係数の低減に効果的であり、耐摩耗性の改善効果が認められた。βは、0.65以上で皮膜の脆化が確認された。好ましいβの上限値は0.35である。γは、0.003を超えて大きく、0.2未満とする必要がある。γが0.2以上では、皮膜硬度が著しく低下し、耐摩耗性に乏しくなる。また、0.003以下であると、本発明の効果が得られない。好ましいγの値は、0.005以上、0.15以下である。金属元素のAl、Cr、Siに対する非金属元素のN、B、C、Oの比は、化学量論的に(N、B、C、O)/(Al、Cr、Si)>1がより好ましい。本発明の硬質皮膜は、X線回折において測定される岩塩構造型の結晶構造を有し、その(111)面もしくは(200)面の何れかの回折ピークの2θの半価幅が、0.5度以上、2.0度以下である。何れかの面における回折ピークの2θの半価幅が、0.5度以上、2.0度以下である場合、特に皮膜の硬度が高く耐摩耗性に優れる。本発明の硬質皮膜内に存在する酸素の存在状態は、結晶粒子内部よりも結晶粒子界面に多く存在することが極めて有効となる。この場合、特に高硬度でありながら基体との密着性、又は皮膜内部からの破壊及び剥離等に対し、著しい改善がなされる。即ち、本発明の作用により、皮膜全体の残留圧縮応力を低減させ、耐剥離性を向上させる効果がある。上記構成を採用することで、高硬度を有しながら、基体との密着性に優れた皮膜を得ることができ、同時に、耐高温酸化特性に関しても、外部から結晶粒界を介して侵入する酸素の拡散を抑制する効果をも有し、耐高温酸化の改善されるものである。本発明皮膜の特徴である酸素の存在状態を制御するには最適な被覆条件と、更に、硬質皮膜内に一定以上酸素を含有させることが必要である。 The hard film of the present invention is particularly excellent in adhesion to the substrate by coating by the arc ion plating method, and a hard film having a dense and high hardness can be obtained. The composition of the metal element constituting the hard coating of the present invention is such that (Al x Cr 1-xy Si y ), x is 0.45 <x <0.85, 0 ≦ y <0.35, 0. It is necessary to satisfy 50 ≦ x + y <1.0. When the value of x is 0.45 or less, the effect of improving the film hardness and the high temperature oxidation resistance is not sufficient, and when the value of x is 0.85 or more and the value of y is 0.35 or more, the residual compressive stress is excessive. And peeling occurs after coating. Furthermore, a hexagonal crystal structure is confirmed, and the strength sharply decreases. The composition of the non-metallic component constituting the hard coating of the present invention is (N 1-α-β-γ B α C β O γ ) 0 ≦ α <0.15, 0 ≦ β <0.65, 0. It is necessary to satisfy 003 <γ <0.2 and 0 <α + β + γ <1.0. Addition of boron has an effect of reducing the welding resistance to the workpiece and the friction coefficient in a high temperature environment. When α was 0.15 or more, embrittlement of the film was confirmed, and the adhesion decreased. A preferable upper limit value of α is 0.08. The addition of carbon increases the hardness of the hard coating, is effective in reducing the coefficient of friction at room temperature, and an effect of improving wear resistance was observed. When β was 0.65 or more, embrittlement of the film was confirmed. A preferable upper limit of β is 0.35. γ needs to be larger than 0.003 and smaller than 0.2. When γ is 0.2 or more, the film hardness is remarkably lowered and the wear resistance is poor. Moreover, the effect of this invention is not acquired as it is 0.003 or less. A preferable value of γ is 0.005 or more and 0.15 or less. The ratio of N, B, C, O of nonmetallic elements to Al, Cr, Si of metallic elements is stoichiometrically more (N, B, C, O) / (Al, Cr, Si)> 1. preferable. The hard coating of the present invention has a rock salt structure type crystal structure measured by X-ray diffraction, and the 2θ half-value width of the diffraction peak of either the (111) plane or the (200) plane is 0. It is 5 degrees or more and 2.0 degrees or less. When the half-value width of 2θ of the diffraction peak on any surface is 0.5 ° or more and 2.0 ° or less, the hardness of the film is particularly high and the wear resistance is excellent. It is extremely effective that the oxygen present in the hard coating of the present invention is present more at the crystal grain interface than inside the crystal grain. In this case, remarkable improvement is made with respect to adhesion to the substrate or breakage and peeling from the inside of the film while being particularly high in hardness. That is, the action of the present invention has the effect of reducing the residual compressive stress of the entire film and improving the peel resistance. By adopting the above configuration, it is possible to obtain a film having high hardness and excellent adhesion to the substrate, and at the same time, with respect to high temperature oxidation resistance, oxygen entering from the outside through the crystal grain boundary This also has the effect of suppressing the diffusion of the metal and improves the high temperature oxidation resistance. In order to control the presence state of oxygen, which is a feature of the coating of the present invention, it is necessary to include optimum coating conditions and further to contain oxygen to a certain level or more in the hard coating.

本発明の硬質皮膜は、X線光電子分光分析において、525eVから535eVの範囲に少なくともAl、Cr及び/又はSiと酸素との結合エネルギーを有する。この場合特に皮膜が緻密化し、高硬度でありながら耐剥離性に優れる。本発明の硬質皮膜の最表面から、膜厚方向に500nm以内の深さ領域で酸素濃度が最大となる場合、酸素拡散の抑制効果に優れ、耐高温酸化特性が著しく改善される。また、低摩擦化に対しても有効である。500nmを超える位置に酸素の最大濃度層を有する場合、耐摩耗性が低下する。本発明の硬質皮膜のX線回折で測定におけるI(200)/I(111)の値が0.3以下の場合、皮膜の結晶性が悪く、特性が不安定となり異常摩耗を誘発する。一方、I(200)/I(111)の値が12以上の場合、皮膜硬度が低下する傾向にあり耐摩耗性が劣化する。硬質皮膜はナノインデンテーションによる硬度測定法により、接触深さと最大荷重時の最大変位量が求められる(W. C. Oliver、 G. M. Pharr: J. Mater. Res. Vol.7、 No.6、 June 1992、1564−1583ページ)。この数値を用いて、
E=100−{(接触深さ)/(最大荷重時の最大変位量)}
の数式で、弾性回復率Eを定義した時、本発明の硬質皮膜は28%≦E≦40%である。この範囲であることにより、耐摩耗性と密着性のバランスが最適となる。更に好ましいEの値は30%〜35%である。これらは被覆条件により最適化することができる。
The hard coating of the present invention has a binding energy of at least Al, Cr and / or Si and oxygen in the range of 525 eV to 535 eV in X-ray photoelectron spectroscopy. In this case, in particular, the film is densified, and the film has high hardness and excellent peel resistance. When the oxygen concentration becomes maximum in the depth region within 500 nm in the film thickness direction from the outermost surface of the hard coating of the present invention, the oxygen diffusion suppression effect is excellent and the high-temperature oxidation resistance is remarkably improved. It is also effective for reducing friction. When the oxygen maximum concentration layer is provided at a position exceeding 500 nm, the wear resistance is lowered. When the value of I (200) / I (111) measured by X-ray diffraction of the hard coating of the present invention is 0.3 or less, the crystallinity of the coating is poor, the characteristics become unstable, and abnormal wear is induced. On the other hand, when the value of I (200) / I (111) is 12 or more, the film hardness tends to decrease and the wear resistance deteriorates. The hard coating is required to determine the contact depth and the maximum displacement at the maximum load by the hardness measurement method using nanoindentation (WC Oliver, GM Pharr: J. Mater. Res. Vol.7, No.6, June 1992, 1564). -1583). Using this number,
E = 100-{(contact depth) / (maximum displacement at maximum load)}
When the elastic recovery rate E is defined by the following formula, the hard film of the present invention satisfies 28% ≦ E ≦ 40%. By being in this range, the balance between wear resistance and adhesion is optimal. A more preferable value of E is 30% to 35%. These can be optimized by the coating conditions.

本発明皮膜の直上に、Ti、Cr、Al、Siのうちの少なくとも1種又は2種以上より選択された元素と、非金属元素として、NとC、O、Bのうち1種又は2種以上より選択された元素から構成される硬質皮膜、または硬質炭素膜、窒化硼素のうち少なくとも1種以上の皮膜を被覆した場合、本発明皮膜との密着性に特に優れ、耐摩耗性を著しく補完することが可能である。本発明の硬質皮膜を、ドリル、タップ、リーマ、エンドミル、歯切り工具、ブローチ、交換型インサート、金型からなる群より選ばれた1種に被覆した場合、本発明皮膜の効果が顕著であり、特に耐摩耗性改善効果が大きく優れた硬質皮膜被覆工具が得られる。本発明の硬質皮膜を、高速度鋼製の粗加工用エンドミルに被覆した場合、密着性、耐剥離性、皮膜硬度等の改善効果が顕著に現れることにより、耐摩耗性が大幅に改善され、優れた硬質皮膜被覆工具を得ることができる。本発明の硬質皮膜を被覆した工具について、最表面にある皮膜の凸部を機械的処理により平滑にすることにより、切削加工において、切屑排出性、切れ刃のチッピング抑制に効果的であり、更に切削寿命を改善することが可能である。以下、実施例に基づき、本発明を具体的に説明する。   Immediately above the coating of the present invention, an element selected from at least one or more of Ti, Cr, Al, and Si, and one or two of N, C, O, and B as non-metallic elements When coated with at least one of a hard film composed of the elements selected from the above, or a hard carbon film or boron nitride, it is particularly excellent in adhesion to the film of the present invention and significantly complements the wear resistance. Is possible. When the hard coating of the present invention is coated on one type selected from the group consisting of drills, taps, reamers, end mills, gear cutting tools, broaches, interchangeable inserts and dies, the effect of the present coating is remarkable. In particular, a hard film coated tool having a great effect of improving wear resistance can be obtained. When the hard coating of the present invention is coated on a high-speed steel roughing end mill, the effect of improving adhesiveness, peel resistance, film hardness, etc., is significantly improved, and the wear resistance is greatly improved. An excellent hard film coated tool can be obtained. For the tool coated with the hard coating of the present invention, by smoothing the convex portion of the coating on the outermost surface by mechanical treatment, it is effective for chip dischargeability and chipping suppression of cutting edges in cutting, It is possible to improve the cutting life. Hereinafter, based on an Example, this invention is demonstrated concretely.

(実施例1)
本発明の硬質皮膜の被覆にはアーク放電式イオンプレーティング装置を用いた。その構成は、減圧容器、減圧容器とは絶縁されたアーク放電式蒸発源、基体ホルダーより構成される。硬質皮膜の金属成分となるターゲットを設置し、アーク放電式蒸発源に所定の電流を供給してターゲット上にアーク放電を行い、金属ターゲット成分を蒸発しイオン化させ、減圧容器と基体ホルダーとの間に負に印加したバイアス電圧により、基体に被覆した。基体は脱脂洗浄を行い減圧容器内に設置した。減圧容器内に設置された加熱用ヒーターにより、基体温度は500℃に加熱され30分間保持することにより、基体加熱及び脱ガス処理を行った。減圧容器内にArを導入し、熱フィラメントによりAr元素のイオン化を行い、基体に印加したバイアス電圧により、基体のクリーニング処理を行った。硬質皮膜内への炭素、酸素、硼素の添加には、反応ガスであるNガス、CHガス、Cガス、Arガス、Oガス、COガス、Bガスから目的の皮膜が得られるものを1種以上、もしくはそれらの組合せによるガスを選択し、減圧容器内へ導入した。硬質皮膜内への酸素添加方法は、酸素含有気体を用いることによっても可能であるが、酸素を含有した金属ターゲットを用いることによっても可能である。金属ターゲットは粉末法で作成した各種合金製ターゲットを用いた。金属ターゲット内の酸素含有量が3200ppmであるAl0.7Cr0.3の合金ターゲットを設置し、反応ガスとしてNガスを減圧容器内に導入し、全圧力を7.5Paとした。バイアス電圧は、負バイアス電圧を−120V、正バイアス電圧を+10V、周波数を20kHz、振幅を負側に80%、正側に20%のパルスバイアス電圧を用い、アーク放電を開始し、基体への被覆処理を行った。基体は、鏡面加工したSNMN432形状からなるCo含有量7重量%の超微粒子超硬合金製のテストピースを用いた。被覆温度は450℃、膜厚を約3.5μmとした。この時に得られた皮膜を電子線プローブマイクロアナライザーにより組成分析を行なった。分析条件は、50μmφの領域を対象とし、加速電圧15kV、金属成分の試料電流を0.5μA、非金属成分の試料電流を0.1μAとした。分析の結果、表1に示す通り、本発明例1の硬質皮膜の組成は(Al0.65Cr0.35)(N0.960.030.01)であった。また、比較例、従来例の製膜条件については、バイアス電圧の印加方法を一定値の負バイアス電圧印加とした以外は、特にことわりの無い限り、本発明例と同じである。
(Example 1)
An arc discharge ion plating apparatus was used for coating the hard coating of the present invention. The configuration includes a decompression vessel, an arc discharge evaporation source insulated from the decompression vessel, and a substrate holder. A target that is a metal component of the hard coating is installed, and a predetermined current is supplied to the arc discharge evaporation source to perform arc discharge on the target, the metal target component is evaporated and ionized, and between the vacuum vessel and the substrate holder. The substrate was coated with a negative bias voltage applied to the substrate. The substrate was degreased and cleaned and placed in a vacuum container. The substrate temperature was heated to 500 ° C. by a heating heater installed in the decompression vessel, and the substrate was heated and degassed by holding it for 30 minutes. Ar was introduced into the vacuum vessel, Ar element was ionized with a hot filament, and the substrate was cleaned with a bias voltage applied to the substrate. For the addition of carbon, oxygen, and boron into the hard coating, the reaction gases N 2 gas, CH 4 gas, C 2 H 2 gas, Ar gas, O 2 gas, CO gas, and B 3 N 3 H 6 gas are used. The gas from which one or more of the desired films can be obtained or a combination thereof was selected and introduced into the vacuum vessel. The method of adding oxygen into the hard coating can be performed by using an oxygen-containing gas, but can also be performed by using a metal target containing oxygen. As the metal target, various alloy targets prepared by a powder method were used. An alloy target of Al0.7Cr0.3 having an oxygen content of 3200 ppm in the metal target was installed, N 2 gas was introduced as a reaction gas into the vacuum vessel, and the total pressure was 7.5 Pa. As the bias voltage, a negative bias voltage of −120 V, a positive bias voltage of +10 V, a frequency of 20 kHz, an amplitude of 80% on the negative side, and a pulse bias voltage of 20% on the positive side are used to start arc discharge, A coating treatment was performed. As the substrate, a test piece made of ultrafine particle cemented carbide having a Co content of 7% by weight and having a mirror-finished SNMN432 shape was used. The coating temperature was 450 ° C. and the film thickness was about 3.5 μm. The film obtained at this time was subjected to composition analysis using an electron beam probe microanalyzer. The analysis conditions were for an area of 50 μmφ, the acceleration voltage was 15 kV, the sample current of the metal component was 0.5 μA, and the sample current of the non-metal component was 0.1 μA. As a result of the analysis, as shown in Table 1, the composition of the hard film of Example 1 of the present invention was (Al 0.65 Cr 0.35 ) (N 0.96 O 0.03 C 0.01 ). The film forming conditions of the comparative example and the conventional example are the same as those of the example of the present invention unless otherwise specified except that the bias voltage application method is a constant negative bias voltage application.

得られた硬質皮膜内の酸素存在を確認するために鏡面加工したSNMN432形状からなる前記テストピースを用い、日本電子製JEM−2010F型の電界放射型透過電子顕微鏡により、皮膜断面の組織を高倍率で観察した。観察条件は、加速電圧を200kVに設定した。また、Gatan製のMODEL766の電子線エネルギーロス分光装置により、結晶粒内の酸素含有量と結晶粒界の酸素含有量を分析した。電子線エネルギーロス分光法では、分析領域を1nmφとした。図1に電界放射型透過電子顕微鏡による本発明例1の皮膜断面の組織を観察した結果を示す。図1より、領域1と領域2に示す結晶粒1、2が認められ、その結晶粒界も明瞭に認められる。図2は、図1中の結晶粒2における1nmφの領域を電子線エネルギーロス分光法により分析した結果を示す。図3は、図1中の結晶粒1と結晶粒2との粒子境界部である矢印部の1nmφの領域を電子線エネルギーロス分光法により分析した結果を示す。図3より、結晶粒子境界部には明瞭に酸素の存在が確認された。図2、図3より、硬質皮膜内の酸素は、図1中の結晶粒2周辺に相当する結晶粒子内部よりも、矢印部の結晶粒子界面に多く含有することが明らかである。酸素を含有した硬質皮膜における酸素の存在状態を、結晶粒子内部よりも結晶粒子界面に多くなるように制御するためには、被覆条件の適正化が必要である。また、酸素を含有した金属ターゲットを用いることが有効である。被覆条件の反応ガス圧力としては、2Paから15Paが好ましい。酸素を含有した金属ターゲットを用いる場合は、金属ターゲット内の酸素含有量は、2000ppm以上が好ましい。例えば金属ターゲット内の酸素含有量が1800ppmの場合、結晶粒子内とその粒子界面部における酸素の濃度差は確認されなかった。また、結晶粒子内と粒子界面部との酸素の強度比Pは、電子線エネルギーロス分光分析において、結晶粒子界面部の酸素強度を、結晶粒子内部の酸素強度で除した値であり、P値が1を超えて大きく、4以下である。   Using the test piece having the shape of SNMN432 mirror-finished to confirm the presence of oxygen in the obtained hard film, the JEM-2010F type field emission transmission electron microscope manufactured by JEOL Ltd. was used to measure the structure of the film cross section at high magnification. Observed at. As the observation condition, the acceleration voltage was set to 200 kV. Further, the oxygen content in the crystal grains and the oxygen content in the crystal grain boundaries were analyzed by an electron beam energy loss spectrometer of MODEL 766 manufactured by Gatan. In the electron beam energy loss spectroscopy, the analysis region was set to 1 nmφ. FIG. 1 shows the result of observing the structure of the film cross section of Example 1 of the present invention using a field emission transmission electron microscope. From FIG. 1, the crystal grains 1 and 2 shown in the region 1 and the region 2 are recognized, and the crystal grain boundaries are also clearly recognized. FIG. 2 shows the result of analyzing the 1 nmφ region of the crystal grain 2 in FIG. 1 by electron beam energy loss spectroscopy. FIG. 3 shows the result of analyzing the 1 nmφ region of the arrow portion, which is the grain boundary between the crystal grain 1 and the crystal grain 2 in FIG. 1, by electron beam energy loss spectroscopy. From FIG. 3, the presence of oxygen was clearly confirmed at the crystal grain boundary. 2 and 3, it is clear that oxygen in the hard film is contained more at the crystal grain interface at the arrow portion than inside the crystal grain corresponding to the periphery of the crystal grain 2 in FIG. In order to control the presence state of oxygen in the hard film containing oxygen so as to be larger at the crystal grain interface than inside the crystal grain, it is necessary to optimize the coating conditions. It is also effective to use a metal target containing oxygen. The reaction gas pressure for the coating conditions is preferably 2 Pa to 15 Pa. When using a metal target containing oxygen, the oxygen content in the metal target is preferably 2000 ppm or more. For example, when the oxygen content in the metal target was 1800 ppm, no difference in oxygen concentration was observed between the crystal grains and the grain interface. The oxygen intensity ratio P between the crystal grains and the grain interface is a value obtained by dividing the oxygen intensity at the crystal grain interface by the oxygen intensity inside the crystal grain in the electron beam energy loss spectroscopic analysis. Is greater than 1 and greater than or equal to 4.

硬質皮膜の酸素の結合状態を確認するために、本発明例1の皮膜を被覆したテストピースを用い、PHI社製1600S型X線光電子分光分析装置を用いてX線光電子分光分析を行った。X線源はMgKαを用いて400Wに設定し、分析領域は0.4mmφの円内部とした。分析前の試料は表面を十分に脱脂洗浄した。真空に保持されたX線光電子分光分析装置内でスペクトルを測定した。試料表面に対して50度傾斜した位置にArイオンガンを配置し、10mmの領域をArイオンにより24分間スパッタし、試料最表面のスペクトルを測定した。24分間隔で試料表面をArイオンでエッチングしスペクトルを測定した。このサイクルを繰り返し、総時間数が120分になるまで継続実施した。光電子検出器は試料表面に対して35度傾斜した位置に配置し、X線発生装置は試料表面に対して90度の位置からX線が入射するように配置した。また、Arイオンエッチングによるエッチングレートは、SiO換算で1.5nm/minであった。図4は、120分間Arイオンエッチングを実施した後の、スペクトルを示す。図4より、本発明例1の皮膜内には酸素が介在していることが認められた。図5は、X線光電子分光分析において、膜厚方向に元素分析した結果を示す。図5より、本発明例1の皮膜内には、非金属元素のみの原子パーセントで酸素が約6%存在することが確認された。図6は、24分間隔で測定したO1Sに相当するスペクトルを時間別に表示したものを示す。図6の後方側が試料最表面のスペクトルであり、前面側程、膜厚方向により深い分析位置におけるスペクトルを示す。図6より、本発明例1には、525eVから535eVの範囲に金属と酸素の結合エネルギーが存在し、これらは、Al、Cr及び/又はSiと酸素との結合エネルギーであることを確認した。また、試料表面側では炭素と酸素の結合が主体であり、皮膜内部程金属と酸素との結合が主体となる。表1に各皮膜の525eVから535eVの範囲に、金属と酸素との結合エネルギーの存在の有無、及び確認された結合状態を併記する。 In order to confirm the oxygen binding state of the hard film, X-ray photoelectron spectroscopic analysis was performed using a test piece coated with the film of Example 1 of the present invention using a PHI 1600S type X-ray photoelectron spectrometer. The X-ray source was set to 400 W using MgKα, and the analysis region was inside a circle of 0.4 mmφ. The surface of the sample before analysis was thoroughly degreased and cleaned. The spectrum was measured in an X-ray photoelectron spectroscopy analyzer held in a vacuum. An Ar ion gun was placed at a position inclined by 50 degrees with respect to the sample surface, a 10 mm 2 region was sputtered with Ar ions for 24 minutes, and the spectrum of the sample outermost surface was measured. The sample surface was etched with Ar ions at intervals of 24 minutes, and the spectrum was measured. This cycle was repeated and continued until the total time was 120 minutes. The photoelectron detector was arranged at a position inclined by 35 degrees with respect to the sample surface, and the X-ray generator was arranged so that X-rays were incident from a position of 90 degrees with respect to the sample surface. The etching rate by Ar ion etching was 1.5 nm / min in terms of SiO 2 . FIG. 4 shows the spectrum after performing an Ar ion etch for 120 minutes. From FIG. 4, it was confirmed that oxygen was present in the film of Example 1 of the present invention. FIG. 5 shows the result of elemental analysis in the film thickness direction in X-ray photoelectron spectroscopy. From FIG. 5, it was confirmed that about 6% of oxygen was present in the film of Example 1 of the present invention in terms of atomic percentage of only nonmetallic elements. FIG. 6 shows the spectrum corresponding to O1S measured at intervals of 24 minutes, displayed by time. The rear side of FIG. 6 is the spectrum of the outermost surface of the sample, and the spectrum at the analysis position deeper in the film thickness direction is shown on the front side. From FIG. 6, it was confirmed that in Example 1 of the present invention, the binding energy of metal and oxygen was in the range of 525 eV to 535 eV, and these were binding energy of Al, Cr and / or Si and oxygen. In addition, on the sample surface side, the bond between carbon and oxygen is mainly, and the bond between metal and oxygen is mainly inside the film. Table 1 shows the presence / absence of the binding energy between the metal and oxygen and the confirmed bonding state in the range of 525 eV to 535 eV of each coating.

(実施例2)
ナノインデンテーション法による押込硬さの測定には、微小押込み硬さ試験機を用いた。圧子はダイヤモンド製の対稜角115度の三角錐圧子を用い、最大荷重を49mN、荷重負荷ステップ4.9mN/sec、最大荷重時の保持時間は1秒とした。前記テストピースを鏡面加工したものを用い、これを5度に傾斜させ、膜厚が2〜3μmになる位置において10点測定した。表1に各皮膜の硬度を測定した時の平均値を併記する。押込硬さ測定において得られた荷重変位曲線より、弾性回復率Eを算出した。表1に各皮膜のEを測定した結果を併記する。
(Example 2)
A microindentation hardness tester was used to measure the indentation hardness by the nanoindentation method. As the indenter, a triangular pyramid indenter made of diamond with an angle of 115 ° was used. The maximum load was 49 mN, the load load step was 4.9 mN / sec, and the holding time at the maximum load was 1 second. Using a mirror-finished test piece, the test piece was tilted by 5 degrees, and 10 points were measured at positions where the film thickness was 2 to 3 μm. Table 1 shows the average value when the hardness of each film was measured. The elastic recovery rate E was calculated from the load displacement curve obtained in the indentation hardness measurement. Table 1 shows the results of measuring E of each film.

(実施例3)
硬質皮膜の耐高温酸化特性の評価として、前記テストピースに表1に示す各皮膜を被覆し、大気中1100℃の酸化雰囲気で9hr保持し、酸化層の厚さを測定した。酸化層が厚い程、酸素の内向拡散が激しく耐酸化性の劣ることを示す。各皮膜の酸化層の厚さを表1に併記する。
(Example 3)
As an evaluation of the high temperature oxidation resistance of the hard coating, each coating shown in Table 1 was coated on the test piece, held in an oxidizing atmosphere of 1100 ° C. in the atmosphere for 9 hours, and the thickness of the oxide layer was measured. The thicker the oxide layer, the stronger the inward diffusion of oxygen, indicating poorer oxidation resistance. The thickness of the oxide layer of each film is also shown in Table 1.

(実施例4)
硬質皮膜の密着性を評価するために、前記テストピースに表1に示す各皮膜を被覆し、硬質皮膜表面からロックウェル硬度計により1470Nで硬度測定を実施し、圧痕周辺部の剥離の有無について評価した。剥離が発生する皮膜は密着性が悪いことを意味する。各皮膜の剥離の有無を表1に併記する。
Example 4
In order to evaluate the adhesion of the hard coating, each test piece shown in Table 1 was coated on the test piece, and the hardness was measured from the surface of the hard coating with a Rockwell hardness meter at 1470 N. evaluated. A film that peels off means poor adhesion. The presence or absence of peeling of each film is also shown in Table 1.

(実施例5)
硬質皮膜の結晶性を評価するために、X線回折を実施した。X線入射角を5度に設定して行った。得られたプロファイルより、最強面指数と岩塩構造型結晶構造の(111)面の強度をI(111)、(200)面の強度をI(200)とした時の、各皮膜のI(200)/I(111)の数値と、(111)面もしくは200)面の何れかの最強強度面指数の2θの半価幅を測定した値を表1に併記する。
(Example 5)
X-ray diffraction was performed to evaluate the crystallinity of the hard coating. The X-ray incident angle was set to 5 degrees. From the obtained profile, I (200) of each film when the strength of the strongest surface index and the (111) plane of the rock salt structure type crystal structure is I (111) and the strength of the (200) plane is I (200). ) / I (111) and the value obtained by measuring the 2θ half width of the strongest surface index of either the (111) plane or the 200) plane are shown in Table 1.

表1より、本発明例1から本発明例12は、何れも結晶粒子内部における酸素含有量に対して結晶粒子界面の酸素濃度が高いことが確認された。これにより、本発明例は比較例13から15、従来例16、17に比べて高硬度であり、更に密着性評価においても剥離が認められず良好な密着性を示した。また、本発明例1から本発明例12は、X線回折における最強強度を示す面指数の2θの半価幅について、本発明の数値規定内であったのに対し、比較例14は0.3度、比較例15は2.1度となり、本発明の数値規定外であった。このため比較例14、15は低い硬度を示し、密着性の改善効果も確認されなかった。耐高温酸化特性に関する評価においても、本発明例1から本発明例12は、酸化の進行が遅く優れていることが確認された。本発明例8は、525eVから535eVの範囲に酸素結合が明瞭に確認されない場合を示すが、525eVから535eVの範囲に酸素結合が認められる場合の方がより高い硬度を示す。本発明例9は、X線回折によるI(200)/I(111)の数値が15の場合を示すが、本発明の規定範囲である、0.3<I(200)/I(111)<12の方が高硬度を示した。本発明例10は、ナノインデンテーションによる硬度測定法における弾性回復率であるEの値が27の場合の事例を示すが、本発明の規定範囲である28≦E≦40の事例の方がより高硬度で、密着性も満足していることから、特性が優れていることを示す。本発明例11は、皮膜際表面から500nm以内に酸素濃度が最大となるように被覆した本発明例であるが、耐高温酸化特性が優れている結果となった。本発明例12は、X線回折において岩塩構造型の結晶構造を有し、その1部がAlNと考えられる六方晶となる混晶の場合の事例を示すが、岩塩構造型のみから構成される方が高硬度であることを示した。比較例13は、被覆の際の反応ガス圧力が0.3Paの場合の事例である。硬質皮膜における結晶粒子内部の酸素含有量と、結晶粒子界面の酸素含有量との濃度差が確認されず、高硬度化、密着性の改善がみられなかった。   From Table 1, it was confirmed that in each of Invention Examples 1 to 12, the oxygen concentration at the crystal grain interface was higher than the oxygen content inside the crystal grain. As a result, the inventive examples were higher in hardness than Comparative Examples 13 to 15 and Conventional Examples 16 and 17, and in addition, no peeling was observed in the adhesion evaluation, indicating good adhesion. Inventive Example 1 to Inventive Example 12 were within the numerical specification of the present invention with respect to the 2θ half width of the plane index indicating the strongest intensity in X-ray diffraction, while Comparative Example 14 was 0. 3 degrees and Comparative Example 15 were 2.1 degrees, which was outside the numerical values of the present invention. For this reason, Comparative Examples 14 and 15 showed low hardness, and the effect of improving adhesion was not confirmed. Also in the evaluation regarding the high temperature oxidation resistance, it was confirmed that Examples 1 to 12 of the present invention were excellent in that the progress of oxidation was slow. Invention Example 8 shows a case where oxygen bonds are not clearly confirmed in the range of 525 eV to 535 eV, but the hardness is higher when oxygen bonds are observed in the range of 525 eV to 535 eV. Invention Example 9 shows a case where the numerical value of I (200) / I (111) by X-ray diffraction is 15, but 0.3 <I (200) / I (111) which is the specified range of the present invention. <12 showed higher hardness. Example 10 of the present invention shows a case where the value of E, which is the elastic recovery rate in the hardness measurement method by nanoindentation, is 27, but the example of 28 ≦ E ≦ 40, which is the specified range of the present invention, is more Since it has high hardness and satisfactory adhesion, it indicates that the characteristics are excellent. Invention Example 11 is an example of the invention coated so that the oxygen concentration is maximized within 500 nm from the surface of the film, which resulted in excellent high-temperature oxidation resistance. Example 12 of the present invention shows an example of a mixed crystal that has a rock salt structure type crystal structure in X-ray diffraction, and a part of which is a hexagonal crystal considered to be AlN, but is composed only of a rock salt structure type. Showed higher hardness. Comparative Example 13 is an example where the reaction gas pressure during coating is 0.3 Pa. The concentration difference between the oxygen content inside the crystal grains in the hard coating and the oxygen content at the crystal grain interface was not confirmed, and no increase in hardness and improvement in adhesion were observed.

(実施例6)
切削工具における耐摩耗性を評価するために、高速度鋼製の外径12mm、4枚刃、ラフィングエンドミルに被覆し切削評価を行った。評価は平均逃げ面摩耗幅が0.25mmに達するまでの切削長、もしくは工具が折損したときの切削長とした。各皮膜を被覆した工具の切削長を表1に併記した。切削条件を下記に示す。
(切削条件)
切削方法:側面粗加工
被削材:SCM440(HRC31)
切り込み:径方向切り込み、Rd、6mm、軸方向切り込み、Ad、12mm
切削速度:70m/min
送り:0.07mm/刃
切削油:なし(エアーブローによる乾式)
(Example 6)
In order to evaluate the wear resistance of the cutting tool, cutting was evaluated by coating a high-speed steel outer diameter 12 mm, four blades, and a luffing end mill. The evaluation was the cutting length until the average flank wear width reached 0.25 mm, or the cutting length when the tool was broken. Table 1 shows the cutting length of the tool coated with each coating. Cutting conditions are shown below.
(Cutting conditions)
Cutting method: rough side surface Work material: SCM440 (HRC31)
Cutting: radial cutting, Rd, 6 mm, axial cutting, Ad, 12 mm
Cutting speed: 70 m / min
Feed: 0.07mm / blade Cutting oil: None (dry type by air blow)

表1より、本発明例1から本発明例12は、比較例13から15、従来例16、17に比べて切削寿命が長く、耐摩耗性に優れている結果となった。特に本発明例3、本発明例4はAlCrSiNO皮膜の場合であるが、特に切削寿命が長く、耐摩耗性に優れていた。更に、本発明例7はAlCrNOB皮膜の場合であるが、Bを添加することにより、摩耗性に優れた。本発明例8は、525eVから535eVの範囲に酸素結合が明瞭に確認されない場合であり、他の525eVから535eVの範囲に酸素結合が認められる場合のほうがより高硬度を有し、切削長が長く耐摩耗性に優れた。本発明例9は、I(200)/I(111)の値が15の場合であり、他の本発明規定範囲内の方が、より切削寿命が長く、耐摩耗性に優れた。本発明例10は、E値が27の場合であり、本発明規定範囲内の方が、より切削長が長く耐摩耗性に優れた。本発明例11は、皮膜際表面から500nm以内に酸素濃度が最大となるように被覆した場合であり、切削寿命が最も長い値を示した。本発明例12は、X線回折において、岩塩構造型の結晶構造の他にAlNと考えられる六方晶が確認され、混晶の場合の事例を示す。岩塩構造型単独の構成の方が、切削寿命が長く、耐摩耗性に優れた。比較例13は、被覆時の反応ガス圧力が0.3Paの場合であり、結晶粒子内部と結晶粒子界面との酸素含有量の濃度差が確認されなかったため、高硬度化、密着性の改善がなさないため、耐摩耗性改善はされず短寿命であった。比較例14、比較例15は、2θの半価幅が夫々0.3度、2.1度の場合であり高硬度化、密着性の改善効果が無いため、耐摩耗性改善されず短寿命であった。   As can be seen from Table 1, Examples 1 to 12 of the present invention have a longer cutting life and superior wear resistance than Comparative Examples 13 to 15 and Conventional Examples 16 and 17. Inventive Example 3 and Inventive Example 4 are examples of an AlCrSiNO film, and the cutting life was particularly long and the wear resistance was excellent. Furthermore, Example 7 of the present invention is an AlCrNOB coating, but by adding B, the wear was excellent. Example 8 of the present invention is a case where an oxygen bond is not clearly confirmed in the range of 525 eV to 535 eV, and when the oxygen bond is recognized in the other range of 525 eV to 535 eV, the hardness is higher and the cutting length is longer. Excellent wear resistance. Invention Example 9 is a case where the value of I (200) / I (111) is 15, and the cutting life is longer and the wear resistance is superior when the value is within the other specified range of the present invention. Invention Example 10 is a case where the E value is 27, and the cutting length is longer and the wear resistance is superior in the range specified in the present invention. Invention Example 11 is a case where the oxygen concentration was coated within 500 nm from the surface of the coating, and the cutting life was the longest. Invention Example 12 shows an example of a mixed crystal in which a hexagonal crystal considered to be AlN is confirmed in addition to a rock salt structure type crystal structure in X-ray diffraction. The configuration of the rock salt structure type alone has a longer cutting life and better wear resistance. Comparative Example 13 is a case where the reaction gas pressure at the time of coating is 0.3 Pa, and the difference in concentration of oxygen content between the inside of the crystal grain and the crystal grain interface was not confirmed, so that the hardness was increased and the adhesion was improved. Therefore, the wear resistance was not improved and the life was short. Comparative Example 14 and Comparative Example 15 are cases where the half width of 2θ is 0.3 degree and 2.1 degree, respectively, and there is no effect of improving hardness and adhesion, so the wear resistance is not improved and the life is short. Met.

(実施例7)
本発明皮膜の切削性能を更に改善するために、本発明皮膜の直上に更に皮膜を被覆した工具を用いて切削試験を行った。用いた工具は、実施例6と同様の工具に本発明皮膜を被覆し、更にその直上に皮膜を約1μm被覆した。切削条件及び評価基準は実施例6と同じとした。各工具の皮膜の構成と工具の最大寿命を表2に示す。
(Example 7)
In order to further improve the cutting performance of the coating of the present invention, a cutting test was performed using a tool further coated with the coating on the coating of the present invention. The tool used was the same tool as in Example 6, coated with the coating of the present invention, and further coated with about 1 μm of the coating on top of it. Cutting conditions and evaluation criteria were the same as in Example 6. Table 2 shows the coating composition of each tool and the maximum tool life.

本発明例18から本発明例23は、本発明例5の皮膜の上に、表2の直上層欄に示す皮膜を被覆した場合の事例を示す。本発明皮膜5よりも切削長が長く耐摩耗性に優れていることが明らかである。本発明例24は、本発明例7の直上に、表2の直上層欄に示す皮膜を被覆した場合の事例を示す。本発明例24は、本発明例7よりも切削寿命が長く、耐摩耗性に優れている。本発明例25から本発明例31は、本発明皮膜3の上に、表2の直上層欄に示す皮膜を被覆した場合の事例を示す。本発明例25は、本発明例3に比べて、切削長が長く、耐摩耗性に優れている。本発明例32から本発明例34は、夫々本発明例26、27、31の直上層皮膜表面の凸部を機械的処理により平滑に処理したものである。この処理によって工具寿命は最大で1.2倍を示した。比較例35と比較例36は、直上層にTiZrN皮膜とVZrN皮膜を被覆した場合の事例を示す。本発明皮膜との密着性が悪く、本発明皮膜の耐摩耗性をさらに改善するには至らなかった。これらより、本発明皮膜の直上に、Ti、Cr、Al、Siのうちの少なくとも1種又は2種以上より選択された元素と、非金属元素として、NとC、O、Bのうち1種又は2種以上より選択された元素から構成される硬質皮膜、又は硬質炭素膜、窒化硼素のうち少なくとも1層以上を被覆することが、工具の長寿命化にとって好ましい。   Invention Example 18 to Invention Example 23 show examples in which the film shown in the upper layer column of Table 2 was coated on the film of Invention Example 5. It is clear that the cutting length is longer than the coating 5 of the present invention and the wear resistance is excellent. Invention Example 24 shows an example in which the film shown in the immediately upper layer column of Table 2 was coated directly on Invention Example 7. Invention Example 24 has a longer cutting life than the Invention Example 7 and is excellent in wear resistance. Invention Example 25 to Invention Example 31 show examples in which the film shown in the upper layer column of Table 2 is coated on the film 3 of the present invention. Inventive Example 25 has a longer cutting length and excellent wear resistance than Inventive Example 3. In Invention Example 32 to Invention Example 34, the convex portions on the surface of the immediately upper layer film of Invention Examples 26, 27, and 31 are smoothed by mechanical treatment. This treatment resulted in a tool life of up to 1.2 times. Comparative example 35 and comparative example 36 show examples in the case where a TiZrN film and a VZrN film are coated on the upper layer. The adhesion with the coating of the present invention was poor, and the wear resistance of the coating of the present invention could not be further improved. From these, the element selected from at least one or more of Ti, Cr, Al, and Si, and the nonmetallic element, one of N, C, O, and B, immediately above the coating of the present invention. Alternatively, it is preferable to cover at least one layer of a hard film composed of an element selected from two or more kinds, a hard carbon film, or boron nitride in order to extend the tool life.

図1は、本発明皮膜の電界放射型透過電子顕微鏡による断面観察結果を示す。FIG. 1 shows a cross-sectional observation result of the coating of the present invention using a field emission transmission electron microscope. 図2は、図1中の結晶粒2の領域を電子線エネルギーロス分光法により分析した結果を示す。FIG. 2 shows the result of analyzing the region of the crystal grain 2 in FIG. 1 by electron beam energy loss spectroscopy. 図3は、図1中の矢印部で示した粒子境界部を電子線エネルギーロス分光法により分析した結果を示す。FIG. 3 shows the result of analyzing the particle boundary indicated by the arrow in FIG. 1 by electron beam energy loss spectroscopy. 図4は、X線光電子分光分析によるスペクトルの結果を示す。FIG. 4 shows the spectrum results by X-ray photoelectron spectroscopy. 図5は、X線光電子分光分析による膜厚方向の元素分析結果を示す。FIG. 5 shows the results of elemental analysis in the film thickness direction by X-ray photoelectron spectroscopy. 図6は、X線光電子分光分析のよるO1Sスペクトル領域の時間別表示を示す。FIG. 6 shows the hourly display of the O1S spectral region by X-ray photoelectron spectroscopy.

Claims (6)

アーク放電式イオンプレーティング法により被覆された硬質皮膜であり、該硬質皮膜は(AlxCr1−x−ySi)(N1−α−β−γαβγ)但し、x、y、α、β、γは夫々原子比率を示し、0.45<x<0.85、0≦y<0.35、0.50≦x+y<1.0、0≦α<0.15、0≦β<0.65、0.003<γ<0.2、0<α+β+γ<1.0で示される少なくとも1層以上からなり、X線回折測定において岩塩構造型の結晶構造を有し、(111)面又は(200)面の何れかの回折ピークの2θの半価幅が0.5度以上、2.0度以下であり、該硬質皮膜内の酸素は、結晶粒子内部よりも結晶粒子界面に多く存在することを特徴とする硬質皮膜。 It is a hard film coated by an arc discharge ion plating method, and the hard film is (Al x Cr 1-xy Si y ) (N 1-α-β-γ B α C β O γ ), x, y, α, β, and γ each represent an atomic ratio, and 0.45 <x <0.85, 0 ≦ y <0.35, 0.50 ≦ x + y <1.0, and 0 ≦ α <0. 15, 0 ≦ β <0.65, 0.003 <γ <0.2, 0 <α + β + γ <1.0, and has a rock salt structure type crystal structure in X-ray diffraction measurement. The half-width of 2θ of the diffraction peak of either the (111) plane or the (200) plane is 0.5 degrees or more and 2.0 degrees or less, and oxygen in the hard film is from inside the crystal grains. A hard film characterized by the presence of a large amount at the crystal grain interface. 請求項1記載の硬質皮膜において、該硬質皮膜はX線光電子分光分析における525eVから535eVの範囲に少なくともAl、Cr及び/又はSiと酸素との結合エネルギーを有することを特徴とする硬質皮膜。 2. The hard film according to claim 1, wherein the hard film has a binding energy of at least Al, Cr and / or Si and oxygen in the range of 525 eV to 535 eV in X-ray photoelectron spectroscopy. 請求項1又は2記載の硬質皮膜において、該硬質皮膜の最表面から膜厚方向に500nm以内の深さ領域で酸素濃度が最大となることを特徴とする硬質皮膜。 3. The hard film according to claim 1, wherein the oxygen concentration is maximum in a depth region within 500 nm in the film thickness direction from the outermost surface of the hard film. 請求項1乃至請求項3いずれかに記載の硬質皮膜において、該硬質皮膜のX線回折で測定される岩塩構造型の(111)面の回折強度をI(111)、(200)面の回折強度をI(200)とした時、0.3<I(200)/I(111)<12であることを特徴とする硬質皮膜。 The hard film according to any one of claims 1 to 3, wherein the diffraction intensity of the (111) plane of the rock salt structure type measured by X-ray diffraction of the hard film is the diffraction of the I (111) and (200) planes. A hard film characterized by 0.3 <I (200) / I (111) <12 when the strength is I (200). 請求項1乃至4いずれかに記載の硬質皮膜において、該硬質皮膜はナノインデンテーションによる硬度測定により求められる弾性回復率Eが、28%≦E≦40%であることを特徴とする硬質皮膜。 5. The hard film according to claim 1, wherein the hard film has an elastic recovery rate E determined by hardness measurement by nanoindentation of 28% ≦ E ≦ 40%. 請求項1乃至5いずれかに記載の硬質皮膜において、該硬質皮膜表面の凸部を機械的処理により、平滑にしたことを特徴とする硬質皮膜。
6. The hard film according to claim 1, wherein a convex portion on the surface of the hard film is smoothed by a mechanical treatment.
JP2003360269A 2002-11-19 2003-10-21 Hard film Pending JP2005126736A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
JP2003360269A JP2005126736A (en) 2003-10-21 2003-10-21 Hard film
DK03026508T DK1422311T3 (en) 2002-11-19 2003-11-17 Hard film and tool coated with hard film
AT03026508T ATE355395T1 (en) 2002-11-19 2003-11-17 HARD MATERIAL LAYER AND TOOL COATED WITH IT
PT03026508T PT1422311E (en) 2002-11-19 2003-11-17 Hard film and hard film coated tool
ES03026508T ES2279050T3 (en) 2002-11-19 2003-11-17 HARD FILM AND TOOL COVERED WITH HARD FILM.
EP03026508A EP1422311B1 (en) 2002-11-19 2003-11-17 Hard film and hard film coated tool
DE60312110T DE60312110T2 (en) 2002-11-19 2003-11-17 Hard material layer and coated tool
US10/714,630 US7166155B2 (en) 2002-11-19 2003-11-18 Hard film and hard film-coated tool
CNB2003101209355A CN1304626C (en) 2002-11-19 2003-11-19 Hard film and hard film coated tool
US11/558,329 US7435487B2 (en) 2002-11-19 2006-11-09 Hard film and hard film-coated tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003360269A JP2005126736A (en) 2003-10-21 2003-10-21 Hard film

Publications (1)

Publication Number Publication Date
JP2005126736A true JP2005126736A (en) 2005-05-19

Family

ID=34640623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003360269A Pending JP2005126736A (en) 2002-11-19 2003-10-21 Hard film

Country Status (1)

Country Link
JP (1) JP2005126736A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256095A (en) * 2004-03-12 2005-09-22 Hitachi Tool Engineering Ltd Hard coating and coating process
WO2005089990A1 (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2007307652A (en) * 2006-05-18 2007-11-29 Hitachi Tool Engineering Ltd Coated tool and manufacturing method thereof
JP2008031517A (en) * 2006-07-28 2008-02-14 Tungaloy Corp Coated member
KR100918158B1 (en) 2007-03-06 2009-09-17 가부시키가이샤 고베 세이코쇼 Molding tool
JP2009534524A (en) * 2006-04-21 2009-09-24 コムコン・アーゲー Coating
JP2010179341A (en) * 2009-02-06 2010-08-19 Hyomen Kaishitsu Kenkyusho:Kk Cold-working tool coated with multilayer coating film
JP2011093085A (en) * 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
JP2012519231A (en) * 2009-02-27 2012-08-23 スルザー メタプラス ゲーエムベーハー COATING SYSTEM AND COATING METHOD FOR PRODUCING COATING SYSTEM
US10156010B2 (en) 2014-03-18 2018-12-18 Hitachi Metals, Ltd. Coated cutting tool and method for producing the same
WO2022138375A1 (en) 2020-12-22 2022-06-30 三菱マテリアル株式会社 Surface-coated cutting tool

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005256095A (en) * 2004-03-12 2005-09-22 Hitachi Tool Engineering Ltd Hard coating and coating process
JP4704335B2 (en) * 2004-03-18 2011-06-15 住友電工ハードメタル株式会社 Surface coated cutting tool
WO2005089990A1 (en) * 2004-03-18 2005-09-29 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JPWO2005089990A1 (en) * 2004-03-18 2008-01-31 住友電工ハードメタル株式会社 Surface coated cutting tool
US7527457B2 (en) 2004-03-18 2009-05-05 Sumitomo Electric Hardmetal Corp. Surface-coated cutting tool
JP2009534524A (en) * 2006-04-21 2009-09-24 コムコン・アーゲー Coating
JP2007307652A (en) * 2006-05-18 2007-11-29 Hitachi Tool Engineering Ltd Coated tool and manufacturing method thereof
JP2008031517A (en) * 2006-07-28 2008-02-14 Tungaloy Corp Coated member
KR100918158B1 (en) 2007-03-06 2009-09-17 가부시키가이샤 고베 세이코쇼 Molding tool
JP2010179341A (en) * 2009-02-06 2010-08-19 Hyomen Kaishitsu Kenkyusho:Kk Cold-working tool coated with multilayer coating film
JP2012519231A (en) * 2009-02-27 2012-08-23 スルザー メタプラス ゲーエムベーハー COATING SYSTEM AND COATING METHOD FOR PRODUCING COATING SYSTEM
JP2011093085A (en) * 2009-10-01 2011-05-12 Hitachi Tool Engineering Ltd Hard film-coated tool
US10156010B2 (en) 2014-03-18 2018-12-18 Hitachi Metals, Ltd. Coated cutting tool and method for producing the same
EP3722031A1 (en) 2014-03-18 2020-10-14 Hitachi Metals, Ltd. Coated cutting tool and method for producing the same
WO2022138375A1 (en) 2020-12-22 2022-06-30 三菱マテリアル株式会社 Surface-coated cutting tool

Similar Documents

Publication Publication Date Title
JP5008984B2 (en) Surface-coated cutting tool and method for manufacturing surface-coated cutting tool
US7166155B2 (en) Hard film and hard film-coated tool
JP4704335B2 (en) Surface coated cutting tool
JP4854359B2 (en) Surface coated cutting tool
JP2004238736A (en) Hard film, and hard film-coated tool
JP2007001007A (en) Composite coating film for finishing hardened steel
JP4967505B2 (en) Covering member
JP5383019B2 (en) End mill
JP4441494B2 (en) Hard coating coated member
JP2008013852A (en) Hard film, and hard film-coated tool
JP4268558B2 (en) Coated cutting tool
JP2005126736A (en) Hard film
JP6642836B2 (en) Covered drill
JP5558558B2 (en) Cutting tools
JP2021126738A (en) Surface-coated cutting tool exhibiting excellent chipping resistance and wear resistance in strong intermittent cutting
JP2005262389A (en) Surface-coated cutting tool for processing titanium alloy
JP4445815B2 (en) Surface coated cutting tool
JP2020131425A (en) Surface coated cutting tool
JP2004314182A (en) Coated drill
JP2008238344A (en) Cutting tool, its manufacturing method, and cutting method
JP2004255482A (en) Coated end mill
JP2004249394A (en) Coated drill
JP2004337988A (en) Coated rough-machining end mill
JP6959577B2 (en) Surface coating cutting tool
JP2004249433A (en) Coated broach

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070315

A131 Notification of reasons for refusal

Effective date: 20070718

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070911

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071107