JP4707541B2 - Hard coating coated member - Google Patents

Hard coating coated member Download PDF

Info

Publication number
JP4707541B2
JP4707541B2 JP2005331192A JP2005331192A JP4707541B2 JP 4707541 B2 JP4707541 B2 JP 4707541B2 JP 2005331192 A JP2005331192 A JP 2005331192A JP 2005331192 A JP2005331192 A JP 2005331192A JP 4707541 B2 JP4707541 B2 JP 4707541B2
Authority
JP
Japan
Prior art keywords
layer
coating
laminated portion
film
intermediate laminated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005331192A
Other languages
Japanese (ja)
Other versions
JP2006299399A (en
Inventor
剛史 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2005331192A priority Critical patent/JP4707541B2/en
Priority to US11/382,366 priority patent/US7537822B2/en
Priority to PT60096880T priority patent/PT1726686E/en
Priority to EP06009688.0A priority patent/EP1726686B1/en
Priority to ES06009688T priority patent/ES2433091T3/en
Priority to KR1020060042435A priority patent/KR101220251B1/en
Priority to CN2006101060471A priority patent/CN1876368B/en
Publication of JP2006299399A publication Critical patent/JP2006299399A/en
Application granted granted Critical
Publication of JP4707541B2 publication Critical patent/JP4707541B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Drilling Tools (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は、表面に硬質皮膜を被覆した硬質皮膜被覆部材に関する。該部材としては、切削工具、金型、軸受け、ダイス、ロールなど高硬度が要求される耐磨耗工具等がある。 The present invention relates to a hard film-coated member whose surface is coated with a hard film . Examples of the member include wear-resistant tools that require high hardness such as cutting tools, dies, bearings, dies, and rolls.

硬質皮膜被覆部材は、以下の特許文献1から3に最下層と中間積層部との構成が開示されている。   As for the hard film covering member, configurations of a lowermost layer and an intermediate laminated portion are disclosed in Patent Documents 1 to 3 below.

特開2003−71610号公報JP 2003-71610 A 特開2004−238736号公報Japanese Patent Laid-Open No. 2004-238736 特開平7−205361号公報JP-A-7-205361

本発明は、Al、Cr及びTiを必須成分とした硬質皮膜の中間積層部を有することにより、優れた耐熱性並びに潤滑特性を有した状態で高硬度化し、耐摩耗性を改善した硬質皮膜被覆部材を提供することを課題とする。The present invention has a hard film coating which has a hard film intermediate layered portion containing Al, Cr and Ti as essential components, thereby increasing the hardness and improving the wear resistance with excellent heat resistance and lubrication characteristics. It is an object to provide a member.

本発明の硬質皮膜被覆部材は、基体表面に、最下層、中間積層部及び最上層を被覆してなる硬質皮膜被覆部材において、該中間積層部は、金属成分の組成が(AlCrTiSi)(但し、原子%で、W+X+Y+Z=100である。)で表される窒化物、ホウ化物、炭化物及び酸化物の何れか又はそれらの固溶体又は混合物からなるA層とB層とが層厚方向に交互に積層され、A層及びB層は少なくともAl、Cr及びTiの相互拡散層であり、A層の組成は原子%で70<W+X<100、45≦W≦65、25≦X≦35、0<Y≦10及び0<Z≦10で表され、B層の組成は原子%で0<W≦10、0<X≦10、86.09<Y<100及び0<Z<30で表され、
該最上層は、Ti又はTiとSiの窒化物又は炭窒化物であることを特徴とする。
上記の構成を採用することによって、優れた耐熱性並びに潤滑特性を有した状態で、Al、Cr及びTiを必須成分とした硬質皮膜の中間積層部を有することにより、高硬度化を可能にした。これと同時に前記の積層する硬質皮膜が夫々優れた密着強度を有した状態で構成されるため、2層間の剥離が起こり難く、耐剥離性、耐チッピング性に優れる。
The hard film covering member of the present invention is a hard film covering member obtained by coating the base layer surface with the lowermost layer, the intermediate laminated portion and the uppermost layer, and the intermediate laminated portion has a metal component composition (Al W Cr X Ti Y Si Z ) (however, in atomic%, W + X + Y + Z = 100) A layer and B layer made of any of nitrides, borides, carbides and oxides, or a solid solution or a mixture thereof. The layers A and B are alternately diffused layers of Al, Cr, and Ti, and the composition of the layer A is 70 <W + X <100, 45 ≦ W ≦ 65, 25 ≦ X ≦ 35, 0 <Y ≦ 10, and 0 <Z ≦ 10, and the composition of layer B is atomic percent 0 <W ≦ 10, 0 <X ≦ 10, 86.09 <Y <100 and 0 <Z. <30,
The uppermost layer is characterized by being Ti or Ti and Si nitride or carbonitride.
By adopting the above configuration, it is possible to achieve high hardness by having an intermediate laminated part of a hard film containing Al, Cr and Ti as essential components while having excellent heat resistance and lubrication characteristics. . At the same time, since the hard coatings to be laminated are formed in a state having excellent adhesion strength, peeling between the two layers hardly occurs and the peeling resistance and chipping resistance are excellent.

本発明を適用することにより、AlCr及びTiを必須成分とした硬質皮膜の中間積層部が、優れた耐熱性並びに潤滑特性を有した状態で高硬度化することを可能にした。そして過酷な摩耗環境において耐摩耗性の要求される部材等に最適な硬質皮膜を提供し、この硬質皮膜を被覆した部材を提供することができた。例えば、高速切削加工や深穴加工等において、優れた耐摩耗性を発揮する硬質皮膜被覆工具及び硬質皮膜の被覆方法を提供することができた。これは、前記の積層した硬質皮膜が夫々優れた密着強度を有し、層間の剥離が起こり難く高硬度を有し、耐剥離性、耐チッピング性に優れるため異常摩耗が発生し難くなるといった効果が発揮されたことによる。By applying the present invention , it is possible to increase the hardness of the intermediate laminated portion of the hard film containing Al , Cr and Ti as essential components while having excellent heat resistance and lubrication characteristics. In addition, it has been possible to provide an optimum hard film for a member that requires wear resistance in a severe wear environment, and to provide a member coated with this hard film. For example, it has been possible to provide a hard film coating tool and a hard film coating method that exhibit excellent wear resistance in high speed cutting and deep hole machining. This is because the laminated hard coatings each have excellent adhesion strength, delamination hardly occurs, and has high hardness, and is excellent in peeling resistance and chipping resistance, so that abnormal wear hardly occurs. It is because the effect was demonstrated.

本発明は硬質皮膜の層構造が重要である。図1に本発明における硬質皮膜の積層構造の概略図を示す。硬質皮膜の層構造は、基体に物理蒸着法により組成が異なる複数層の硬質皮膜を積層しており、最下層と最上層と、最下層と最上層とに接する中間積層部とから構成される。高硬度、耐熱性、潤滑性等の優れた機能を発揮する最上層が存在しない場合には、耐摩耗効果を発揮することができない。最下層が存在しない場合、その上層の中間積層部並びに最上層の残留応力を吸収することができず、剥離や異常摩耗が先行した摩耗状態となり、安定した耐摩耗性の改善には至らない。中間積層部が存在しない場合には、最上層の特性を十分に発揮することができない。
中間積層部は、金属成分の組成が(AlCrTiSi)の窒化物、ホウ化物、炭化物及び酸化物の何れか又はそれらの固溶体又は混合物からなり、金属成分の組成は原子%で、W+X+Y+Z=100であり、該積層部は、A層とB層とが層厚方向に交互に積層され、A層の組成は70<W+X<100であり、B層の組成は30<Y<100であることにより、最下層と最上層との硬度、密着性、潤滑性のバランスが最適であり、硬質皮膜全体の硬度と耐熱性を改善することができる。A層は金属成分のみの原子%で、W+X+Y+Z=100としたとき、70<W+X<100を満たすことが重要である。W+Xの値が70以下の場合、耐熱性改善効果が十分ではなく、B層との組合せによる硬度化が確認されない。W、Zは、少量でも含有することにより、A層とB層との硬さが向上する。B層は、金属成分のみの原子%で、W+X+Y+Z=100としたとき、30<Y<100を満たすことが重要である。Yの値が30以下の場合、A層とB層との密着強度が低下し、中間積層部の硬度が低下する場合が確認される。これは中間積層部の結品構造にhcp構造が出現するためである。
In the present invention, the layer structure of the hard coating is important. It shows a schematic view of a laminated structure of hard film definitive to the present invention in FIG. The layer structure of the hard coating consists of multiple layers of hard coatings with different compositions formed by physical vapor deposition on the substrate, and consists of the lowermost layer, the uppermost layer, and the intermediate laminated portion in contact with the lowermost layer and the uppermost layer. . When there is no uppermost layer that exhibits excellent functions such as high hardness, heat resistance, and lubricity, the wear resistance effect cannot be exhibited. When the lowermost layer does not exist, it is not possible to absorb the residual stress of the upper intermediate layer and the uppermost layer, resulting in a wear state preceded by peeling and abnormal wear, and stable wear resistance cannot be improved. When there is no intermediate laminated portion, the characteristics of the uppermost layer cannot be fully exhibited.
Intermediate laminate portion, a nitride of composition of the metal component (Al W Cr X Ti Y Si Z), borides, made from either or their solid solution or a mixture of carbides and oxides, the composition of the metal component at% W + X + Y + Z = 100, and in the laminated portion, the A layer and the B layer are alternately laminated in the layer thickness direction, the composition of the A layer is 70 <W + X <100, and the composition of the B layer is 30 <Y. By being <100, the balance of hardness, adhesion, and lubricity between the lowermost layer and the uppermost layer is optimal, and the hardness and heat resistance of the entire hard coating can be improved. The A layer is an atomic% of only the metal component, and when W + X + Y + Z = 100, it is important to satisfy 70 <W + X <100. When the value of W + X is 70 or less, the heat resistance improvement effect is not sufficient, and the increase in hardness due to the combination with the B layer is not confirmed. By containing W and Z even in a small amount, the hardness of the A layer and the B layer is improved. It is important for the B layer to satisfy 30 <Y <100 when W + X + Y + Z = 100 with atomic% of only the metal component. When the value of Y is 30 or less, it is confirmed that the adhesion strength between the A layer and the B layer is lowered and the hardness of the intermediate laminated portion is lowered. This is because the hcp structure appears in the product structure of the intermediate laminated portion.

本発明に係る中間積層部のA層の金属成分の組成は原子%で、45≦W≦65、25≦X≦35、0<Y≦10及び0<Z≦10であり、該B層の組成は原子%で0<W≦10、0<X≦10、86.09<Y<100及び0<Z<30である。中間積層部のA層とB層との層厚方向の積層周期は0.5nm以上、100nm未満であり、X線回折における2θで40度から45度の範囲に少なくとも2つ以上のピークを有することが好ましい。中間積層部を構成するA層とB層は、少なくともAl、Cr及びTiの相互拡散層であることが必要であり、またA層とB層は、結晶格子が連続していることが好ましい。更に、中間積層部のSi含有量が層厚方向に異なり、表層側になる程Si含有量が多いことが好ましい。
最下層は、Al、Cr、Ti及びSiから選択される1種以上の金属元素からなる窒化物の硬質皮膜であることが好ましい。Alを50原子%以上含有し、残部がTi、Cr及びSiから選択される1種もしくは2種以上の窒化物であることが好ましい。
最上層は、Tiを50原子%以上含有する炭窒化物又は窒化物が主体であることが好ましい。
最上層の層厚さTμmは0.01≦T<5であり、中間積層部の層厚さMμmは0.1≦M<5であり、最下層の層厚さBμmは0.01≦B<3であり、及びM≦T≦Bであることが好ましい。中間積層部の硬度Hが30GPa≦H≦50GPaの範囲であること、弾性係数Eが450GPa≦E≦550GPaの範囲であること、及び弾性回復率Rが28%≦R≦38%の範囲であることが好ましい。最上層は酸素を含有し、最表面から膜厚方向に100nm以内の深さ領域で酸素濃度の最大値を有することが好ましい。また、部材がエンドミル又はドリルであること、基体が高速度鋼、超硬合金又はサーメットであることが好ましい。
The composition of the metal component of the A layer of the intermediate laminated portion according to the present invention is atomic%, 45 ≦ W ≦ 65, 25 ≦ X ≦ 35, 0 <Y ≦ 10, and 0 <Z ≦ 10. The composition is 0 <W ≦ 10, 0 <X ≦ 10, 86.09 <Y <100 and 0 <Z <30 in atomic percent. The stacking period in the layer thickness direction between the A layer and the B layer in the intermediate stacked portion is 0.5 nm or more and less than 100 nm, and has at least two peaks in the range of 40 to 45 degrees at 2θ in X-ray diffraction. It is preferable. It is necessary that the A layer and the B layer constituting the intermediate laminated portion are at least Al, Cr, and Ti interdiffusion layers, and the A layer and the B layer preferably have a continuous crystal lattice. Furthermore, it is preferable that the Si content of the intermediate laminated portion is different in the layer thickness direction, and that the Si content increases as it becomes closer to the surface layer side.
The lowermost layer is preferably a hard nitride film made of one or more metal elements selected from Al, Cr, Ti and Si. It is preferable that Al is contained by 50 atomic% or more, and the balance is one or more nitrides selected from Ti, Cr and Si.
The uppermost layer is preferably mainly composed of carbonitride or nitride containing 50 atomic% or more of Ti.
The layer thickness T μm of the uppermost layer is 0.01 ≦ T <5, the layer thickness M μm of the intermediate laminated portion is 0.1 ≦ M <5, and the layer thickness B μm of the lowermost layer is 0.01 ≦ B <3 and preferably M ≦ T ≦ B. The hardness H of the intermediate laminated portion is in the range of 30 GPa ≦ H ≦ 50 GPa, the elastic modulus E is in the range of 450 GPa ≦ E ≦ 550 GPa, and the elastic recovery rate R is in the range of 28% ≦ R ≦ 38%. It is preferable. The uppermost layer preferably contains oxygen and preferably has a maximum value of oxygen concentration in a depth region within 100 nm from the outermost surface in the film thickness direction. Moreover, it is preferable that a member is an end mill or a drill, and a base | substrate is a high speed steel, a cemented carbide, or a cermet.

被覆する方法は、物理蒸着法を採用し、該物理蒸着法はスパッタリング法及び/又はアーク放電式イオンプレーティング(以下、AIPと記す。)法であること好ましい。更に好ましい被覆方法は、硬質皮膜の被覆時に使用する金属製ターゲット材の組成が、該最上層被覆用と該最下層被覆用とで異なり、該中間積層部の被覆時は該最上層被覆用のターゲット材を装着した蒸着源と、該最下層被覆用のターゲット材を装着した蒸着源とを同時に稼動して被覆する方法を用いることが好ましい。   The coating method employs a physical vapor deposition method, and the physical vapor deposition method is preferably a sputtering method and / or an arc discharge ion plating (hereinafter referred to as AIP) method. A more preferable coating method is that the composition of the metal target material used for coating the hard coating differs between the top layer coating and the bottom layer coating, and when the intermediate laminated portion is coated, the composition for the top layer coating is different. It is preferable to use a method in which a vapor deposition source equipped with a target material and a vapor deposition source equipped with a target material for coating the lowermost layer are simultaneously operated and coated.

最下層は、Alを50原子%以上含有し、残部がTi、Cr及びSiから選択される1種もしくは2種以上の窒化物主体の硬質皮膜とすることが好ましい。これより、中間積層部、最上層の応力緩和層として有効に作用する。ここで最下層と中間積層部との界面は、両者の相互拡散層とすることが好ましく、これによって密着強度に優れる。また窒化物主体とは、窒素以外の非金属成分として、酸素、炭素、ホウ素又は硫黄を微量に含有しても良いことを言う。
最上層は、Ti又はTiとSiの窒化物又は炭窒化物の硬質皮膜である。最上層により潤滑性、皮膜硬度を更に向上させることができる。ここで最上層と中間積層部との界面は、両者の相互拡散層とすることが好ましく、これによって密着強度に優れる。最上層を中間積層部の上層側に被覆した場合、剥離や異常摩耗を著しく抑制し、硬質皮膜全体の潤滑性に関しても改善したものである。
最下層、中間積層部、最上層の組合せが極めて重要である。
本発明の組成範囲に制御することにより、中間積層部が優れた潤滑性並びに耐熱性を有した状態で高硬度化され、A層とB層の密着強度に優れ、最下層並びに最上層との密着強度にも優れ、硬質皮膜全体の強度のバランスが最適となり好ましい。
最下層は、Alを50原子%以上含有し、残部がTi、Cr及びSiから選択される1種以上の窒化物であることが好ましい。これにより、中間積層部との密着強度に優れ、同時に中間積層部の残留応力を緩和することができる。特に鉄系基体の場合は顕著にその効果が発揮される。
The lowermost layer preferably contains a hard film mainly composed of one or more nitrides containing 50 atomic% or more of Al and the balance selected from Ti, Cr and Si. As a result, it acts effectively as an intermediate laminated portion and an uppermost stress relaxation layer. Here, it is preferable that the interface between the lowermost layer and the intermediate laminated portion is an interdiffusion layer of both, and this provides excellent adhesion strength. The term “nitride-based” means that a small amount of oxygen, carbon, boron or sulfur may be contained as a nonmetallic component other than nitrogen.
The uppermost layer is a hard coating of Ti or a nitride and carbonitride of Ti and Si. Lubricity and film hardness can be further improved by the uppermost layer. Here, it is preferable that the interface between the uppermost layer and the intermediate laminated portion be an interdiffusion layer of the both, and this provides excellent adhesion strength. When the uppermost layer is coated on the upper layer side of the intermediate laminated portion, peeling and abnormal wear are remarkably suppressed, and the lubricity of the entire hard coating is improved.
The combination of the lowermost layer, the intermediate layer, and the uppermost layer is extremely important.
By controlling to the composition range of the present invention , the intermediate laminated portion is increased in hardness with excellent lubricity and heat resistance, excellent adhesion strength between the A layer and the B layer, and the lowermost layer and the uppermost layer. The adhesive strength is also excellent, and the balance of the strength of the entire hard coating is optimal and preferable.
The lowermost layer preferably contains 50 atomic% or more of Al, and the balance is one or more nitrides selected from Ti, Cr and Si. Thereby, it is excellent in adhesive strength with an intermediate lamination part, and can relieve the residual stress of an intermediate lamination part simultaneously. In particular, the effect is remarkably exhibited in the case of an iron-based substrate.

最上層は、金属元素のみの原子%でTiを50原子%以上含有する炭窒化物又は窒化物が主体であることが好ましい。ここで言う炭窒化物又は窒化物が主体とは、不可避的に混入した数%の元素を含んでも達成されるものである。この最上層は、中間積層部との密着強度に優れると同時に、潤滑特性の効果により切り屑排出性が著しく改善される。特にドリル用の被覆層として好適である。
A層とB層との層厚方向の積層周期は0.5nm以上、100nm未満であり、X線回折における2θで40度から45度の範囲に少なくとも2つ以上のピークを有する硬質皮膜であることが好ましい。A層とB層の各厚さが層厚方向に0.5nm以上、100nm未満の周期で交互に積層することにより、Al、Cr及びTiを必須成分とする中間積層部が高硬度化され、最下層、最上層との密着強度並びに硬質皮膜全体の強度のバランスが最適となる。また、中間積層部の上層側に最上層を被覆することにより、最上層の潤滑性並びに硬度が向上する。A層とB層の各厚さが層厚方向に0.5nm未満の場合、皮膜硬度と潤滑性が低下する。一方100nm以上の場合、Al、Cr及びTiを必須成分とする中間積層部の高硬度化が十分に達成されない。A層とB層の厚さが0.5nm以上、100nm未満の範囲で交互に積層することが好適である。従って、上記構造に加えて、100nm以上の層厚で組成が変動した積層層が存在する場合でも、A層とB層より構成される0.5nm以上、100nm未満の積層部が存在すればその効果は発揮される。中間積層部のX線回折における2θで40度から45度の範囲に少なくとも2つ以上のピークを有することが好適である。これは中間積層部に2つ以上の別の格子定数を有する状態の相が構成されることを示し、これが中間積層部内に歪みを誘発し、高硬度化に有効に作用するからである。
中間積層部を構成するA層とB層は、少なくともAl、Cr及びTiの相互拡散層であることが必要である。この場合、A層とB層の密着強度並びに最下層および最上層との密着強度に優れ、中間積層部の硬度を向上させる。更に硬質皮膜全体の強度のバランスが最適となり、特に好ましい層構造の形態である。
The uppermost layer is preferably mainly composed of carbonitride or nitride containing 50 atomic% or more of Ti with only atomic% of the metal element. The main component of carbonitride or nitride here is achieved even if it contains several percent of elements inevitably mixed. The uppermost layer has excellent adhesion strength with the intermediate laminated portion, and at the same time, the chip discharging property is remarkably improved by the effect of the lubricating property. It is particularly suitable as a coating layer for drills.
The layer period in the layer thickness direction of the A layer and the B layer is 0.5 nm or more and less than 100 nm, and it is a hard film having at least two peaks in the range of 40 to 45 degrees at 2θ in X-ray diffraction. It is preferable. By alternately laminating the thicknesses of the A layer and the B layer at a cycle of 0.5 nm or more and less than 100 nm in the layer thickness direction, the intermediate laminated portion containing Al, Cr, and Ti as essential components is increased in hardness, The balance between the adhesion strength between the lowermost layer and the uppermost layer and the strength of the entire hard coating is optimal. Moreover, the lubricity and hardness of the uppermost layer are improved by coating the uppermost layer on the upper layer side of the intermediate laminated portion. When the thicknesses of the A layer and the B layer are less than 0.5 nm in the layer thickness direction, the film hardness and the lubricity are lowered. On the other hand, when the thickness is 100 nm or more, it is not possible to sufficiently increase the hardness of the intermediate laminated portion containing Al, Cr, and Ti as essential components. It is preferable that the A layer and the B layer are alternately stacked so that the thicknesses are 0.5 nm or more and less than 100 nm. Therefore, in addition to the above structure, even when there is a laminated layer whose composition varies with a layer thickness of 100 nm or more, if there is a laminated part composed of the A layer and the B layer of 0.5 nm or more and less than 100 nm, The effect is demonstrated. It is preferable to have at least two peaks in the range of 40 ° to 45 ° at 2θ in the X-ray diffraction of the intermediate laminated portion. This indicates that a phase having two or more different lattice constants is formed in the intermediate laminated portion, which induces strain in the intermediate laminated portion and effectively acts for increasing the hardness.
It is necessary that the A layer and the B layer constituting the intermediate laminated portion are at least Al, Cr and Ti interdiffusion layers. In this case, the adhesion strength between the A layer and the B layer and the adhesion strength between the lowermost layer and the uppermost layer are excellent, and the hardness of the intermediate laminated portion is improved. Furthermore, the balance of the strength of the entire hard coating becomes optimal, and this is a particularly preferable layer structure.

相 互拡散層の有無は、各層を構成する金属ターゲット材の組成が既知の場合、透過型電子顕微鏡による格子像観察並びに各層のエネルギー分散型X線分光(以下、EDSと言う。)分析により確認することができる。この場合、各層を構成する金属ターゲット材の組成と、A層とB層の組成から判断することができる。またA層とB層に相互拡散が起こらない場合は、A層とB層で固溶体を形成していない場合であり、ターゲット構成成分のみから構成される層を形成する。
中間積層部のA層とB層は、結晶格子が連続していることが好ましい。この場合、A層とB層の密着強度並びに耐摩耗性を発揮することができる。本構造の確認方法は、透過電子顕微鏡による格子像観察並びに制限視野回折像又はA層及びB層の微小部電子線回折から確認することである。中間積層部のSi含有量が層厚方向に異なり、表層ほどSi含有量が多いことが好ましい。これにより、中間積層部で密着強度、硬度並びに強度が傾斜化され、その結果として、硬質皮膜全体の密着強度、耐熱性、硬度並びに皮膜強度が傾斜化され、耐摩耗性を改善することができる。
中間積層部のMμmが、0.1≦M<5であることが好ましい。中間積層部が0.1μm未満の場合、最上層と最下層の密着強度、硬度、強度のバランスが悪く、耐摩耗性改善効果が発揮されない場合があるため、好ましくない。
最上層のTμmが、0.01≦T<5であることが好ましい。最上層が0.01μm未満の場合、最下層の効果が確認されず、耐摩耗性も安定しなため、好ましくない。最下層が5μm以上の場合、耐摩耗効果が確認されず、好ましくない。
最下層のBμmが、0.01≦B<3であることが好ましい。最下層が0.01μm未満の場合、最上層の高硬度化による耐摩耗性改善効果が確認されない。最上層の層厚が3μm以上の場合、硬質皮膜の剥離や異常摩耗が発生する場合があり、好ましくない。更に、M≧T≧B、の関係を満足する場合、その効果が最大限に発揮され、特に好ましい層構造である。
The presence or absence of a mutual diffusion layer is confirmed by observation of a lattice image with a transmission electron microscope and energy dispersive X-ray spectroscopy (hereinafter referred to as EDS) analysis of each layer when the composition of the metal target material constituting each layer is known. can do. In this case, it can judge from the composition of the metal target material which comprises each layer, and the composition of A layer and B layer. Moreover, when mutual diffusion does not occur in the A layer and the B layer, it is a case where a solid solution is not formed by the A layer and the B layer, and a layer composed only of the target component is formed.
The A layer and the B layer in the intermediate laminated part preferably have a continuous crystal lattice. In this case, adhesion strength and wear resistance between the A layer and the B layer can be exhibited. The confirmation method of this structure is confirming from the lattice image observation by a transmission electron microscope, and the limited field diffraction image or the minute part electron beam diffraction of the A layer and the B layer. It is preferable that the Si content in the intermediate laminated portion is different in the layer thickness direction, and that the Si content is higher in the surface layer. As a result, the adhesion strength, hardness, and strength are graded at the intermediate laminated portion, and as a result, the adhesion strength, heat resistance, hardness, and membrane strength of the entire hard coating are graded, and wear resistance can be improved. .
It is preferable that Mμm of the intermediate laminated portion satisfies 0.1 ≦ M <5. When the intermediate laminate portion is less than 0.1 μm, the balance between the adhesion strength, hardness, and strength of the uppermost layer and the lowermost layer is poor, and the effect of improving the wear resistance may not be exhibited.
It is preferable that Tμm of the uppermost layer is 0.01 ≦ T <5. When the uppermost layer is less than 0.01 μm, the effect of the lowermost layer is not confirmed, and the wear resistance is not stable. When the lowermost layer is 5 μm or more, the wear resistance effect is not confirmed, which is not preferable.
It is preferable that B μm of the lowermost layer is 0.01 ≦ B <3. When the lowermost layer is less than 0.01 μm, the effect of improving the wear resistance by increasing the hardness of the uppermost layer is not confirmed. When the thickness of the uppermost layer is 3 μm or more, peeling of the hard film or abnormal wear may occur, which is not preferable. Furthermore, when the relationship of M ≧ T ≧ B is satisfied, the effect is exhibited to the maximum and a particularly preferable layer structure is obtained.

中間積層部の硬度Hが、30GPa≦H≦50GPaの範囲であることが好ましい。上記範囲の該中間積層部を採用することにより、硬質皮膜全体の密着強度、潤滑性、耐熱性のバランスが最適であり、該最下層、該最上層の効果が最大限に発揮され、耐摩耗性改善に対して効果的である。
中間積層部の弾性係数Eが、450GPa≦E≦550GPaの範囲であることが好ましい。E値がこの範囲内であることによって、硬質皮膜全体の密着強度、潤滑性、耐熱性のバランスが最適であり、最下層、最上層の効果が最大限に発揮され、密着強度改善に対して効果的である。中間積層部の弾性回復率Rが、28%≦R≦38%の範囲であることが好ましい。R値が28%未満の場合、耐摩耗性に乏しく、38%を超えて大きい場合、耐剥離性に乏しく異常摩耗が発生し易い。R値がこの範囲内であることによって、硬質皮膜全体の密着強度、潤滑性、耐熱性のバランスが最適であり、最下層、最上層の効果が最大限に発揮され、異常摩耗に対して効果的である。硬度H、弾性係数E、弾性回復率Rの測定方法としては、ナノインデンテーションによる硬度測定法により接触深さと最大荷重時の最大変位量が求められる(W.C.Oliver and G.M.Pharr:J.Mater.Res.,Vol.7,No.6,June、1992、1564−1583)。弾性回復率Rに関しては、R=100−{(接触深さ)/(最大荷重時の最大変位量)}の数式で定義する。ここでの硬度は通常のビッカ−ス硬度等の測定方法に代表される塑性変形硬度とは異なる。
最上層は酸素を含有し、膜厚方向に100nm以内の深さ領域で酸素濃度が最大となる場合が好ましい。これにより、硬質皮膜表面への被加工物の凝着抑制に特に効果的である。
It is preferable that the hardness H of the intermediate laminated portion is in a range of 30 GPa ≦ H ≦ 50 GPa. By adopting the intermediate laminated part in the above range, the balance of adhesion strength, lubricity and heat resistance of the entire hard film is optimal, and the effects of the lowermost layer and the uppermost layer are maximized, and wear resistance It is effective for improving sex.
The elastic modulus E of the intermediate laminated part is preferably in the range of 450 GPa ≦ E ≦ 550 GPa. When the E value is within this range, the balance of adhesion strength, lubricity, and heat resistance of the entire hard coating is optimal, and the effects of the lowermost layer and the uppermost layer are maximized to improve adhesion strength. It is effective. The elastic recovery rate R of the intermediate laminated portion is preferably in the range of 28% ≦ R ≦ 38%. When the R value is less than 28%, the wear resistance is poor, and when it exceeds 38%, the peel resistance is poor and abnormal wear tends to occur. When the R value is within this range, the balance of adhesion strength, lubricity and heat resistance of the entire hard coating is optimal, and the effects of the lowermost layer and the uppermost layer are maximized and effective against abnormal wear. Is. As a method for measuring the hardness H, the elastic modulus E, and the elastic recovery rate R, the contact depth and the maximum displacement at the maximum load are obtained by a hardness measurement method by nanoindentation (WC Oliver and GM Pharr). : J. Mater.Res., Vol.7, No.6, June, 1992, 1564-1583). The elastic recovery rate R is defined by the equation R = 100 − {(contact depth) / (maximum displacement at maximum load)}. The hardness here is different from the plastic deformation hardness represented by the usual measuring method such as Vickers hardness.
The uppermost layer preferably contains oxygen, and the oxygen concentration is preferably maximized in a depth region within 100 nm in the film thickness direction. This is particularly effective for suppressing adhesion of the workpiece to the hard coating surface.

対象部材をエンドミル若しくはドリルとし、これに硬質皮膜を被覆した場合、耐摩耗性改善効果が顕著であり、工具摩耗を著しく低減させることができ好適である。特に潤滑性を改善したものは、ドリルに好適である。
被覆の方法は、スパッタリング法及び/又はAIP法により被覆した硬質皮膜被覆部材は、特に硬質皮膜が高硬度で密着強度に優れ、剥離及び異常摩耗抑制に優れ、その効果が得られ易い。上記硬質皮膜をスパッタリング法及び/又はAIP法により被覆し、被覆方法において、硬質皮膜の被覆時に使用する金属製ターゲット材の組成は、最上層被覆用と最下層被覆用とが異なり、中間積層部の被覆時は最上層被覆用のターゲット材を装着した蒸着源と、最下層被覆用のターゲット材を装着した蒸着源とを同時に稼動して被覆することである。この被覆方法を採用することにより、優れた耐摩耗性を発揮することができる硬質皮膜被覆部材を得ることができる。上記被覆方法の1例として、まず最下層の被覆について、最下層構成元素からなる金属製ターゲット1による被覆を行い、次に最上層構成元素からなる金属製ターゲット2による放電を開始し、金属ターゲット1と金属ターゲット2とにより同時に中間積層部を被覆する。次に、金属ターゲット1による被覆を停止し、金属ターゲット2により最上層を被覆するのである。以下、実施例に基づいて説明する。
When the target member is an end mill or a drill, and this is coated with a hard film, the effect of improving wear resistance is remarkable, and tool wear can be remarkably reduced, which is preferable. Those having improved lubricity are particularly suitable for drills.
As for the coating method, the hard film-coated member coated by the sputtering method and / or the AIP method has a particularly high hardness and excellent adhesion strength, excellent peeling and abnormal wear suppression, and its effects are easily obtained. The hard coating is coated by sputtering and / or AIP. In the coating method, the composition of the metal target material used when coating the hard coating is different between the uppermost layer coating and the lowermost layer coating. During the coating, the vapor deposition source equipped with the target material for the uppermost layer coating and the vapor deposition source equipped with the target material for the lowermost layer coating are simultaneously operated and coated. By adopting this coating method, it is possible to obtain a hard film-coated member capable of exhibiting excellent wear resistance. As an example of the above-described coating method, the lowermost layer coating is first coated with the metal target 1 made of the lowermost layer constituent element, and then the discharge with the metal target 2 made of the uppermost layer constituent element is started. 1 and the metal target 2 simultaneously cover the intermediate laminated portion. Next, the coating with the metal target 1 is stopped, and the uppermost layer is coated with the metal target 2. Hereinafter, a description will be given based on examples.

(実施例1)
本発明例の被覆には、AIP装置を用いた。図2に装置の概略図を示し、構成並びに被覆方法を述べる。装置構成は、減圧容器3と絶縁された複数のアーク放電式蒸発源4、5、6、7、基体ホルダー8よりなる。蒸発源4から7に硬質皮膜の金属成分となるターゲット1及び2を装着し、各蒸発源に所定の電流を供給してターゲット1及び2上でアーク放電を行い、金属ターゲット成分を蒸発しイオン化させ、減圧容器3と基体ホルダー8との間に負に印加したバイアス電圧により、基体9に被覆した。基体9は回転機構10を有しており、1回転/分から10回転/分の範囲で回転させた。即ち、ターゲット1の前面に基体9が対向した場合にターゲット1を含有した硬質皮膜が被覆され、ターゲット2の前面に基体9が対向した場合にターゲット2を含有した硬質皮膜が被覆される。この時、夫々のターゲット材成分を含有した窒化物を形成する場合は、窒素ガスを導入しながら成膜を行った。本発明例の評価は、組成が質量%で、Co含有量13.5%、残りWC及び不可避不純物からなる超硬合金を用いて、JIS規格SNGA432のインサートを製作した。この基体を脱脂洗浄し、基体ホルダー8に装填した。減圧容器3に設置された加熱用ヒーターにより、基体は550℃に加熱され、この状態を30分間保持することにより加熱及び脱ガス処理を行った。続いて、減圧容器3にArガスを導入し、減圧容器3に設置された熱フィラメントにより、Arのイオン化を行った。基体に印加したバイアス電圧により、基体をArイオンによるクリーニング処理を30分間行った。ここで、硬質皮膜への炭素、酸素、窒素、硼素成分の添加方法は、反応ガスであるNガス、CHガス、Cガス、Arガス、Oガス、COガス等から目的の皮膜組成が得られるようにガス種を選択し、被覆工程時に減圧容器3へ導入することによって可能であり、また予め金属ターゲットに添加することによっても可能である。
Example 1
An AIP apparatus was used for the coating of the example of the present invention. FIG. 2 shows a schematic diagram of the apparatus, and the configuration and covering method will be described. The apparatus configuration includes a plurality of arc discharge evaporation sources 4, 5, 6, 7 and a substrate holder 8 that are insulated from the decompression vessel 3. Evaporation sources 4 to 7 are equipped with targets 1 and 2, which are metal components of the hard coating, and a predetermined current is supplied to each evaporation source to cause arc discharge on targets 1 and 2, thereby evaporating and ionizing the metal target components. Then, the substrate 9 was coated with a negative bias voltage applied between the decompression vessel 3 and the substrate holder 8. The substrate 9 has a rotation mechanism 10 and was rotated in the range of 1 to 10 rotations / minute. That is, when the substrate 9 is opposed to the front surface of the target 1, the hard coating containing the target 1 is coated, and when the substrate 9 is opposed to the front surface of the target 2, the hard coating containing the target 2 is coated. At this time, when the nitride containing each target material component was formed, the film was formed while introducing nitrogen gas. In the evaluation of the present invention example, an insert of JIS standard SNGA432 was manufactured using a cemented carbide having a composition of mass%, a Co content of 13.5%, the remaining WC and inevitable impurities. The substrate was degreased and cleaned and loaded into the substrate holder 8. The substrate was heated to 550 ° C. by a heating heater installed in the decompression vessel 3, and this state was maintained for 30 minutes for heating and degassing. Subsequently, Ar gas was introduced into the decompression vessel 3, and Ar was ionized by a hot filament installed in the decompression vessel 3. The substrate was cleaned with Ar ions for 30 minutes by a bias voltage applied to the substrate. Here, the method of adding carbon, oxygen, nitrogen, and boron components to the hard coating is based on the reaction gas N 2 gas, CH 4 gas, C 2 H 2 gas, Ar gas, O 2 gas, CO gas, etc. It is possible to select a gas species so that a coating composition of 1 is obtained and introduce it into the vacuum vessel 3 during the coating process, or to add it to a metal target in advance.

本発明例1の硬質皮膜に使用したターゲット材は、粉末法で作成した金属製ターゲットである。本発明例1は、最下層被覆用ターゲット材1として、組成が原子%で、Al60Cr37Siを、アーク放電式蒸発源4、6に装着した。最上層被覆用ターゲット材2として、Ti100を、アーク放電式蒸発源5、7に装着した。
第1に、ターゲット材1を装着した蒸発源に25V、100Aの電力を供給し、負バイアス電圧を50V、反応ガス圧力を4Pa、被覆基体温度を500℃とし、基体ホルダー8を3回転/分とし、基体表面に約200nmの窒化物膜を被覆した。被覆基体を保持する冶具は、3回転/分で回転させた。この時のターゲット材1の組成がAl60Cr37Siであるのに対し、硬質皮膜組成における金属成分の組成は、Al57Cr41Siの窒化物であった。この硬質皮膜は本発明例1の最下層である。
第2に、中間積層部を、ターゲット材1を装着した蒸発源に25V、100Aの電力を供給した状態で、ターゲット材2を装着した蒸発源に20V、60Aの電力を供給した。この状態で、ターゲット材1、2を装着した全ての蒸着源を同時に稼動させ窒化膜の被覆を開始した。そして、窒化膜の成膜条件を連続的に変化させていった。即ち、ターゲット材2を装着した蒸発源に供給する電流を被覆時間の経過と伴に60Aから段階的に100Aまで増加させ、同時にターゲット材1を装着した蒸発源の電流を被覆時間の経過と伴に100Aから段階的に60Aまで変化させて被覆を行った。被覆の間は、基体にはパルスバイアス電圧を印加した。その条件は負バイアス電圧を60V、正バイアス電圧を10V、周波数を20kHz、振幅を負側に80%、正側に20%、とした。全圧力は6Pa、基体温度は525℃とし、被覆基体を保持する冶具は、6回転/分で回転させ、ターゲット材1、2の2種のターゲットから放出される夫々の窒化物の中間積層部を約2600nm被覆した。
第3に、最上層を、ターゲット材1を装着した蒸発源への電力供給を止め、成膜条件を段階的に変化させた。負バイアス電圧を100V、正バイアス電圧を0V、周波数を10kHz、振幅を負側に95%、正側に5%、全圧力を1.5Pa(N:100sccm、Ar:30sccm、C:20sccm)、基体温度500℃、基体回転数3回転/分に設定し、ターゲット材2による炭窒化物を約200nm被覆した。
第1〜第3の工程により得られた試料を本発明例1とした。
本発明例1による硬質皮膜の中間積層部の層厚、皮膜構造、組成、結晶構造を確認した。X線回折による結晶構造の定性解析並びに透過型電子顕微鏡によるナノ領域の解析を行った。X線回折による結晶構造の定性解析方法について述べる。使用した装置は、リガク製Rotaflex、RV−200B、X線回折装置であった。条件は、管電圧は120kV、電流を40μA、X線源をCukα、入射角を5度、入射スリットを0.4mm、2θを30度から70度に設定した。得られた硬質皮膜の結晶構造の定性解析を行った。X線回折は、本発明例1の最下層、積層部、最上層からのピーク分離をより明確にするために、本発明例1の中間積層部のみから構成される硬質皮膜を成膜して評価を行った。X線回折チャートを図3に示す。図3より本発明例1の中間積層部は、fcc構造を示した。2θで40度から45度の範囲に少なくとも2つ以上のピークを有する硬質皮膜であることを確認した。図3のピーク1がB層のfcc構造(111)面からの回折ピークであり、ピーク2がA層の(111)面からの回折ピーク、ピーク3がB層の(200)面からの回折ピーク、ピーク4がA層の(200)面からの回折ピークである。次に、透過電子顕微鏡(以下、TEMと記す。)によるナノ領域分析方法について述べる。TEMによる組織観察に用いる試料の準備として、試料とダミー基板とをエポキシ樹脂を用いて接着し、切断、補強リング接着、研磨、ディンプリング、Arイオンミーリングを行い作成した。試料厚さが原子層厚さになる領域において、組織観察、格子像観察、微小部(φ1nm)エネルギー分散型X線分光(以下、EDSと言う。)分析、微小部(φ1nm)電子線回折を行い、組織構造を決定した。TEMの観察位置は、中間積層部の層厚方向で中央付近を観察した。使用した装置は、日本電子製JEM−2010F型の電解放射型透過電子顕微鏡(以下、FE―TEMと記す。)を用いた。条件は、加速電圧200kVで組織観察を行い、微小部EDS分析には、装置付属のノーラン製UTW型Si(Li)半導体検出器を用いて、ナノメートルオーダーの積層膜の組成を決定した。この時、半値幅1nmの電子プローブを使用して、実際には試料を透過する際にビームが広がり、X線が発生する領域は広がると考えられる。しかし、結果として得られている情報は2nm未満であると考えられ、2nm以上の層厚であればEDS分析による組成定量分析は可能である。また、深さ方向の情報はすべて含まれるものと考えられるが、試料厚さが原子層厚さであることより、粒子そのものの情報であると考えられる。一般的に試料が薄くなると、得られるX線のカウント数が少なくなるため、定量精度は悪くなると考えられる。しかし、本測定結果から略2%未満のバラツキ範囲であった。微小部電子線回折は、カメラ長を50cm、ビーム径をφ1nmに収束させ、ナノメートルオーダーの積層膜の結晶構造を同定した。図4に本発明例1の積層部の任意に選択された膜断面の走査透過電子顕微鏡法(以下、STEMと記す。)による硬質皮膜組織の観察像を示す。図4より、本発明例1の中間積層部は、ナノオーダーの一定周期構造が確認され、各層の厚みが、約0.5nm以上、100nm未満であることが確認できた。本発明の効果がより得られ易い好ましい層厚としては、1nm以上、70nm未満、より好ましくは、2nm以上、50nm未満であった。図5に、図4中の中間積層部1250nmφの制限視野回折像を示す。図5より、本発明例1の中間積層部には、X線回折結果と同様に、2種の格子定数に起因するリングが認められた。また各リングにおいて内側と外側の強度分布が同様なことから、各結晶粒子中で方位が揃っており、膜厚方向に格子は連続して成長していた。図6は図4の拡大を示す。図6の番号1から5に対応した位置のEDS組成分析結果を表1に示す。
The target material used for the hard film of Example 1 of the present invention is a metal target prepared by a powder method. In Example 1 of the present invention, Al 60 Cr 37 Si 3 having a composition of atomic% was attached to the arc discharge evaporation sources 4 and 6 as the target material 1 for lowermost layer coating. Ti100 was attached to the arc discharge evaporation sources 5 and 7 as the target material 2 for covering the uppermost layer.
First, power of 25 V and 100 A is supplied to the evaporation source on which the target material 1 is mounted, the negative bias voltage is 50 V, the reaction gas pressure is 4 Pa, the coated substrate temperature is 500 ° C., and the substrate holder 8 is rotated 3 times / minute. And a nitride film of about 200 nm was coated on the surface of the substrate. The jig holding the coated substrate was rotated at 3 revolutions / minute. The composition of the target material 1 at this time was Al 60 Cr 37 Si 3 , whereas the composition of the metal component in the hard film composition was Al 57 Cr 41 Si 2 nitride. This hard film is the lowermost layer of Example 1 of the present invention.
Secondly, in the intermediate laminated portion, power of 25 V and 100 A was supplied to the evaporation source on which the target material 1 was mounted, and power of 20 V and 60 A was supplied to the evaporation source on which the target material 2 was mounted. In this state, all the vapor deposition sources equipped with the target materials 1 and 2 were simultaneously operated to start the coating of the nitride film. And the film-forming conditions of the nitride film were changed continuously. That is, the current supplied to the evaporation source equipped with the target material 2 is gradually increased from 60 A to 100 A as the coating time elapses, and at the same time, the current of the evaporation source equipped with the target material 1 is increased along with the elapse of the coating time. The coating was carried out by changing from 100 A to 60 A stepwise. A pulse bias voltage was applied to the substrate during coating. The conditions were a negative bias voltage of 60 V, a positive bias voltage of 10 V, a frequency of 20 kHz, an amplitude of 80% on the negative side, and 20% on the positive side. The total pressure is 6 Pa, the substrate temperature is 525 ° C., the jig for holding the coated substrate is rotated at 6 revolutions / minute, and the intermediate laminates of the respective nitrides released from the two types of targets 1 and 2 are target materials. Was coated at about 2600 nm.
Third, for the uppermost layer, the power supply to the evaporation source on which the target material 1 was mounted was stopped, and the film formation conditions were changed stepwise. Negative bias voltage is 100 V, positive bias voltage is 0 V, frequency is 10 kHz, amplitude is 95% on the negative side, 5% on the positive side, and total pressure is 1.5 Pa (N 2 : 100 sccm, Ar: 30 sccm, C 2 H 2 20 sccm), the substrate temperature was set to 500 ° C., and the substrate rotation speed was set to 3 revolutions / minute, and the carbonitride by the target material 2 was coated with about 200 nm.
The sample obtained by the first to third steps was taken as Example 1 of the present invention.
The layer thickness, film structure, composition and crystal structure of the intermediate laminated part of the hard film according to Example 1 of the present invention were confirmed. Qualitative analysis of crystal structure by X-ray diffraction and analysis of nano-region by transmission electron microscope were performed. A method for qualitative analysis of the crystal structure by X-ray diffraction will be described. The equipment used was Rotaflex Rotaflex, RV-200B, X-ray diffractometer. The conditions were set such that the tube voltage was 120 kV, the current was 40 μA, the X-ray source was Cukα, the incident angle was 5 degrees, the incident slit was 0.4 mm, and 2θ was 30 degrees to 70 degrees. Qualitative analysis of the crystal structure of the obtained hard coating was performed. In X-ray diffraction, in order to clarify the peak separation from the lowermost layer, the laminated portion, and the uppermost layer of Invention Example 1, a hard film composed only of the intermediate laminated portion of Invention Example 1 is formed. Evaluation was performed. An X-ray diffraction chart is shown in FIG. From FIG. 3, the intermediate laminated portion of Example 1 of the present invention showed an fcc structure. It was confirmed that the hard film had at least two peaks in the range of 40 to 45 degrees at 2θ. 3 is a diffraction peak from the fcc structure (111) plane of the B layer, peak 2 is a diffraction peak from the (111) plane of the A layer, and peak 3 is a diffraction from the (200) plane of the B layer. Peaks and peaks 4 are diffraction peaks from the (200) plane of the A layer. Next, a nano region analysis method using a transmission electron microscope (hereinafter referred to as TEM) will be described. As preparation of the sample used for the structure observation by TEM, the sample and the dummy substrate were bonded using an epoxy resin, and cut, reinforcing ring bonding, polishing, dimple ring, and Ar ion milling were performed. In the region where the sample thickness becomes the atomic layer thickness, the structure observation, lattice image observation, micro part (φ1 nm) energy dispersive X-ray spectroscopy (hereinafter referred to as EDS) analysis, micro part (φ1 nm) electron diffraction Done and determined the organizational structure. As for the observation position of TEM, the vicinity of the center was observed in the layer thickness direction of the intermediate laminated portion. As the apparatus used, a JEM-2010F type electrolytic emission transmission electron microscope (hereinafter referred to as FE-TEM) manufactured by JEOL Ltd. was used. The condition was that the structure was observed at an acceleration voltage of 200 kV, and the composition of the laminated film of nanometer order was determined for the micro EDS analysis using a Nolan UTW Si (Li) semiconductor detector attached to the apparatus. At this time, using an electron probe having a half-value width of 1 nm, it is considered that the beam is actually expanded when passing through the sample, and the region where X-rays are generated is expanded. However, the information obtained as a result is considered to be less than 2 nm. If the layer thickness is 2 nm or more, composition quantitative analysis by EDS analysis is possible. In addition, all the information in the depth direction is considered to be included, but since the sample thickness is the atomic layer thickness, it is considered to be information on the particles themselves. In general, when the sample is thinned, the number of X-rays obtained is reduced, so that the quantitative accuracy is considered to deteriorate. However, from this measurement result, the variation range was less than about 2%. Micro-electron beam diffraction focused the camera length to 50 cm and the beam diameter to 1 nm, and identified the crystal structure of the nanometer-order laminated film. FIG. 4 shows an observation image of the hard film structure by scanning transmission electron microscopy (hereinafter referred to as STEM) of an arbitrarily selected film cross section of the laminated portion of Example 1 of the present invention. From FIG. 4, it was confirmed that the intermediate laminated portion of Invention Example 1 had a nano-order constant periodic structure, and the thickness of each layer was about 0.5 nm or more and less than 100 nm. A preferable layer thickness at which the effects of the present invention can be easily obtained is 1 nm or more and less than 70 nm, and more preferably 2 nm or more and less than 50 nm. FIG. 5 shows a limited field diffraction image of the intermediate laminated portion 1250 nmφ in FIG. From FIG. 5, the ring resulting from two types of lattice constant was recognized by the intermediate | middle laminated part of this invention example 1 like the X-ray-diffraction result. In addition, since the inner and outer intensity distributions are the same in each ring, the orientation is uniform in each crystal grain, and the lattice is continuously grown in the film thickness direction. FIG. 6 shows an enlargement of FIG. Table 1 shows the results of EDS composition analysis at positions corresponding to numbers 1 to 5 in FIG.

図6の番号1と番号3が同一層であり、番号2と番号4と番号5が同一層である。表1より、本発明例1のA層のAl含有量は、金属元素のみの原子%で、Alが61.22%から62.65%、B層のAl含有量は、0.93%から6.21%であった。ここで注目すべき点は、基体が回転機構を有した基体ホルダーに設置されているため、中間積層部のA層とB層は理論的には、Al60Cr37Siターゲット前面に基体ホルダーが近づいた時に、Al60Cr37Siターゲット成分の窒化物が被覆され、Ti100ターゲット前面に基体ホルダーが近づいたときに、Ti100ターゲット成分の窒化物が被覆されるべきである。しかし、実際にはAl60Cr37Siターゲット成分と、Ti100ターゲット成分の混合した層となっていることである。これは、数ナノレベルの層厚で基体に被覆された皮膜は、次の数ナノレベルの層が成膜された後、又はその成膜中に、両金属成分が層間で相互拡散が起こっているためである。この相互拡散による層間結合が層間の結合強度、並びに耐熱性を有した状態で被覆されるため、優れた耐摩耗性を発揮したのである。 In FIG. 6, number 1 and number 3 are the same layer, and number 2, number 4 and number 5 are the same layer. From Table 1, the Al content of the A layer of Invention Example 1 is atomic% of only the metal element, Al is 61.22% to 62.65%, and the Al content of the B layer is from 0.93%. It was 6.21%. What should be noted here is that the base is placed on a base holder having a rotation mechanism, and therefore, the A layer and the B layer of the intermediate laminated portion are theoretically placed on the front surface of the Al 60 Cr 37 Si 3 target. when approached, a nitride of Al 60 Cr 37 Si 3 target component is coated, when the substrate holder is approached Ti 100 target front, a nitride of Ti 100 target component is to be coated. However, it is actually a layer in which an Al 60 Cr 37 Si 3 target component and a Ti 100 target component are mixed. This is because a film coated on a substrate with a layer thickness of several nanometers is such that the mutual diffusion of both metal components occurs between the layers after the next several nanometers of layer is deposited or during the deposition. Because it is. Since the interlayer bond by this interdiffusion is coated with the interlayer bond strength and heat resistance, excellent wear resistance is exhibited.

(実施例2)
実施例1と略同様な手法を用い、各種ターゲット材を用いて硬質皮膜を被覆し、皮膜の評価及び、硬質皮膜を切削工具に適用した場合の評価を行った。
(Example 2)
Using substantially the same method as in Example 1, a hard film was coated using various target materials, and evaluation of the film and evaluation when the hard film was applied to a cutting tool were performed.

中間積層部の各層の組成は、実施例1におけるTEM−EDSと同様な測定により決定した。積層周期の確認は、断面STEM像から実測した。中間積層部の硬度、弾性係数、弾性回復率の測定は、試料断面を5度方向に鏡面研磨した試料を用い、ナノインデンテーションにより、押込み荷重49mN、最大荷重保持時間1秒、荷重負荷除去ステップ0.49mNで10点測定し、その平均値を求めた。最下層及び最上層の組成は、電子プローブマイクロアナライザ(EPMA)分析、エネルギー分散型X線分光(EDX)分析、又は透過型電子顕微鏡付属のEDS分析、電子エネルギー損失分光(EELS)分析によっても可能であり、更に、ラザフォード後方散乱(RBS)分析法、電子分光(XPS)分析法、AES分析法等の深さ方向分析により、総合的に決定することも可能である。評価に用いた工具は、高速度鋼製φ6mmのドリル(切削評価1)及び超硬合金製2枚刃ボールエンドミル(切削評価2)を用いた。各試料の成膜条件は、特に記載がない限り、実施例1に準ずる。切削評価条件は、 The composition of each layer of the intermediate laminated part was determined by the same measurement as that of TEM-EDS in Example 1. Confirmation of the lamination period was measured from a cross-sectional STEM image. The hardness, elastic modulus, and elastic recovery rate of the intermediate laminated part are measured by using a sample whose sample cross section is mirror-polished in the direction of 5 degrees. By nanoindentation, the indentation load is 49 mN, the maximum load holding time is 1 second, and the load load removal step. Ten points were measured at 0.49 mN, and the average value was obtained . The composition of the lowermost layer and the uppermost layer is also possible by electron probe microanalyzer (EPMA) analysis, energy dispersive X-ray spectroscopy (EDX) analysis, EDS analysis with transmission electron microscope, electron energy loss spectroscopy (EELS) analysis Furthermore, it can be determined comprehensively by depth direction analysis such as Rutherford backscattering (RBS) analysis method, electron spectroscopy (XPS) analysis method, AES analysis method and the like. As a tool used for the evaluation, a high-speed steel φ6 mm drill (cutting evaluation 1) and a cemented carbide two-blade ball end mill (cutting evaluation 2) were used. The film forming conditions for each sample are in accordance with Example 1 unless otherwise specified. Cutting evaluation conditions are

(切削評価1の評価条件)
被削材:合金鋼、SCM440:HRC30
工具回転数:3200回転/分
1回転あたりの送り量:0.15mm
加工深さ:15mm、止まり穴
加工方法:水溶性切削液、外部給油
寿命判定:切削不能に至るまでの穴数、但し100穴未満切り捨て
(切削評価2の評価条件)
被削材:マルテンサイト系ステンレス鋼(HRC52)
工具回転数:20000回転/分
テーブル送り量:4000m/分
切り込み深さ:軸方向0.4mm、ピックフィード0.2mm
加工方法:ドライ切削
寿命判定:最大摩耗幅が0.1mmに達するまでの切削長、但し10m未満切り捨て
(Evaluation conditions for cutting evaluation 1)
Work material: Alloy steel, SCM440: HRC30
Tool rotation speed: 3200 rotations / minute Feed amount per rotation: 0.15 mm
Machining depth: 15 mm, blind hole Machining method: water-soluble cutting fluid, external lubrication Life judgment: Number of holes until cutting becomes impossible, but rounded down to less than 100 holes (evaluation conditions for cutting evaluation 2)
Work material: Martensitic stainless steel (HRC52)
Tool rotation speed: 20000 rotation / min Table feed rate: 4000 m / min Cutting depth: 0.4 mm in the axial direction, 0.2 mm pick feed
Machining method: Dry cutting Life judgment: Cutting length until maximum wear width reaches 0.1mm, but rounded down to less than 10m

本発明例1は、耐摩耗性に優れていた。本発明例3は、中間積層部の積層周期が0.5nmから10nmの範囲の場合を示す。中間積層部の硬度が高く、切削寿命に優れていた。本発明例5は、中間積層部はAlCrSi系ターゲットとTi系ターゲットで被覆し、最上層の被覆をTiSi系ターゲットで被覆した場合を示す。耐摩耗性が発揮され好ましい形態であった。本発明例6は、最上層を50nmのTi(CN)層とし、その直下にスパッタリング蒸発源とAIP蒸発源を同時に稼動させることにより、Ti(CN)とMoSのナノオーダーの積層膜を150nm被覆した場合を示す。この場合は特にドリル加工に好適であった。
本発明例7は、中間積層部に酸素を含有する場合を示す。耐摩耗性に優れていた。この理由は、中間積層部の高硬度化並びに層間の密着性向上について、酸素が有効に作用したからである。
本発明例8は、中間積層部にホウ素を含有する場合を示す。特に中間積層部の高硬度化に有効であり、切削寿命に優れる結果となった。
本発明例9は、中間積層部並びに最上層に硼素を含有する場合を示す。切り屑排出性に優れており、切削寿命に優れる結果となった。
本発明例11は、最上層が窒化チタンであり、炭素を含有しない場合を示す。本発明例1と比較すると、最上層に炭素を含有すると切削寿命が長く、好ましい形態であった。
本発明例12は、最上層が(TiSi)Nの皮膜の場合を示すが、特に耐摩耗性に優れていた。
本発明例14、15は、最下層、中間積層部、最上層の膜厚の比率が、本発明例1と異なる場合を示す。より好ましい膜厚構成としては、本発明例1の場合の様に中間積層部が最も厚いことが好ましかった。更に、最上層を厚くするよりも、最下層を厚くしたほうが好ましい。
本発明例19は、硬質皮膜表面から100nm未満の範囲で、酸素濃度が最大となる場合を示す。特に潤滑特性に優れ、好ましい形態であった。
本発明例20は、硬質皮膜をスパッタリング法により被覆した場合を示す。AIP法と同様に優れた切削寿命を示した。
Invention Example 1 was excellent in wear resistance. Invention Example 3 shows a case where the lamination period of the intermediate laminated part is in the range of 0.5 nm to 10 nm. The hardness of the intermediate laminated part was high and the cutting life was excellent. Invention Example 5 shows a case where the intermediate laminated portion is covered with an AlCrSi-based target and a Ti-based target, and the uppermost layer is covered with a TiSi-based target. It was a preferred form because of its wear resistance. In Example 6 of the present invention, the uppermost layer is a Ti (CN) layer having a thickness of 50 nm, and a sputtering evaporation source and an AIP evaporation source are simultaneously operated immediately below, thereby forming a nano-order laminated film of Ti (CN) and MoS 2 to a thickness of 150 nm. The case where it coat | covers is shown. This case was particularly suitable for drilling.
Invention Example 7 shows a case where oxygen is contained in the intermediate laminated portion. Excellent wear resistance. The reason for this is that oxygen effectively acts to increase the hardness of the intermediate laminated portion and improve the adhesion between the layers.
Invention Example 8 shows the case where boron is contained in the intermediate laminated portion. In particular, it was effective in increasing the hardness of the intermediate laminated portion, and the cutting life was excellent.
Invention Example 9 shows a case where boron is contained in the intermediate laminated portion and the uppermost layer. It was excellent in chip discharge performance and resulted in excellent cutting life.
Invention Example 11 shows a case where the uppermost layer is titanium nitride and does not contain carbon. Compared to Example 1 of the present invention, when carbon was contained in the uppermost layer, the cutting life was long, which was a preferable form.
Invention Example 12 shows a case where the uppermost layer is a (TiSi) N film, and was particularly excellent in wear resistance.
Invention Examples 14 and 15 show cases where the film thickness ratios of the lowermost layer, the intermediate laminated portion, and the uppermost layer are different from those of Invention Example 1. As a more preferable film thickness configuration, it was preferable that the intermediate laminated portion was the thickest as in the case of the present invention example 1. Furthermore, it is preferable to make the bottom layer thicker than to make the top layer thick.
Invention Example 19 shows a case where the oxygen concentration becomes maximum within a range of less than 100 nm from the hard coating surface. In particular, it was excellent in lubrication characteristics and was a preferred form.
Invention Example 20 shows a case where a hard coating is coated by a sputtering method. Similar to the AIP method, the cutting life was excellent.

比較例の被覆条件は、基本的には本発明例と同一処理条件である。比較例24は、中間積層部のA層のAl、Crの含有量の和が70%の場合を示す。最上層との密着強度が十分でなく、耐摩耗性の改善効果は確認されなかった。比較例25は、中間積層部の積層周期が105nmから150nmの場合を示す。最上層及び中間積層部の高硬度化が不十分であり、中間積層部の層間で相互拡散が確認されず、耐摩耗性の改善は確認されなかった。比較例26は、中間積層部のAlの含有量が15%以下の場合であり、X線回折における2θで、40度から45度の範囲にピークが1種のみから構成される場合を示す。耐摩耗性の改善は確認されなかった。比較例27は、最上層にTiを含有しない皮膜を用いた場合、比較例28は、最上層が存在しない場合を示す。耐摩耗性のばらつきが大きく、安定した耐摩耗性を示さなかった。耐摩耗性が改善されたとは言い難い。   The coating conditions of the comparative example are basically the same processing conditions as the present invention example. Comparative Example 24 shows a case where the sum of the contents of Al and Cr in the A layer of the intermediate laminated portion is 70%. The adhesion strength with the uppermost layer was not sufficient, and the effect of improving the wear resistance was not confirmed. Comparative Example 25 shows a case where the lamination period of the intermediate laminated part is from 105 nm to 150 nm. The upper layer and the intermediate laminate portion were not sufficiently hardened, no interdiffusion was confirmed between the layers of the intermediate laminate portion, and no improvement in wear resistance was confirmed. Comparative Example 26 is a case where the content of Al in the intermediate laminated portion is 15% or less, and shows a case where the peak is composed of only one kind in the range of 40 ° to 45 ° at 2θ in X-ray diffraction. No improvement in wear resistance was found. Comparative Example 27 shows a case where a film containing no Ti is used for the uppermost layer, and Comparative Example 28 shows a case where the uppermost layer is not present. The variation in wear resistance was large, and stable wear resistance was not exhibited. It is hard to say that the wear resistance has been improved.

次に、従来例の被覆は、文献に記載された被覆条件を参考にした。従来例29は、TiNを最下層とし、その上層に(TiAl)N系皮膜を被覆した場合を、従来例30は、(TiAl)N皮膜の単一層の場合、従来例31は、(AlCrSi)N系皮膜の単一層の場合、従来例32、33は、(AlCr)N系皮膜の単一層の場合、従来例34は、(AlCrTi)N系皮膜の単一層の場合、従来例35は、(AlCrTiSi)N系皮膜の単一層の場合、従来例36は、(AlCr)N系の積層膜の場合、従来例37は、(AlCr)N系と(TiAl)N系の積層膜の場合、従来例38は、(TiAl)N系の積層膜の場合を示す。しかしこれらは何れも切削過程で異常摩耗が発生し耐摩耗性が十分ではなかった。   Next, the coating of the conventional example was made by referring to the coating conditions described in the literature. Conventional Example 29 is the case where TiN is the lowermost layer and the (TiAl) N-based film is coated on the upper layer, and Conventional Example 30 is a single layer of (TiAl) N film, and Conventional Example 31 is (AlCrSi). In the case of a single layer of N-based coating, the conventional examples 32 and 33 are in the case of a single layer of (AlCr) N-based coating, the conventional example 34 is in the case of a single layer of (AlCrTi) N-based coating, and the conventional example 35 is In the case of a single layer of an (AlCrTiSi) N-based film, the conventional example 36 is an (AlCr) N-based laminated film, and the conventional example 37 is an (AlCr) N-based and (TiAl) N-based laminated film. Conventional Example 38 shows a case of a (TiAl) N-based laminated film. However, all of them were abnormally worn during the cutting process, and their wear resistance was not sufficient.

図1は、本発明例の硬質皮膜断面の模式図を示す。FIG. 1 shows a schematic diagram of a cross section of a hard coating of an example of the present invention. 図2は、本発明例の成膜装置の概略図を示す。FIG. 2 is a schematic view of a film forming apparatus according to an example of the present invention. 図3は、本発明例1の中間積層部のX線回折結果を示す。FIG. 3 shows an X-ray diffraction result of the intermediate laminated portion of Example 1 of the present invention. 図4は、本発明例1の中間積層部断面STEM像を示す。FIG. 4 shows a cross-sectional STEM image of the intermediate laminated portion of Example 1 of the present invention. 図5は、本発明例1の中間積層部の制限視野回折像を示す。FIG. 5 shows a limited field diffraction image of the intermediate laminated portion of Example 1 of the present invention. 図6は、図4の拡大像を示す。FIG. 6 shows an enlarged image of FIG.

符号の説明Explanation of symbols

1:ターゲット材
2:ターゲット材
3:減圧容器
4:蒸発源
5:蒸発源
6:蒸発源
7:蒸発源
8:基体ホルダー
9:基体
10:回転機構
1: target material 2: target material 3: decompression container 4: evaporation source 5: evaporation source 6: evaporation source 7: evaporation source 8: substrate holder 9: substrate 10: rotating mechanism

Claims (1)

基体表面に、最下層、中間積層部及び最上層を被覆してなる硬質皮膜被覆部材において、
該中間積層部は、金属成分の組成が(AlCrTiSi)(但し、原子%で、W+X+Y+Z=100である。)で表される窒化物、ホウ化物、炭化物及び酸化物の何れか又はそれらの固溶体又は混合物からなるA層とB層とが層厚方向に交互に積層され、
A層及びB層は少なくともAl、Cr及びTiの相互拡散層であり、A層の組成は原子%で70<W+X<100、45≦W≦65、25≦X≦35、0<Y≦10及び0<Z≦10で表され、B層の組成は原子%で0<W≦10、0<X≦10、86.09<Y<100及び0<Z<30で表され、
該最上層は、Ti又はTiとSiの窒化物又は炭窒化物であることを特徴とする硬質皮膜被覆部材。
In the hard film covering member formed by covering the base surface with the lowermost layer, the intermediate laminated portion and the uppermost layer,
Intermediate laminate portion, composition of the metal component (Al W Cr X Ti Y Si Z) ( where, in atomic%, W + X + Y + Z = 100.) Nitride represented by, borides, carbides and oxides Layers A and B made of either or their solid solution or mixture are alternately laminated in the layer thickness direction,
The A layer and the B layer are at least Al, Cr, and Ti interdiffusion layers, and the composition of the A layer is 70% <W + X <100, 45 ≦ W ≦ 65, 25 ≦ X ≦ 35, 0 <Y ≦ 10 in atomic percent. And 0 <Z ≦ 10, and the composition of the B layer is represented by atomic percent 0 <W ≦ 10, 0 <X ≦ 10, 86.09 <Y <100 and 0 <Z <30.
The uppermost layer is Ti or a nitride and carbonitride of Ti and Si.
JP2005331192A 2005-03-24 2005-11-16 Hard coating coated member Active JP4707541B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2005331192A JP4707541B2 (en) 2005-03-24 2005-11-16 Hard coating coated member
US11/382,366 US7537822B2 (en) 2005-05-26 2006-05-09 Hard-coated member
EP06009688.0A EP1726686B1 (en) 2005-05-26 2006-05-10 Hard-coated member
ES06009688T ES2433091T3 (en) 2005-05-26 2006-05-10 Hard Coated Member
PT60096880T PT1726686E (en) 2005-05-26 2006-05-10 Hard-coated member
KR1020060042435A KR101220251B1 (en) 2005-05-26 2006-05-11 Hard-coated member
CN2006101060471A CN1876368B (en) 2005-05-26 2006-05-11 Hard-coated member

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005086679 2005-03-24
JP2005086679 2005-03-24
JP2005331192A JP4707541B2 (en) 2005-03-24 2005-11-16 Hard coating coated member

Publications (2)

Publication Number Publication Date
JP2006299399A JP2006299399A (en) 2006-11-02
JP4707541B2 true JP4707541B2 (en) 2011-06-22

Family

ID=37468041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005331192A Active JP4707541B2 (en) 2005-03-24 2005-11-16 Hard coating coated member

Country Status (1)

Country Link
JP (1) JP4707541B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5023369B2 (en) * 2007-05-15 2012-09-12 住友電工ハードメタル株式会社 Surface coated cutting tool
DE102007035502A1 (en) * 2007-07-28 2009-02-05 Federal-Mogul Burscheid Gmbh piston ring
US7947363B2 (en) * 2007-12-14 2011-05-24 Kennametal Inc. Coated article with nanolayered coating scheme
JPWO2010150335A1 (en) * 2009-06-22 2012-12-06 株式会社タンガロイ Coated cubic boron nitride sintered body tool
EP2336383A1 (en) 2009-12-04 2011-06-22 Sandvik Intellectual Property AB Multilayered coated cutting tool
TR201819344T4 (en) * 2010-01-11 2019-01-21 Iscar Ltd Coated cutting tool.
JP6806304B2 (en) * 2016-09-07 2021-01-06 和田山精機株式会社 Covered cold mold
KR102343014B1 (en) * 2017-09-27 2021-12-24 교세라 가부시키가이샤 Covered tool and cutting tool having same
CN111511490B (en) 2017-11-20 2021-07-13 株式会社Moldino Coated cutting tool
US11666976B2 (en) 2019-03-18 2023-06-06 Moldino Tool Engineering, Ltd. Coated cutting tool
JP7031791B2 (en) 2019-05-09 2022-03-08 株式会社Moldino Cover cutting tool
WO2023276066A1 (en) * 2021-06-30 2023-01-05 住友電工ハードメタル株式会社 Cutting tool

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2002337007A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Hard-coating coated tool
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2003321764A (en) * 2002-05-01 2003-11-14 Mitsubishi Heavy Ind Ltd High wear resistance/high hardness coating superior in high-temperature oxidation resistance
JP2004106183A (en) * 2003-12-09 2004-04-08 Hitachi Tool Engineering Ltd Hard film coated tool and its manufacturing method
JP2005028457A (en) * 2003-07-07 2005-02-03 Mitsubishi Materials Corp Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting of hard-to-cut material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JP2001254187A (en) * 2000-03-09 2001-09-18 Hitachi Tool Engineering Ltd Hard film-coated member
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
JP2002337007A (en) * 2001-05-11 2002-11-26 Hitachi Tool Engineering Ltd Hard-coating coated tool
JP2003321764A (en) * 2002-05-01 2003-11-14 Mitsubishi Heavy Ind Ltd High wear resistance/high hardness coating superior in high-temperature oxidation resistance
JP2005028457A (en) * 2003-07-07 2005-02-03 Mitsubishi Materials Corp Cutting tool made of surface coated cermet with hard coating layer exhibiting excellent wear resistance in high-speed cutting of hard-to-cut material
JP2004106183A (en) * 2003-12-09 2004-04-08 Hitachi Tool Engineering Ltd Hard film coated tool and its manufacturing method

Also Published As

Publication number Publication date
JP2006299399A (en) 2006-11-02

Similar Documents

Publication Publication Date Title
JP4707541B2 (en) Hard coating coated member
JP3934136B2 (en) Hard film coating member and coating method thereof
JP4383407B2 (en) Hard coating coated member
JP4373897B2 (en) Hard film coating member and coating method thereof
KR102268364B1 (en) Surface-coated cutting tool and manufacturing method thereof
KR101220251B1 (en) Hard-coated member
JP4441494B2 (en) Hard coating coated member
JP4939032B2 (en) Hard film and method for producing hard film
JP5909273B2 (en) Hard coating and method for manufacturing hard coating
KR20060051931A (en) A hard film having an excellent wear resistance and oxidation resistance and a target for forming the same, and a hard film having an excellent high-temperature lubricating ability and wear resistance and a target for forming the same
CN108138305B (en) Hard coating and hard coating-coated member
CN108138306B (en) Hard coating and hard coating-coated member
JP2008240079A (en) Coated member
JP2016027192A (en) Laminate type hard film, and cutting tool
WO2014061292A1 (en) Surface-coated cutting tool
JP2008013852A (en) Hard film, and hard film-coated tool
JP2011235393A (en) Surface coated cutting tool
JP2011189473A (en) Surface coated cutting tool
JP2014014895A (en) Surface coated cutting tool
JP2012035377A (en) Surface-coated cutting tool
WO2019188967A1 (en) Surface-coated cutting tool
JP5975214B2 (en) Surface coated cutting tool
JP2012061554A (en) Surface coated cutting tool
JP5234332B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed, high-feed cutting.
WO2020026389A1 (en) Hard coating film and member coated with hard coating film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061020

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090514

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090910

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100528

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100726

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100726

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101224

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110124

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110315

R150 Certificate of patent or registration of utility model

Ref document number: 4707541

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350