WO2019188967A1 - Surface-coated cutting tool - Google Patents

Surface-coated cutting tool Download PDF

Info

Publication number
WO2019188967A1
WO2019188967A1 PCT/JP2019/012475 JP2019012475W WO2019188967A1 WO 2019188967 A1 WO2019188967 A1 WO 2019188967A1 JP 2019012475 W JP2019012475 W JP 2019012475W WO 2019188967 A1 WO2019188967 A1 WO 2019188967A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
average
thickness
tool
Prior art date
Application number
PCT/JP2019/012475
Other languages
French (fr)
Japanese (ja)
Inventor
達貴 木下
達生 橋本
峻 佐藤
雄斗 菅原
拓哉 前川
Original Assignee
三菱マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱マテリアル株式会社 filed Critical 三菱マテリアル株式会社
Priority to JP2019517125A priority Critical patent/JPWO2019188967A1/en
Priority to KR1020207027299A priority patent/KR20200128060A/en
Priority to EP19776224.8A priority patent/EP3778080A4/en
Priority to US16/982,508 priority patent/US20210016361A1/en
Priority to CN201980021038.8A priority patent/CN111902231A/en
Publication of WO2019188967A1 publication Critical patent/WO2019188967A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B27/00Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
    • B23B27/14Cutting tools of which the bits or tips or cutting inserts are of special material
    • B23B27/148Composition of the cutting inserts
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/16Milling-cutters characterised by physical features other than shape
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • C23C14/025Metallic sublayers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/32Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer
    • C23C28/322Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one pure metallic layer only coatings of metal elements only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/30Coatings combining at least one metallic layer and at least one inorganic non-metallic layer
    • C23C28/34Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates
    • C23C28/347Coatings combining at least one metallic layer and at least one inorganic non-metallic layer including at least one inorganic non-metallic material layer, e.g. metal carbide, nitride, boride, silicide layer and their mixtures, enamels, phosphates and sulphates with layers adapted for cutting tools or wear applications
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/42Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by the composition of the alternating layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2222/00Materials of tools or workpieces composed of metals, alloys or metal matrices
    • B23B2222/92Tungsten
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2228/00Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
    • B23B2228/10Coatings
    • B23B2228/105Coatings with specified thickness
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/40Coatings including alternating layers following a pattern, a periodic or defined repetition
    • C23C28/44Coatings including alternating layers following a pattern, a periodic or defined repetition characterized by a measurable physical property of the alternating layer or system, e.g. thickness, density, hardness

Definitions

  • This invention shows excellent chipping resistance and wear resistance without causing peeling of the hard coating layer in high-speed cutting of Ni-base heat-resistant alloys, and excellent cutting performance over a long period of use.
  • the present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).
  • a coated tool a surface-coated cutting tool
  • a coated tool for throwing inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various materials such as steel and cast iron, and for drilling and cutting the work material
  • Many proposals have been made for the purpose of improving the cutting performance of the coated tool.
  • Patent Document 1 proposes a hard film having excellent wear resistance formed on the surface of a cutting tool for alloy steel and the like and a method for forming such a hard film.
  • excellent as a hard film was, M a Cr b Al c Si d B e Y f Z made of a hard coating (where, M is excluded, periodic table group 4A elements, 5A group elements, the group 6A element (Cr)
  • M is excluded, periodic table group 4A elements, 5A group elements, the group 6A element (Cr)
  • At least one element selected from the group consisting of N, CN, NO or CNO, a + b + c + d + e + f 1, 0 ⁇ a ⁇ 0.3, 0.05 ⁇ b ⁇ 0.4, 0.4 ⁇ c ⁇ 0.8, 0 ⁇ d ⁇ 0.2, 0 ⁇ e ⁇ 0.2, 0.01 ⁇ f ⁇ 0.1
  • Ti can be selected as M, and when M is Ti, c is 0.5 ⁇ c ⁇ 0.8, and f is 0.02 ⁇ f ⁇ 0.1.
  • the hard coating can be alternately laminated with different compositions. Further, after the hard coating is charged into the AIP apparatus, the substrate is cleaned under specific conditions (for example, pressure: 0.6 Pa, voltage: 500 V, time: 5 minutes) using Ar ions, It is described that a film can be formed by a cathode discharge type arc ion plating method.
  • the base material, the intermediate film provided on the base material, and the intermediate film has a nano-beam diffraction pattern indexed to the crystal structure of WC, is made of a carbide containing W and Ti, and has a film thickness.
  • the hard coating is a nitride or carbonitride having a face-centered cubic lattice structure, containing at least Al, Ti, and Y, and containing a metal element including a semimetal
  • the total ratio (atomic%) is 100%
  • the Al content ratio (atomic%) is 60% to 75%
  • the Ti content ratio (atomic%) is 20% to 35%
  • the Y content ratio. (Atom%) is 1% or more and 5% or less Coated cutting tool has been proposed that.
  • the intermediate film it is preferable to perform Ti bombardment using a cathode having a magnetic field configuration in which a coil magnet is provided on the outer periphery of the target to confine the arc spot inside the target.
  • the negative bias voltage applied to the substrate is set to -1000 V to -700 V
  • the current supplied to the target is set to 80 A to 150 A
  • the base before the bombarding process is performed.
  • the heating temperature of the material is set to 450 ° C. or higher
  • the Ti bombarding process is performed for 3 to 7 minutes, and Ti bombarding may be performed while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon gas, or the like.
  • Patent Document 3 a WC-based cemented carbide is used as a base material for the purpose of improving the adhesion strength between the coating and the base material and improving the peel resistance and wear resistance in the cutting of alloy tool steel (SKD11).
  • a coated tool and a manufacturing method thereof have been proposed.
  • this coated tool has a W-modified phase (preferably having an average thickness of 10 to 300 nm) having a bcc crystal structure on the surface of a WC-based cemented carbide base material.
  • the W-modified phase is W formed by the decomposition of W and C by irradiating one or more metals selected from Ti, Zr, Hf, Nb, and Ta by ion irradiation of the substrate.
  • this hard film is preferably At least one layer is a nitride containing one or more elements selected from Ti, Cr, W, Nb, Y, Ce, Si, and B and Al).
  • this coated tool can be manufactured by the 1st process of performing ion bombardment processing to a substrate, and the 2nd process of forming a hard coat, and the 1st process of performing the said ion bombardment process Applies a negative bias voltage of ⁇ 1000 to ⁇ 600 (V) to the substrate, and a pressure of 0.01 to 2 Pa, and a mixed gas of hydrogen gas and Ar or N 2 (however, the hydrogen gas of the mixed gas)
  • the cathode material one or more metals selected from Ti, Zr, Hf, Nb and Ta
  • the substrate is irradiated with metal ions evaporated from the substrate, thereby setting the surface temperature of the substrate in the range of 800 to 860 ° C., forming a W-modified phase having a crystal structure of bcc structure on the surface of the substrate, and Ti, just above the quality phase It is disclosed that a carbide phase of one or more metals selected from Zr, Hf, Nb, and Ta is formed, and a hard film is formed immediately above the carbide phase.
  • Patent Document 2 a cubic structure nitride layer or carbonitride layer containing at least Al, Ti, and Y is provided as the hard coating, and Ti bombardment is provided between the tool base and the hard coating.
  • the intermediate film formed by the treatment it is said that the durability of the coated tool in the cutting work of Ni-base heat-resistant alloy or the like is enhanced.
  • cutting with large thermal and mechanical loads on the cutting edge does not provide sufficient adhesion between the intermediate coating and hard coating. For this reason, peeling is likely to occur, and due to this, the service life is reached in a relatively short time.
  • the present inventors from the above-mentioned viewpoint, are accompanied by high heat generation such as high-speed milling processing and high-speed drilling processing such as Ni-base heat-resistant alloys, and a large thermal load on the cutting blade.
  • high heat generation such as high-speed milling processing and high-speed drilling processing such as Ni-base heat-resistant alloys
  • high-speed milling processing such as Ni-base heat-resistant alloys
  • Ni-base heat-resistant alloys such as Ni-base heat-resistant alloys
  • Ni-base heat-resistant alloy as a cutting tool for the hard coating disclosed in Patent Document 1 proposed as a cutting tool for alloy steel.
  • the Y component contained in the hard coating layer generates a stable oxide on the outermost surface of the hard coating layer, and this oxide improves the welding resistance.
  • Y component is present uniformly in the hard coating layer. For this reason, even when the cutting process proceeds, an oxide of Y always exists on the outermost surface of the hard coating layer, so that the welding resistance does not deteriorate.
  • the layer thickness of the (Al, Ti, Cr, Si, Y) N layer is excessively increased, the life of the coated tool is shortened due to occurrence of chipping, chipping, peeling, and the like.
  • the present inventors provide the hard coating layer with the above (Al, Ti, Cr) in order to provide a coated tool that exhibits excellent wear resistance over a long period of use without occurrence of chipping, chipping or peeling.
  • Si, Y) N layers and an Al and Ti composite nitride layer hereinafter sometimes referred to as “(Al, Ti) N layer”.
  • the surface of the tool base was subjected to bombarding taught by Patent Documents 2 and 3, and then a hard coating layer composed of the alternately laminated structure was formed. The occurrence of defects was suppressed and the tool life was extended to some extent. However, it was not possible to suppress the occurrence of peeling, and it could not be said that the tool characteristics were still sufficiently satisfactory.
  • the inventors of the present invention have further studied the bombardment process described in Patent Documents 2 and 3 and changed the metal ion bombardment process conditions to have a layer structure different from that described in Patent Documents 2 and 3. It was found that the effect of improving the adhesion between the hard coating layer and the tool base can be remarkably improved by forming the lower layer and forming the hard coating layer via the lower layer. As a result, in high-speed cutting of a Ni-base heat-resistant alloy, it is possible to suppress the occurrence of delamination, and at the same time, to suppress the occurrence of abnormal damage such as welding, chipping, and defects. It was found that a coated tool exhibiting excellent wear resistance can be obtained.
  • the present inventors set the treatment atmosphere to 1 ⁇ 10 ⁇ when ion bombarding any one kind of metal selected from Ti, Cr, Zr, Hf, Nb and Ta as the metal ion bombardment for the tool base.
  • a high vacuum of 3 Pa or less was set, the processing temperature of the tool base was increased to about 750 to 800 ° C., and the processing time was increased (for example, 30 minutes to 60 minutes).
  • the present invention has been made based on the above knowledge, and the surface-coated cutting tool according to the present invention has the following configurations (1) to (3).
  • a surface-coated cutting tool in which a lower layer is provided on a tool base made of a tungsten carbide-based cemented carbide and an upper layer of an alternately laminated structure is provided on the surface of the lower layer, (a) to (g) It has the characteristics of.
  • the lower layer includes a W layer, a metal carbide layer, and a metal carbonitride layer.
  • the W layer is formed from the surface of the tool base to the inside thereof over a depth of 10 to 500 nm.
  • the metal carbide layer is any one metal carbide layer selected from Ti, Cr, Zr, Hf, Nb and Ta, and has an average layer thickness of 5 to 500 nm, It is formed directly above.
  • the metal carbonitride layer is a metal carbonitride layer containing a metal component contained in the metal carbide layer, has an average layer thickness of 5 to 300 nm, and is directly above the metal carbide layer. It is formed.
  • the upper layer has an alternate laminated structure in which at least one A layer and B layer are alternately laminated, and has a total average layer thickness of 1.0 to 8.0 ⁇ m.
  • the A layer is a composite nitride layer of Al and Ti having a single layer average thickness of 0.1 to 5.0 ⁇ m, and its composition is expressed by a composition formula: (Al x Ti 1-x ) N The average composition satisfies 0.40 ⁇ x ⁇ 0.70 (where x is an atomic ratio).
  • the B layer is a composite nitride layer of Al, Ti, Cr, Si, and Y having a single layer average thickness of 0.1 to 5.0 ⁇ m, and the composition is expressed by a composition formula: (Al 1 when expressed in -a-b-c-d Ti a Cr b Si c Y d) N, 0 ⁇ a ⁇ 0.40,0.05 ⁇ b ⁇ 0.40,0 ⁇ c ⁇ 0.20,0 .01 ⁇ d ⁇ 0.10 (where a, b, c and d are all atomic ratios).
  • the surface-coated cutting tool according to (1) wherein the surface-coated cutting tool is any one of a surface-coated insert, a surface-coated end mill, and a surface-coated drill.
  • a surface-coated cutting tool for Ni-base heat-resistant alloy high-speed cutting comprising the surface-coated cutting tool described in (1) or (2).
  • the coated tool of the present invention includes a lower layer and an upper layer, and the lower layer is formed from a tool base surface to a predetermined depth inside thereof, and a metal carbide layer formed on the surface of the W layer. And a metal carbonitride layer formed on the surface of the metal carbide layer, and the upper layer is an A layer composed of an (Al, Ti) N layer and an (Al, Ti, Cr, Si, Y) N layer
  • the B layer is composed of an alternately laminated structure in which at least one B layer is alternately laminated, and the adhesion strength between the tool base and the upper layer is increased by the lower layer interposed between the tool base and the upper layer.
  • the upper layer has excellent welding resistance, chipping resistance, chipping resistance, and wear resistance.
  • the coated tool of the present invention suppresses the occurrence of delamination in high-speed cutting of a Ni-base heat-resistant alloy that is accompanied by high heat generation and a large thermal load and mechanical load acts on the cutting edge. It suppresses the occurrence of abnormal damage such as welding, chipping and chipping, and exhibits excellent cutting performance over a long period of use.
  • FIG. 1 shows an example of a schematic plan view of an arc ion plating apparatus (not shown for a metal target for metal ion bombardment) used to form an upper layer of a coated tool according to an embodiment.
  • 1 shows an example of a schematic front view of an arc ion plating apparatus (not shown for a metal target for metal ion bombardment) used to form an upper layer of a coated tool according to an embodiment.
  • FIG. 1 is a schematic longitudinal cross-sectional schematic diagram of a surface-coated tool according to this embodiment.
  • a lower layer 2 and an upper layer 3 having an alternately laminated structure are formed on a tool base 11 made of a tungsten carbide base cemented carbide.
  • the lower layer 2 includes a W layer 4, a metal carbide layer 5, and a metal carbonitride layer 6, but the W layer 4 is not formed on the surface of the tool base 11, but the tool base 11. It is formed over an average depth of 10 to 500 nm from the surface to the inside.
  • the metal carbide layer 5 is formed with an average layer thickness of 5 to 500 nm immediately above the W layer 4, and the metal carbonitride layer 6 is 5 to 500 nm directly above the metal carbide layer 5. It is formed with an average layer thickness of 300 nm. And, on the surface of the lower layer 2 composed of the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6, it has an alternately laminated structure in which the A layer and the B layer are alternately laminated. An upper layer 3 having a total average layer thickness of 1.0 to 8.0 ⁇ m is formed.
  • the layer thickness is measured by cutting out a longitudinal section using a focused ion beam (FIB) and using an energy dispersive X-ray analysis method using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) ( EDS), Auger Electron Spectroscopy (AES) or electron probe microanalyzer (EPMA) is used for cross-sectional measurement.
  • SEM scanning electron microscope
  • TEM transmission electron microscope
  • AES Auger Electron Spectroscopy
  • EPMA electron probe microanalyzer
  • the boundary between the A layer and the B layer is defined as an increase start position and a decrease start position of the Cr content in the B layer. Accordingly, the layer thickness of the A layer is from the Cr content decrease start position to the Cr content increase start position, and the B layer thickness is from the Cr content increase start position to the Cr content decrease start position.
  • the average layer thickness means an average value calculated by performing the measurement method five times.
  • AIP arc ion plating
  • the lower layer 2 comprising the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 by performing metal ion bombardment on the surface of the tool base 11 disposed on the rotary table of the AIP apparatus 10 under predetermined conditions. After that, the A layer and the B layer are alternately laminated to form the upper layer 3, and the surface-coated cutting tool according to this embodiment having a layer structure can be manufactured.
  • Both the W layer 4 and the metal carbide layer 5 constituting the lower layer 2 are layers formed by metal ion bombardment.
  • the W layer 4 and the metal carbide layer 5 immediately above the W layer 4 are decomposed into W and C in the vicinity of the surface of the tool base 11 by metal ion bombardment (irradiation).
  • the W layer 4 is formed from the surface of the tool base 11 to a predetermined depth, and the ion bombarded metal reacts with C on the surface of the W layer 4 to thereby form the metal carbide layer 5.
  • the average thickness (depth) of the W layer 4 to be formed is less than 10 nm, the metal carbide layer 5 immediately above is not sufficiently formed, and sufficient adhesion strength with the hard layer cannot be obtained.
  • the average thickness exceeds 500 nm, the hard coating layer is easily peeled off due to the embrittlement of the surface of the tool base 11, and therefore the W layer 4 formed from the surface of the tool base 11 toward the inside thereof.
  • the average thickness (depth) is 10 to 500 nm or less. More preferably, it is 20 nm to 300 nm.
  • the metal carbide layer 5 formed immediately above the W layer 4 is formed by the reaction of bombarded metal ions with C decomposed from WC into W and C as described above. If the layer thickness is less than 5 nm, the thickness of the W layer 4 is too thin and the effect of improving the adhesion with the hard layer is small. On the other hand, if the average layer thickness exceeds 500 nm, the average thickness of the W layer 4 ( Since the depth) exceeds 500 nm, the surface of the tool base 11 becomes brittle. Therefore, the average thickness of metal carbide layer 5 formed immediately above W layer 4 is set to 5 to 500 nm. More preferably, it is 10 nm to 300 nm.
  • the thickness (depth) of the W layer is measured by cutting a longitudinal section using a focused ion beam (FIB) and energy using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This is performed by cross-sectional measurement using a distributed X-ray analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA).
  • a specific method for obtaining the thickness (depth) of the W layer is as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. The boundary of each layer is defined according to the following based on the component content change curve thus obtained.
  • the boundary between the WC and the W layer is set as a W content increase start position. Further, the boundary between the W layer and the metal carbide layer is defined as an intersection of a curve indicating a change in the W content and a curve indicating a change in the content of the metal component constituting the metal carbide layer. From these, the thickness (depth) of the W layer is an intersection of the W content increase start position and the curve indicating the change in the W content and the curve indicating the change in the content of the metal component constituting the metal carbide layer. Required as a standard. The average thickness of the W layer refers to an average value calculated by performing the measurement method five times.
  • the thickness of the metal carbide layer is measured by cutting a longitudinal section using a focused ion beam (FIB) and using an energy dispersive X using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is performed by cross-sectional measurement using a line analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA).
  • a specific method for obtaining the thickness of the metal carbide layer is as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. The boundary of each layer is defined according to the following based on the component content change curve thus obtained.
  • the boundary between the W layer and the metal carbide layer is defined as an intersection of a curve indicating a change in the W content and a curve indicating a change in the content of the metal component constituting the metal carbide layer. Further, the boundary between the metal carbide layer and the metal carbonitride layer is set as the increase start position of the N content. From these, the thickness of the metal carbide layer is based on the intersection of the curve showing the change in the W content and the curve showing the change in the content of the metal component constituting the metal carbide layer and the increase start position of the N content. Desired.
  • the average thickness of the metal carbide layer refers to an average value calculated by performing the measurement method five times.
  • the thickness of the metal carbonitride layer is measured by cutting a longitudinal section using a focused ion beam (FIB), and energy dispersion using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This is performed by cross-sectional measurement using a type X-ray analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA).
  • FIB focused ion beam
  • EDS scanning electron microscope
  • AES Auger Electron Spectroscopy
  • EPMA electron probe microanalyzer
  • the boundary between the metal carbide layer and the metal carbonitride layer is set as the increase start position of the N content. Further, the boundary between the metal carbonitride layer and the upper layer is defined as the intersection of the metal component constituting the metal carbonitride layer and the curve indicating the change in the content of the metal component constituting the upper layer. From these, the thickness of the metal carbonitride layer is the intersection of the starting position of the increase of the N content and the curve indicating the change in the content of the metal component constituting the metal carbonitride layer and the metal component constituting the upper layer. As a standard. The average thickness of the metal carbonitride layer refers to an average value calculated by performing the measurement method five times.
  • a metal carbonitride layer 6 is formed on the surface of the metal carbide layer 5.
  • This metal carbonitride layer 6 is formed when the upper layer 3 is formed by vapor deposition after the metal ion bombardment process. Is a layer. After the metal ion bombardment treatment is performed for a long time (30 to 60 minutes) under a high vacuum and the W layer 4 and the metal carbide layer 5 are formed, the upper layer 3 is further formed by vapor deposition in a nitrogen atmosphere. A metal carbonitride layer 6 can be formed. By this forming method, the metal carbonitride layer 6 including the metal component contained in the metal carbide layer 5 is obtained.
  • the metal carbonitride layer 6 is excellent in adhesion strength with the metal carbide layer 5 and at the same time is composed of a hard layer formed on the surface of the metal carbonitride layer 6, in particular, a composite nitride layer of Al and Ti. Excellent adhesion to the A layer. For this reason, the generation of delamination of the hard layer is suppressed in the high-speed cutting of the Ni-base heat-resistant alloy that is accompanied by the generation of high heat and that places a large thermal load and mechanical load on the cutting edge.
  • the average thickness of the metal carbonitride layer 6 is set to 5 to 300 nm. More preferably, it is 10 to 200 nm.
  • an example of a method of forming the lower layer 2 is as follows. First, the tool base 11 is placed on a turntable 12 in the AIP apparatus 10 so as to be able to rotate, and the inside of the apparatus is maintained at a high vacuum of 1 ⁇ 10 ⁇ 3 Pa or less, and the temperature of the tool base 11 is about 500 ° C. Then, the temperature of the tool base 11 is increased to about 750 to 800 ° C.
  • a bias voltage of about ⁇ 1000 V is applied to the tool base 11 to
  • An ion bombarding target for example, a Ti target
  • arc current of about 100 A is supplied with an arc current of about 100 A, and this treatment is continued for about 30 to 60 minutes to carry out a metal ion bombardment treatment.
  • the W layer 4 is formed to a depth, and at the same time, a metal carbide layer 5 having a predetermined thickness is formed on the surface of the W layer 4. Further, when the upper layer 3 is deposited, the upper layer 3 and the gold A metal carbonitride layer 6 is formed by a diffusion reaction between the metal carbide layers 5.
  • the lower layer 2 including the W layer 4 having a predetermined depth, the metal carbide layer 5 having a predetermined average layer thickness, and the metal carbonitride layer 6 having a predetermined average layer thickness can be formed on the tool base 11.
  • the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 are preferably formed in layers on the tool base 11.
  • the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 may be formed in an island shape preferentially on the WC particles. In this case, the effect of improving the adhesion strength between the substrate and the hard coating layer can be obtained.
  • any one metal selected from Ti, Cr, Zr, Hf, Nb, and Ta is suitable, and especially Ti and Cr are preferable.
  • each metal is more likely to form a carbide than W, and therefore reacts with C decomposed into W and C in the vicinity of the surface of the tool base 11, As a result, the metal carbide layer 5 is formed on the surface of the W layer 4.
  • the metal carbonitride layer 6 is a carbonitride layer containing a metal component contained in the metal carbide layer 5, and the types of metals constituting the metal carbonitride layer 6 include Al, Ti, At least one metal selected from Cr, Zr, Hf, Nb and Ta is preferred, and Ti and Cr are particularly preferred. Since the metal carbonitride layer 6 is formed, the lattice mismatch at the interface with the upper layer 3 is alleviated, so that the adhesion strength with the upper layer 3 is improved.
  • the ratio of carbon to nitrogen in the metal carbonitride layer 6 is not limited, but preferably the ratio of the atomic concentration of nitrogen to the total atomic concentration of carbon and nitrogen is 0 on average in the metal carbonitride layer 6. 0.1 to 0.9, and more preferably 0.1 to 0.6.
  • the metal constituting the metal carbide layer 5 and the metal constituting the metal carbonitride layer 6 are the same type of metal (for example, Ti carbide layer and Ti carbonitride layer), metal ion bombardment treatment and metal carbon There is an advantage that the nitride layer forming process can be performed continuously.
  • the metal is not limited to the same type of metal, and different types of metals can be used.
  • W particles may partially remain in the layer during the reaction process when forming the lower layer 2, but even in this case, the effect of improving the adhesion of the lower layer 2 Is demonstrated.
  • the upper layer 3 formed on the lower layer 2 has an alternately laminated structure in which at least one A layer and B layer are alternately laminated, and has a total average layer thickness of 1.0 to 8.0 ⁇ m.
  • the layer A is a composite nitride layer of Al and Ti (hereinafter, also referred to as “(Al, Ti) N”) having an average layer thickness of 0.1 to 5.0 ⁇ m, and its composition Is represented by the composition formula: (Al x Ti 1-x ) N, it has an average composition satisfying 0.40 ⁇ x ⁇ 0.70 (where x is an atomic ratio).
  • the layer B is a composite nitride (“(Al, Ti, Cr, Si, Y) N”) layer of Al, Ti, Cr, Si, and Y having an average layer thickness of 0.1 to 5.0 ⁇ m. Te, its composition, the composition formula: (Al 1-a-b -c-d Ti a Cr b Si c Y d) when expressed in N, 0 ⁇ a ⁇ 0.40,0.05 ⁇ b ⁇ 0 .40, 0 ⁇ c ⁇ 0.20, 0.01 ⁇ d ⁇ 0.10 (where a, b, c, and d are atomic ratios).
  • N / (Ti + Al + N) in the composition formula regarding the A layer and the value of N / ((Al + Ti + Cr + Si + Y + N) in the composition formula regarding the B layer are not necessarily 0.5 of the stoichiometric ratio. Excluding elements such as carbon and oxygen that are inevitably detected due to the influence of contamination on the surface of the tool base 11, the atomic ratio of the content ratio of Ti, Al, N is quantified, and Al, Ti, Cr, Si N / (Ti + Al + N) or N / ((Al + Ti + Cr + Si + Y + N) is in the range of 0.45 or more and 0.65 or less. Since an effect equivalent to that of the A layer or the B layer having a ratio of 0.5 is obtained, there is no particular problem.
  • the value of x indicating the average composition of Al is set to 0.40 ⁇ x ⁇ 0.70.
  • the value x indicating the average composition of Al is more preferably 0.50 ⁇ x ⁇ 0.70.
  • the average composition x of the Al component in the A layer is obtained by measuring the amount of Al component at a plurality of locations (for example, 5 locations) in the longitudinal section of the A layer using SEM-EDS and averaging the measured values. Can do. As for a plurality of locations in the longitudinal section, at least 5 locations are selected so that the distance between each location is 100 nm to 200 nm from one location selected at random.
  • the upper layer B layer (Al, Ti, Cr, Si, Y) N layer The Al component in the (Al, Ti, Cr, Si, Y) N layer constituting the B layer of the upper layer 3 has the effect of improving the high temperature hardness and heat resistance, and the Ti component has the effect of improving the high temperature hardness.
  • the high temperature oxidation resistance is improved in the state where Al and Cr coexist, and the Si component has the effect of improving the heat plastic deformation property.
  • the component has the effect of increasing the resistance to welding and at the same time increasing the resistance to oxidation.
  • the a value (atomic ratio) indicating the Ti content in the total amount of Al, Ti, Cr, Si, and Y in the (Al, Ti, Cr, Si, Y) N layer exceeds 0.40, Since the durability of the coated tool decreases due to a significant decrease in the Al content, the a value is determined to be 0 to 0.40.
  • the b value (atomic ratio) indicating the Cr content in the (Al, Ti, Cr, Si, Y) N layer is less than 0.05, the minimum required high temperature toughness and high temperature strength can be secured. Therefore, the occurrence of chipping and defects cannot be suppressed.
  • the b value exceeds 0.40 the progress of wear is promoted by the decrease in the relative Al content, so the b value is It is determined as 0.05 to 0.40.
  • the c value (atomic ratio) indicating the content ratio of Si in the (Al, Ti, Cr, Si, Y) N layer exceeds 0.20, the improvement in heat-resistant plastic deformation is saturated, while the wear resistance is improved. Since the effect tends to decrease, the c value is set to 0 to 0.20.
  • the d value (atomic ratio) indicating the Y content in the (Al, Ti, Cr, Si, Y) N layer is less than 0.01, the effect of improving the welding resistance and oxidation resistance can be expected.
  • the d value exceeds 0.10, AlN having a hexagonal crystal structure is generated, and the hardness of the B layer is lowered. Therefore, the d value is determined to be 0.01 to 0.10. .
  • Desirable ranges for a, b, c, and d are 0 ⁇ a ⁇ 0.30, 0.10 ⁇ b ⁇ 0.30, 0.05 ⁇ c ⁇ 0.15, 0.05 ⁇ d ⁇ 0. 08.
  • the B layer composed of the (Al, Ti, Cr, Si, Y) N layer cannot exhibit excellent wear resistance over a long period of use if its average layer thickness is less than 0.1 ⁇ m. If the average layer thickness exceeds 5.0 ⁇ m, chipping and defects are likely to occur. Therefore, the average layer thickness of the B layer made of the (Al, Ti, Cr, Si, Y) N layer is 0. It was determined to be 1 to 5.0 ⁇ m.
  • the average composition a, b, c, d of each of the Ti component, Cr component, Si component and Y component in the B layer is determined by using SEM-EDS at a plurality of locations (for example, 5 locations) in the longitudinal section of the B layer. ) By measuring the amount of each component and averaging the measured values.
  • the single layer average layer thickness of the A layer and the single layer average layer thickness of the B layer are 0.1 to 5.0 ⁇ m, respectively, but a stack in which the A layer and the B layer are alternately stacked.
  • the total average layer thickness of the upper layer 3 of the structure is 1.0 to 8.0 ⁇ m.
  • the single layer average layer thickness of the A layer and the single layer average layer thickness of the B layer are more preferably 0.5 to 4.0 ⁇ m, respectively.
  • the layer 3 is likely to cause abnormal damage such as chipping, chipping, and peeling.
  • the A layer and the B layer preferably have a stacked structure in which at least one layer is alternately stacked.
  • the adhesion strength between the A layer and the metal carbonitride layer 6 of the lower layer 2 is high, and the adhesion strength between the A layer and the B layer is also high. Therefore, it is desirable to provide the A layer of the upper layer 3 immediately above the metal carbonitride layer 6 of the lower layer 2.
  • the surface-coated cutting tool is preferably any one of a surface-coated insert, a surface-coated end mill, and a surface-coated drill.
  • the surface-coated cutting tool is preferably for Ni-base heat-resistant alloy high-speed cutting.
  • Example 1 As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 0.5 to 5 ⁇ m are prepared. 1 was added to the compounding composition shown in FIG. 1, and after adding wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa.
  • the insert shape specified in ISO / CNMG120408 is formed by vacuum sintering in a vacuum of 1370 to 1470 ° C. under a condition of holding for 1 hour at a predetermined temperature, and after the sintering, the cutting edge is subjected to honing.
  • Tool bases 11 (inserts) 1 to 4 made of WC-based cemented carbide were prepared.
  • a target 13 (cathode electrode) made of an Al—Ti alloy having a predetermined composition is placed on one side of the AIP apparatus 10 and an Al—Ti—Cr—Si—Y alloy having a predetermined composition is placed on the other side.
  • the tool substrate is heated in sequence to a metal ion bombardment tool temperature, and a bias voltage shown in Table 2 is applied to the tool substrate 11 between the tool substrate 11 and a metal ion bombardment target (for example, Ti).
  • the lower layer 2 shown in Table 4 is formed by applying the metal ion bombarding to the tool base 11 by applying the arc current shown in Table 2 and the processing time shown in Table 2 as well.
  • the tools 1 to 8 of the present invention shown in Table 4 were produced by the above steps (a) to (e), respectively.
  • each of the WC-base cemented carbide tool bases 11 (inserts) 1 to 4 produced in Example 1 was ultrasonically cleaned in acetone and dried, as shown in FIGS. 2A and 2B.
  • the AIP device 10 shown is mounted along the outer peripheral portion at a position that is a predetermined distance in the radial direction from the central axis on the rotary table shown in FIG.
  • the surface-coated inserts 1 to 6 of the comparative examples shown in Table 7 (hereinafter referred to as comparative example tools 1 to 6) were manufactured respectively. Specifically, it is as follows.
  • Comparative Example Tools 1 to 4 As shown in Comparative Example Conditions 1 to 4 in Table 5, while maintaining the inside of the AIP apparatus 10 in the furnace atmosphere and furnace pressure shown in Table 5, the tool base 11 is heated with a heater. Is heated to the temperature shown in Table 5 and then the DC bias voltage shown in Table 5 is applied to the tool base 11 rotating while rotating on the rotary table 12, and the metal ion bombardment target and the anode electrode are applied. The arc current shown in Table 5 was passed to generate an arc discharge, and the tool base 11 surface was bombarded.
  • the comparative tools 5 and 6 were subjected to bombardment processing as shown in comparative example conditions 5 and 6 in Table 5, but the processing of comparative example condition 5 was within the range disclosed in Patent Document 2.
  • the process of Comparative Example Condition 6 is a condition within the range disclosed in Patent Document 3. Table 6 shows the film formation conditions of the upper layer after the bombarding of the comparative tools 1 to 4 and the comparative tools 5 and 6.
  • a longitudinal section is cut out using a focused ion beam (FIB), and a scanning electron microscope (SEM) or a transmission electron microscope (
  • the upper layer is measured by cross-section measurement using energy dispersive X-ray analysis (EDS) using TEM, Auger Electron Spectroscopy (AES), or Electron Probe Micro Analyzer (EPMA).
  • EDS energy dispersive X-ray analysis
  • TEM Auger Electron Spectroscopy
  • EPMA Electron Probe Micro Analyzer
  • the identification of each layer and the thickness of each layer were calculated by average cross-section measurement using the same analysis method as that for the upper layer.
  • the method for obtaining the layer thickness of each lower layer was specifically described as follows. A line analysis of the composition with respect to the normal direction of the substrate surface was performed on the longitudinal section of the tool. The boundary of each layer was defined according to the following based on the component content change curve thus obtained. First, the boundary between the WC and the W layer was set as the W content increase start position.
  • the boundary between the W layer and the metal carbide layer was defined as the intersection of a curve indicating the change in the W content and a curve indicating the change in the content of the metal component constituting the metal carbide layer. Furthermore, the boundary between the metal carbide layer and the metal carbonitride layer was set as the increase start position of the N content. And the boundary of a metal carbonitride layer and an upper layer was made into the intersection of the curve which shows the content change of the metal component which comprises a metal carbonitride layer, and the metal component which comprises an upper layer.
  • the depth of the W layer, the layer thickness of the metal carbide layer, and the layer thickness of the metal carbonitride layer were determined on the basis of the W content, the N content increase start position, or the intersection of each curve. And this measurement was repeated in five places in the longitudinal section of a tool, and the average value was made into the average layer thickness of each layer of a lower layer. Tables 4 and 7 show the measured and calculated values.
  • cutting conditions 1 the tools 1 to 8 of the present invention and the comparative tools 1 to 6 are all in accordance with the following conditions (referred to as cutting conditions 1) in a state where they are screwed to the tip of the tool steel tool with a fixing jig.
  • a wet continuous cutting test of a Ni-base heat-resistant alloy was performed, and the flank wear width of the cutting edge was measured.
  • ⁇ Cutting condition 1> Work material: Ni-based heat-resistant alloy (Cr 19 mass%-Fe 19 mass%-Mo 3 mass%-Ti 0.9 mass%-Al 0.5 mass%-Ni balance) round bar, Cutting speed: 100 m / min. , Cutting depth: 0.5 mm, Feed: 0.15 mm / rev. , Cutting time: 10 minutes, Cutting oil: water-soluble coolant Table 8 shows the results.
  • Example 2 The raw material powder having the composition shown in Table 1 is sintered under the conditions shown in Example 1 to form a round tool sintered body for forming a tool base having a diameter of 10 mm. Further, from the round bar sintered body, Tool base 11 (end mill) 1 to 4 made of a WC-base cemented carbide having a 4-blade square shape with a cutting blade portion diameter ⁇ length of 6 mm ⁇ 12 mm and a twist angle of 30 degrees by grinding. Were manufactured respectively. Next, the above-mentioned tool base 11 (end mill) 1 to 4 is subjected to the same steps as steps (a) to (e) of Example 1 using the AIP apparatus 10, and the surface-coated end mill of the present invention shown in Table 9 is used.
  • the present invention tools 11 to 18 were produced.
  • the identification of the lower W layer, metal carbide layer and metal carbonitride layer and the thickness of each layer were calculated in the same manner as in Example 1. Also in the upper layer A layer and B layer, the average composition and average layer thickness of each component were calculated. Table 9 shows the measured and calculated values.
  • a side cutting test of a Ni-based heat-resistant alloy was performed under the following conditions (referred to as cutting condition 2), and the flank wear width of the cutting edge was measured.
  • cutting condition 2 Workpiece-Plate material of Ni-based heat-resistant alloy (Cr 19 mass%-Fe19 mass%-Mo3 mass%-Ti0.9 mass%-Al0.5 mass%-Ni balance) with plane dimensions: 100 mm x 250 mm and thickness: 50 mm , Cutting speed: 40 m / min, Rotational speed: 2100 min. -1 , Cutting depth: ae 0.3 mm, ap 6 mm, Feed rate (per blade): 0.03 mm / tooth Cutting length: 10 m, Table 10 shows the cutting test results.
  • Example 3 Using the round bar sintered body having a diameter of 10 mm manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming part is 6 mm x 30 mm, and by grinding, A tool base 11 (drill) made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees was manufactured.
  • the present invention tools 21 to 28 provided with the lower layer and the upper layer shown in Table 11 under the same conditions as in Example 1 were charged into the AIP apparatus 10. Manufactured).
  • the identification of the lower W layer 4, the metal carbide layer 5 and the metal carbonitride layer 6 and the thickness of each layer were calculated in the same manner as in Example 1. Also in the upper layer A layer and B layer, the average composition and average layer thickness of each component were calculated. Table 11 shows the measured and calculated values.
  • a wet drilling test of a Ni-base heat-resistant alloy was carried out under the following conditions (referred to as cutting condition 3), and the cutting edge clearance when the number of drilling operations was 30 holes The surface wear width was measured.
  • cutting condition 3 Workpiece-Plate material of Ni-based heat-resistant alloy (Cr 19 mass%-Fe19 mass%-Mo3 mass%-Ti0.9 mass%-Al0.5 mass%-Ni balance) with plane dimensions: 100 mm x 250 mm and thickness: 50 mm , Cutting speed: 13.7 m / min. , Feed: 0.06 mm / rev, Hole depth: 12 mm, Table 12 shows the cutting test results.
  • the tools 1 to 8, 11 to 18, and 21 to 28 of the present invention are accompanied by high heat generation and a large thermal load and mechanical load on the cutting edge. It can be seen that in high-speed cutting of such a Ni-base heat-resistant alloy, no peeling occurs, and no abnormal damage such as welding, chipping or chipping occurs, and excellent wear resistance is exhibited over a long period of use. On the other hand, the comparative tools 1 to 6 caused peeling, chipping, chipping, etc. due to thermal load and mechanical load acting on the cutting edge, and the life was short.
  • the coated tool of the present invention suppresses the occurrence of delamination in high-speed cutting of a Ni-base heat-resistant alloy that is accompanied by high heat generation and a large thermal load and mechanical load acts on the cutting edge. It suppresses the occurrence of abnormal damage such as chipping and chipping, and exhibits excellent cutting performance over a long period of use.

Abstract

This surface-coated cutting tool is provide with, on a tool base body (11) made of a tungsten carbide-based cemented carbide, a lower layer (2) and an upper layer (3), wherein the lower layer (2) includes: a W layer (4) formed extending from the surface of the tool base body (11) inward to a predetermined depth; a metal carbide layer (5) formed immediately above the W layer (4); and a metal carbon nitride layer (6) formed immediately above the metal carbide layer (5). The upper layer (3) has a structure in which A-layers and B-layers are alternately layered, each of the A-layers includes an (Al,Ti)N layer represented by (AlxTi1-x)N (where x represents an atom ratio satisfying 0.40≤x≤0.70), and each of the B-layers includes an (Al,Ti,Cr,Si,Y)N layer represented by (Al1-a-b-c-dTiaCrbSicYd)N (where a, b, c, and d represent atom ratios satisfying 0≤a≤0.40, 0.05≤b≤0.40, 0≤c≤0.20, and 0.01≤d≤0.10).

Description

表面被覆切削工具Surface coated cutting tool
 この発明は、Ni基耐熱合金の高速切削加工において、硬質被覆層が剥離等を発生することもなく、すぐれた耐チッピング性と耐摩耗性を発揮し、長期の使用にわたってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。
 本願は、2018年3月27日に日本に出願された特願2018-059674号について優先権を主張し、その内容をここに援用する。
This invention shows excellent chipping resistance and wear resistance without causing peeling of the hard coating layer in high-speed cutting of Ni-base heat-resistant alloys, and excellent cutting performance over a long period of use. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool).
This application claims priority on Japanese Patent Application No. 2018-059654 filed in Japan on March 27, 2018, the contents of which are incorporated herein by reference.
 一般に、被覆工具として、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、前記被削材の面削加工や溝加工、肩加工などに用いられるエンドミル、前記被削材の歯形の歯切加工などに用いられるソリッドホブ、ピニオンカッタなどが知られている。
 そして、被覆工具の切削性能改善を目的として、従来から、数多くの提案がなされている。
In general, as a coated tool, for throwing inserts that can be used detachably attached to the tip of a cutting tool for turning and planing of various materials such as steel and cast iron, and for drilling and cutting the work material Known drills and miniature drills, end mills used for chamfering and grooving, shoulder processing, etc. of the work material, solid hob, pinion cutter used for gear cutting of the tooth profile of the work material, etc. Yes.
Many proposals have been made for the purpose of improving the cutting performance of the coated tool.
 例えば、特許文献1では、合金鋼用切削工具等の表面に形成される耐摩耗性にすぐれた硬質皮膜およびこのような硬質皮膜を形成するための方法が提案されており、前記耐摩耗性にすぐれた硬質皮膜としては、MCrAlSiZからなる硬質皮膜(但し、Mは、周期律表第4A族元素、5A族元素、6A族元素(Crを除く)から選択される少なくとも1種の元素であり、Zは、N、CN、NOまたはCNOのいずれかを示し、a+b+c+d+e+f=1、0<a≦0.3、0.05≦b≦0.4、0.4≦c≦0.8、0≦d≦0.2、0≦e≦0.2、0.01≦f≦0.1(a,b,c,d,eおよびfは、夫々M,Cr,Al,Si,BおよびYの原子比を示す)を満足する)が提案されている。 For example, Patent Document 1 proposes a hard film having excellent wear resistance formed on the surface of a cutting tool for alloy steel and the like and a method for forming such a hard film. excellent as a hard film was, M a Cr b Al c Si d B e Y f Z made of a hard coating (where, M is excluded, periodic table group 4A elements, 5A group elements, the group 6A element (Cr) At least one element selected from the group consisting of N, CN, NO or CNO, a + b + c + d + e + f = 1, 0 <a ≦ 0.3, 0.05 ≦ b ≦ 0.4, 0.4 ≦ c ≦ 0.8, 0 ≦ d ≦ 0.2, 0 ≦ e ≦ 0.2, 0.01 ≦ f ≦ 0.1 (a, b, c, d, e and f are respectively Satisfying an atomic ratio of M, Cr, Al, Si, B and Y) has been proposed.
 そして、前記MとしてはTiを選択できること、また、前記MがTiである場合に、前記cは0.5≦c≦0.8、及び前記fは0.02≦f≦0.1とすること、前記硬質皮膜は、相互に異なる組成で交互に積層したものとし得ることが記載されている。
 さらに、前記硬質皮膜は、AIP装置内に基体を装入し、Arイオンによる特定の条件(例えば、圧力:0.6Pa、電圧:500V、時間:5分)で基体のクリーニングを実施した後、カソード放電型アークイオンプレーティング法によって成膜し得ることが記載されている。
Further, Ti can be selected as M, and when M is Ti, c is 0.5 ≦ c ≦ 0.8, and f is 0.02 ≦ f ≦ 0.1. In addition, it is described that the hard coating can be alternately laminated with different compositions.
Further, after the hard coating is charged into the AIP apparatus, the substrate is cleaned under specific conditions (for example, pressure: 0.6 Pa, voltage: 500 V, time: 5 minutes) using Ar ions, It is described that a film can be formed by a cathode discharge type arc ion plating method.
 また、特許文献2では、鋼やNi基耐熱合金等の切削加工に適用される被覆切削工具の耐久性向上を図るため、基材と、基材の上に設けられた中間皮膜と、中間皮膜の上に設けられた硬質皮膜とを備える被覆切削工具であって、前記中間皮膜は、ナノビーム回折パターンがWCの結晶構造に指数付けされ、WとTiを含有する炭化物からなり、かつ膜厚が1nm以上10nm以下であり、前記硬質皮膜は、結晶構造が面心立方格子構造の窒化物または炭窒化物であって、少なくともAlとTiとYとを含有し、半金属を含む金属元素の含有比率(原子%)の合計を100%とした場合、Alの含有比率(原子%)が60%以上75%以下、Tiの含有比率(原子%)が20%以上35%以下、Yの含有比率(原子%)が1%以上5%以下である被覆切削工具が提案されている。 Moreover, in patent document 2, in order to aim at the durability improvement of the coated cutting tool applied to cutting of steel, Ni-base heat-resistant alloy, etc., the base material, the intermediate film provided on the base material, and the intermediate film The intermediate coating has a nano-beam diffraction pattern indexed to the crystal structure of WC, is made of a carbide containing W and Ti, and has a film thickness. 1 nm or more and 10 nm or less, and the hard coating is a nitride or carbonitride having a face-centered cubic lattice structure, containing at least Al, Ti, and Y, and containing a metal element including a semimetal When the total ratio (atomic%) is 100%, the Al content ratio (atomic%) is 60% to 75%, the Ti content ratio (atomic%) is 20% to 35%, and the Y content ratio. (Atom%) is 1% or more and 5% or less Coated cutting tool has been proposed that.
 そして、前記の中間皮膜を形成するためには、ターゲットの外周にコイル磁石を配備してアークスポットをターゲット内部に閉じ込めるような磁場構成としたカソードを用いてTiボンバードを実施することが好ましいとされており、さらに、その具体的な処理条件として、基材に印加する負のバイアス電圧は-1000V~-700Vとすること、ターゲットへ投入する電流は80A~150Aとすること、ボンバード処理前の基材の加熱温度を450℃以上とすること、Tiボンバード処理は3分~7分とすること、Tiボンバードはアルゴンガス、窒素ガス、水素ガス、炭化水素系ガス等を導入しながら実施してもよいが、炉内雰囲気を1.0×10-2Pa以下の真空下で実施することが好ましいとされている。 In order to form the intermediate film, it is preferable to perform Ti bombardment using a cathode having a magnetic field configuration in which a coil magnet is provided on the outer periphery of the target to confine the arc spot inside the target. Further, as specific processing conditions, the negative bias voltage applied to the substrate is set to -1000 V to -700 V, the current supplied to the target is set to 80 A to 150 A, and the base before the bombarding process is performed. The heating temperature of the material is set to 450 ° C. or higher, the Ti bombarding process is performed for 3 to 7 minutes, and Ti bombarding may be performed while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon gas, or the like. However, it is preferable to carry out the furnace atmosphere under a vacuum of 1.0 × 10 −2 Pa or less.
 また、特許文献3では、皮膜と基材の密着強度を改善し、合金工具鋼(SKD11)の切削加工における耐剥離性と耐摩耗性の向上を目的とした、WC基超硬合金を基材とする被覆工具及びその製造方法が提案されている。
 特許文献3の記載によれば、この被覆工具は、WC基超硬合金基材の表面に結晶構造がbcc構造からなるW改質相(好ましくは、その平均厚さは10~300nm)を有し、前記W改質相は、Ti、Zr、Hf、Nb及びTaから選択される1種以上の金属のイオン照射によって前記基材のWCがWとCとの分解を経て形成されたWであり、前記W改質相の直上にTi、Zr、Hf、Nb及びTaから選択される1種以上の金属の炭化物相を有し、前記炭化物相の直上に硬質皮膜(この硬質皮膜は、好ましくは、少なくとも1層が、Ti、Cr、W、Nb、Y、Ce、Si及びBから選択される1種以上の元素とAlとを含有する窒化物である)を有する。
 そして、この被覆工具は、基材にイオンボンバードメント処理を行う第1の工程と、硬質皮膜を形成する第2の工程とで製造することができ、前記イオンボンバードメント処理を行う第1の工程は、基材に-1000~-600(V)の負のバイアス電圧を印加し、圧力0.01~2Paで、水素ガスとAr又はNとの混合ガス(但し、前記混合ガスの水素ガス体積比率が1から20%である。)を用いて、アーク放電式蒸発源から陰極物質(Ti、Zr、Hf、Nb及びTaから選択される1種以上の金属)を蒸発させ、前記陰極物質から蒸発した金属イオンを基材に照射し、もって基材の表面温度を800~860℃の範囲として、基材の表面に結晶構造がbcc構造からなるW改質相を形成するとともに前記W改質相の直上にTi、Zr、Hf、Nb及びTaから選択される1種以上の金属の炭化物相を形成し、さらに、前記炭化物相の直上に硬質皮膜を形成するものであることが開示されている。
Further, in Patent Document 3, a WC-based cemented carbide is used as a base material for the purpose of improving the adhesion strength between the coating and the base material and improving the peel resistance and wear resistance in the cutting of alloy tool steel (SKD11). A coated tool and a manufacturing method thereof have been proposed.
According to the description in Patent Document 3, this coated tool has a W-modified phase (preferably having an average thickness of 10 to 300 nm) having a bcc crystal structure on the surface of a WC-based cemented carbide base material. The W-modified phase is W formed by the decomposition of W and C by irradiating one or more metals selected from Ti, Zr, Hf, Nb, and Ta by ion irradiation of the substrate. And having a carbide phase of one or more metals selected from Ti, Zr, Hf, Nb and Ta immediately above the W-modified phase, and a hard film (this hard film is preferably At least one layer is a nitride containing one or more elements selected from Ti, Cr, W, Nb, Y, Ce, Si, and B and Al).
And this coated tool can be manufactured by the 1st process of performing ion bombardment processing to a substrate, and the 2nd process of forming a hard coat, and the 1st process of performing the said ion bombardment process Applies a negative bias voltage of −1000 to −600 (V) to the substrate, and a pressure of 0.01 to 2 Pa, and a mixed gas of hydrogen gas and Ar or N 2 (however, the hydrogen gas of the mixed gas) The cathode material (one or more metals selected from Ti, Zr, Hf, Nb and Ta) is evaporated from an arc discharge evaporation source using a volume ratio of 1 to 20%. The substrate is irradiated with metal ions evaporated from the substrate, thereby setting the surface temperature of the substrate in the range of 800 to 860 ° C., forming a W-modified phase having a crystal structure of bcc structure on the surface of the substrate, and Ti, just above the quality phase It is disclosed that a carbide phase of one or more metals selected from Zr, Hf, Nb, and Ta is formed, and a hard film is formed immediately above the carbide phase.
特許第4713413号公報Japanese Patent No. 4713413 特開2017-001147号公報JP 2017-001147 A 特許第5098726号公報Japanese Patent No. 5098726
 近年の切削加工装置のFA化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工はますます高速化・高能率化する傾向にあるとともに、できるだけ多くの材種の被削材の切削加工が可能となるような汎用性のある切削工具が求められる傾向にある。
 前記特許文献1、3に示した従来の被覆工具においては、これを合金鋼の切削加工に用いた場合には、特段の問題は生じないが、これを、例えば、インコネル718(登録商標)に代表されるNi基耐熱合金の高速ミーリング加工、高速ドリル加工に供した場合には、切刃に大きな熱的負荷、機械的負荷が作用するにもかかわらず、工具基体と硬質被覆層の密着性が十分ではない。そのため、剥離等の異常損傷が発生し、これを原因として、短時間で使用寿命に至るのが現状である。
In recent years, the use of FA for cutting devices has been remarkable. On the other hand, there is a strong demand for labor saving and energy saving and further cost reduction for cutting, and with this trend, cutting tends to become faster and more efficient. At the same time, there is a tendency to demand a versatile cutting tool that can cut as many work materials as possible.
In the conventional coated tools shown in Patent Documents 1 and 3, when this is used for cutting alloy steel, there is no particular problem. For example, this is applied to Inconel 718 (registered trademark). When subjected to high-speed milling and high-speed drilling of typical Ni-base heat-resistant alloys, the adhesion between the tool base and the hard coating layer, despite the large thermal and mechanical loads acting on the cutting edge Is not enough. For this reason, abnormal damage such as peeling occurs, and due to this, the service life is reached in a short time.
 また、特許文献2では、硬質皮膜として、少なくともAlとTiとYとを含有する立方晶構造の窒化物層または炭窒化物層を設け、かつ、工具基体と硬質皮膜との間に、Tiボンバード処理によって形成した中間皮膜を設けることで、Ni基耐熱合金等の切削加工における被覆工具の耐久性を高めるとされている。しかし、Ni基耐熱合金の高速ミーリング加工、高速ドリル加工のような、切刃に対して大きな熱的負荷、機械的負荷が作用する切削加工では、中間皮膜と硬質皮膜間の密着性が十分でないために、剥離が発生しやすく、これを原因として、比較的短時間で使用寿命に至るのが現状である。 In Patent Document 2, a cubic structure nitride layer or carbonitride layer containing at least Al, Ti, and Y is provided as the hard coating, and Ti bombardment is provided between the tool base and the hard coating. By providing the intermediate film formed by the treatment, it is said that the durability of the coated tool in the cutting work of Ni-base heat-resistant alloy or the like is enhanced. However, in high-speed milling and high-speed drilling of Ni-base heat-resistant alloys, cutting with large thermal and mechanical loads on the cutting edge does not provide sufficient adhesion between the intermediate coating and hard coating. For this reason, peeling is likely to occur, and due to this, the service life is reached in a relatively short time.
 そこで、本発明者等は、上述のような観点から、Ni基耐熱合金などの高速ミーリング加工、高速ドリル加工のような、高熱発生を伴い、しかも、切刃に対して大きな熱的負荷、機械的負荷がかかる切削加工条件下で、硬質被覆層がすぐれた耐溶着性、耐チッピング性、耐欠損性、耐剥離性を備え、長期の使用にわたって、すぐれた耐摩耗性を発揮する被覆工具を開発すべく、鋭意研究を行った結果、以下のような知見を得た。 In view of the above, the present inventors, from the above-mentioned viewpoint, are accompanied by high heat generation such as high-speed milling processing and high-speed drilling processing such as Ni-base heat-resistant alloys, and a large thermal load on the cutting blade. A cutting tool with excellent welding resistance, chipping resistance, chipping resistance, peeling resistance, and excellent wear resistance over a long period of use under cutting conditions where mechanical loads are applied As a result of earnest research to develop, the following knowledge was obtained.
 本発明者らは、まず、合金鋼用の切削工具として提案された前記特許文献1に開示された硬質皮膜について、Ni基耐熱合金の切削工具としての適用可能性を調査した。耐溶着性の観点からは、組成式:(Al1-a-b-c-dTiCrSi)Nで表した場合、0≦a≦0.40、0.05≦b≦0.40、0≦c≦0.20、0.01≦d≦0.10(ただし、a、b、c、dはいずれも原子比)を満足する平均組成を有する硬質被覆層(以下、「(Al,Ti,Cr,Si,Y)N層」で示す場合がある)を備えた被覆工具が、Ni基耐熱合金の高速切削加工における耐溶着性の観点から好適であることを見出した。
 すなわち、上記の被覆工具において、特に、硬質被覆層中に含有されるY成分は、硬質被覆層の最表面においては、安定酸化物を生成し、この酸化物が耐溶着性を向上させ、さらに、Y成分は硬質被覆層中に均一に存在する。そのため、切削加工の進行によっても、硬質被覆層の最表面には、常にYの酸化物が存在し、耐溶着性の低下が生じないためである。
 しかし、上記(Al,Ti,Cr,Si,Y)N層の層厚を過度に厚くすると、チッピング、欠損、剥離等の発生により、被覆工具の寿命が短命となった。
The inventors first investigated the applicability of Ni-base heat-resistant alloy as a cutting tool for the hard coating disclosed in Patent Document 1 proposed as a cutting tool for alloy steel. From the viewpoint of welding resistance, the composition formula: (Al 1-a-b -c-d Ti a Cr b Si c Y d) when expressed in N, 0 ≦ a ≦ 0.40,0.05 ≦ b ≦ 0.40, 0 ≦ c ≦ 0.20, 0.01 ≦ d ≦ 0.10 (however, a, b, c, and d are atomic ratios) having an average composition (hereinafter referred to as a hard coating layer) , "(Al, Ti, Cr, Si, Y) N layer" may be suitable from the viewpoint of welding resistance in high-speed cutting of a Ni-base heat-resistant alloy. It was.
That is, in the above-mentioned coated tool, in particular, the Y component contained in the hard coating layer generates a stable oxide on the outermost surface of the hard coating layer, and this oxide improves the welding resistance. , Y component is present uniformly in the hard coating layer. For this reason, even when the cutting process proceeds, an oxide of Y always exists on the outermost surface of the hard coating layer, so that the welding resistance does not deteriorate.
However, when the layer thickness of the (Al, Ti, Cr, Si, Y) N layer is excessively increased, the life of the coated tool is shortened due to occurrence of chipping, chipping, peeling, and the like.
 そこで、本発明者らは、チッピング、欠損、剥離等の発生がなく、長期の使用にわたってすぐれた耐摩耗性を発揮する被覆工具を提供すべく、硬質被覆層を、上記(Al,Ti,Cr,Si,Y)N層と、AlとTiの複合窒化物層(以下、「(Al,Ti)N層」で示す場合がある)との交互積層構造として構成した。さらに、工具基体表面に、前記特許文献2、3によって教示されるボンバード処理を施し、ついで、前記交互積層構造からなる硬質被覆層を形成したところ、Ni基耐熱合金の高速切削加工において、チッピング、欠損の発生は抑制され、ある程度の工具寿命の延長化は図られた。しかし、剥離発生についてはこれを抑制することができず、未だ十分に満足できる工具特性を備えるとはいえなかった。 Therefore, the present inventors provide the hard coating layer with the above (Al, Ti, Cr) in order to provide a coated tool that exhibits excellent wear resistance over a long period of use without occurrence of chipping, chipping or peeling. , Si, Y) N layers and an Al and Ti composite nitride layer (hereinafter sometimes referred to as “(Al, Ti) N layer”). Further, the surface of the tool base was subjected to bombarding taught by Patent Documents 2 and 3, and then a hard coating layer composed of the alternately laminated structure was formed. The occurrence of defects was suppressed and the tool life was extended to some extent. However, it was not possible to suppress the occurrence of peeling, and it could not be said that the tool characteristics were still sufficiently satisfactory.
 本発明者らは、前記特許文献2、3に示されるボンバード処理についてさらに研究を進めたところ、金属イオンボンバード処理条件を変更し、特許文献2、3に記載されるものとは異なった層構造の下部層を形成し、前記下部層を介して硬質被覆層を形成することによって、硬質被覆層と工具基体との間の密着性改善効果を格段に向上させることができることを見出した。また、その結果、Ni基耐熱合金の高速切削加工において、剥離の発生を抑制することができると同時に、溶着、チッピング、欠損等の異常損傷の発生を抑制することができるため、長期の使用にわたって、すぐれた耐摩耗性を発揮する被覆工具を得られることを見出したのである。
 即ち、本発明者らは、工具基体に対する金属イオンボンバードとして、Ti、Cr、Zr、Hf、NbおよびTaから選択される何れか一種の金属をイオンボンバードするに際し、その処理雰囲気を1×10-3Pa以下の高真空とし、工具基体の処理温度を約750~800℃と高くし、かつ、処理時間を長くする(例えば、30分以上60分以下)こととした。これにより、前記特許文献2、3に記載される下部層とは異なる下部層、具体的には、W層(タングステン層)と前記層の直上に形成される金属炭化物層と、さらに、前記金属炭化物層の直上に形成される金属炭窒化物層からなる下部層、を形成することにより、硬質被覆層と工具基体の密着性を高めることができることを見出したのである。
The inventors of the present invention have further studied the bombardment process described in Patent Documents 2 and 3 and changed the metal ion bombardment process conditions to have a layer structure different from that described in Patent Documents 2 and 3. It was found that the effect of improving the adhesion between the hard coating layer and the tool base can be remarkably improved by forming the lower layer and forming the hard coating layer via the lower layer. As a result, in high-speed cutting of a Ni-base heat-resistant alloy, it is possible to suppress the occurrence of delamination, and at the same time, to suppress the occurrence of abnormal damage such as welding, chipping, and defects. It was found that a coated tool exhibiting excellent wear resistance can be obtained.
That is, the present inventors set the treatment atmosphere to 1 × 10 when ion bombarding any one kind of metal selected from Ti, Cr, Zr, Hf, Nb and Ta as the metal ion bombardment for the tool base. A high vacuum of 3 Pa or less was set, the processing temperature of the tool base was increased to about 750 to 800 ° C., and the processing time was increased (for example, 30 minutes to 60 minutes). Thus, a lower layer different from the lower layers described in Patent Documents 2 and 3, specifically, a W layer (tungsten layer), a metal carbide layer formed immediately above the layer, and the metal It has been found that the adhesion between the hard coating layer and the tool base can be improved by forming a lower layer made of a metal carbonitride layer formed immediately above the carbide layer.
 そして、このような下部層を、硬質被覆層と工具基体との間に介在形成することにより、高熱発生を伴い、しかも、切刃に対して大きな熱的負荷、機械的負荷が作用するNi基耐熱合金の高速切削加工において、剥離の発生を抑制し、さらに、溶着、チッピング、欠損等の異常損傷の発生を抑制し、長期の使用にわたって、すぐれた切削性能を発揮する被覆工具を得られることを見出したのである。 Further, by forming such a lower layer between the hard coating layer and the tool base, a Ni base that generates high heat and exerts a large thermal load and mechanical load on the cutting edge. In high-speed cutting of heat-resistant alloys, it is possible to suppress the occurrence of delamination, and further suppress the occurrence of abnormal damage such as welding, chipping and chipping, and obtain a coated tool that exhibits excellent cutting performance over a long period of use. Was found.
 この発明は、上記の知見に基づいてなされたものであって、本発明に係る表面被覆切削工具は、下記(1)~(3)の構成を有する。
(1)炭化タングステン基超硬合金からなる工具基体に下部層が設けられ、前記下部層の表面に交互積層構造の上部層が設けられた表面被覆切削工具であり、(a)~(g)の特徴を有する。
(a)前記下部層は、W層と金属炭化物層と金属炭窒化物層とからなる。
(b)前記W層は、工具基体表面からその内部へ10~500nmの深さにわたって形成される。
(c)前記金属炭化物層は、Ti、Cr、Zr、Hf、NbおよびTaから選択されるいずれか一種の金属炭化物層であって、5~500nmの平均層厚を有し、前記W層の直上に形成される。
(d)前記金属炭窒化物層は、前記金属炭化物層に含有される金属成分を含む金属炭窒化物層であって、5~300nmの平均層厚を有し、前記金属炭化物層の直上に形成される。
(e)前記上部層は、A層とB層が少なくとも1層ずつ交互に積層された交互積層構造からなり、1.0~8.0μmの合計平均層厚を有する。
(f)前記A層は、0.1~5.0μmの一層平均層厚を有するAlとTiの複合窒化物層であって、その組成を、組成式:(AlTi1-x)Nで表した場合、0.40≦x≦0.70(ただし、xは原子比)を満足する平均組成を有する。
(g)前記B層は、0.1~5.0μmの一層平均層厚を有するAlとTiとCrとSiとYの複合窒化物層であって、その組成を、組成式:(Al1-a-b-c-dTiCrSi)Nで表した場合、0≦a≦0.40、0.05≦b≦0.40、0≦c≦0.20、0.01≦d≦0.10(ただし、a、b、c、dはいずれも原子比)を満足する平均組成を有する。
(2)前記表面被覆切削工具が、表面被覆インサート、表面被覆エンドミル、表面被覆ドリルのいずれかであることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記(1)または(2)に記載される表面被覆切削工具からなるNi基耐熱合金高速切削加工用の表面被覆切削工具。
The present invention has been made based on the above knowledge, and the surface-coated cutting tool according to the present invention has the following configurations (1) to (3).
(1) A surface-coated cutting tool in which a lower layer is provided on a tool base made of a tungsten carbide-based cemented carbide and an upper layer of an alternately laminated structure is provided on the surface of the lower layer, (a) to (g) It has the characteristics of.
(A) The lower layer includes a W layer, a metal carbide layer, and a metal carbonitride layer.
(B) The W layer is formed from the surface of the tool base to the inside thereof over a depth of 10 to 500 nm.
(C) The metal carbide layer is any one metal carbide layer selected from Ti, Cr, Zr, Hf, Nb and Ta, and has an average layer thickness of 5 to 500 nm, It is formed directly above.
(D) The metal carbonitride layer is a metal carbonitride layer containing a metal component contained in the metal carbide layer, has an average layer thickness of 5 to 300 nm, and is directly above the metal carbide layer. It is formed.
(E) The upper layer has an alternate laminated structure in which at least one A layer and B layer are alternately laminated, and has a total average layer thickness of 1.0 to 8.0 μm.
(F) The A layer is a composite nitride layer of Al and Ti having a single layer average thickness of 0.1 to 5.0 μm, and its composition is expressed by a composition formula: (Al x Ti 1-x ) N The average composition satisfies 0.40 ≦ x ≦ 0.70 (where x is an atomic ratio).
(G) The B layer is a composite nitride layer of Al, Ti, Cr, Si, and Y having a single layer average thickness of 0.1 to 5.0 μm, and the composition is expressed by a composition formula: (Al 1 when expressed in -a-b-c-d Ti a Cr b Si c Y d) N, 0 ≦ a ≦ 0.40,0.05 ≦ b ≦ 0.40,0 ≦ c ≦ 0.20,0 .01 ≦ d ≦ 0.10 (where a, b, c and d are all atomic ratios).
(2) The surface-coated cutting tool according to (1), wherein the surface-coated cutting tool is any one of a surface-coated insert, a surface-coated end mill, and a surface-coated drill.
(3) A surface-coated cutting tool for Ni-base heat-resistant alloy high-speed cutting, comprising the surface-coated cutting tool described in (1) or (2).
 本発明の被覆工具は、下部層と上部層を備え、前記下部層は、工具基体表面からその内部の所定深さにわたって形成されるW層と、前記W層の表面に形成される金属炭化物層と、前記金属炭化物層の表面に形成される金属炭窒化物層からなり、前記上部層は、(Al,Ti)N層からなるA層と(Al,Ti,Cr,Si,Y)N層からなるB層が少なくとも1層ずつ交互に積層された交互積層構造からなり、工具基体と上部層との間に介在形成された前記下部層によって、工具基体と上部層との密着強度が高められるとともに、前記上部層は、すぐれた耐溶着性、耐チッピング性、耐欠損性、耐摩耗性を備えている。
 したがって、本発明の被覆工具は、高熱発生を伴い、かつ、切刃に対して大きな熱的負荷、機械的負荷が作用するNi基耐熱合金の高速切削加工において、剥離の発生を抑制し、さらに、溶着、チッピング、欠損等の異常損傷の発生を抑制し、長期の使用にわたって、すぐれた切削性能を発揮する。
The coated tool of the present invention includes a lower layer and an upper layer, and the lower layer is formed from a tool base surface to a predetermined depth inside thereof, and a metal carbide layer formed on the surface of the W layer. And a metal carbonitride layer formed on the surface of the metal carbide layer, and the upper layer is an A layer composed of an (Al, Ti) N layer and an (Al, Ti, Cr, Si, Y) N layer The B layer is composed of an alternately laminated structure in which at least one B layer is alternately laminated, and the adhesion strength between the tool base and the upper layer is increased by the lower layer interposed between the tool base and the upper layer. At the same time, the upper layer has excellent welding resistance, chipping resistance, chipping resistance, and wear resistance.
Therefore, the coated tool of the present invention suppresses the occurrence of delamination in high-speed cutting of a Ni-base heat-resistant alloy that is accompanied by high heat generation and a large thermal load and mechanical load acts on the cutting edge. It suppresses the occurrence of abnormal damage such as welding, chipping and chipping, and exhibits excellent cutting performance over a long period of use.
一実施形態に係る被覆工具の概略縦断面模式図の一例を示す。An example of the schematic longitudinal cross-sectional schematic diagram of the coating tool which concerns on one Embodiment is shown. 一実施形態に係る被覆工具の上部層を形成するのに用いたアークイオンプレーティング装置(なお、金属イオンボンバード用の金属ターゲットについては図示せず)の概略平面図の一例を示す。1 shows an example of a schematic plan view of an arc ion plating apparatus (not shown for a metal target for metal ion bombardment) used to form an upper layer of a coated tool according to an embodiment. 一実施形態に係る被覆工具の上部層を形成するのに用いたアークイオンプレーティング装置(なお、金属イオンボンバード用の金属ターゲットについては図示せず)の概略正面図の一例を示す。1 shows an example of a schematic front view of an arc ion plating apparatus (not shown for a metal target for metal ion bombardment) used to form an upper layer of a coated tool according to an embodiment.
 図1は、本実施形態に係る表面被覆工具の概略縦断面模式図を示す。
 図1に示すように、本実施形態に係る被覆工具は、炭化タングステン基超硬合金からなる工具基体11に、下部層2及び交互積層構造からなる上部層3が形成されている。
 前記下部層2は、W層4と金属炭化物層5と金属炭窒化物層6とからなるが、前記W層4は、工具基体11の表面上に形成されているのではなく、工具基体11の表面からその内部に向かう10~500nmの平均深さにわたって形成されている。
 そして、前記W層4の直上には、前記金属炭化物層5が5~500nmの平均層厚で形成され、さらに、前記金属炭化物層5の直上には、前記金属炭窒化物層6が5~300nmの平均層厚で形成されている。そして、W層4と金属炭化物層5と金属炭窒化物層6とからなる前記下部層2の表面には、A層とB層が少なくとも1層ずつ交互に積層された交互積層構造からなり、1.0~8.0μmの合計平均層厚を有する上部層3が形成されている。
FIG. 1 is a schematic longitudinal cross-sectional schematic diagram of a surface-coated tool according to this embodiment.
As shown in FIG. 1, in the coated tool according to the present embodiment, a lower layer 2 and an upper layer 3 having an alternately laminated structure are formed on a tool base 11 made of a tungsten carbide base cemented carbide.
The lower layer 2 includes a W layer 4, a metal carbide layer 5, and a metal carbonitride layer 6, but the W layer 4 is not formed on the surface of the tool base 11, but the tool base 11. It is formed over an average depth of 10 to 500 nm from the surface to the inside.
The metal carbide layer 5 is formed with an average layer thickness of 5 to 500 nm immediately above the W layer 4, and the metal carbonitride layer 6 is 5 to 500 nm directly above the metal carbide layer 5. It is formed with an average layer thickness of 300 nm. And, on the surface of the lower layer 2 composed of the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6, it has an alternately laminated structure in which the A layer and the B layer are alternately laminated. An upper layer 3 having a total average layer thickness of 1.0 to 8.0 μm is formed.
 [平均層厚の測定方法]
 層厚の測定は、収束イオンビーム(Focused Ion Beam:FIB)を用いて縦断面を切り出し、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)、オージェ電子分光法(Auger Electron Spectroscopy:AES)や電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いた断面測定によって行う。上部層の各層の層厚を求める手法を具体的に述べれば次の通りである。工具の縦断面に対して、基体表面の法線方向に対する組成の線分析を行う。これにより得られる成分含有量変化曲線を基として、A層とB層の境界を、B層におけるCr含有量の増加開始位置および減少開始位置とする。これらより、A層の層厚は、Cr含有量の減少開始位置からCr含有量の増加開始位置、また、B層の層厚は、Cr含有量の増加開始位置からCr含有量の減少開始位置を基準として求められる。平均層厚は、上記測定方法を5回行い、算出した平均値のことをいう。
[Measurement method of average layer thickness]
The layer thickness is measured by cutting out a longitudinal section using a focused ion beam (FIB) and using an energy dispersive X-ray analysis method using a scanning electron microscope (SEM) or a transmission electron microscope (TEM) ( EDS), Auger Electron Spectroscopy (AES) or electron probe microanalyzer (EPMA) is used for cross-sectional measurement. The method for obtaining the layer thickness of each of the upper layers will be specifically described as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. Based on the component content change curve thus obtained, the boundary between the A layer and the B layer is defined as an increase start position and a decrease start position of the Cr content in the B layer. Accordingly, the layer thickness of the A layer is from the Cr content decrease start position to the Cr content increase start position, and the B layer thickness is from the Cr content increase start position to the Cr content decrease start position. As a standard. The average layer thickness means an average value calculated by performing the measurement method five times.
 図2Aおよび図2Bは、前記本実施形態に係る表面被覆工具の層構造を形成するためのアークイオンプレーティング(以下、「AIP」という)装置10を示す(なお、金属イオンボンバード処理用の金属ターゲットについては図示していない)。AIP装置10の回転テーブルに配置された工具基体11の表面に対して、所定条件で金属イオンボンバードを行って、W層4と金属炭化物層5と金属炭窒化物層6とからなる下部層2を形成し、その後、A層とB層とを交互に積層して上部層3を成膜し、層構造を有する本実施形態に係る表面被覆切削工具を作製することができる。 2A and 2B show an arc ion plating (hereinafter referred to as “AIP”) apparatus 10 for forming the layer structure of the surface-coated tool according to the present embodiment (note that metal for metal ion bombardment treatment). The target is not shown). The lower layer 2 comprising the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 by performing metal ion bombardment on the surface of the tool base 11 disposed on the rotary table of the AIP apparatus 10 under predetermined conditions. After that, the A layer and the B layer are alternately laminated to form the upper layer 3, and the surface-coated cutting tool according to this embodiment having a layer structure can be manufactured.
 [下部層]
 下部層2を構成するW層4、金属炭化物層5の層は、いずれも、金属イオンボンバード処理によって形成される層である。
[Lower layer]
Both the W layer 4 and the metal carbide layer 5 constituting the lower layer 2 are layers formed by metal ion bombardment.
 前記下部層2を構成する層のうち、W層4及び前記W層4直上の金属炭化物層5は、金属イオンボンバード(照射)により、工具基体11の表面近傍のWCがWとCに分解され、それにより、工具基体11の表面から所定深さにまでW層4が形成され、また、前記W層4の表面には、イオンボンバードされた金属とCとが反応して、金属炭化物層5が生成する。 Among the layers constituting the lower layer 2, the W layer 4 and the metal carbide layer 5 immediately above the W layer 4 are decomposed into W and C in the vicinity of the surface of the tool base 11 by metal ion bombardment (irradiation). Thereby, the W layer 4 is formed from the surface of the tool base 11 to a predetermined depth, and the ion bombarded metal reacts with C on the surface of the W layer 4 to thereby form the metal carbide layer 5. Produces.
 ここで、形成されるW層4の平均厚さ(深さ)が10nm未満では、直上の金属炭化物層5が十分に形成されず、硬質層との十分な密着強度が得られない。一方、その平均厚さが500nmを超えると、工具基体11の表面の脆化によって、硬質被覆層が剥離しやすくなることから、工具基体11の表面からその内部に向かって形成されるW層4の平均厚さ(深さ)は、10~500nm以下とする。より好ましくは20nm~300nmである。 Here, if the average thickness (depth) of the W layer 4 to be formed is less than 10 nm, the metal carbide layer 5 immediately above is not sufficiently formed, and sufficient adhesion strength with the hard layer cannot be obtained. On the other hand, if the average thickness exceeds 500 nm, the hard coating layer is easily peeled off due to the embrittlement of the surface of the tool base 11, and therefore the W layer 4 formed from the surface of the tool base 11 toward the inside thereof. The average thickness (depth) is 10 to 500 nm or less. More preferably, it is 20 nm to 300 nm.
 また、前記W層4直上に形成される金属炭化物層5は、前述したように、ボンバードされた金属イオンが、WCからWとCに分解されたCとの反応によって形成されるが、その平均層厚が、5nm未満ではW層4の厚さも薄くなりすぎて硬質層との密着性向上効果が少なく、一方、その平均層厚が500nmを超えると、結果としてW層4の平均厚さ(深さ)が、500nmを超えるようになるため、工具基体11の表面の脆化を招く。したがって、W層4直上に形成される金属炭化物層5の平均層厚は5~500nmとする。より好ましくは10nm~300nmである。 The metal carbide layer 5 formed immediately above the W layer 4 is formed by the reaction of bombarded metal ions with C decomposed from WC into W and C as described above. If the layer thickness is less than 5 nm, the thickness of the W layer 4 is too thin and the effect of improving the adhesion with the hard layer is small. On the other hand, if the average layer thickness exceeds 500 nm, the average thickness of the W layer 4 ( Since the depth) exceeds 500 nm, the surface of the tool base 11 becomes brittle. Therefore, the average thickness of metal carbide layer 5 formed immediately above W layer 4 is set to 5 to 500 nm. More preferably, it is 10 nm to 300 nm.
 [W層の平均厚さ(深さ)の測定方法]
 W層の厚さ(深さ)の測定は、収束イオンビーム(Focused Ion Beam:FIB)を用いて縦断面を切り出し、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)、オージェ電子分光法(Auger Electron Spectroscopy:AES)や電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いた断面測定によって行う。W層の厚さ(深さ)を求める手法を具体的に述べれば次の通りである。工具の縦断面に対して、基体表面の法線方向に対する組成の線分析を行う。これにより得られる成分含有量変化曲線を基として各層の境界を次にしたがって定義する。まず、WCとW層の境界を、W含有量の増加開始位置とする。また、W層と金属炭化物層の境界を、Wの含有量変化を示す曲線と金属炭化物層を構成する金属成分の含有量変化を示す曲線との交点とする。これらより、W層の厚さ(深さ)は、前記W含有量増加開始位置およびWの含有量変化を示す曲線と金属炭化物層を構成する金属成分の含有量変化を示す曲線との交点を基準として求められる。W層の平均厚さは、上記測定方法を5回行い、算出した平均値のことをいう。
[Measurement method of average thickness (depth) of W layer]
The thickness (depth) of the W layer is measured by cutting a longitudinal section using a focused ion beam (FIB) and energy using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This is performed by cross-sectional measurement using a distributed X-ray analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA). A specific method for obtaining the thickness (depth) of the W layer is as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. The boundary of each layer is defined according to the following based on the component content change curve thus obtained. First, the boundary between the WC and the W layer is set as a W content increase start position. Further, the boundary between the W layer and the metal carbide layer is defined as an intersection of a curve indicating a change in the W content and a curve indicating a change in the content of the metal component constituting the metal carbide layer. From these, the thickness (depth) of the W layer is an intersection of the W content increase start position and the curve indicating the change in the W content and the curve indicating the change in the content of the metal component constituting the metal carbide layer. Required as a standard. The average thickness of the W layer refers to an average value calculated by performing the measurement method five times.
 [金属炭化物層の平均厚さの測定方法]
 金属炭化物層の厚さの測定は、収束イオンビーム(Focused Ion Beam:FIB)を用いて縦断面を切り出し、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)、オージェ電子分光法(Auger Electron Spectroscopy:AES)や電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いた断面測定によって行う。金属炭化物層の厚さを求める手法を具体的に述べれば次の通りである。工具の縦断面に対して、基体表面の法線方向に対する組成の線分析を行う。これにより得られる成分含有量変化曲線を基として各層の境界を次にしたがって定義する。まず、W層と金属炭化物層の境界を、Wの含有量変化を示す曲線と金属炭化物層を構成する金属成分の含有量変化を示す曲線との交点とする。また、金属炭化物層と金属炭窒化物層の境界を、N含有量の増加開始位置とする。これらより、金属炭化物層の厚さは、前記Wの含有量変化を示す曲線と金属炭化物層を構成する金属成分の含有量変化を示す曲線との交点およびN含有量の増加開始位置を基準として求められる。金属炭化物層の平均厚さは、上記測定方法を5回行い、算出した平均値のことをいう。
[Measuring method of average thickness of metal carbide layer]
The thickness of the metal carbide layer is measured by cutting a longitudinal section using a focused ion beam (FIB) and using an energy dispersive X using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). It is performed by cross-sectional measurement using a line analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA). A specific method for obtaining the thickness of the metal carbide layer is as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. The boundary of each layer is defined according to the following based on the component content change curve thus obtained. First, the boundary between the W layer and the metal carbide layer is defined as an intersection of a curve indicating a change in the W content and a curve indicating a change in the content of the metal component constituting the metal carbide layer. Further, the boundary between the metal carbide layer and the metal carbonitride layer is set as the increase start position of the N content. From these, the thickness of the metal carbide layer is based on the intersection of the curve showing the change in the W content and the curve showing the change in the content of the metal component constituting the metal carbide layer and the increase start position of the N content. Desired. The average thickness of the metal carbide layer refers to an average value calculated by performing the measurement method five times.
 [金属炭窒化物層の平均厚さの測定方法]
 金属炭窒化物層の厚さの測定は、収束イオンビーム(Focused Ion Beam:FIB)を用いて縦断面を切り出し、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)、オージェ電子分光法(Auger Electron Spectroscopy:AES)や電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いた断面測定によって行う。金属炭窒化物層の厚さを求める手法を具体的に述べれば次の通りである。工具の縦断面に対して、基体表面の法線方向に対する組成の線分析を行う。これにより得られる成分含有量変化曲線を基として各層の境界を次にしたがって定義する。まず、金属炭化物層と金属炭窒化物層の境界を、N含有量の増加開始位置とする。また、金属炭窒化物層と上部層の境界を、金属炭窒化物層を構成する金属成分と上部層を構成する金属成分の含有量変化を示す曲線との交点とする。これらより、金属炭窒化物層の厚さは、前記N含有量の増加開始位置および金属炭窒化物層を構成する金属成分と上部層を構成する金属成分の含有量変化を示す曲線との交点を基準として求められる。金属炭窒化物層の平均厚さは、上記測定方法を5回行い、算出した平均値のことをいう。
[Measuring method of average thickness of metal carbonitride layer]
The thickness of the metal carbonitride layer is measured by cutting a longitudinal section using a focused ion beam (FIB), and energy dispersion using a scanning electron microscope (SEM) or a transmission electron microscope (TEM). This is performed by cross-sectional measurement using a type X-ray analysis method (EDS), Auger Electron Spectroscopy (AES), or an electron probe microanalyzer (EPMA). The method for obtaining the thickness of the metal carbonitride layer will be specifically described as follows. A line analysis of the composition with respect to the normal direction of the substrate surface is performed on the longitudinal section of the tool. The boundary of each layer is defined according to the following based on the component content change curve thus obtained. First, the boundary between the metal carbide layer and the metal carbonitride layer is set as the increase start position of the N content. Further, the boundary between the metal carbonitride layer and the upper layer is defined as the intersection of the metal component constituting the metal carbonitride layer and the curve indicating the change in the content of the metal component constituting the upper layer. From these, the thickness of the metal carbonitride layer is the intersection of the starting position of the increase of the N content and the curve indicating the change in the content of the metal component constituting the metal carbonitride layer and the metal component constituting the upper layer. As a standard. The average thickness of the metal carbonitride layer refers to an average value calculated by performing the measurement method five times.
 また、前記金属炭化物層5の表面に金属炭窒化物層6が形成されるが、この金属炭窒化物層6は、金属イオンボンバード処理の後、上部層3を蒸着形成する際に形成される層である。高真空下で長時間(30~60分)にわたって金属イオンボンバード処理し、前記W層4と前記金属炭化物層5が形成された後、さらに窒素雰囲気下で上部層3を蒸着形成することで前記金属炭窒化物層6を形成できる。この形成方法により、前記金属炭化物層5に含有される金属成分を含む金属炭窒化物層6となる。 In addition, a metal carbonitride layer 6 is formed on the surface of the metal carbide layer 5. This metal carbonitride layer 6 is formed when the upper layer 3 is formed by vapor deposition after the metal ion bombardment process. Is a layer. After the metal ion bombardment treatment is performed for a long time (30 to 60 minutes) under a high vacuum and the W layer 4 and the metal carbide layer 5 are formed, the upper layer 3 is further formed by vapor deposition in a nitrogen atmosphere. A metal carbonitride layer 6 can be formed. By this forming method, the metal carbonitride layer 6 including the metal component contained in the metal carbide layer 5 is obtained.
 この金属炭窒化物層6は、金属炭化物層5との密着強度にすぐれると同時に、金属炭窒化物層6の表面に形成される硬質層、特に、AlとTiの複合窒化物層からなるA層、との密着性にすぐれる。このため、高熱発生を伴い、しかも、切刃に対して大きな熱的負荷、機械的負荷がかかるNi基耐熱合金の高速切削加工における硬質層の剥離発生を抑制する。しかしながら、金属炭窒化物層6の平均層厚が5nm未満では上記の金属炭化物層5およびA層との密着性が充分に発揮されず、また、その平均層厚が300nmを超えると、層内の歪が大きくなり、かえって密着力の低下を招く。したがって、金属炭窒化物層6の平均層厚は5~300nmとする。より好ましくは10~200nmである。 The metal carbonitride layer 6 is excellent in adhesion strength with the metal carbide layer 5 and at the same time is composed of a hard layer formed on the surface of the metal carbonitride layer 6, in particular, a composite nitride layer of Al and Ti. Excellent adhesion to the A layer. For this reason, the generation of delamination of the hard layer is suppressed in the high-speed cutting of the Ni-base heat-resistant alloy that is accompanied by the generation of high heat and that places a large thermal load and mechanical load on the cutting edge. However, when the average layer thickness of the metal carbonitride layer 6 is less than 5 nm, the adhesiveness between the metal carbide layer 5 and the A layer is not sufficiently exhibited, and when the average layer thickness exceeds 300 nm, Increases the distortion of the film, which leads to a decrease in adhesion. Therefore, the average thickness of the metal carbonitride layer 6 is set to 5 to 300 nm. More preferably, it is 10 to 200 nm.
[下部層の形成]
 より具体的に、前記下部層2の形成方法の一例を述べれば、例えば、次のとおりである。
 まず、工具基体11をAIP装置10内の回転テーブル12上に自転可能に載置し、装置内を1×10-3Pa以下の高真空に保持し、工具基体11の温度を約500℃に加熱し、ついで、工具基体11の温度を約750~800℃にまで高めて、この温度を金属イオンボンバード処理中維持するようにし、ついで工具基体11に約-1000Vのバイアス電圧を印加し、金属イオンボンバード用のターゲット(例えば、Tiターゲット)約100Aのアーク電流を流し、この処理を約30~60分間継続することにより金属イオンボンバード処理を行い、工具基体11表面からその内部に向かった所定の深さにW層4を形成し、同時に、W層4表面に所定厚さの金属炭化物層5を形成し、さらに、上部層3を蒸着形成する際に上部層3と金属炭化物層5間の拡散反応によって金属炭窒化物層6を形成する。
 前記方法によって、工具基体11に、所定深さのW層4、所定平均層厚の金属炭化物層5、所定平均層厚の金属炭窒化物層6からなる下部層2を形成することができる。
[Formation of lower layer]
More specifically, an example of a method of forming the lower layer 2 is as follows.
First, the tool base 11 is placed on a turntable 12 in the AIP apparatus 10 so as to be able to rotate, and the inside of the apparatus is maintained at a high vacuum of 1 × 10 −3 Pa or less, and the temperature of the tool base 11 is about 500 ° C. Then, the temperature of the tool base 11 is increased to about 750 to 800 ° C. so that this temperature is maintained during the metal ion bombardment process, and then a bias voltage of about −1000 V is applied to the tool base 11 to An ion bombarding target (for example, a Ti target) is supplied with an arc current of about 100 A, and this treatment is continued for about 30 to 60 minutes to carry out a metal ion bombardment treatment. The W layer 4 is formed to a depth, and at the same time, a metal carbide layer 5 having a predetermined thickness is formed on the surface of the W layer 4. Further, when the upper layer 3 is deposited, the upper layer 3 and the gold A metal carbonitride layer 6 is formed by a diffusion reaction between the metal carbide layers 5.
By the above method, the lower layer 2 including the W layer 4 having a predetermined depth, the metal carbide layer 5 having a predetermined average layer thickness, and the metal carbonitride layer 6 having a predetermined average layer thickness can be formed on the tool base 11.
 前記W層4、金属炭化物層5、および金属炭窒化物層6は、工具基体11上に層状に形成されることが望ましいが、例えばWC粒子上に優先的に島状に形成される場合もあり、この場合も基材と硬質被覆層の密着強度改善の効果を得ることができる。 The W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 are preferably formed in layers on the tool base 11. For example, the W layer 4, the metal carbide layer 5, and the metal carbonitride layer 6 may be formed in an island shape preferentially on the WC particles. In this case, the effect of improving the adhesion strength between the substrate and the hard coating layer can be obtained.
 前記金属炭化物層5を構成する金属の種類としては、Ti、Cr、Zr、Hf、NbおよびTaから選択されるいずれか一種の金属が好適であり、特に、Ti、Crが好ましい。
 金属炭化物層5を構成する前記の金属をイオンボンバードした際、前記の各金属は、Wよりも炭化物を形成しやすいため、工具基体11表面近傍でWとCに分解したCと反応し、その結果、W層4表面に金属炭化物層5が形成されるからである。
As a kind of metal which comprises the said metal carbide layer 5, any one metal selected from Ti, Cr, Zr, Hf, Nb, and Ta is suitable, and especially Ti and Cr are preferable.
When the metal composing the metal carbide layer 5 is ion bombarded, each metal is more likely to form a carbide than W, and therefore reacts with C decomposed into W and C in the vicinity of the surface of the tool base 11, As a result, the metal carbide layer 5 is formed on the surface of the W layer 4.
 また、金属炭窒化物層6は、前記金属炭化物層5に含有される金属成分を含む炭窒化物層であるが、金属炭窒化物層6を構成する金属の種類としては、Al、Ti、Cr、Zr、Hf、NbおよびTaから選択される少なくとも一種以上の金属が好適であり、特に、Ti、Crが好ましい。
 前記金属炭窒化物層6が形成されることで、上部層3との界面における格子の不整合が緩和されるため、上部層3との密着強度が向上する。
In addition, the metal carbonitride layer 6 is a carbonitride layer containing a metal component contained in the metal carbide layer 5, and the types of metals constituting the metal carbonitride layer 6 include Al, Ti, At least one metal selected from Cr, Zr, Hf, Nb and Ta is preferred, and Ti and Cr are particularly preferred.
Since the metal carbonitride layer 6 is formed, the lattice mismatch at the interface with the upper layer 3 is alleviated, so that the adhesion strength with the upper layer 3 is improved.
 金属炭窒化物層6の炭素と窒素の比は限定されるものではないが、好ましくは炭素と窒素の原子濃度の合計に対する窒素の原子濃度の割合が金属炭窒化物層6内の平均で0.1~0.9であり、より好ましくは0.1~0.6である。 The ratio of carbon to nitrogen in the metal carbonitride layer 6 is not limited, but preferably the ratio of the atomic concentration of nitrogen to the total atomic concentration of carbon and nitrogen is 0 on average in the metal carbonitride layer 6. 0.1 to 0.9, and more preferably 0.1 to 0.6.
 金属炭化物層5を構成する金属と、金属炭窒化物層6を構成する金属が、同種の金属(例えば、Ti炭化物層とTi炭窒化物層)であることによって、金属イオンボンバード処理と金属炭窒化物層形成処理を連続して行えるという利点がある。
 しかし、同種の金属に限定されるものではなく、異種の金属であっても差し支えはない。なお、本発明の金属イオンボンバード処理において、下部層2を形成する際の反応過程で部分的にW粒子が層内に残留する場合があるが、その場合においても下部層2の密着力向上効果は発揮される。
Since the metal constituting the metal carbide layer 5 and the metal constituting the metal carbonitride layer 6 are the same type of metal (for example, Ti carbide layer and Ti carbonitride layer), metal ion bombardment treatment and metal carbon There is an advantage that the nitride layer forming process can be performed continuously.
However, the metal is not limited to the same type of metal, and different types of metals can be used. In the metal ion bombardment process of the present invention, W particles may partially remain in the layer during the reaction process when forming the lower layer 2, but even in this case, the effect of improving the adhesion of the lower layer 2 Is demonstrated.
[上部層]
 前記下部層2の上に形成される上部層3は、A層とB層が少なくとも1層ずつ交互に積層された交互積層構造からなり、1.0~8.0μmの合計平均層厚を有する。
 A層は、0.1~5.0μmの一層平均層厚を有するAlとTiの複合窒化物(以下、「(Al,Ti)N」で示す場合がある。)層であって、その組成を、組成式:(AlTi1-x)Nで表した場合、0.40≦x≦0.70(ただし、xは原子比)を満足する平均組成を有する。
 B層は、0.1~5.0μmの一層平均層厚を有するAlとTiとCrとSiとYの複合窒化物(「(Al,Ti,Cr,Si,Y)N」)層であって、その組成を、組成式:(Al1-a-b-c-dTiCrSi)Nで表した場合、0≦a≦0.40、0.05≦b≦0.40、0≦c≦0.20、0.01≦d≦0.10(ただし、a、b、c、dはいずれも原子比)を満足する平均組成を有する。
[Upper layer]
The upper layer 3 formed on the lower layer 2 has an alternately laminated structure in which at least one A layer and B layer are alternately laminated, and has a total average layer thickness of 1.0 to 8.0 μm. .
The layer A is a composite nitride layer of Al and Ti (hereinafter, also referred to as “(Al, Ti) N”) having an average layer thickness of 0.1 to 5.0 μm, and its composition Is represented by the composition formula: (Al x Ti 1-x ) N, it has an average composition satisfying 0.40 ≦ x ≦ 0.70 (where x is an atomic ratio).
The layer B is a composite nitride (“(Al, Ti, Cr, Si, Y) N”) layer of Al, Ti, Cr, Si, and Y having an average layer thickness of 0.1 to 5.0 μm. Te, its composition, the composition formula: (Al 1-a-b -c-d Ti a Cr b Si c Y d) when expressed in N, 0 ≦ a ≦ 0.40,0.05 ≦ b ≦ 0 .40, 0 ≦ c ≦ 0.20, 0.01 ≦ d ≦ 0.10 (where a, b, c, and d are atomic ratios).
 前記A層に関する組成式におけるN/(Ti+Al+N)の値、また、前記B層に関する組成式におけるN/((Al+Ti+Cr+Si+Y+N)の値は、必ずしも、化学量論比の0.5である必要はない。工具基体11表面の汚染の影響などで不可避的に検出される炭素や酸素などの元素を除いて、Ti、Al、Nの含有割合の原子比を定量し、また、Al、Ti、Cr、Si、Y、Nの含有割合の原子比を定量し、N/(Ti+Al+N)の値あるいはN/((Al+Ti+Cr+Si+Y+N)の値が、0.45以上0.65以下の範囲であれば、前記化学量論比が0.5であるA層あるいはB層と同等の効果が得られるため、特に問題はない。 The value of N / (Ti + Al + N) in the composition formula regarding the A layer and the value of N / ((Al + Ti + Cr + Si + Y + N) in the composition formula regarding the B layer are not necessarily 0.5 of the stoichiometric ratio. Excluding elements such as carbon and oxygen that are inevitably detected due to the influence of contamination on the surface of the tool base 11, the atomic ratio of the content ratio of Ti, Al, N is quantified, and Al, Ti, Cr, Si N / (Ti + Al + N) or N / ((Al + Ti + Cr + Si + Y + N) is in the range of 0.45 or more and 0.65 or less. Since an effect equivalent to that of the A layer or the B layer having a ratio of 0.5 is obtained, there is no particular problem.
[上部層のA層を構成する(Al,Ti)N層]
 (Al,Ti)N層からなる前記A層について、その一層平均層厚が0.1μm未満の場合には、耐摩耗性向上効果、耐欠損性向上効果が十分でなく、一方、一層平均層厚が5.0μmを超えると、A層の内部歪みが大きくなり自壊しやすくなるため、A層の一層平均層厚は0.1~5.0μmとする。
 また、A層の組成式:(AlTi1-x)Nにおいて、Alの平均組成を示すxの値が0.40未満の場合には、下部層2の金属炭窒化物層6とA層との密着強度、また、A層とB層の密着強度は高くなる反面、A層の高温硬さおよび高温耐酸化性が低下する。一方、xの値が0.70を超える場合には、六方晶構造の結晶粒が形成されやすくなり、A層の硬度が低下し十分な耐摩耗性を得ることができなくなる。
 したがって、Alの平均組成を示すxの値は、0.40≦x≦0.70とする。
 Alの平均組成を示すxの値は、0.50≦x≦0.70がより好ましい。
[(Al, Ti) N layer constituting upper layer A]
When the average layer thickness of the A layer composed of the (Al, Ti) N layer is less than 0.1 μm, the wear resistance improvement effect and the fracture resistance improvement effect are not sufficient, whereas the average layer If the thickness exceeds 5.0 μm, the internal strain of the A layer increases and it tends to self-destruct, so the average layer thickness of the A layer is 0.1 to 5.0 μm.
In addition, in the composition formula of the A layer: (Al x Ti 1-x ) N, when the value of x indicating the average composition of Al is less than 0.40, the metal carbonitride layer 6 of the lower layer 2 and the A While the adhesion strength with the layer and the adhesion strength between the A layer and the B layer are increased, the high temperature hardness and high temperature oxidation resistance of the A layer are lowered. On the other hand, when the value of x exceeds 0.70, crystal grains having a hexagonal crystal structure are likely to be formed, and the hardness of the A layer is lowered, so that sufficient wear resistance cannot be obtained.
Therefore, the value x indicating the average composition of Al is set to 0.40 ≦ x ≦ 0.70.
The value x indicating the average composition of Al is more preferably 0.50 ≦ x ≦ 0.70.
 A層におけるAl成分の平均組成xは、SEM-EDSを用いて、A層の縦断面の複数個所(例えば、5箇所)でAl成分量を測定し、その測定値を平均することによって求めることができる。
 縦断面の複数個所は、無作為に選択した1個所より各個所間が100nm~200nmとなるように少なくとも5個所以上を選択するものとする。
The average composition x of the Al component in the A layer is obtained by measuring the amount of Al component at a plurality of locations (for example, 5 locations) in the longitudinal section of the A layer using SEM-EDS and averaging the measured values. Can do.
As for a plurality of locations in the longitudinal section, at least 5 locations are selected so that the distance between each location is 100 nm to 200 nm from one location selected at random.
[上部層のB層を構成する(Al,Ti,Cr,Si,Y)N層]
 上部層3のB層を構成する(Al,Ti,Cr,Si,Y)N層におけるAl成分には高温硬さと耐熱性、同Ti成分には高温硬さを向上させる効果があり、同Cr成分には高温靭性、高温強度を向上させると共に、AlおよびCrが共存含有した状態で高温耐酸化性を向上させ、さらに同Si成分には耐熱塑性変形性を向上させる作用があり、また、Y成分には、前述したように、耐溶着性を高めると同時に耐酸化性を高める作用がある。
[The upper layer B layer (Al, Ti, Cr, Si, Y) N layer]
The Al component in the (Al, Ti, Cr, Si, Y) N layer constituting the B layer of the upper layer 3 has the effect of improving the high temperature hardness and heat resistance, and the Ti component has the effect of improving the high temperature hardness. In addition to improving the high temperature toughness and high temperature strength of the component, the high temperature oxidation resistance is improved in the state where Al and Cr coexist, and the Si component has the effect of improving the heat plastic deformation property. As described above, the component has the effect of increasing the resistance to welding and at the same time increasing the resistance to oxidation.
 前記(Al,Ti,Cr,Si,Y)N層におけるAlとTiとCrとSiとYの合量に占めるTiの含有割合を示すa値(原子比)が0.40を超えると、相対的なAlの含有割合の低下によって被覆工具の耐久性が低下することから、a値は、0~0.40と定める。 When the a value (atomic ratio) indicating the Ti content in the total amount of Al, Ti, Cr, Si, and Y in the (Al, Ti, Cr, Si, Y) N layer exceeds 0.40, Since the durability of the coated tool decreases due to a significant decrease in the Al content, the a value is determined to be 0 to 0.40.
 前記(Al,Ti,Cr,Si,Y)N層におけるCrの含有割合を示すb値(原子比)が0.05未満では、最低限必要とされる高温靭性、高温強度を確保することができないため、チッピング、欠損の発生を抑制することができず、一方、同b値が0.40を超えると、相対的なAl含有割合の減少により、摩耗進行が促進することから、b値を0.05~0.40と定める。 If the b value (atomic ratio) indicating the Cr content in the (Al, Ti, Cr, Si, Y) N layer is less than 0.05, the minimum required high temperature toughness and high temperature strength can be secured. Therefore, the occurrence of chipping and defects cannot be suppressed. On the other hand, if the b value exceeds 0.40, the progress of wear is promoted by the decrease in the relative Al content, so the b value is It is determined as 0.05 to 0.40.
 前記(Al,Ti,Cr,Si,Y)N層におけるSiの含有割合を示すc値(原子比)が0.20を超えると、耐熱塑性変形性の向上が飽和する一方、耐摩耗性向上効果に低下傾向がみられるようになることから、c値を0~0.20と定める。 When the c value (atomic ratio) indicating the content ratio of Si in the (Al, Ti, Cr, Si, Y) N layer exceeds 0.20, the improvement in heat-resistant plastic deformation is saturated, while the wear resistance is improved. Since the effect tends to decrease, the c value is set to 0 to 0.20.
 前記(Al,Ti,Cr,Si,Y)N層におけるYの含有割合を示すd値(原子比)が0.01未満では、耐溶着性、耐酸化性向上の効果を期待することができず、一方、同d値が0.10を超えると、六方晶構造のAlNが生成するようになり、B層の硬さが低下することから、d値を0.01~0.10と定める。 If the d value (atomic ratio) indicating the Y content in the (Al, Ti, Cr, Si, Y) N layer is less than 0.01, the effect of improving the welding resistance and oxidation resistance can be expected. On the other hand, if the d value exceeds 0.10, AlN having a hexagonal crystal structure is generated, and the hardness of the B layer is lowered. Therefore, the d value is determined to be 0.01 to 0.10. .
 上記a、b、c、dについての、望ましい範囲は0≦a≦0.30、0.10≦b≦0.30、0.05≦c≦0.15、0.05≦d≦0.08である。 Desirable ranges for a, b, c, and d are 0 ≦ a ≦ 0.30, 0.10 ≦ b ≦ 0.30, 0.05 ≦ c ≦ 0.15, 0.05 ≦ d ≦ 0. 08.
 前記(Al,Ti,Cr,Si,Y)N層からなるB層は、その一層平均層厚が0.1μm未満では、長期の使用にわたってすぐれた耐摩耗性を発揮することはできず、一方、その一層平均層厚が5.0μmを超えると、チッピング、欠損を発生しやすくなるので、(Al,Ti,Cr,Si,Y)N層からなるB層の一層平均層厚は、0.1~5.0μmと定めた。なお、B層におけるTi成分、Cr成分、Si成分及びY成分のそれぞれの平均組成a、b、c、dは、SEM-EDSを用いて、B層の縦断面の複数個所(例えば、5箇所)で各成分量を測定し、その測定値を平均することによって求めることができる。 The B layer composed of the (Al, Ti, Cr, Si, Y) N layer cannot exhibit excellent wear resistance over a long period of use if its average layer thickness is less than 0.1 μm. If the average layer thickness exceeds 5.0 μm, chipping and defects are likely to occur. Therefore, the average layer thickness of the B layer made of the (Al, Ti, Cr, Si, Y) N layer is 0. It was determined to be 1 to 5.0 μm. The average composition a, b, c, d of each of the Ti component, Cr component, Si component and Y component in the B layer is determined by using SEM-EDS at a plurality of locations (for example, 5 locations) in the longitudinal section of the B layer. ) By measuring the amount of each component and averaging the measured values.
[上部層の合計平均層厚]
 前述のとおり、A層の一層平均層厚及びB層の一層平均層厚は、それぞれ、0.1~5.0μmとするが、A層とB層が少なくとも1層ずつ交互に積層された積層構造の上部層3の合計平均層厚は、1.0~8.0μmとする。A層の一層平均層厚及びB層の一層平均層厚は、それぞれ、0.5~4.0μmであることがより好ましい。
 これは、上部層3の合計平均層厚が1.0μm未満では、長期の使用にわたってすぐれた耐摩耗性を発揮することができず、一方、合計平均層厚が8.0μmを超えると、上部層3がチッピング、欠損、剥離等の異常損傷を発生しやすくなるからである。
[Total average layer thickness of upper layer]
As described above, the single layer average layer thickness of the A layer and the single layer average layer thickness of the B layer are 0.1 to 5.0 μm, respectively, but a stack in which the A layer and the B layer are alternately stacked. The total average layer thickness of the upper layer 3 of the structure is 1.0 to 8.0 μm. The single layer average layer thickness of the A layer and the single layer average layer thickness of the B layer are more preferably 0.5 to 4.0 μm, respectively.
This is because if the total average layer thickness of the upper layer 3 is less than 1.0 μm, it cannot exhibit excellent wear resistance over a long period of use, while if the total average layer thickness exceeds 8.0 μm, This is because the layer 3 is likely to cause abnormal damage such as chipping, chipping, and peeling.
 A層とB層は、少なくとも1層ずつ交互に積層されている積層構造を有することが好ましい。
 なお、下部層2の表面に、上部層3を成膜する場合、A層と下部層2の金属炭窒化物層6との密着強度は高く、また、A層とB層の密着強度も高いことから、下部層2の金属炭窒化物層6直上には、上部層3のA層を設けることが望ましい。
The A layer and the B layer preferably have a stacked structure in which at least one layer is alternately stacked.
When the upper layer 3 is formed on the surface of the lower layer 2, the adhesion strength between the A layer and the metal carbonitride layer 6 of the lower layer 2 is high, and the adhesion strength between the A layer and the B layer is also high. Therefore, it is desirable to provide the A layer of the upper layer 3 immediately above the metal carbonitride layer 6 of the lower layer 2.
 前記表面被覆切削工具は、表面被覆インサート、表面被覆エンドミル、表面被覆ドリルのいずれかであることが好ましい。
 前記表面被覆切削工具は、Ni基耐熱合金高速切削加工用であることが好ましい。
The surface-coated cutting tool is preferably any one of a surface-coated insert, a surface-coated end mill, and a surface-coated drill.
The surface-coated cutting tool is preferably for Ni-base heat-resistant alloy high-speed cutting.
 以下に実施例を用いて本発明をさらに詳しく説明するが、本発明はこれら実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
《実施例1》
 原料粉末として、いずれも0.5~5μmの平均粒径を有するWC粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370~1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にホーニング加工を施すことによりISO・CNMG120408に規定するインサート形状をもったWC基超硬合金製の工具基体11(インサート)1~4を製造した。
Example 1
As raw material powders, WC powder, TiC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 0.5 to 5 μm are prepared. 1 was added to the compounding composition shown in FIG. 1, and after adding wax, ball milled in acetone for 24 hours, dried under reduced pressure, and then pressed into a green compact of a predetermined shape at a pressure of 98 MPa. The insert shape specified in ISO / CNMG120408 is formed by vacuum sintering in a vacuum of 1370 to 1470 ° C. under a condition of holding for 1 hour at a predetermined temperature, and after the sintering, the cutting edge is subjected to honing. Tool bases 11 (inserts) 1 to 4 made of WC-based cemented carbide were prepared.
 前記の工具基体11(インサート)1~4に対して、以下の工程で下部層と上部層を形成し、本発明の表面被覆インサート1~8(以下、本発明工具1~8という)をそれぞれ製造した。
工程(a):
 上記の工具基体11の1~4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2Aおよび図2Bに示すAIP装置10の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、AIP装置10の一方に所定組成のAl-Ti合金からなるターゲット13(カソード電極)を、他方側に所定組成のAl-Ti-Cr-Si-Y合金からなるターゲット14(カソード電極)を配置し、
工程(b):
 まず、装置内を排気して真空(1×10-3Pa以下)に保持しながら、前記回転テーブル上で自転しながら回転する工具基体11を、約500℃から表2に示す所定の温度(金属イオンボンバード処理中の工具基体温度)にまでヒータで順次加熱し、同じく表2に示すバイアス電圧を工具基体11に印加し、工具基体11と金属イオンボンバード用ターゲット(例えば、Ti)との間に同じく表2に示すアーク電流を流し、同じく表2に示す処理時間、工具基体11に金属イオンボンバード処理を施すことにより表4に示す下部層2を形成し、
工程(c):
 ついで、装置内に反応ガスとして窒素ガスを導入して表3に示す窒素分圧とすると共に、前記回転テーブル12上で自転しながら回転する工具基体11の温度を表3に示す温度範囲内に維持するとともに、表3に示す直流バイアス電圧を印加し、かつ前記Al-Ti合金ターゲット13とアノード電極15との間に150Aの電流を流してアーク放電を発生させ、もって前記工具基体11の表面に、表4に示される組成および一層平均層厚のA層を蒸着形成し、
工程(d):
 ついで、装置内に反応ガスとして窒素ガスを反応ガス導入口(20)から導入して表3に示す窒素分圧とすると共に、前記回転テーブル12上で自転しながら回転する工具基体11の温度を表3に示す温度範囲内に維持するとともに表3に示す直流バイアス電圧を印加し、かつ前記Al-Ti-Cr-Si-Y合金ターゲット14とアノード電極16との間に150Aの電流を流してアーク放電を発生させ、もって前記工具基体11の表面に、表4に示される組成および一層平均層厚のB層を蒸着形成した、
工程(e):
 ついで、前記(c)と(d)を、上部層の合計平均層厚になるまで繰り返し行った。
 上記工程(a)~(e)により、表4に示す本発明工具1~8をそれぞれ製造した。
A lower layer and an upper layer are formed on the tool base 11 (inserts) 1 to 4 in the following steps, and the surface-coated inserts 1 to 8 (hereinafter referred to as the present tool 1 to 8) of the present invention are respectively formed. Manufactured.
Step (a):
Each of the tool bases 1 to 4 is ultrasonically cleaned in acetone and dried, and is separated from the central axis on the rotary table of the AIP apparatus 10 shown in FIGS. 2A and 2B by a predetermined distance in the radial direction. A target 13 (cathode electrode) made of an Al—Ti alloy having a predetermined composition is placed on one side of the AIP apparatus 10 and an Al—Ti—Cr—Si—Y alloy having a predetermined composition is placed on the other side. A target 14 (cathode electrode) made of
Step (b):
First, the tool base 11 that rotates while rotating on the rotary table while the inside of the apparatus is evacuated and kept in a vacuum (1 × 10 −3 Pa or less) is heated from about 500 ° C. to a predetermined temperature (shown in Table 2). The tool substrate is heated in sequence to a metal ion bombardment tool temperature, and a bias voltage shown in Table 2 is applied to the tool substrate 11 between the tool substrate 11 and a metal ion bombardment target (for example, Ti). The lower layer 2 shown in Table 4 is formed by applying the metal ion bombarding to the tool base 11 by applying the arc current shown in Table 2 and the processing time shown in Table 2 as well.
Step (c):
Next, nitrogen gas is introduced as a reaction gas into the apparatus to obtain the nitrogen partial pressure shown in Table 3, and the temperature of the tool base 11 that rotates while rotating on the rotary table 12 falls within the temperature range shown in Table 3. In addition, a DC bias voltage shown in Table 3 was applied, and a current of 150 A was applied between the Al—Ti alloy target 13 and the anode electrode 15 to generate an arc discharge. And depositing an A layer having the composition and average layer thickness shown in Table 4;
Step (d):
Next, nitrogen gas is introduced as a reaction gas into the apparatus from the reaction gas inlet (20) to obtain the nitrogen partial pressure shown in Table 3, and the temperature of the tool base 11 rotating while rotating on the rotary table 12 is adjusted. While maintaining the temperature range shown in Table 3 and applying the DC bias voltage shown in Table 3, a current of 150 A was passed between the Al—Ti—Cr—Si—Y alloy target 14 and the anode electrode 16. An arc discharge was generated, and a B layer having the composition shown in Table 4 and an average layer thickness was formed on the surface of the tool base 11 by vapor deposition.
Step (e):
Then, (c) and (d) were repeated until the total average layer thickness of the upper layer was reached.
The tools 1 to 8 of the present invention shown in Table 4 were produced by the above steps (a) to (e), respectively.
比較例:
 比較の目的で、実施例1で作製したWC基超硬合金製の工具基体11(インサート)1~4のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図2Aおよび図2Bに示すAIP装置10の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、実施例1とは、金属イオンボンバード処理条件を変更した以外、実施例1と同様な方法で、表7に示す比較例の表面被覆インサート1~6(以下、比較例工具1~6という)をそれぞれ製造した。
 具体的に言えば、次のとおりである。
 比較例工具1~4については、表5の比較例条件1~4に示されるように、AIP装置10内を表5に示す炉内雰囲気、炉内圧力に維持しながら、ヒータで工具基体11を表5に示す温度に加熱した後、回転テーブル12上で自転しながら回転する工具基体11に表5に示す直流バイアス電圧を印加し、かつ、金属イオンボンバード用ターゲットとアノード電極との間に表5に示すアーク電流を流してアーク放電を発生させ、もって工具基体11表面をボンバード処理した。
 また、比較例工具5、6については、表5の比較例条件5、6に示されるようなボンバード処理を行ったが、比較例条件5の処理は、前記特許文献2に開示される範囲内の条件であり、また、比較例条件6の処理は、前記特許文献3に開示される範囲内の条件である。また、比較例工具1~4及び比較例工具5、6のボンバード処理後の、上部層の成膜条件は、表6に示すとおりである。
Comparative example:
For comparison purposes, each of the WC-base cemented carbide tool bases 11 (inserts) 1 to 4 produced in Example 1 was ultrasonically cleaned in acetone and dried, as shown in FIGS. 2A and 2B. The AIP device 10 shown is mounted along the outer peripheral portion at a position that is a predetermined distance in the radial direction from the central axis on the rotary table shown in FIG. The surface-coated inserts 1 to 6 of the comparative examples shown in Table 7 (hereinafter referred to as comparative example tools 1 to 6) were manufactured respectively.
Specifically, it is as follows.
As for Comparative Example Tools 1 to 4, as shown in Comparative Example Conditions 1 to 4 in Table 5, while maintaining the inside of the AIP apparatus 10 in the furnace atmosphere and furnace pressure shown in Table 5, the tool base 11 is heated with a heater. Is heated to the temperature shown in Table 5 and then the DC bias voltage shown in Table 5 is applied to the tool base 11 rotating while rotating on the rotary table 12, and the metal ion bombardment target and the anode electrode are applied. The arc current shown in Table 5 was passed to generate an arc discharge, and the tool base 11 surface was bombarded.
In addition, the comparative tools 5 and 6 were subjected to bombardment processing as shown in comparative example conditions 5 and 6 in Table 5, but the processing of comparative example condition 5 was within the range disclosed in Patent Document 2. In addition, the process of Comparative Example Condition 6 is a condition within the range disclosed in Patent Document 3. Table 6 shows the film formation conditions of the upper layer after the bombarding of the comparative tools 1 to 4 and the comparative tools 5 and 6.
 上記で作製した本発明工具1~8および比較例工具1~6について、収束イオンビーム(Focused Ion Beam:FIB)を用いて縦断面を切り出し、走査型電子顕微鏡(SEM)または透過型電子顕微鏡(TEM)を用いたエネルギー分散型X線分析法(EDS)、オージェ電子分光法(Auger Electron Spectroscopy:AES)や電子線マイクロアナライザー(Electron Probe Micro Analyzer:EPMA)を用いた断面測定により、上部層のA層、B層の成分組成、各層厚を5箇所測定し、その平均値から平均組成および平均層厚を算出した。
 下部層のW層、金属炭化物層および金属炭窒化物層においても、上部層と同様の分析手法を用いた断面の平均測定より、各層の同定ならびに各層厚を算出した。下部層の各層の層厚を求める手法を具体的に述べれば次の通りに行った。工具の縦断面に対して、基体表面の法線方向に対する組成の線分析を行った。これにより得られる成分含有量変化曲線を基として各層の境界を次にしたがって定義した。まず、WCとW層の境界を、W含有量の増加開始位置とした。また、W層と金属炭化物層の境界を、Wの含有量変化を示す曲線と金属炭化物層を構成する金属成分の含有量変化を示す曲線との交点とした。さらに、金属炭化物層と金属炭窒化物層の境界を、N含有量の増加開始位置とした。そして、金属炭窒化物層と上部層の境界を、金属炭窒化物層を構成する金属成分と上部層を構成する金属成分の含有量変化を示す曲線との交点とした。ここから、W層の深さ及び金属炭化物層の層厚及び金属炭窒化物層の層厚を、前記W含有量、N含有量の増加開始位置あるいは各曲線の交点を基準として求めた。
 そして、この測定を工具の縦断面において5箇所で繰り返し、その平均値を下部層の各層の平均層厚とした。
表4、表7に、測定・算出したそれぞれの値を示す。
With respect to the inventive tools 1 to 8 and comparative tools 1 to 6 produced above, a longitudinal section is cut out using a focused ion beam (FIB), and a scanning electron microscope (SEM) or a transmission electron microscope ( The upper layer is measured by cross-section measurement using energy dispersive X-ray analysis (EDS) using TEM, Auger Electron Spectroscopy (AES), or Electron Probe Micro Analyzer (EPMA). The component composition of layer A and layer B and the thickness of each layer were measured at five locations, and the average composition and average layer thickness were calculated from the average values.
In the lower W layer, the metal carbide layer, and the metal carbonitride layer, the identification of each layer and the thickness of each layer were calculated by average cross-section measurement using the same analysis method as that for the upper layer. The method for obtaining the layer thickness of each lower layer was specifically described as follows. A line analysis of the composition with respect to the normal direction of the substrate surface was performed on the longitudinal section of the tool. The boundary of each layer was defined according to the following based on the component content change curve thus obtained. First, the boundary between the WC and the W layer was set as the W content increase start position. In addition, the boundary between the W layer and the metal carbide layer was defined as the intersection of a curve indicating the change in the W content and a curve indicating the change in the content of the metal component constituting the metal carbide layer. Furthermore, the boundary between the metal carbide layer and the metal carbonitride layer was set as the increase start position of the N content. And the boundary of a metal carbonitride layer and an upper layer was made into the intersection of the curve which shows the content change of the metal component which comprises a metal carbonitride layer, and the metal component which comprises an upper layer. From this, the depth of the W layer, the layer thickness of the metal carbide layer, and the layer thickness of the metal carbonitride layer were determined on the basis of the W content, the N content increase start position, or the intersection of each curve.
And this measurement was repeated in five places in the longitudinal section of a tool, and the average value was made into the average layer thickness of each layer of a lower layer.
Tables 4 and 7 show the measured and calculated values.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 つぎに、上記本発明工具1~8および比較例工具1~6について、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、下記の条件(切削条件1という)によるNi基耐熱合金の湿式連続切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
<切削条件1>
 被削材:Ni基耐熱合金(Cr19質量%-Fe19質量%-Mo3質量%-Ti0.9質量%-Al0.5質量%-Ni残部)の丸棒、
 切削速度:100 m/min.、
 切り込み:0.5 mm、
 送り:0.15 mm/rev.、
 切削時間:10 分、
 切削油:水溶性クーラント
 表8に、その結果を示す。
Next, the tools 1 to 8 of the present invention and the comparative tools 1 to 6 are all in accordance with the following conditions (referred to as cutting conditions 1) in a state where they are screwed to the tip of the tool steel tool with a fixing jig. A wet continuous cutting test of a Ni-base heat-resistant alloy was performed, and the flank wear width of the cutting edge was measured.
<Cutting condition 1>
Work material: Ni-based heat-resistant alloy (Cr 19 mass%-Fe 19 mass%-Mo 3 mass%-Ti 0.9 mass%-Al 0.5 mass%-Ni balance) round bar,
Cutting speed: 100 m / min. ,
Cutting depth: 0.5 mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Cutting oil: water-soluble coolant Table 8 shows the results.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
《実施例2》
 表1に示される配合組成の原料粉末を、実施例1に示す条件で焼結して、直径が10mmの工具基体形成用丸棒焼結体を形成し、さらに前記丸棒焼結体から、研削加工にて、切刃部の直径×長さが6mm×12mmの寸法で、ねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の工具基体11(エンドミル)1~4をそれぞれ製造した。
 次いで、前記の工具基体11(エンドミル)1~4ついて、AIP装置10を用いて、実施例1の工程(a)~(e)と同様な工程で、表9に示す本発明の表面被覆エンドミル11~18(以下、本発明工具11~18という)を製造した。
 上記で作製した本発明工具11~18について、実施例1と同様な方法で、下部層のW層、金属炭化物層および金属炭窒化物層の同定ならびに各層厚を算出した。上部層のA層、B層においても、各成分の平均組成、平均層厚を算出した。
表9に、測定・算出したそれぞれの値を示す。
Example 2
The raw material powder having the composition shown in Table 1 is sintered under the conditions shown in Example 1 to form a round tool sintered body for forming a tool base having a diameter of 10 mm. Further, from the round bar sintered body, Tool base 11 (end mill) 1 to 4 made of a WC-base cemented carbide having a 4-blade square shape with a cutting blade portion diameter × length of 6 mm × 12 mm and a twist angle of 30 degrees by grinding. Were manufactured respectively.
Next, the above-mentioned tool base 11 (end mill) 1 to 4 is subjected to the same steps as steps (a) to (e) of Example 1 using the AIP apparatus 10, and the surface-coated end mill of the present invention shown in Table 9 is used. 11 to 18 (hereinafter referred to as the present invention tools 11 to 18) were produced.
For the inventive tools 11 to 18 produced above, the identification of the lower W layer, metal carbide layer and metal carbonitride layer and the thickness of each layer were calculated in the same manner as in Example 1. Also in the upper layer A layer and B layer, the average composition and average layer thickness of each component were calculated.
Table 9 shows the measured and calculated values.
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 つぎに、上記本発明工具11~18のエンドミルについて、下記の条件(切削条件2という)によるNi基耐熱合金の側面切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。
<切削条件2>
 被削材-平面寸法:100mm×250mm、厚さ:50mmのNi基耐熱合金(Cr19質量%-Fe19質量%-Mo3質量%-Ti0.9質量%-Al0.5質量%-Ni残部)の板材、
 切削速度:40 m/min、
 回転速度:2100 min.-1
 切り込み:ae 0.3 mm、ap 6 mm、
 送り速度(1刃当り):0.03 mm/tooth、
 切削長:10 m、
 表10に、切削試験結果を示す。
Next, with respect to the end mills of the above-described tools 11 to 18 of the present invention, a side cutting test of a Ni-based heat-resistant alloy was performed under the following conditions (referred to as cutting condition 2), and the flank wear width of the cutting edge was measured.
<Cutting condition 2>
Workpiece-Plate material of Ni-based heat-resistant alloy (Cr 19 mass%-Fe19 mass%-Mo3 mass%-Ti0.9 mass%-Al0.5 mass%-Ni balance) with plane dimensions: 100 mm x 250 mm and thickness: 50 mm ,
Cutting speed: 40 m / min,
Rotational speed: 2100 min. -1 ,
Cutting depth: ae 0.3 mm, ap 6 mm,
Feed rate (per blade): 0.03 mm / tooth
Cutting length: 10 m,
Table 10 shows the cutting test results.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
《実施例3》
 上記の実施例2で製造した直径が10mmの丸棒焼結体を用い、この丸棒焼結体から、研削加工にて、溝形成部の直径×長さが6mm×30mmの寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の工具基体11(ドリル)を製造した。
Example 3
Using the round bar sintered body having a diameter of 10 mm manufactured in Example 2 above, from this round bar sintered body, the diameter x length of the groove forming part is 6 mm x 30 mm, and by grinding, A tool base 11 (drill) made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees was manufactured.
 ついで、この工具基体11(ドリル)の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した。
 ついで、AIP装置10に装入し、前記実施例1と同一の条件で、表11に示される下部層、上部層を備える本発明の表面被覆ドリル21~28(以下、本発明工具21~28という)を製造した。
Next, honing was applied to the cutting edge of the tool base 11 (drill), ultrasonic cleaning was performed in acetone, and drying was performed.
Next, the surface-coated drills 21 to 28 of the present invention (hereinafter referred to as the present invention tools 21 to 28) provided with the lower layer and the upper layer shown in Table 11 under the same conditions as in Example 1 were charged into the AIP apparatus 10. Manufactured).
 上記で作製した本発明工具21~28について、実施例1と同様な方法で、下部層のW層4、金属炭化物層5および金属炭窒化物層6の同定ならびに各層厚を算出した。上部層のA層、B層においても、各成分の平均組成、平均層厚を算出した。
表11に、測定・算出したそれぞれの値を示す。
For the inventive tools 21 to 28 produced as described above, the identification of the lower W layer 4, the metal carbide layer 5 and the metal carbonitride layer 6 and the thickness of each layer were calculated in the same manner as in Example 1. Also in the upper layer A layer and B layer, the average composition and average layer thickness of each component were calculated.
Table 11 shows the measured and calculated values.
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 つぎに、上記本発明工具21~28について、下記の条件(切削条件3という)によるNi基耐熱合金の湿式穴あけ切削加工試験を実施し、穴あけ加工数を30穴とした時の切れ刃の逃げ面摩耗幅を測定した。
<切削条件3>
 被削材-平面寸法:100mm×250mm、厚さ:50mmのNi基耐熱合金(Cr19質量%-Fe19質量%-Mo3質量%-Ti0.9質量%-Al0.5質量%-Ni残部)の板材、
 切削速度:13.7 m/min.、
 送り:0.06 mm/rev、
 穴深さ:12 mm、
表12に、切削試験結果を示す。
Next, with respect to the above-mentioned tools 21 to 28 of the present invention, a wet drilling test of a Ni-base heat-resistant alloy was carried out under the following conditions (referred to as cutting condition 3), and the cutting edge clearance when the number of drilling operations was 30 holes The surface wear width was measured.
<Cutting condition 3>
Workpiece-Plate material of Ni-based heat-resistant alloy (Cr 19 mass%-Fe19 mass%-Mo3 mass%-Ti0.9 mass%-Al0.5 mass%-Ni balance) with plane dimensions: 100 mm x 250 mm and thickness: 50 mm ,
Cutting speed: 13.7 m / min. ,
Feed: 0.06 mm / rev,
Hole depth: 12 mm,
Table 12 shows the cutting test results.
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
 表8、表10、表12に示される結果から、本発明工具1~8、11~18、21~28は、高熱発生を伴い、かつ、切刃に対して大きな熱的負荷、機械的負荷がかかるNi基耐熱合金の高速切削加工において、剥離の発生はなく、さらに、溶着、チッピング、欠損等の異常損傷の発生もなく、長期の使用にわたってすぐれた耐摩耗性を発揮することがわかる。
 これに対して、比較例工具1~6は、切刃に作用する切削加工時の熱的負荷、機械的負荷により、剥離、チッピング、欠損等を発生し、しかも、寿命は短命であった。
From the results shown in Table 8, Table 10, and Table 12, the tools 1 to 8, 11 to 18, and 21 to 28 of the present invention are accompanied by high heat generation and a large thermal load and mechanical load on the cutting edge. It can be seen that in high-speed cutting of such a Ni-base heat-resistant alloy, no peeling occurs, and no abnormal damage such as welding, chipping or chipping occurs, and excellent wear resistance is exhibited over a long period of use.
On the other hand, the comparative tools 1 to 6 caused peeling, chipping, chipping, etc. due to thermal load and mechanical load acting on the cutting edge, and the life was short.
 本発明の被覆工具は、高熱発生を伴い、かつ、切刃に対して大きな熱的負荷、機械的負荷が作用するNi基耐熱合金の高速切削加工において、剥離の発生を抑制し、さらに、溶着、チッピング、欠損等の異常損傷の発生を抑制し、長期の使用にわたって、すぐれた切削性能を発揮する。 The coated tool of the present invention suppresses the occurrence of delamination in high-speed cutting of a Ni-base heat-resistant alloy that is accompanied by high heat generation and a large thermal load and mechanical load acts on the cutting edge. It suppresses the occurrence of abnormal damage such as chipping and chipping, and exhibits excellent cutting performance over a long period of use.
  2  下部層
  3  上部層
  4  W層(タングステン層)
  5  金属炭化物層
  6  金属炭窒化物層
  10  AIP装置(アークイオンプレーティング装置)
  11  工具基体
  12  回転テーブル
  13  Al-Ti合金ターゲット(蒸発源)
  14  Al-Ti-Cr-Si-Y合金ターゲット(蒸発源)
  15、16  アノード電極
  17、18  アーク電源
  19  バイアス電源
  20  反応ガス導入口
  21  排ガス口
2 Lower layer 3 Upper layer 4 W layer (tungsten layer)
5 Metal carbide layer 6 Metal carbonitride layer 10 AIP equipment (arc ion plating equipment)
11 Tool base 12 Rotary table 13 Al-Ti alloy target (evaporation source)
14 Al-Ti-Cr-Si-Y alloy target (evaporation source)
15, 16 Anode electrode 17, 18 Arc power source 19 Bias power source 20 Reactive gas inlet 21 Exhaust gas port

Claims (3)

  1.  炭化タングステン基超硬合金からなる工具基体に下部層が設けられ、前記下部層の表面に交互積層構造の上部層が設けられた表面被覆切削工具において、
    (a)前記下部層は、W層と金属炭化物層と金属炭窒化物層とからなり、
    (b)前記W層は、工具基体表面からその内部へ10~500nmの深さにわたって形成され、
    (c)前記金属炭化物層は、Ti、Cr、Zr、Hf、NbおよびTaから選択されるいずれか一種の金属炭化物層であって、5~500nmの平均層厚を有し、前記W層の直上に形成され、
    (d)前記金属炭窒化物層は、前記金属炭化物層に含有される金属成分を含む金属炭窒化物層であって、5~300nmの平均層厚を有し、前記金属炭化物層の直上に形成され、
    (e)前記上部層は、A層とB層が少なくとも1層ずつ交互に積層された交互積層構造からなり、1.0~8.0μmの合計平均層厚を有し、
    (f)前記A層は、0.1~5.0μmの一層平均層厚を有するAlとTiの複合窒化物層であって、その組成を、組成式:(AlTi1-x)Nで表した場合、
    0.40≦x≦0.70(ただし、xは原子比)を満足する平均組成を有し、
    (g)前記B層は、0.1~5.0μmの一層平均層厚を有するAlとTiとCrとSiとYの複合窒化物層であって、その組成を、組成式:(Al1-a-b-c-dTiCrSi)Nで表した場合、0≦a≦0.40、0.05≦b≦0.40、0≦c≦0.20、0.01≦d≦0.10(ただし、a、b、c、dはいずれも原子比)を満足する平均組成を有することを特徴とする表面被覆切削工具。
    In a surface-coated cutting tool in which a lower layer is provided on a tool base made of a tungsten carbide base cemented carbide, and an upper layer of an alternately laminated structure is provided on the surface of the lower layer,
    (A) The lower layer includes a W layer, a metal carbide layer, and a metal carbonitride layer,
    (B) The W layer is formed over a depth of 10 to 500 nm from the surface of the tool base to the inside thereof.
    (C) The metal carbide layer is any one metal carbide layer selected from Ti, Cr, Zr, Hf, Nb and Ta, and has an average layer thickness of 5 to 500 nm, Formed directly above,
    (D) The metal carbonitride layer is a metal carbonitride layer containing a metal component contained in the metal carbide layer, has an average layer thickness of 5 to 300 nm, and is directly above the metal carbide layer. Formed,
    (E) The upper layer has an alternating laminated structure in which at least one layer of A and B layers are alternately laminated, and has a total average layer thickness of 1.0 to 8.0 μm,
    (F) The A layer is a composite nitride layer of Al and Ti having a single layer average thickness of 0.1 to 5.0 μm, and its composition is expressed by a composition formula: (Al x Ti 1-x ) N In the case of
    Having an average composition satisfying 0.40 ≦ x ≦ 0.70 (where x is an atomic ratio),
    (G) The B layer is a composite nitride layer of Al, Ti, Cr, Si, and Y having a single layer average thickness of 0.1 to 5.0 μm, and the composition is expressed by a composition formula: (Al 1 when expressed in -a-b-c-d Ti a Cr b Si c Y d) N, 0 ≦ a ≦ 0.40,0.05 ≦ b ≦ 0.40,0 ≦ c ≦ 0.20,0 A surface-coated cutting tool having an average composition satisfying .01 ≦ d ≦ 0.10 (where a, b, c, and d are atomic ratios).
  2.  前記表面被覆切削工具が、表面被覆インサート、表面被覆エンドミル、表面被覆ドリルのいずれかであることを特徴とする請求項1に記載の表面被覆切削工具。 The surface-coated cutting tool according to claim 1, wherein the surface-coated cutting tool is any one of a surface-coated insert, a surface-coated end mill, and a surface-coated drill.
  3.  請求項1または2に記載される表面被覆切削工具からなるNi基耐熱合金高速切削加工用の表面被覆切削工具。 A surface-coated cutting tool for high-speed Ni-base heat-resistant alloy machining comprising the surface-coated cutting tool according to claim 1 or 2.
PCT/JP2019/012475 2018-03-27 2019-03-25 Surface-coated cutting tool WO2019188967A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019517125A JPWO2019188967A1 (en) 2018-03-27 2019-03-25 Surface coating cutting tool
KR1020207027299A KR20200128060A (en) 2018-03-27 2019-03-25 Surface covering cutting tool
EP19776224.8A EP3778080A4 (en) 2018-03-27 2019-03-25 Surface-coated cutting tool
US16/982,508 US20210016361A1 (en) 2018-03-27 2019-03-25 Surface-coated cutting tool
CN201980021038.8A CN111902231A (en) 2018-03-27 2019-03-25 Surface-coated cutting tool

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-059674 2018-03-27
JP2018059674 2018-03-27

Publications (1)

Publication Number Publication Date
WO2019188967A1 true WO2019188967A1 (en) 2019-10-03

Family

ID=68059993

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/012475 WO2019188967A1 (en) 2018-03-27 2019-03-25 Surface-coated cutting tool

Country Status (6)

Country Link
US (1) US20210016361A1 (en)
EP (1) EP3778080A4 (en)
JP (1) JPWO2019188967A1 (en)
KR (1) KR20200128060A (en)
CN (1) CN111902231A (en)
WO (1) WO2019188967A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375592B2 (en) 2020-02-12 2023-11-08 三菱マテリアル株式会社 surface coated cutting tools

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007764A (en) * 2005-06-30 2007-01-18 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same
JP2011045970A (en) * 2009-08-27 2011-03-10 Osg Corp Hard film and hard-film coated tool
JP4713413B2 (en) 2006-06-30 2011-06-29 株式会社神戸製鋼所 Hard coating and method for producing the same
WO2014123053A1 (en) * 2013-02-07 2014-08-14 三菱重工業株式会社 Surface-coating material, cutting tool in which said material is used, and working machine in which said material is used
WO2015156383A1 (en) * 2014-04-10 2015-10-15 株式会社タンガロイ Coated tool
JP2017001147A (en) 2015-06-12 2017-01-05 日立金属株式会社 Coated cutting tool
WO2017183327A1 (en) * 2016-04-19 2017-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool
JP2018059674A (en) 2016-10-06 2018-04-12 アクア株式会社 refrigerator

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4713413Y1 (en) 1969-03-22 1972-05-16
JP4942326B2 (en) * 2005-10-28 2012-05-30 京セラ株式会社 Surface covering member and cutting tool using surface covering member
SE0602814L (en) * 2006-12-27 2008-06-28 Sandvik Intellectual Property Cutting tool with multilayer coating
JP5440350B2 (en) * 2010-04-16 2014-03-12 三菱マテリアル株式会社 Surface coated cutting tool
JP6024981B2 (en) * 2012-03-09 2016-11-16 三菱マテリアル株式会社 A surface-coated cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting
JP6044336B2 (en) * 2012-12-27 2016-12-14 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN107245692B (en) * 2017-05-25 2019-08-20 华南理工大学 A kind of cemented carbide substrate surfaces preprocess method of PVD coating

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007007764A (en) * 2005-06-30 2007-01-18 Mitsubishi Materials Corp Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting of heat resistant alloy
JP4713413B2 (en) 2006-06-30 2011-06-29 株式会社神戸製鋼所 Hard coating and method for producing the same
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same
JP5098726B2 (en) 2008-02-22 2012-12-12 日立ツール株式会社 Coated tool and method for producing coated tool
JP2011045970A (en) * 2009-08-27 2011-03-10 Osg Corp Hard film and hard-film coated tool
WO2014123053A1 (en) * 2013-02-07 2014-08-14 三菱重工業株式会社 Surface-coating material, cutting tool in which said material is used, and working machine in which said material is used
WO2015156383A1 (en) * 2014-04-10 2015-10-15 株式会社タンガロイ Coated tool
JP2017001147A (en) 2015-06-12 2017-01-05 日立金属株式会社 Coated cutting tool
WO2017183327A1 (en) * 2016-04-19 2017-10-26 住友電工ハードメタル株式会社 Surface-coated cutting tool
JP2018059674A (en) 2016-10-06 2018-04-12 アクア株式会社 refrigerator

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3778080A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7375592B2 (en) 2020-02-12 2023-11-08 三菱マテリアル株式会社 surface coated cutting tools

Also Published As

Publication number Publication date
JPWO2019188967A1 (en) 2021-02-12
US20210016361A1 (en) 2021-01-21
EP3778080A4 (en) 2021-08-18
CN111902231A (en) 2020-11-06
EP3778080A1 (en) 2021-02-17
KR20200128060A (en) 2020-11-11

Similar Documents

Publication Publication Date Title
EP3225337B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5838769B2 (en) Surface coated cutting tool
JP5488824B2 (en) Surface-coated cutting tool that exhibits excellent peeling resistance and excellent wear resistance due to high-speed cutting of hard difficult-to-cut materials
JP5594576B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP2015110256A (en) Surface-coated cutting tool
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP2020131425A (en) Surface coated cutting tool
JP5429693B2 (en) Surface coated cutting tool with excellent wear resistance due to hard coating layer
JP5440353B2 (en) Surface coated cutting tool
WO2019188967A1 (en) Surface-coated cutting tool
JP2010207918A (en) Surface coated cutting tool
JP5594569B2 (en) Surface coated cutting tool
JP4702535B2 (en) Cutting tool made of high-speed tool steel with a surface coating that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2019171483A (en) Surface-coated cutting tool
JP2020131426A (en) Surface coated cutting tool
JP2019171482A (en) Surface-coated cutting tool
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP6959577B2 (en) Surface coating cutting tool
JP6959578B2 (en) Surface coating cutting tool
JP2017064845A (en) Surface coating cutting tool excellent in chipping resistance and abrasion resistance
JPWO2020166466A1 (en) Hard film cutting tool
JP2007152457A (en) Surface coated cutting tool having hard coating layer exhibiting excellent wear resistance in high-speed cutting heat resisting alloy
WO2019188783A1 (en) Surface-coated cutting tool
JP5440351B2 (en) Surface coated cutting tool
JP2022098159A (en) Surface coated cutting tool

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019517125

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19776224

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207027299

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019776224

Country of ref document: EP

Effective date: 20201027