JP2009220260A - Coated cutting tool and method for manufacturing the same - Google Patents

Coated cutting tool and method for manufacturing the same Download PDF

Info

Publication number
JP2009220260A
JP2009220260A JP2008070651A JP2008070651A JP2009220260A JP 2009220260 A JP2009220260 A JP 2009220260A JP 2008070651 A JP2008070651 A JP 2008070651A JP 2008070651 A JP2008070651 A JP 2008070651A JP 2009220260 A JP2009220260 A JP 2009220260A
Authority
JP
Japan
Prior art keywords
phase
coated tool
tool
modified phase
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008070651A
Other languages
Japanese (ja)
Other versions
JP5098726B2 (en
Inventor
Takashi Ishikawa
剛史 石川
Fumihiro Fujii
文博 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Moldino Tool Engineering Ltd
Original Assignee
Hitachi Tool Engineering Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Tool Engineering Ltd filed Critical Hitachi Tool Engineering Ltd
Priority to JP2008070651A priority Critical patent/JP5098726B2/en
Publication of JP2009220260A publication Critical patent/JP2009220260A/en
Application granted granted Critical
Publication of JP5098726B2 publication Critical patent/JP5098726B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a coated cutting tool having a WC-based cemented carbide alloy as the base material which improves adhesion strength between a coating and a base material, drastically reduces film detachment under a practical use environment, and is superior in wear resistance, and a method for manufacturing the coated cutting tool. <P>SOLUTION: In the coated cutting tool coated with a hard coating on a tool made of the WC-based cemented carbide alloy as the base material, a crystalline structure of the base material surface is a W-modified phase having a bcc structure, and a carbide phase is disposed right on the W-modified phase and the hard coating is disposed right on the carbide phase. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本願発明は、切削工具、金型等の耐摩耗性の要求される被覆工具及び、被覆工具の製造方法に関する。   The present invention relates to a coated tool that requires wear resistance, such as a cutting tool and a mold, and a method for manufacturing the coated tool.

特許文献1から3には、硬質皮膜と基材との密着性を向上させるための技術が開示され、特に特許文献4には、被覆前処理として金属イオンボンバードメントによる基材の表面処理の技術が開示されている。   Patent Documents 1 to 3 disclose a technique for improving the adhesion between a hard film and a substrate, and particularly Patent Document 4 discloses a technique for surface treatment of a substrate by metal ion bombardment as a coating pretreatment. Is disclosed.

特開平4−128362号公報JP-A-4-128362 特開平7−310173号公報JP 7-310173 A 特開2000−129423号公報JP 2000-129423 A 特開2002−103122号公報JP 2002-103122 A

本願発明はWC基超硬合金を基材とする被覆工具において、皮膜と基材の密着強度を改善し、実用環境下において皮膜剥離を格段に低減し耐摩耗性に優れた被覆工具及び被覆工具の製造方法を提供する。   The present invention relates to a coated tool using a WC-based cemented carbide base material, which improves the adhesion strength between the film and the base material, significantly reduces film peeling in a practical environment, and has excellent wear resistance. A manufacturing method is provided.

本願発明における第1の発明は、WC基超硬合金を基材とする工具に硬質皮膜を被覆した被覆工具において、該基材の表面の結晶構造がbcc構造からなるW改質相であり、該W改質相の直上に炭化物相、該炭化物相の直上に硬質皮膜を有することを特徴とする被覆工具である。
本願発明における第2の発明は、WC基超硬合金を基材とする工具に硬質皮膜を被覆した被覆工具の製造方法において、該製造方法は、アーク放電式蒸発源を配備した成膜装置を用いて、イオンボンバードメント処理を行う第1の工程と、皮膜を形成する第2の工程とからなり、該第1の工程は、該基材に負のバイアス電圧P1、600≦P1≦1000(V)を印加し、圧力0.01〜2Paで、水素ガスを含む混合ガスを用いて、該アーク放電式蒸発源から陰極物質を蒸発させ、陰極物質から蒸発した金属イオンを該基材に照射処理して、該基材の表面温度を800〜860℃の範囲で、該基材表面の結晶構造がbcc構造からなるW改質相を形成し、該第2の工程で該W改質相の直上に該硬質皮膜を成膜することを特徴とする被覆工具の製造方法である。上記の構成を採用することによって、WC基超硬合金を基材とする被覆工具において、皮膜と基材の密着強度を改善し、実用環境下において皮膜剥離を格段に低減し、耐摩耗性に優れた被覆工具及び被覆工具の製造方法を提供することができる。
The first invention in the present invention is a coated tool in which a hard film is coated on a tool based on a WC-based cemented carbide base material, and the crystal structure of the surface of the base material is a W-modified phase having a bcc structure, A coated tool comprising a carbide phase immediately above the W-modified phase and a hard film directly above the carbide phase.
According to a second aspect of the present invention, there is provided a manufacturing method of a coated tool in which a hard film is coated on a tool based on a WC-based cemented carbide, the manufacturing method including a film forming apparatus provided with an arc discharge evaporation source. And a first step of performing ion bombardment treatment and a second step of forming a film. The first step includes negative bias voltages P1, 600 ≦ P1 ≦ 1000 ( V) is applied and the cathode material is evaporated from the arc discharge evaporation source using a mixed gas containing hydrogen gas at a pressure of 0.01 to 2 Pa, and the substrate is irradiated with metal ions evaporated from the cathode material. A W-modified phase in which the surface temperature of the substrate is in the range of 800 to 860 ° C. and the crystal structure of the substrate surface is a bcc structure, and the W-modified phase is formed in the second step. Coated tool characterized by depositing the hard film directly on It is a manufacturing method. By adopting the above configuration, in a coated tool based on a WC-based cemented carbide, the adhesion strength between the coating and the substrate is improved, and the peeling of the coating is greatly reduced in a practical environment, resulting in wear resistance. An excellent coated tool and a method for producing the coated tool can be provided.

本願発明における第1の発明において、被覆工具のW改質相は、10≦T1≦300nmであること、X線回折においてbcc構造の(110)に最大回折強度を有すること、I(200)/I(110)>0.1、又は、I(210)/I(110)>0.2、であること、格子定数が0.315〜0.316nmであること、E≦40nmであること、1≦H/E≦7であることが、工具基材と皮膜の密着強度向上の観点から好ましい。また、W改質相の直上に炭化物相を有し、TiCであること、20≦T2≦300nmであることが、工具基材と皮膜の密着強度向上の観点から、より好ましい。更に、炭化物相の直上の硬質皮膜は窒化物層であり、結晶構造がfcc構造であり、窒化物層のうち少なくとも1層がAlを必須成分とし、残りTi、Cr、W、Nb、Y、Ce、Si、B、から選択される1種以上の窒化物であること、炭化物相と窒化物層の界面がエピタキシャルの関係にあることが、工具基材と皮膜の密着強度向上の観点から、より好ましい。
本願発明における第2の発明において、該第1の工程で使用する混合ガスの水素ガス体積比率が1から20%であること、硬質皮膜がAlとCrを金属成分とした化合物であることが好ましい。
In the first invention of the present invention, the W-modified phase of the coated tool is 10 ≦ T1 ≦ 300 nm, the X-ray diffraction has a maximum diffraction intensity at (110) of the bcc structure, I (200) / I (110)> 0.1 or I (210) / I (110)> 0.2, the lattice constant is 0.315 to 0.316 nm, E ≦ 40 nm, 1 ≦ H / E ≦ 7 is preferable from the viewpoint of improving the adhesion strength between the tool base and the coating. Moreover, it is more preferable from the viewpoint of improving the adhesion strength between the tool substrate and the coating that it has a carbide phase immediately above the W-modified phase, is TiC, and is 20 ≦ T2 ≦ 300 nm. Further, the hard film directly above the carbide phase is a nitride layer, the crystal structure is an fcc structure, at least one of the nitride layers is essentially composed of Al, and the remaining Ti, Cr, W, Nb, Y, From the viewpoint of improving the adhesion strength between the tool base and the coating, it is one or more nitrides selected from Ce, Si, B, and that the interface between the carbide phase and the nitride layer is in an epitaxial relationship. More preferred.
In the second invention of the present invention, the hydrogen gas volume ratio of the mixed gas used in the first step is preferably 1 to 20%, and the hard coating is preferably a compound containing Al and Cr as metal components. .

本願発明は、WC基超硬合金を基材とする被覆工具において、皮膜と基材の密着強度を改善し、実用環境下において皮膜剥離を格段に低減し、耐摩耗性に優れた被覆工具、及び被覆工具の製造方法を提供した。これより、工具の耐久性や工具寿命を改善し、切削加工の高能率化を実現した。   The present invention is a coated tool using a WC-based cemented carbide as a base material, which improves the adhesion strength between the film and the base material, significantly reduces film peeling in a practical environment, and is excellent in wear resistance, And a method of manufacturing a coated tool. As a result, tool durability and tool life were improved, and cutting efficiency was improved.

本願発明における第1の発明は、被覆工具の耐久性を向上させるために、硬質皮膜と工具基材との密着強度を改善した。硬質皮膜は優れた機械的特性を発揮する前に、剥離を起点とした異常摩耗を誘発し工具寿命に至っている場合が多く、特に高速切削時や高硬度材切削時における工具逃げ面側の皮膜と基材間の皮膜剥離、破壊また湿式切削時におけるすくい面側の皮膜と基材間の皮膜剥離を起点とした異常摩耗が発生する。この皮膜剥離が工具寿命を支配している。従って、本願発明は皮膜と基材との密着強度を改善して被覆工具の寿命を向上させた。密着強度改善を可能にするには、工具基材の表面の結晶構造がbcc構造からなるW改質相とすることが必要である。ここで、W改質相というのは、Tiイオンの照射処理によって超硬合金のWCがWとCとの分解を経てWとなったものをW改質相と言う。W改質相の存在によって、優れた密着強度を有する理由は、以下の様に考える。通常、超硬合金の工具基材の表面は複数の化合物、又は単体金属が存在し、皮膜はこれらの何れかの直上から成長を開始する。このとき、化合物上に成長する皮膜と単体金属上に成長する皮膜では成長方位、格子ミスフイット、結晶粒径が夫々異なるため、成長する皮膜は成長初期から比較的微細な結晶の多結晶となり、超硬合金工具の基材と皮膜界面に極めて高い残留応力を蓄え、密着強度の低下を招いている。そこで本願発明は、超硬合金の工具基材に予め含有するWCの1部をW改質相として基材表面上に析出させ、結晶構造をbcc構造とし、その直上に成長する皮膜や、皮膜と基材の界面近傍の残留応力を大幅に低減させた。その結果、基材と皮膜との高い密着強度を実現した。この点が、中間層の被覆によって密着強度を改善しようと試みた従来の技術と本願発明とが本質的に異なる点である。本願発明は、工具基材に予め含有するWC成分をW改質相として析出させるので、三次元形状を有した工具基材でも均一に、しかもその厚さを容易に制御することができる。一方、従来の中間層の被覆では、三次元形状の均一被覆には限界がある。本願発明ではCoと硬質皮膜との間に直接的な界面がなく、優れた界面密着強度が発揮される。これに対し、超硬合金の基材成分であるCo上に成長する硬質皮膜は、微細な多結晶として成長するため、基材と皮膜間の界面近傍で残留圧縮応力が高くなり、成長の連続性が阻害され、基材と皮膜間の密着強度が低下していた。   1st invention in this invention improved the adhesive strength of a hard film | membrane and a tool base material in order to improve the durability of a coated tool. Hard coating often leads to abnormal wear due to peeling before exhibiting excellent mechanical properties, leading to tool life, especially on the tool flank side during high-speed cutting or cutting of hard materials. Abnormal wear occurs starting from the peeling of the coating between the rake face and the coating between the substrate and the substrate during wet cutting. This film peeling dominates the tool life. Therefore, this invention improved the adhesive strength of a membrane | film | coat and a base material, and improved the lifetime of the coating tool. In order to improve the adhesion strength, it is necessary that the crystal structure on the surface of the tool base is a W-modified phase having a bcc structure. Here, the W-modified phase is referred to as a W-modified phase in which the WC of the cemented carbide is converted into W through decomposition of W and C by irradiation treatment of Ti ions. The reason for having excellent adhesion strength due to the presence of the W-modified phase is considered as follows. Usually, the surface of a cemented carbide tool substrate has a plurality of compounds or single metals, and the film starts growing immediately above any of these. At this time, the film grown on the compound and the film grown on the single metal have different growth orientations, lattice misfits, and crystal grain sizes, so that the grown film becomes a polycrystal of relatively fine crystals from the initial growth stage. Extremely high residual stress is stored at the base and coating interface of hard alloy tools, leading to a decrease in adhesion strength. In view of this, the present invention provides a coating film in which a part of WC previously contained in a cemented carbide tool base material is deposited on the surface of the base material as a W-modified phase, the crystal structure is bcc structure, The residual stress near the interface between the substrate and the substrate was greatly reduced. As a result, high adhesion strength between the substrate and the film was realized. This point is essentially a difference between the conventional technique which attempts to improve the adhesion strength by covering the intermediate layer and the present invention. In the present invention, since the WC component preliminarily contained in the tool base material is precipitated as a W-modified phase, the thickness of the tool base material having a three-dimensional shape can be controlled uniformly and easily. On the other hand, with the conventional intermediate layer coating, there is a limit to three-dimensional uniform coating. In the present invention, there is no direct interface between Co and the hard coating, and excellent interfacial adhesion strength is exhibited. In contrast, a hard coating that grows on Co, which is a base material component of a cemented carbide, grows as a fine polycrystal, so the residual compressive stress increases near the interface between the substrate and the coating, and the growth continues. Property was hindered, and the adhesion strength between the substrate and the film was reduced.

本願発明のT1値は、10≦T1≦300nmに制御することにより、工具基材と皮膜の優れた密着強度が得られ好ましい。10nm未満の場合はW改質相の効果に乏しく、300nmを超えて厚い場合、密着強度が低下傾向にある。その結果、W改質相の効果が得られず、逆に耐剥離性が低下する場合もある。本願発明のW改質相は、工具基材上に層状に存在することが好ましいが、工具基材の化合物上に優先的に島状に存在する場合もあり、何れも工具基材と皮膜の密着強度を改善することができる。また超硬合金のWC粒子が1μmを超え、T1値が50nm以下の場合、W改質相が島状に形成され易い。   The T1 value of the present invention is preferably controlled so as to satisfy 10 ≦ T1 ≦ 300 nm, whereby excellent adhesion strength between the tool substrate and the film can be obtained. When the thickness is less than 10 nm, the effect of the W-modified phase is poor. When the thickness exceeds 300 nm, the adhesion strength tends to decrease. As a result, the effect of the W-modified phase cannot be obtained, and conversely, the peel resistance may decrease. The W-modified phase of the present invention is preferably present in a layer form on the tool substrate, but may be preferentially present in an island shape on the compound of the tool substrate. The adhesion strength can be improved. Further, when the WC particles of the cemented carbide exceed 1 μm and the T1 value is 50 nm or less, the W-modified phase is easily formed in an island shape.

本願発明のW改質相は、bcc構造の(110)面に最大回折強度を有することが好ましい。この理由は、皮膜の残留応力が低くなり、密着強度が高く、耐剥離性を改善できるからである。特に、I(200)/I(110)>0.1、又は、I(210)/I(110)>0.2、の関係を満足することにより、皮膜の残留応力が低減し密着強度が高くなって耐剥離性を改善できる。I(200)/I(110)値が0.1以下の場合、又は、I(210)/I(110)値が0.2以下の場合、残留応力が高くなり、耐剥離性が低下するため工具の耐久性が低下する。工具の耐久性より、I(200)/I(110)値の好ましい上限値は0.19であり、I(210)/I(110)値の好ましい上限値は0.27である。
本願発明のW改質相はWであり、格子定数が0.315〜0.316nmであることが特に工具の耐久性向上に有効である。JCPDSカードによるWの格子定数は0.3164〜0.3165nm程度である。より格子定数が小さいことは格子内の歪が少なく、残留応力が低いことを示しており、本願発明のより好ましい構成である。
本願発明のE値を、E≦40nmに制御することにより、基材と皮膜の密着強度が向上し、工具の耐久性がより向上する。E値が小さい値であって、W改質相が微細であるほど密着強度に優れる。40nmを超えるとW改質相の機械的強度が低下し、摩耗環境化においてW改質相を起点とした滑りにより、異常摩耗が発生する傾向にある。H/E値は、1≦H/E≦7とすることにより、残留応力が低く、摩耗環境化においてW改質相での滑りが抑制され、基材と皮膜の密着強度が向上し、工具の耐久性が向上する。
本願発明の被覆工具は、W改質相の直上に炭化物相、更に炭化物相の直上に硬質皮膜を有する。工具基材、W改質相、炭化物相、硬質皮膜の順番に構成することにより、夫々の接合界面が優れた密着強度を有し、工具耐久性が向上する。具体的には、炭化物相がTiCであること、T2値は20≦T2≦300nmであることが好ましい。炭化物相がTiCの場合、基材との密着強度の点から最適である。同様な効果が得られる他の炭化物には、炭化タングステンよりも生成自由エネルギーの低い、炭化ジルコニウム、炭化ニオブ、炭化ハフニウム、炭化タンタルが挙げられる。結晶構造をfccとすることにより、優れた密着強度と工具の耐久性を向上させることができる。T2値は20nm未満の場合、炭化物相形成による密着強度向上の効果が確認できない。一方、300nmを超えると耐熱性が低下し、耐摩耗性が低下する。炭化物相はW改質相の直上に層状であることが好ましいが、基材化合物上に優先的に島状に存在する場合もあり、何れも基材と皮膜の密着強度を改善することができる。
また、炭化物相の直上の硬質皮膜は、結晶構造がfcc構造の窒化物であること、この窒化物は、Alを必須成分とし、残りTi、Cr、W、Nb、Y、Ce、Si、B、から選択される1種以上の窒化物であることが好ましい。窒化物の結晶構造がfcc構造を有することで炭化物相との整合性が良く、密着強度が高くなり耐久性向上に有効である。硬質皮膜は窒化物、炭化物、硼化物、硫化物、酸化物の何れか、又はこれらの固溶体から構成されて良いが、炭化物相の直上にはfcc構造の窒化物層を被覆することが特に好ましい。窒化物組成は、Al含有量が原子%で、50〜80%、残20〜50%をTi、Cr、W、Nb、Y、Ce、Si、B、から選択される1種以上の窒化物である。特に好ましくは、AlとCrの窒化物、またAlとCrの窒化物にTi、Si、W、Y、B、Ce、Nbを10%未満含有する窒化物である。更に窒化物は、O、C、S等を含有しても良く、その置換量は窒素の30%未満である。
炭化物相と硬質皮膜との界面をエピタキシャルの関係とすることにより、夫々の接合界面が極めて優れた密着強度を有した状態で被覆できるため、工具の耐久性を格段に向上させることができ、好ましい。本願発明の特に好ましい形態は、超硬合金の工具基材上に、結晶構造がbcc構造のW改質相、fcc構造の炭化物相、窒化物層、硬質皮膜の順番で積層することである。これにより、夫々の接合界面が格段に高い密着強度を有した状態で夫々接合し、工具の耐久性を格段に向上させることができる。即ち、W改質相、炭化物相は1部格子の連続性を保った状態による結合強化、炭化物相と硬質皮膜はエピタキシャルの関係による結合強化により、夫々が優れた密着強度を有し、工具の耐久性を格段に向上する。
The W-modified phase of the present invention preferably has the maximum diffraction intensity on the (110) plane of the bcc structure. This is because the residual stress of the film is lowered, the adhesion strength is high, and the peel resistance can be improved. In particular, by satisfying the relationship of I (200) / I (110)> 0.1 or I (210) / I (110)> 0.2, the residual stress of the film is reduced and the adhesion strength is reduced. It becomes high and can improve peeling resistance. When the I (200) / I (110) value is 0.1 or less, or when the I (210) / I (110) value is 0.2 or less, the residual stress increases and the peel resistance decreases. Therefore, the durability of the tool is reduced. From the durability of the tool, the preferable upper limit value of I (200) / I (110) value is 0.19, and the preferable upper limit value of I (210) / I (110) value is 0.27.
The W-modified phase of the present invention is W, and the lattice constant of 0.315 to 0.316 nm is particularly effective for improving the durability of the tool. The lattice constant of W by the JCPDS card is about 0.3164 to 0.3165 nm. A smaller lattice constant indicates less strain in the lattice and lower residual stress, which is a more preferred configuration of the present invention.
By controlling the E value of the present invention to E ≦ 40 nm, the adhesion strength between the substrate and the coating is improved, and the durability of the tool is further improved. The smaller the E value and the finer the W modified phase, the better the adhesion strength. When the thickness exceeds 40 nm, the mechanical strength of the W-modified phase decreases, and abnormal wear tends to occur due to slippage starting from the W-modified phase in the wear environment. By setting the H / E value to 1 ≦ H / E ≦ 7, the residual stress is low, the slip in the W-modified phase is suppressed in the wear environment, the adhesion strength between the base material and the film is improved, and the tool Improves durability.
The coated tool of the present invention has a carbide phase immediately above the W-modified phase, and further has a hard film directly above the carbide phase. By constituting in the order of the tool base material, the W-modified phase, the carbide phase, and the hard coating, each joining interface has excellent adhesion strength, and the tool durability is improved. Specifically, the carbide phase is preferably TiC, and the T2 value is preferably 20 ≦ T2 ≦ 300 nm. When the carbide phase is TiC, it is optimal from the viewpoint of adhesion strength with the substrate. Other carbides that can provide similar effects include zirconium carbide, niobium carbide, hafnium carbide, and tantalum carbide, which have lower free energy of formation than tungsten carbide. By setting the crystal structure to fcc, it is possible to improve excellent adhesion strength and tool durability. When the T2 value is less than 20 nm, the effect of improving the adhesion strength due to the carbide phase formation cannot be confirmed. On the other hand, when it exceeds 300 nm, heat resistance will fall and abrasion resistance will fall. The carbide phase is preferably layered immediately above the W-modified phase, but may be preferentially present in the form of islands on the base compound, both of which can improve the adhesion strength between the base and the coating. .
In addition, the hard coating immediately above the carbide phase is a nitride having a crystal structure of fcc structure, and this nitride has Al as an essential component and the remaining Ti, Cr, W, Nb, Y, Ce, Si, B It is preferable that it is 1 or more types of nitrides selected from these. Since the nitride crystal structure has an fcc structure, consistency with the carbide phase is good, adhesion strength is increased, and it is effective for improving durability. The hard film may be composed of nitride, carbide, boride, sulfide, oxide, or a solid solution thereof, but it is particularly preferable to coat a nitride layer having an fcc structure directly on the carbide phase. . The nitride composition is one or more nitrides selected from Ti, Cr, W, Nb, Y, Ce, Si, and B with an Al content of 50% to 80% and the remaining 20 to 50%. It is. Particularly preferred is a nitride of Al and Cr, or a nitride containing less than 10% of Ti, Si, W, Y, B, Ce, and Nb in the nitride of Al and Cr. Further, the nitride may contain O, C, S, etc., and its substitution amount is less than 30% of nitrogen.
By making the interface between the carbide phase and the hard film epitaxial, it is possible to coat each bonded interface with extremely excellent adhesion strength, so that the durability of the tool can be remarkably improved, which is preferable. . A particularly preferred embodiment of the present invention is to laminate on a cemented carbide tool substrate in the order of a W-modified phase having a bcc structure, a carbide phase having an fcc structure, a nitride layer, and a hard coating. Thereby, it can join, respectively, in the state in which each joining interface had remarkably high adhesion strength, and it can improve the durability of a tool markedly. That is, the W-modified phase and the carbide phase have excellent adhesion strength due to the bond strengthening by maintaining the continuity of the one-part lattice, and the carbide phase and the hard film have excellent bond strength due to the epitaxial strengthening relationship. Dramatically improves durability.

本願発明における第2の発明として、超硬合金の工具基材の表面を結晶構造がbcc構造からなるW改質相とする方法を述べる。まず第1の工程では、工具基材をバイアス電圧が印加可能な減圧容器内に設置し、真空排気、加熱する。基材表面に負のバイアス電圧値P1(V)を印加して陰極物質の蒸発源からの陰極物質のイオン照射により基材表面のクリーニングを行う。ここで、陰極物質は、Ti、Zr、Hf、Nb、Taから選択される1種以上の金属である。例えばTi蒸発源からのTiイオン照射により基材表面のクリーニングを行うことができる。基材の表面温度は、ヒーター等の加熱装置や金属イオン照射の照射電力、照射時間等によって、800〜860℃に制御する。本願発明におけるP1値は、600≦P1≦1000とする。この理由は、600Vよりも低いと工具基材の表面にW改質相が形成されず、硬質皮膜と工具基材の密着強度を高めることができない。一方、1000Vを超えて高いと高温度となり過ぎてしまい、超硬合金工具の表面の強度が急激に低下するためである。陰極物質の金属イオンは、Ti、Zr、Hf、Nb、Taから選択される1種以上の金属イオンを用いる。これらの金属の炭化物は、W炭化物よりも生成自由エネルギーが低く、WCを脱炭するのに好都合であり、W改質相を安定して形成することができるためである。工具基材の表面温度を800〜860℃とする理由は、800℃未満の場合、W改質相が形成されず、860℃を超えて高い温度では、工具基材の強度が急激に低下し、チッピングや異常摩耗が発生し易くなるからである。また、雰囲気ガスとしてH2を含む混合ガスを用いる。これは工具基材と皮膜界面に他の元素が吸着されることを抑制する効果が高い。所謂、還元作用とTiイオン等によるイオンゲッター効果作用であり、界面近傍における異種元素の混入を抑制する効果がある。またH2以外にもAr、N2、Kr等これらの混合ガスを用いることも有効である。容器内圧力は0.01〜2Paとする。この理由は、圧力が0.01Pa未満では、ガス添加効果がなく、W改質相は形成されない。一方、2Paを超えると金属イオンボンバードに用いる金属が付着する傾向にあり、この場合もW改質相が形成されないため、密着強度を改善することができないからである。第1の工程において、基材表面のクリーニングと同時に、基材表面のWCは表面に衝突するTiイオン等によってW改質相となり、WCのCはWから分解し、Ti等と結合してW改質相の直上にTi炭化物相が形成される。更にTi等の蒸発源近傍では、イオンゲッター効果も働き、工具基材と皮膜界面近傍の異種元素混入を抑制する。異種元素を取り込んだTiは電位を持たないため、バイアス電圧を印加した基材へ到達することができない。このようにして形成、析出したW改質相が、その後に被覆される皮膜の残留応力の緩和、工具基材と皮膜の密着強度の向上に大きく寄与する。T1値の制御、W改質相のX線回折における面指数の制御、格子定数の制御、E値の制御には、例えばTiイオンの照射時間、バイアス電圧、容器内圧力、ガス種、Ti蒸発源への電力等を調整する。特に、T1値の制御には、Tiイオン照射時間の影響が大きく、面指数の制御には、P1値と容器内圧力の影響が大きい。例えば、W改質相形成時のP1値が800V以上の場合、(110)の回折強度が高くなる傾向にあり、I(200)/I(110)値、I(210)/I(110)値を夫々下限値に近い値に設定することができる。
次に、第2の工程では、負のバイアス電圧P2値を、20≦P2≦300に印加した状態とし、反応性ガスを供給しながらプラズマ中でアーク放電式蒸発源から陰極物質を蒸発させ、陰極物質と反応性ガスとが反応した化合物をW改質相の直上に硬質皮膜として形成し被覆する。こうすることにより、超硬工具基材と硬質膜が格段に優れた密着強度を発揮し、工具の耐久性を格段に向上させることができる。
As a second invention in the present invention, a method will be described in which the surface of a cemented carbide tool substrate is made into a W-modified phase whose crystal structure is a bcc structure. First, in the first step, the tool base is placed in a decompression vessel to which a bias voltage can be applied, and is evacuated and heated. A negative bias voltage value P1 (V) is applied to the substrate surface, and the substrate surface is cleaned by ion irradiation of the cathode material from an evaporation source of the cathode material. Here, the cathode material is one or more metals selected from Ti, Zr, Hf, Nb, and Ta. For example, the substrate surface can be cleaned by irradiation with Ti ions from a Ti evaporation source. The surface temperature of the substrate is controlled to 800 to 860 ° C. by a heating device such as a heater, irradiation power of irradiation with metal ions, irradiation time, and the like. The P1 value in the present invention is 600 ≦ P1 ≦ 1000. The reason for this is that if it is lower than 600 V, the W-modified phase is not formed on the surface of the tool substrate, and the adhesion strength between the hard coating and the tool substrate cannot be increased. On the other hand, if the voltage exceeds 1000 V, the temperature will be too high, and the strength of the surface of the cemented carbide tool will rapidly decrease. As the metal ions of the cathode material, one or more metal ions selected from Ti, Zr, Hf, Nb, and Ta are used. This is because carbides of these metals have lower free energy of formation than W carbides, are convenient for decarburizing WC, and can stably form a W-modified phase. The reason why the surface temperature of the tool base is set to 800 to 860 ° C. is that when it is less than 800 ° C., the W-modified phase is not formed, and at a temperature higher than 860 ° C., the strength of the tool base rapidly decreases. This is because chipping and abnormal wear are likely to occur. A mixed gas containing H2 is used as the atmospheric gas. This has a high effect of suppressing the adsorption of other elements to the tool base and the coating interface. This is a so-called reduction action and an ion getter effect action by Ti ions and the like, and has an effect of suppressing the mixing of different elements in the vicinity of the interface. In addition to H2, it is also effective to use a mixed gas such as Ar, N2, and Kr. The pressure in the container is 0.01 to 2 Pa. This is because if the pressure is less than 0.01 Pa, there is no gas addition effect, and no W reforming phase is formed. On the other hand, if it exceeds 2 Pa, the metal used for the metal ion bombardment tends to adhere, and in this case as well, the W-modified phase is not formed, so that the adhesion strength cannot be improved. In the first step, simultaneously with the cleaning of the base material surface, the WC on the base material surface becomes a W modified phase by Ti ions and the like colliding with the surface, and the WC C is decomposed from W and combined with Ti etc. A Ti carbide phase is formed immediately above the modified phase. Further, in the vicinity of an evaporation source such as Ti, an ion getter effect also works to suppress mixing of different elements in the vicinity of the tool base and the coating interface. Ti that has taken in different elements does not have a potential, and therefore cannot reach the substrate to which a bias voltage is applied. The W-modified phase formed and precipitated in this way greatly contributes to the relaxation of the residual stress of the film to be coated thereafter and the improvement of the adhesion strength between the tool substrate and the film. For controlling the T1 value, controlling the surface index in the X-ray diffraction of the W-modified phase, controlling the lattice constant, and controlling the E value, for example, irradiation time of Ti ions, bias voltage, pressure in the vessel, gas type, Ti evaporation Adjust the power to the source. In particular, the influence of the Ti ion irradiation time is large for the control of the T1 value, and the influence of the P1 value and the pressure in the container is large for the control of the surface index. For example, when the P1 value during the formation of the W-modified phase is 800 V or more, the diffraction intensity of (110) tends to increase, and the I (200) / I (110) value, I (210) / I (110) Each value can be set to a value close to the lower limit value.
Next, in the second step, the negative bias voltage P2 value is applied to 20 ≦ P2 ≦ 300, the cathode material is evaporated from the arc discharge evaporation source in the plasma while supplying the reactive gas, A compound obtained by reacting the cathode material and the reactive gas is formed and coated as a hard film directly on the W-modified phase. By carrying out like this, the cemented carbide base material and the hard film can exert outstanding adhesion strength, and the durability of the tool can be remarkably improved.

本願発明の被覆工具は、特に高硬度鋼、ステンレス鋼、耐熱鋼、鋳鋼、炭素鋼の切削加工用に用いる切削工具が特に好ましい。例えばボールエンドミル、多刃エンドミル、インサート、ドリル、カッター、ブローチ、リーマ、ホブ、ルーター等が挙げられる。金型、パンチ等の工具も優れた耐摩耗性を発揮する。本願発明の被覆工具は、研削加工面、焼結肌、鏡面状態等、基材側の面正常に影響されずきわめて優れた耐久性を発揮することができる。以下、本願発明の実施例について述べる。   The coated tool of the present invention is particularly preferably a cutting tool used for cutting high hardness steel, stainless steel, heat resistant steel, cast steel, and carbon steel. Examples thereof include a ball end mill, a multi-blade end mill, an insert, a drill, a cutter, a broach, a reamer, a hob, and a router. Tools such as molds and punches also exhibit excellent wear resistance. The coated tool of the present invention can exhibit extremely excellent durability without being affected by the normal surface on the substrate side, such as a ground surface, a sintered surface, and a mirror surface state. Examples of the present invention will be described below.

(実施例1)
本発明例1の作成にはアークイオンプレーティング(以下、AIPと記す。)方式の成膜装置を用いた。本装置は、ターゲット背面に永久磁石を配備し、ターゲットに垂直方向の磁場を有したアーク蒸発源を3基搭載している。夫々ターゲットをC1、C2、C3と記す。また、各ターゲット背面に配置する永久磁石の磁束密度は、C2とC3は同等、C3>C1の関係にある。真空容器内は真空ポンプにより排気され、ガスは供給ポートより導入される。バイアス電源は基材に接続され、独立して基材に負のDCバイアス電圧を印加する。基材回転機構は、3軸のプラネタリー機構であり、主軸が毎分3回転の速さで回転する。超硬合金基材は、組成がwt%で、Co:8%、Cr:0.5%、VC:0.3%、残部WC及び不可避不純物であり、WC平均粒度0.6μm、硬度はHRA93.9の日立ツール株式会社製の2枚刃ボールエンドミル用インサート、R:5mmを使用した。X線回折用基材として、Co:10%、Cr:0.7%、WC平均粒度0.8μm、鏡面加工を施したSNMN120408形状の試験片を準備した。残留応力測定用基材として、Co:13.5%、Cr:0.5%、TaC:0.3%、WC平均粒度0.8μm、試験片寸法が4×8×25mm、厚さ0.7〜0.9mmの試験片を準備した。基材を冶具に固定し、まず真空容器内を8×10−3Pa以下に真空排気後、ヒーターにより、基材温度600℃まで過熱した。圧力が1×10−3Pa以下に達した後、基材の前処理を実施した。処理条件は、ArとH2の混合比が90:10の混合ガスを、流量が20sccmで導入した。このときの圧力は8×10−2Pa程度であった。次に600Vの負のバイアス電圧を印可し、C1ターゲットに120Aのカソード電流を供給した。C1から放出されるTiイオン及びガスイオンにより、基材のクリーニングを開始した。バイアス電圧を1000Vまで傾斜的に増加させ、1000Vの状態で10分間のクリーニング処理を実施した。処置後の基材温度は820℃であった。基材のクリーニング処理に続いて、硬質皮膜の成膜工程を実施した。C1への電力供給を中断し、供給ガスをN2に切り替え、圧力を5Paに設定した。バイアス電圧を100V、C2に150Aの電力を供給し、C2組成の硬質皮膜を略1.5μm被覆した。引き続き、C2への電力供給を中断し、次に、C3に150Aの電力を供給し、C3組成の最表層の硬質皮膜を1.5μm被覆した。その後、略200℃以下に基材を冷却し、真空容器から取り出した。得られた試料を本発明例1とした。被覆前のクリーニング条件、使用したターゲットと成膜条件を表1に示す。
Example 1
An arc ion plating (hereinafter referred to as AIP) type film forming apparatus was used for the production of Invention Example 1. In this apparatus, a permanent magnet is provided on the back of the target, and three arc evaporation sources having a perpendicular magnetic field are mounted on the target. The targets are denoted as C1, C2, and C3, respectively. Further, the magnetic flux densities of the permanent magnets arranged on the back of each target are the same for C2 and C3, and C3> C1. The inside of the vacuum vessel is evacuated by a vacuum pump, and gas is introduced from a supply port. The bias power source is connected to the substrate and independently applies a negative DC bias voltage to the substrate. The substrate rotation mechanism is a three-axis planetary mechanism, and the main shaft rotates at a speed of three rotations per minute. The cemented carbide substrate has a composition of wt%, Co: 8%, Cr: 0.5%, VC: 0.3%, the balance WC and inevitable impurities, WC average particle size 0.6 μm, hardness HRA93 9 inserts for a 2-flute ball end mill manufactured by Hitachi Tool Co., Ltd., R: 5 mm were used. As a base material for X-ray diffraction, a test piece of SNMN120408 shape with Co: 10%, Cr: 0.7%, WC average particle size 0.8 μm, and mirror finished was prepared. As a substrate for measuring residual stress, Co: 13.5%, Cr: 0.5%, TaC: 0.3%, WC average particle size 0.8 μm, test piece size 4 × 8 × 25 mm, thickness 0. A test piece of 7 to 0.9 mm was prepared. The substrate was fixed to a jig, and the inside of the vacuum vessel was first evacuated to 8 × 10 −3 Pa or less, and then heated to a substrate temperature of 600 ° C. with a heater. After the pressure reached 1 × 10 −3 Pa or less, the substrate was pretreated. The treatment conditions were such that a mixed gas having a mixing ratio of Ar and H2 of 90:10 was introduced at a flow rate of 20 sccm. The pressure at this time was about 8 × 10 −2 Pa. Next, a negative bias voltage of 600 V was applied, and a cathode current of 120 A was supplied to the C1 target. Cleaning of the substrate was started by Ti ions and gas ions released from C1. The bias voltage was gradually increased to 1000 V, and a cleaning process was performed for 10 minutes at 1000 V. The substrate temperature after the treatment was 820 ° C. Subsequent to the substrate cleaning process, a hard film forming step was performed. The power supply to C1 was interrupted, the supply gas was switched to N2, and the pressure was set to 5 Pa. A bias voltage of 100 V and a power of 150 A were supplied to C2, and a hard film having a C2 composition was coated with approximately 1.5 μm. Subsequently, the power supply to C2 was interrupted, and then 150 A of power was supplied to C3, and the hard coating of the outermost layer of C3 composition was coated by 1.5 μm. Thereafter, the substrate was cooled to approximately 200 ° C. or lower and taken out from the vacuum vessel. The obtained sample was defined as Example 1 of the present invention. Table 1 shows the cleaning conditions before coating, the targets used, and the film formation conditions.

(実施例2)
本発明例2から30、比較例31から37の基材クリーニング処理は、本発明例1の操作手順に準拠した。但し、本発明例16から19、比較例37で使用した基材クリーニング処理の混合ガスは、N2とH2の混合比を90:10とした。クリーニング後の基材温度は、C1に設置する金属ターゲット種により異なるが、略760〜850℃の範囲であった。本発明例2から19の成膜工程も本発明例1の条件に準拠して実施した。特に断りの無い限り本発明例1と同条件で処理した。本発明例20の成膜工程は、炭化物相の直上の層が及ぼす工具の耐久性を比較するために、以下にように実施した。基材のクリーニング処理後、直ちに真空容器内のガスをArとアセチレンの混合比が70:30の混合ガスに置換し、圧力を2Paに設定し、負のバイアス電圧を100V、C2に設置したAlCr合金ターゲットに150Aの電力を供給し、炭化物膜を略1.5μm被覆した。次に、N2ガスに置換し、圧力を5Paに設定し、C3に設置したTiSi合金ターゲットに150Aの電力を供給し、C2とC3金属成分を含有する窒化物皮膜を0.5μm被覆した。次にC2への電力供給を中断し、C3のみの金属成分を含有する窒化物膜を略1μm被覆した後、略200℃以下に基材を冷却して取り出した。成膜前のクリーニング工程は、本発明例1と同一とした。窒化物層の組成が異なる本発明例21〜28の成膜工程は、C2に設置するターゲット組成が異なる以外は本発明例1と同一とした。本発明例29はC3にターゲットを設置しない状態とし、本発明理例30は、C3にCrSiBターゲットを設置して、本発明例1同様に被覆した。
(Example 2)
The substrate cleaning processes of Invention Examples 2 to 30 and Comparative Examples 31 to 37 were in accordance with the operation procedure of Invention Example 1. However, the mixed gas of the substrate cleaning process used in Invention Examples 16 to 19 and Comparative Example 37 had a mixing ratio of N2 and H2 of 90:10. The substrate temperature after cleaning was in the range of about 760 to 850 ° C., although it varied depending on the metal target species installed in C1. The film forming steps of Invention Examples 2 to 19 were also performed in accordance with the conditions of Invention Example 1. Unless otherwise noted, the treatment was performed under the same conditions as Example 1 of the present invention. The film forming process of Invention Example 20 was performed as follows in order to compare the durability of the tool exerted by the layer immediately above the carbide phase. Immediately after the cleaning process of the substrate, the gas in the vacuum vessel is replaced with a mixed gas of Ar: acetylene mixing ratio of 70:30, the pressure is set to 2 Pa, the negative bias voltage is set to 100 V, and C2 is set to AlCr A power of 150 A was supplied to the alloy target, and the carbide film was coated with approximately 1.5 μm. Next, the gas was replaced with N 2 gas, the pressure was set to 5 Pa, 150 A power was supplied to the TiSi alloy target placed on C 3, and a nitride film containing C 2 and C 3 metal components was coated by 0.5 μm. Next, power supply to C2 was interrupted, and a nitride film containing only the metal component of C3 was coated with about 1 μm, and then the substrate was cooled to about 200 ° C. or lower and taken out. The cleaning process before film formation was the same as that of Example 1 of the present invention. The film formation process of Invention Examples 21 to 28 having different nitride layer compositions was the same as that of Invention Example 1 except that the target composition placed on C2 was different. In Invention Example 29, no target was set on C3, and in Example 30 of the invention, a CrSiB target was set on C3 and coated in the same manner as Example 1.

被覆した工具基材を用い、基材と硬質皮膜との界面の断面を日本電子製の電界放射型透過電子顕微鏡(以下、FE−TEMと記す。)を用い、加速電圧200kVで観察した。各相、各層の結晶構造、結晶成長方向、炭化物相と硬質皮膜とのエピタキシャルの状態の有無を調査するために、制限視野回折像又は電子線回折像を撮影した。W改質相、炭化物相の概略の組成はFE−TEM付属のエネルギー分散形X線分析装置(以下、EDSと記す。)により決定した。T1値、T2値、H値、E値は断面FE−TEM像から実測したが、電界放射型走査電子顕微鏡(以下、FE−SEMと記す。)による破断面組織写真からも測定可能であった。被覆したX線回折用基材を用い、X線回折による解析を行った。X線回折の条件は、管電圧120kV、管電流40μm、X線源Cukα、X線入射角5度、X線入射スリット0.4mm、2θを20〜70度の測定条件で実施した。X線回折結果から、結晶構造、最大強度面指数、配向強度比、格子定数を決定した。T1値が100nm以下の結晶構造を決定するためには、十分なX線強度が得られない場合があるため、FE−TEMによる電子線回折結果を優先した。本発明例1〜30のW改質相の結晶構造はbcc構造、炭化物相はfcc構造を有した。W改質相、炭化物相の評価結果を表2に示す。   Using the coated tool base material, the cross section of the interface between the base material and the hard film was observed with an acceleration voltage of 200 kV using a field emission transmission electron microscope (hereinafter referred to as FE-TEM) manufactured by JEOL. In order to investigate each phase, the crystal structure of each layer, the crystal growth direction, and the presence or absence of an epitaxial state between the carbide phase and the hard film, a limited-field diffraction image or an electron beam diffraction image was taken. The approximate composition of the W modified phase and the carbide phase was determined by an energy dispersive X-ray analyzer attached to FE-TEM (hereinafter referred to as EDS). T1 value, T2 value, H value, and E value were measured from a cross-sectional FE-TEM image, but were also measurable from a fractured surface structure photograph by a field emission scanning electron microscope (hereinafter referred to as FE-SEM). . Using the coated base material for X-ray diffraction, analysis by X-ray diffraction was performed. The X-ray diffraction conditions were a tube voltage of 120 kV, a tube current of 40 μm, an X-ray source Cukα, an X-ray incident angle of 5 degrees, an X-ray incident slit of 0.4 mm, and 2θ under measurement conditions of 20 to 70 degrees. From the X-ray diffraction results, the crystal structure, maximum intensity plane index, orientation strength ratio, and lattice constant were determined. In order to determine a crystal structure having a T1 value of 100 nm or less, sufficient X-ray intensity may not be obtained. Therefore, priority was given to the result of electron beam diffraction by FE-TEM. In the inventive examples 1 to 30, the W-modified phase had a bcc structure and the carbide phase had an fcc structure. Table 2 shows the evaluation results of the W modified phase and the carbide phase.

次に被覆した工具基材を用い、硬質皮膜の組成を波長分散型電子線プローブ微小分析(以下、WDS−EPMAと記す。)により、加速電圧10kV、試料電流5×10−8A、取り込み時間10秒、分析領域直径1μm、分析深さが略1μmの測定条件で5点測定し、その平均値を求めた。数値は、原子比で全体を100として示す。被覆した残留応力測定用基材を用い残留応力を化1から決定した。ここで、Eが517.54GPa、vが0.238、Dが試験片の厚み、δが試験片のたわみ量、dが皮膜全体の厚み、Lは最大たわみ量までの長さである。これらの測定結果を表3に示す。   Next, using the coated tool base material, the composition of the hard coating was analyzed by wavelength dispersive electron beam probe microanalysis (hereinafter referred to as WDS-EPMA), an acceleration voltage of 10 kV, a sample current of 5 × 10-8 A, and an acquisition time of 10 Second, an analysis region diameter of 1 μm and an analysis depth of about 1 μm were measured at five points, and the average value was obtained. Numerical values are shown as 100 in terms of atomic ratio. Residual stress was determined from Formula 1 using the coated residual stress measurement substrate. Here, E is 517.54 GPa, v is 0.238, D is the thickness of the test piece, δ is the deflection amount of the test piece, d is the thickness of the entire film, and L is the length up to the maximum deflection amount. These measurement results are shown in Table 3.

図1に、本発明例1の基材と硬質皮膜間の断面における界面構造を観察した断面FE−TEM写真を示す。工具基材(1)と硬質皮膜(4)の界面に工具基材(1)と粒子径が異なる層状のW改質相(2)、層状の炭化物相(3)が観察された。図2は、図1とは別視野の工具基材(1)と硬質皮膜の界面近傍の断面TEM写真を示す。図2から図1と同様に、層状で粒子状のW改質相(2)がより明確に観察され、W改質相(2)は工具基材(1)と明らかに粒子径が異なる。図3に、図2の暗視野STEM像を示す。図3中のスポット番号1〜6の直径1nmφのEDS分析を実施した。EDS分析は夫々W−Lα、C−Kα、Co−Kα、Ti−Kα、Cr−Kαを使用した。EDS分析結果から、図1、2に示すW改質相(2)はW、炭化物相(3)はTiCであった。図4に、図1、2に示すW改質相(2)をビーム径20nmで撮影した電子線回折写真を示す。W改質相は電子線回折写真とEDS分析結果から、結晶構造がbcc構造のWであった。図5に、図1、2に示す炭化物相(3)の制限視野領域140nmの制限視野回折写真を示す。炭化物相は先のEDS分析結果と合わせ、結晶構造がfcc構造のTiCであった。
図6に、炭化物相と窒化物層の界面近傍の断面TEM写真を示す。図6の中に、スポット番号9の炭化物相、スポット番号10の皮膜付近の制限視野領域140nmの[110]入射制限視野回折を左上と左下に夫々示す。炭化物相と窒化物層はfcc構造であり、窒化物層と炭化物相とも同一回折パターンであり、結晶成長方向も[−111]〜[−113]方向、又はこれに等価な方向として同一あることから、炭化物相と窒化物層はエピタキシャルの関係にあることを確認した。また、EDS分析結果から、W改質相と工具基材の界面付近は、W、Co、Ti、Cr等が固溶した炭化物相を形成し、結合力を高めていた。W改質相の形成は、工具基材内のWCがTiイオンの衝突により、WCのCがTiと結合し、TiC相を形成したものであるが、夫々工具基材とW改質相、W改質相と炭化物相は、拡散を伴った結合に加えて、化合物を形成している。特に、結晶構造がbcc構造のW改質相の形成は、皮膜全体の残留圧縮応力の低減に有効であった。また炭化物相と窒化物層は、エピタキシャルな成長であり、本発明例1は極めて強固な結合を達成していた。一方、比較例31は、W、Ti、C、Coの組成混合層、又は工具基材成分と皮膜成分の組成傾斜領域が確認されるに留まり、W改質相、炭化物相の形成はなかった。比較例32は、工具基材と皮膜の界面構造は全く確認されなかった。工具基材のWCは結晶構造がhcp構造であり、fcc構造を有する皮膜と結晶構造が異なること、また工具基材内のCo上に成長する皮膜は、fcc構造を有する皮膜と結晶構造が異なる上に、多結晶の皮膜粒子が成長する傾向にあることから、密着強度に乏しかった。
図7に本発明例1、比較例31、32のX線回折結果を示す。本発明例1は、W改質相によるbcc構造のWの(110)面の回折強度が認められたが、比較例31、32には無かった。更に確認のため被覆前処理のみを施した試料を準備し、表面近傍の構造解析を行った。その結果、本発明例1は、結晶構造がbcc構造のW改質相、fcc構造のTiC相の存在が明瞭に観察され、W改質相は(110)面に最も強く配向し、(211)、(200)の順番に回折強度が高く、またTiC相は(200)面に最大回折強度を示したが、比較例31は、W改質相、炭化物相が無かった。
In FIG. 1, the cross-sectional FE-TEM photograph which observed the interface structure in the cross section between the base material of this invention example 1 and a hard film is shown. A layered W-modified phase (2) and a layered carbide phase (3) having a particle diameter different from that of the tool substrate (1) were observed at the interface between the tool substrate (1) and the hard coating (4). FIG. 2 shows a cross-sectional TEM photograph in the vicinity of the interface between the tool base material (1) and the hard coating having a different field of view from FIG. Similar to FIGS. 2 to 1, the layered and particulate W-modified phase (2) is more clearly observed, and the W-modified phase (2) is clearly different in particle size from the tool substrate (1). FIG. 3 shows the dark field STEM image of FIG. An EDS analysis with a diameter of 1 nmφ of spot numbers 1 to 6 in FIG. 3 was performed. For EDS analysis, W-Lα, C-Kα, Co-Kα, Ti-Kα, and Cr-Kα were used, respectively. From the EDS analysis results, the W-modified phase (2) shown in FIGS. 1 and 2 was W, and the carbide phase (3) was TiC. FIG. 4 shows an electron diffraction photograph of the W-modified phase (2) shown in FIGS. 1 and 2 taken with a beam diameter of 20 nm. From the electron diffraction photograph and the EDS analysis result, the W-modified phase was W having a bcc structure. FIG. 5 shows a limited field diffraction photograph of the carbide phase (3) shown in FIGS. The carbide phase was TiC having the fcc structure in accordance with the previous EDS analysis result.
FIG. 6 shows a cross-sectional TEM photograph near the interface between the carbide phase and the nitride layer. In FIG. 6, the [110] incident limited field diffraction of the carbide phase of spot number 9 and the limited field region of 140 nm near the film of spot number 10 is shown in the upper left and lower left, respectively. The carbide phase and the nitride layer have an fcc structure, the nitride layer and the carbide phase have the same diffraction pattern, and the crystal growth directions are the same as the [−111] to [−113] directions or equivalent directions. From this, it was confirmed that the carbide phase and the nitride layer have an epitaxial relationship. From the EDS analysis results, a carbide phase in which W, Co, Ti, Cr, etc. were dissolved was formed near the interface between the W-modified phase and the tool substrate, and the bonding strength was increased. The W-modified phase is formed by the WC in the tool base material being bonded to Ti by the collision of Ti ions, and the WC C is combined with Ti to form a TiC phase. The W-modified phase and the carbide phase form a compound in addition to bonding with diffusion. In particular, the formation of a W-modified phase having a bcc crystal structure was effective in reducing the residual compressive stress of the entire film. The carbide phase and the nitride layer were epitaxially grown, and Example 1 of the present invention achieved extremely strong bonding. On the other hand, in Comparative Example 31, the composition mixed layer of W, Ti, C, Co, or the composition gradient region of the tool base component and the coating component was confirmed, and no W-modified phase or carbide phase was formed. . In Comparative Example 32, no interface structure between the tool base material and the film was confirmed. The WC of the tool base has an hcp crystal structure, and the crystal structure is different from the film having the fcc structure, and the film grown on Co in the tool base has a crystal structure different from the film having the fcc structure. Furthermore, since the polycrystalline coating particles tend to grow, the adhesion strength was poor.
FIG. 7 shows the X-ray diffraction results of Example 1 of the present invention and Comparative Examples 31 and 32. In Example 1 of the present invention, the diffraction intensity of the (110) plane of W having a bcc structure due to the W-modified phase was observed, but not in Comparative Examples 31 and 32. Further, for confirmation, a sample subjected only to the coating pretreatment was prepared, and the structural analysis in the vicinity of the surface was performed. As a result, in Example 1 of the present invention, the presence of a W-modified phase having a bcc structure and a TiC phase having an fcc structure was clearly observed, and the W-modified phase was most strongly oriented in the (110) plane, and (211 ) And (200) in the order of diffraction intensity, and the TiC phase showed the maximum diffraction intensity on the (200) plane, but Comparative Example 31 had no W-modified phase and no carbide phase.

(実施例3)
得られた被覆工具及び基材を用い、工具の耐久性を以下の条件で評価した。工具寿命を工具の逃げ面摩耗幅が0.1mmに達したときの切削長(m)とし、工具の耐久性を評価し、200m以上の切削長を示す被覆工具が本願発明の効果を発揮できたと判断した。切削長は10m未満の値は四捨五入して示した。評価結果を表3に併記した。
(試験条件)
工具:2枚刃ボールエンドミルインサート、半径5mm
被削材:SKD11、硬さHRC60
切り込み:軸方向、0.2mm、径方向、0.2mm
回転数:8000/分
テーブル送り量:2000mm/分
一刃当たりの送り量:0.1mm/刃
切削油:なし、エアブロー
(Example 3)
Using the obtained coated tool and base material, the durability of the tool was evaluated under the following conditions. The tool life is defined as the cutting length (m) when the flank wear width of the tool reaches 0.1 mm, the durability of the tool is evaluated, and a coated tool having a cutting length of 200 m or more can exert the effect of the present invention. Judged that. Cutting lengths less than 10 m are rounded off. The evaluation results are also shown in Table 3.
(Test conditions)
Tool: 2-flute ball end mill insert, radius 5 mm
Work material: SKD11, hardness HRC60
Cutting: axial direction, 0.2 mm, radial direction, 0.2 mm
Number of revolutions: 8000 / min Table feed rate: 2000 mm / min Feed rate per blade: 0.1 mm / blade Cutting oil: None, air blow

表3より本発明例1〜3と比較例31〜35を比較した結果、本発明例は皮膜と基材の密着強度が改善され、皮膜剥離が低減し、工具の耐久性、耐摩耗性の改善に有効であった。C1のターゲット材種は、本発明例1のTi、本発明例2のZr、本発明例3のHfを使用する場合において、W改質相、炭化物相の形成が確認できた。一方、比較例33のCr、比較例34のV、比較例35のTiAlでは、W改質相は形成されなかった。Cr、V、TiAlを用いた場合は、Ti、Zr、Hfを用いる場合に比べて基材の温度上昇が低く、W改質相の形成には至らなかったと考えられる。切削距離を比較すると、本発明例1〜3が200〜300mであるのに対し、比較例33〜35は140m未満であり、本発明例は工具の耐久性に優れた。これは、本発明例1〜3はW改質相の形成により、皮膜全体の残留圧縮応力が2.1〜2.5GPaまで低減され、密着強度が改善された。しかし、比較例33〜35は3.5〜3.9GPaであった。
T1値、T2値の及ぼす工具の耐久性の影響を考察するために、本発明例1、4〜10を比較した。T1値が5〜1000nmへ増加するに従い、I(200)/I(110)値、I(210)/I(110)値、格子定数、E値、T2値が増加する傾向にあった。また、T1値が10〜200nmの範囲で切削距離は300m以上の切削距離を示したことから、より最適なT1値であった。
成膜前のクリーニング工程のガス種、ガス流量が及ぼす工具の耐久性を考察するために、本発明例1、11〜19、比較例36〜37を比較した。本発明例11、12を比較すると、H2ガスを用いることにより、基材と皮膜の剥離が抑制され密着強度を高めることによって切削距離が長くなった。Arガスのみを用いた本発明例11は高周波グロー放電発光分析結果から、基材と皮膜の界面近傍に微量の酸素元素や冶具成分の1部である鉄元素が確認された。そこで、H2ガスとの混合ガスを使用した本発明例12は、界面の不純物濃度を低減でき、密着強度改善に有効であると考えられる。ArとH2の混合ガス流量、N2とH2の混合ガス流量の増加に伴い、T1値が減少し、同時にW改質相の(200)、(210)面のX線強度が高くなり、最大強度面指数、I(200)/I(110)値、I(210)/I(110)値、格子定数が増加し、E値、H/E値、T2値が減少する傾向にあった。ArとH2の混合ガス流量が500sccmの比較例36、N2とH2の混合ガス流量が1000sccmの比較例37は伴に、W改質相、炭化物相の形成が確認されなかった。比較例36はbcc構造のTi金属層、比較例37はfcc構造のTi窒化物層が確認された。しかし、Ti金属層、Ti窒化物層は、基材と皮膜界面の密着性が不十分のため工具の耐久性を改善できなかった。本発明例1、11〜19の耐久性評価結果から、切削距離が300m以上のものが、特に工具基材と皮膜界面からの剥離が少なく本願発明の好ましい形態であり、T1値が10〜300nm、I(200)/I(110)値が0.10〜0.18、I(210)/I(110)値が0.20〜0.27、格子定数が0.3150〜0.3160nm、E値が40nm以下、H/E値が1〜7、T2値が20〜300nmの範囲とすることにより、切削初期の皮膜剥離が低減し、密着強度が高いことを示した。
炭化物相の直上の層が及ぼす工具の耐久性を考察するために、本発明例1と20を比較した。本発明例20は、炭化物相の直上の層が非晶質相となったため、炭化物相とのエピタキシャル成長が確認されなかった。そのためfcc構造の窒化物層の場合に比べて基材と皮膜界面での剥離が多く、工具耐久性が低下した。
窒化物層の組成が及ぼす工具の耐久性を考察した。AlとCrの窒化物である本発明例1に対して、Siを添加した本発明例21は1.2倍の切削距離を示した。よって本願発明の好ましい形態であった。また、Wを添加した本発明例22は1.2倍の切削距離を示し、Nbを添加した本発明例23は1.1倍、Tiを添加した本発明例24は同等、Yを添加した本発明例25は1.2倍、Ceを添加した本発明例26は1.2倍、SiとYを添加した本発明例27は1.4倍、SiとBを添加した本発明例28は1.3倍の切削距離を示した。本発明例29はTiSi系の硬質皮膜が存在しない場合であり、比較例に対して優れるが、硬質皮膜のある方がより工具耐久性が向上した。硬質皮膜がCrSiB系の窒化物を採用した本発明例30は本発明例1に比べ、工具の耐久性に劣っているものの、炭素鋼、合金鋼等を同一切削加工条件で加工した場合、3倍以上の耐久性を示した。
As a result of comparing the inventive examples 1 to 3 and the comparative examples 31 to 35 from Table 3, the inventive example improves the adhesion strength between the film and the substrate, reduces the film peeling, and improves the durability and wear resistance of the tool. It was effective for improvement. When the target material type of C1 was Ti of Invention Example 1, Zr of Invention Example 2, and Hf of Invention Example 3, formation of a W-modified phase and a carbide phase could be confirmed. On the other hand, in the Cr of Comparative Example 33, V of Comparative Example 34, and TiAl of Comparative Example 35, no W-modified phase was formed. When Cr, V, or TiAl is used, it is considered that the temperature rise of the base material is lower than that when Ti, Zr, or Hf is used, and the W-modified phase is not formed. When the cutting distance is compared, Examples 1-3 of the present invention are 200-300 m, whereas Comparative Examples 33-35 are less than 140 m, and the examples of the present invention are excellent in tool durability. In Examples 1 to 3 of the present invention, the residual compressive stress of the entire film was reduced to 2.1 to 2.5 GPa by the formation of the W-modified phase, and the adhesion strength was improved. However, Comparative Examples 33 to 35 were 3.5 to 3.9 GPa.
In order to consider the influence of the durability of the tool on the T1 value and the T2 value, Examples 1 and 4 to 10 of the present invention were compared. As the T1 value increased from 5 to 1000 nm, the I (200) / I (110) value, I (210) / I (110) value, lattice constant, E value, and T2 value tended to increase. Moreover, since the cutting distance showed a cutting distance of 300 m or more when the T1 value was in the range of 10 to 200 nm, it was a more optimal T1 value.
In order to consider the durability of the tool affected by the gas type and gas flow rate in the cleaning process before film formation, Invention Examples 1, 11 to 19, and Comparative Examples 36 to 37 were compared. When Invention Examples 11 and 12 were compared, by using H2 gas, peeling of the substrate and the film was suppressed, and the cutting strength was increased by increasing the adhesion strength. In Invention Example 11 using only Ar gas, from a result of high-frequency glow discharge emission analysis, a trace amount of oxygen element and iron element which is a part of the jig component were confirmed in the vicinity of the interface between the base material and the film. Therefore, Example 12 of the present invention using a mixed gas with H 2 gas can reduce the impurity concentration at the interface and is considered to be effective in improving the adhesion strength. As the mixed gas flow rate of Ar and H2, and the mixed gas flow rate of N2 and H2, the T1 value decreases, and at the same time, the X-ray intensity of the (200) and (210) planes of the W reforming phase increases, and the maximum intensity The surface index, I (200) / I (110) value, I (210) / I (110) value, and lattice constant increased, and the E value, H / E value, and T2 value tended to decrease. In Comparative Example 36 in which the mixed gas flow rate of Ar and H2 was 500 sccm, and in Comparative Example 37 in which the mixed gas flow rate of N2 and H2 was 1000 sccm, formation of a W reforming phase and a carbide phase was not confirmed. The comparative example 36 was confirmed to be a Ti metal layer having a bcc structure, and the comparative example 37 was confirmed to be a Ti nitride layer having an fcc structure. However, the durability of the tool could not be improved because the Ti metal layer and the Ti nitride layer had insufficient adhesion between the substrate and the film interface. From the durability evaluation results of Invention Examples 1 and 11 to 19, those having a cutting distance of 300 m or more are a preferable embodiment of the present invention with particularly less peeling from the tool base and the film interface, and the T1 value is 10 to 300 nm. , I (200) / I (110) value is 0.10 to 0.18, I (210) / I (110) value is 0.20 to 0.27, lattice constant is 0.3150 to 0.3160 nm, By setting the E value to 40 nm or less, the H / E value to 1 to 7, and the T2 value to 20 to 300 nm, it was shown that the film peeling at the initial stage of cutting was reduced and the adhesion strength was high.
In order to examine the durability of the tool exerted by the layer immediately above the carbide phase, Examples 1 and 20 of the present invention were compared. In Invention Example 20, since the layer immediately above the carbide phase became an amorphous phase, epitaxial growth with the carbide phase was not confirmed. For this reason, there were many peelings at the interface between the base material and the film as compared with the case of the nitride layer having the fcc structure, and the tool durability was lowered.
The durability of the tool due to the composition of the nitride layer was considered. Inventive Example 21, to which Si was added, showed a cutting distance of 1.2 times that of Inventive Example 1 which is a nitride of Al and Cr. Therefore, this is a preferred embodiment of the present invention. Inventive Example 22 to which W was added showed a cutting distance of 1.2 times, Inventive Example 23 to which Nb was added was 1.1 times, Inventive Example 24 to which Ti was added was equivalent, and Y was added. Invention Example 25 is 1.2 times, Invention Example 26 with Ce added is 1.2 times, Invention Example 27 with Si and Y added is 1.4 times, Invention Example 28 with Si and B added Showed 1.3 times the cutting distance. Invention Example 29 is a case where no TiSi-based hard coating is present, and is superior to the comparative example, but the tool durability was improved more with the hard coating. Inventive Example 30, in which the hard coating employs a CrSiB-based nitride, is inferior in tool durability to Inventive Example 1, but when carbon steel, alloy steel, etc. are processed under the same cutting conditions, 3 It was more than twice as durable.

(実施例4)
本発明例38の作成方法を述べる。超硬合金製の基材は、組成がwt%で、Co:8%、Cr:0.5%、VC:0.3%、残部WC及び不可避不純物であり、WC平均粒度0.6μm、硬度はHRA93.9の2枚刃ボールエンドミルインサート、R:5mmを準備した。X線回折用基材として、実施例1と同じ形状の試験片を準備した。基材のクリーニング条件は、ArとH2の混合比が95:5の混合ガスを使用した以外は実施例1と同じである。基材のクリーニング処理に続いて、硬質皮膜の成膜工程を実施した。C1への電力供給を中断し、供給ガスをN2に切り替え、圧力を5Paに設定した。バイアス電圧を150V、C2に150Aの電力を供給し、C2組成の硬質皮膜を略3μm被覆した。その後、略200℃以下に基材を冷却し、真空容器から取り出した。得られた試料を本発明例38とした。他の本発明例39から62も、断りのない限り上記方法に準拠して作成した。
本発明例39〜43、比較例63〜65は、成膜前のクリーニング処理において、ArとH2の混合比が95:5の混合ガス流量が及ぼす工具の耐久性の影響を比較するために、流量が0〜1000sccmの範囲に設定した。ArとH2の混合ガス流量以外の成膜前、成膜後の製造方法は本発明例38と同一とした。同様に、本発明例44〜47、比較例66は、ArとH2の混合比の影響を比較するために混合比を変えて作成し、本発明例48〜52、比較例67は、ArとN2の混合比が95:5の混合ガス流量の影響を比較するために、流量を10〜1000sccmの範囲で変化させて作成した。本発明例53、54、比較例68〜70は、バイアス電圧の影響を比較するために、500〜1200Vの範囲で変化させて作成した。特に本発明例53は、600V、30分間のクリーニング処理を、本発明例54は、800V、15分間のクリーニング処理を実施した。本発明例55〜58、比較例71〜74は、成膜前の金属ボンバードにおいて、C1ターゲット成分の影響を比較するために作成した。本発明例60〜62、比較例75、76は、成膜バイアス電圧の影響を比較するために、10〜400Vの範囲で作成した。特に本発明例59は、成膜ターゲットにTiAlを用いた。被覆前のクリーニング条件、使用したターゲットと成膜条件を表4に、W改質相、炭化物相と工具寿命の評価結果を表5に示す。
Example 4
A method of producing Example 38 of the present invention will be described. The base material made of cemented carbide has a composition of wt%, Co: 8%, Cr: 0.5%, VC: 0.3%, balance WC and inevitable impurities, WC average particle size 0.6 μm, hardness Prepared HRA93.9, 2-flute ball end mill insert, R: 5 mm. A test piece having the same shape as that of Example 1 was prepared as an X-ray diffraction base material. The substrate cleaning conditions were the same as in Example 1 except that a mixed gas having a mixing ratio of Ar and H2 of 95: 5 was used. Subsequent to the substrate cleaning process, a hard film forming step was performed. The power supply to C1 was interrupted, the supply gas was switched to N2, and the pressure was set to 5 Pa. A bias voltage of 150 V and a power of 150 A were supplied to C2, and a hard film having a C2 composition was coated by about 3 μm. Thereafter, the substrate was cooled to approximately 200 ° C. or lower and taken out from the vacuum vessel. The obtained sample was determined as Example 38 of the present invention. Other inventive examples 39 to 62 were also prepared according to the above method unless otherwise noted.
Inventive Examples 39 to 43 and Comparative Examples 63 to 65 are for comparing the influence of tool durability exerted by the mixed gas flow rate of 95: 5 on the mixing ratio of Ar and H2 in the cleaning process before film formation. The flow rate was set in the range of 0 to 1000 sccm. Except for the mixed gas flow rate of Ar and H2, the manufacturing method before and after film formation was the same as that of Example 38 of the present invention. Similarly, Examples 44 to 47 of the present invention and Comparative Example 66 were prepared by changing the mixing ratio in order to compare the influence of the mixing ratio of Ar and H2, and Examples 48 to 52 of the present invention and Comparative Example 67 were compared with Ar. In order to compare the influence of the mixed gas flow rate with a mixing ratio of N2 of 95: 5, the flow rate was changed in the range of 10 to 1000 sccm. Inventive Examples 53 and 54 and Comparative Examples 68 to 70 were prepared by changing in the range of 500 to 1200 V in order to compare the influence of the bias voltage. In particular, Invention Example 53 was subjected to a cleaning process of 600 V for 30 minutes, and Invention Example 54 was subjected to a cleaning process of 800 V for 15 minutes. Invention Examples 55-58 and Comparative Examples 71-74 were prepared in order to compare the influence of the C1 target component in the metal bombardment before film formation. Invention Examples 60 to 62 and Comparative Examples 75 and 76 were prepared in the range of 10 to 400 V in order to compare the influence of the film forming bias voltage. In particular, Example 59 of the present invention used TiAl as a film formation target. Table 4 shows the cleaning conditions before coating, the target used and the film formation conditions, and Table 5 shows the evaluation results of the W-modified phase, carbide phase and tool life.

得られた被覆工具及び基材を用い、実施例3と同様の条件で工具の耐久性を評価した。まず、成膜前の基材クリーニングにおいて、C1ターゲット成分の影響を比較した。C1組成がTi、Zr、Hf、Nb、Ta、Cr、Al、V、TiAlをもちいた本発明例38、55〜58、比較例71〜74の工具の耐久性を比較した。C1が、Ti、Zr、Hf、Nb、Taの場合、工具基材温度が800℃以上に達し、W改質相が形成され、工具の耐久性が向上した。一方、C1が、Cr、Al、V、TiAlでは、基材温度が800℃に到達せず、W改質相の形成が認められず、工具の耐久性を向上させることができなかった。
次に、成膜前のクリーニング工程のガス流量、混合比、ガス種が及ぼす工具の耐久性を考察するために、本発明例、比較例の工具の耐久性を比較した。まず、ArとH2の混合ガス流量が10〜400sccmの本発明例38〜43は、比較例に比べ2.3倍以上の耐久性を示した。これは、W改質相が形成され、工具基材と硬質皮膜の密着強度が向上した結果である。W改質相は、ArとH2の混合ガス流量が多くなるほど、T1値が減少する傾向にあった。混合ガス流量が0.5sccmの比較例63、64は、工具の耐久性が向上しなかった。これは、工具基材の温度が何れも780℃と800℃未満であり、W改質相が形成されなかったためである。同様に、混合ガス流量が1000sccmの比較例65は硬質皮膜の剥離が多く観察され、工具の耐久性が向上しなかった。これは、工具基材の温度が870℃まで上昇してしまったためである。また、ArとH2の混合ガスの混合比を変化させて工具の耐久性を比較した。混合ガス流量が20sccmでも、H2を含有しない比較例66は、W改質相が形成されず、工具の耐久性が向上しなかった。これは、工具基材と硬質皮膜の界面で酸素や鉄等の不純物元素が多く観察されたことから、界面でのW改質相の形成を妨げられたものと考えられた。W改質相の形成にはH2添加が有効であることが分かった。またH2含有率が増加するに従ってT1値が大きくなる傾向を示し、H2添加がW改質相の形成を促進しているものと考えられる。しかしながら、安全性に配慮して、体積比で20%以下であることが好ましい。但し、特別な排気設備を有する場合はH2含有量が高いことがより短時間でW改質相を形成できる。更に、N2とH2の混合ガス流量の影響を比較するために、本発明例48〜52、比較例67の工具の耐久性を比較した。N2とH2の混合ガスの場合でも、ArとH2の混合ガスの場合同様にW改質相が形成され、工具の耐久性が向上した。
成膜前のクリーニング工程において、P1値(V)の影響を比較するために、本発明例53、54、比較例68〜70の工具の耐久性を比較した。P1値が600V未満の比較例68では、処理時間を延長させても、工具基材温度が800℃に到達せず、W改質相が形成しないため工具の耐久性を向上させることができなかった。一方、P1値が1100V以上では、工具基材温度が870℃以上、T1値が400nm以上となり、切削中にW改質相から硬質皮膜が剥離し、工具の耐久性を向上させることができなかった。
成膜中のP2値(V)の影響を比較するために、本発明例60〜62、比較例75、76の工具の耐久性を比較した。P2値が20〜300Vの範囲では、工具の耐久性が向上した。一方、P2値が10Vの比較例75は、工具摩耗の進行と剥離が同時に進行し、またP2値が400Vの比較例76は特に剥離が多く認められ、工具の耐久性が向上しなかった。成膜時ターゲットC2にTiAlを用いて本発明例59を作成して工具の耐久性を比較した。AlとCrの窒化物の方がTiとAlの窒化物よりも、耐熱性、耐摩耗性に優れ、工具基材との密着強度にも優れていた。
The durability of the tool was evaluated under the same conditions as in Example 3 using the obtained coated tool and substrate. First, the influence of the C1 target component was compared in the substrate cleaning before film formation. The durability of the tools of Invention Examples 38, 55-58 and Comparative Examples 71-74 using C1, Ti, Zr, Hf, Nb, Ta, Cr, Al, V, and TiAl were compared. When C1 was Ti, Zr, Hf, Nb, and Ta, the tool base material temperature reached 800 ° C. or higher, a W-modified phase was formed, and the durability of the tool was improved. On the other hand, when C1 was Cr, Al, V, or TiAl, the substrate temperature did not reach 800 ° C., the formation of a W-modified phase was not observed, and the durability of the tool could not be improved.
Next, in order to consider the durability of the tool affected by the gas flow rate, the mixing ratio, and the gas type in the cleaning process before film formation, the durability of the tool of the present invention example and the comparative example was compared. First, the inventive examples 38 to 43 having a mixed gas flow rate of Ar and H 2 of 10 to 400 sccm showed 2.3 times or more durability as compared with the comparative example. This is a result of the W-modified phase being formed and the adhesion strength between the tool substrate and the hard coating being improved. In the W reforming phase, the T1 value tended to decrease as the mixed gas flow rate of Ar and H2 increased. In Comparative Examples 63 and 64 having a mixed gas flow rate of 0.5 sccm, the durability of the tool was not improved. This is because the temperature of the tool base was 780 ° C. and less than 800 ° C., and the W-modified phase was not formed. Similarly, in Comparative Example 65 where the mixed gas flow rate was 1000 sccm, many peelings of the hard film were observed, and the durability of the tool was not improved. This is because the temperature of the tool base has increased to 870 ° C. Further, the durability of the tools was compared by changing the mixing ratio of the mixed gas of Ar and H2. Even if the mixed gas flow rate was 20 sccm, in Comparative Example 66 not containing H2, the W-modified phase was not formed, and the durability of the tool was not improved. This was thought to be because the formation of a W-modified phase at the interface was hindered because many impurity elements such as oxygen and iron were observed at the interface between the tool base and the hard coating. It has been found that H2 addition is effective for the formation of the W modified phase. Further, the T1 value tends to increase as the H2 content increases, and it is considered that the addition of H2 promotes the formation of the W reforming phase. However, in consideration of safety, the volume ratio is preferably 20% or less. However, when a special exhaust facility is provided, a high H2 content can form the W reforming phase in a shorter time. Furthermore, in order to compare the influence of the mixed gas flow rate of N2 and H2, the durability of the tools of Examples 48 to 52 and Comparative Example 67 of the present invention was compared. Even in the case of a mixed gas of N2 and H2, a W-modified phase was formed in the same manner as in the case of a mixed gas of Ar and H2, and the durability of the tool was improved.
In order to compare the influence of the P1 value (V) in the cleaning step before film formation, the durability of the tools of Invention Examples 53 and 54 and Comparative Examples 68 to 70 were compared. In Comparative Example 68 where the P1 value is less than 600 V, the tool base temperature does not reach 800 ° C. even when the processing time is extended, and the W modified phase is not formed, so the durability of the tool cannot be improved. It was. On the other hand, when the P1 value is 1100 V or more, the tool base material temperature is 870 ° C. or more, and the T1 value is 400 nm or more, and the hard film peels off from the W-modified phase during cutting, and the durability of the tool cannot be improved. It was.
In order to compare the influence of the P2 value (V) during film formation, the durability of the tools of Invention Examples 60 to 62 and Comparative Examples 75 and 76 were compared. When the P2 value was in the range of 20 to 300 V, the durability of the tool was improved. On the other hand, in Comparative Example 75 having a P2 value of 10 V, the progress of tool wear and peeling progressed simultaneously, and in Comparative Example 76 having a P2 value of 400 V, particularly peeling was observed, and the durability of the tool was not improved. Invention Example 59 was prepared using TiAl as the target C2 during film formation, and tool durability was compared. The nitride of Al and Cr was superior in heat resistance and wear resistance to the nitride of Ti and Al, and the adhesion strength with the tool substrate was also excellent.

図1は、本発明例1の皮膜界面の断面TEM写真を示す。FIG. 1 shows a cross-sectional TEM photograph of the film interface of Example 1 of the present invention. 図2は、本発明例1の皮膜界面の断面TEM写真を示す。FIG. 2 shows a cross-sectional TEM photograph of the film interface of Example 1 of the present invention. 図3は、図2の暗視野STEM写真を示す。FIG. 3 shows a dark field STEM photograph of FIG. 図4は、図3に示す炭化物相の電子線回折を示す。FIG. 4 shows electron beam diffraction of the carbide phase shown in FIG. 図5は、図3に示す炭化物相の制限視野回折を示す。FIG. 5 shows limited field diffraction of the carbide phase shown in FIG. 図6は、炭化物相と窒化物層の界面近傍の断面TEM写真を示す。FIG. 6 shows a cross-sectional TEM photograph near the interface between the carbide phase and the nitride layer. 図7は、本発明例1、比較例31、32のX線回折を示す。FIG. 7 shows X-ray diffraction of Example 1 of the present invention and Comparative Examples 31 and 32.

符号の説明Explanation of symbols

1:工具基材
2:W改質相
3:炭化物相
4:硬質皮膜
1: Tool base material 2: W modified phase 3: Carbide phase 4: Hard coating

Claims (16)

WC基超硬合金を基材とする工具に硬質皮膜を被覆した被覆工具において、該基材の表面の結晶構造がbcc構造からなるW改質相を有し、該W改質相の直上に炭化物相、該炭化物相の直上に硬質皮膜を有することを特徴とする被覆工具。 In a coated tool in which a hard film is coated on a tool based on a WC-based cemented carbide, the crystal structure of the surface of the substrate has a W-modified phase having a bcc structure, and is directly above the W-modified phase. A coated tool comprising a carbide phase and a hard coating directly on the carbide phase. 請求項1記載の被覆工具において、該W改質相の平均厚さをT1(nm)としたとき、10≦T1≦300、であることを特徴とする被覆工具。 The coated tool according to claim 1, wherein the average thickness of the W-modified phase is T1 (nm), and 10 ≦ T1 ≦ 300. 請求項1又は2記載の被覆工具において、該W改質相はX線回折において(110)面に最大回折強度を有することを特徴とする被覆工具。 The coated tool according to claim 1, wherein the W-modified phase has a maximum diffraction intensity on a (110) plane in X-ray diffraction. 請求項1乃至3何れかに記載の被覆工具において、該W改質相のX線回折における(110)面、(200)面、(210)面の回折強度をI(110)、I(200)、I(210)、としたとき、I(200)/I(110)≧0.1又はI(210)/I(110)≧0.2、であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 3, wherein the diffraction intensity of the (110) plane, the (200) plane, and the (210) plane in the X-ray diffraction of the W-modified phase is I (110), I (200 ), I (210), I (200) / I (110) ≧ 0.1 or I (210) / I (110) ≧ 0.2. 請求項1乃至4何れかに記載の被覆工具において、該W改質相の格子定数(nm)が0.315から0.316、であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 4, wherein the lattice constant (nm) of the W-modified phase is 0.315 to 0.316. 請求項1乃至5何れかに記載の被覆工具において、該W改質相の粒子成長方向に対して垂直方向の粒子長さをE(nm)としたとき、E≦40であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 5, wherein when the particle length in the direction perpendicular to the particle growth direction of the W-modified phase is E (nm), E≤40. Coated tool. 請求項1乃至6何れかに記載の被覆工具において、該W改質相の粒子成長方向の粒子長さをH(nm)としたとき、1≦H/E≦7、であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 6, wherein when the particle length in the particle growth direction of the W-modified phase is H (nm), 1≤H / E≤7. Coated tool. 請求項1乃至7何れかに記載の被覆工具において、該炭化物相がTiCであることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 7, wherein the carbide phase is TiC. 請求項1乃至8何れかに記載の被覆工具において、該炭化物相の厚さをT2(nm)としたとき、20≦T2≦300であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 8, wherein when the thickness of the carbide phase is T2 (nm), 20≤T2≤300. 請求項1乃至9何れかに記載の被覆工具において、該硬質皮膜は窒化物であり、結晶構造がfcc構造であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 9, wherein the hard coating is a nitride and the crystal structure is an fcc structure. 請求項1乃至10何れかに記載の被覆工具において、該硬質皮膜の少なくとも1層は、Ti、Cr、W、Nb、Y、Ce、Si、B、から選択される1種以上の元素とAlとを含有する窒化物であることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 10, wherein at least one layer of the hard coating comprises at least one element selected from Ti, Cr, W, Nb, Y, Ce, Si, and B and Al. A coated tool characterized by being a nitride containing 請求項1乃至11何れかに記載の被覆工具において、該炭化物相と該硬質皮膜との界面がエピタキシャルの状態にあることを特徴とする被覆工具。 The coated tool according to any one of claims 1 to 11, wherein an interface between the carbide phase and the hard film is in an epitaxial state. WC基超硬合金を基材とする工具に硬質皮膜を被覆した被覆工具の製造方法において、該製造方法は、アーク放電式蒸発源を配備した成膜装置を用いて、イオンボンバードメント処理を行う第1の工程と、皮膜を形成する第2の工程とからなり、該第1の工程は、該基材に負のバイアス電圧P1、600≦P1≦1000(V)を印加し、圧力0.01〜2Paで、水素ガスを含む混合ガスを用いて、該アーク放電式蒸発源から陰極物質を蒸発させ、陰極物質から蒸発した金属イオンを該基材に照射処理して、該基材の表面温度を800〜860℃の範囲で、該基材表面の結晶構造がbcc構造からなるW改質相を形成し、該第2の工程で該W改質相の直上に該硬質皮膜を成膜することを特徴とする被覆工具の製造方法。 In a method of manufacturing a coated tool in which a hard film is coated on a tool based on a WC-based cemented carbide, the manufacturing method performs ion bombardment using a film forming apparatus provided with an arc discharge evaporation source. It consists of a first step and a second step of forming a film. In the first step, a negative bias voltage P1, 600 ≦ P1 ≦ 1000 (V) is applied to the substrate, and a pressure of 0. Using a mixed gas containing hydrogen gas at 01 to 2 Pa, the cathode material is evaporated from the arc discharge evaporation source, and the substrate is irradiated with metal ions evaporated from the cathode material, and the surface of the substrate In the temperature range of 800 to 860 ° C., a W-modified phase whose crystal structure on the surface of the substrate has a bcc structure is formed, and in the second step, the hard film is formed immediately above the W-modified phase. The manufacturing method of the covering tool characterized by doing. 請求項13記載の被覆工具の製造方法において、該第1の工程で使用する混合ガスの水素ガス体積比率が1から20%であることを特徴とする被覆工具の製造方法。 The method for manufacturing a coated tool according to claim 13, wherein the hydrogen gas volume ratio of the mixed gas used in the first step is 1 to 20%. 請求項13又は14記載の被覆工具の製造方法において、該第1の工程における陰極物質は、Ti、Zr、Hf、Nb、Taから選択される1種以上の金属を用いて該W改質相の平均厚さT1(nm)を10≦T1≦300に設けることを特徴とする被覆工具の製造方法。 15. The method for producing a coated tool according to claim 13 or 14, wherein the cathode material in the first step is one or more metals selected from Ti, Zr, Hf, Nb, and Ta, and uses the W-modified phase. An average thickness T1 (nm) of 10 ≦ T1 ≦ 300 is provided. 請求項13乃至15何れかに記載の被覆工具の製造方法において、該第2の工程の該硬質皮膜は、AlとCrを金属成分とした化合物であり、該基材に負のバイアス電圧P2値を、20≦P2≦300として成膜したことを特徴とする被覆工具の製造方法。 16. The method for manufacturing a coated tool according to claim 13, wherein the hard coating in the second step is a compound containing Al and Cr as metal components, and a negative bias voltage P2 value is applied to the substrate. Is formed as 20 ≦ P2 ≦ 300.
JP2008070651A 2008-02-22 2008-03-19 Coated tool and method for producing coated tool Active JP5098726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008070651A JP5098726B2 (en) 2008-02-22 2008-03-19 Coated tool and method for producing coated tool

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008040805 2008-02-22
JP2008040805 2008-02-22
JP2008070651A JP5098726B2 (en) 2008-02-22 2008-03-19 Coated tool and method for producing coated tool

Publications (2)

Publication Number Publication Date
JP2009220260A true JP2009220260A (en) 2009-10-01
JP5098726B2 JP5098726B2 (en) 2012-12-12

Family

ID=41237608

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008070651A Active JP5098726B2 (en) 2008-02-22 2008-03-19 Coated tool and method for producing coated tool

Country Status (1)

Country Link
JP (1) JP5098726B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013018768A1 (en) 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
WO2013121827A1 (en) * 2012-02-16 2013-08-22 ユケン工業株式会社 Hard coating film and target for forming hard coating film
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
CN103962590A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
JP2015027718A (en) * 2013-06-28 2015-02-12 住友電気工業株式会社 Cutting insert with chip breaker, and turning processing method for hardened steel
CN105008074A (en) * 2013-03-22 2015-10-28 三菱综合材料株式会社 Surface-coated cutting tool
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
JP2016124086A (en) * 2015-01-07 2016-07-11 日立金属株式会社 Coated tool
KR20170003627A (en) 2014-06-02 2017-01-09 미츠비시 히타치 쓰루 가부시키가이샤 Rigid coating film, member coated with rigid coating film, production processes therefor, and target for use in producing rigid coating film
CN106413954A (en) * 2014-04-23 2017-02-15 三菱综合材料株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
JP2019069514A (en) * 2014-06-06 2019-05-09 住友電工ハードメタル株式会社 Surface-coated tool and method for manufacturing the same
WO2019188967A1 (en) * 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool
WO2019188783A1 (en) * 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool
WO2021131232A1 (en) * 2019-12-24 2021-07-01 株式会社Moldino Coated cutting tool
CN113134610A (en) * 2021-04-25 2021-07-20 四川德克普数控机床有限公司 Manufacturing method of rough skin milling cutter and five-axis numerical control grinding machine thereof
WO2024018889A1 (en) * 2022-07-21 2024-01-25 京セラ株式会社 Coated tool and cutting tool

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6102571B2 (en) * 2013-06-28 2017-03-29 三菱マテリアル株式会社 Surface coated cutting tool

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152650A (en) * 1984-01-19 1985-08-10 Daijietsuto Kogyo Kk Sintered hard alloy having superior wear resistance and superior characteristic at high temperature and its manufacture
JPS60155674A (en) * 1984-01-25 1985-08-15 Daijietsuto Kogyo Kk Coated hard alloy
JPH06108254A (en) * 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
JP2003260603A (en) * 2002-03-06 2003-09-16 Mitsubishi Materials Corp Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60152650A (en) * 1984-01-19 1985-08-10 Daijietsuto Kogyo Kk Sintered hard alloy having superior wear resistance and superior characteristic at high temperature and its manufacture
JPS60155674A (en) * 1984-01-25 1985-08-15 Daijietsuto Kogyo Kk Coated hard alloy
JPH06108254A (en) * 1992-09-28 1994-04-19 Mitsubishi Materials Corp Cutting tool made of surface-coated wc-base sintered hard alloy
JP2003260603A (en) * 2002-03-06 2003-09-16 Mitsubishi Materials Corp Surface-covered cemented carbide cutting tool in which hard covered layer demonstrates excellent wear resistance in high-speed cutting

Cited By (36)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2013018768A1 (en) * 2011-08-01 2015-03-05 日立ツール株式会社 Surface-modified WC-based cemented carbide member, hard-coated WC-based cemented carbide member, and methods for producing the same
US9492872B2 (en) 2011-08-01 2016-11-15 Hitachi Tool Engineering, Ltd. Surface-modified, WC-based cemented carbide member, hard-coated, WC-based cemented carbide member, and their production methods
KR101830251B1 (en) * 2011-08-01 2018-02-20 미츠비시 히타치 쓰루 가부시키가이샤 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
CN103717331A (en) * 2011-08-01 2014-04-09 日立工具股份有限公司 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
WO2013018768A1 (en) 2011-08-01 2013-02-07 日立ツール株式会社 Surface-modified wc-based cemented carbide member, hard film-coated wc-based cemented carbide member, method for producing surface-modified wc-based cemented carbide member, and method for producing hard film-coated wc-based cemented carbide member
WO2013121827A1 (en) * 2012-02-16 2013-08-22 ユケン工業株式会社 Hard coating film and target for forming hard coating film
JP5489110B2 (en) * 2012-02-16 2014-05-14 ユケン工業株式会社 Hard film and hard film forming target
JPWO2013121827A1 (en) * 2012-02-16 2015-05-11 ユケン工業株式会社 Hard film and hard film forming target
CN104114739A (en) * 2012-02-16 2014-10-22 油研工业股份有限公司 Hard coating film and target for forming hard coating film
CN104169030A (en) * 2012-03-05 2014-11-26 三菱综合材料株式会社 Surface coating cutting tool
JP2013212574A (en) * 2012-03-05 2013-10-17 Mitsubishi Materials Corp Surface-clad cutting tool
US9440293B2 (en) 2012-03-05 2016-09-13 Mitsubishi Materials Corporation Surface coating cutting tool
WO2013133251A1 (en) * 2012-03-05 2013-09-12 三菱マテリアル株式会社 Surface coating cutting tool
CN103962590A (en) * 2013-01-31 2014-08-06 三菱综合材料株式会社 Surface coated cutting tool and method for manufacturing same
CN105008074A (en) * 2013-03-22 2015-10-28 三菱综合材料株式会社 Surface-coated cutting tool
US9903014B2 (en) 2013-03-22 2018-02-27 Mitsubishi Materials Corporation Surface-coated cutting tool
JP2015027718A (en) * 2013-06-28 2015-02-12 住友電気工業株式会社 Cutting insert with chip breaker, and turning processing method for hardened steel
CN106413954A (en) * 2014-04-23 2017-02-15 三菱综合材料株式会社 Surface-coated cutting tool in which hard coating layer exhibits excellent chipping resistance
US10307830B2 (en) 2014-04-23 2019-06-04 Mitsubishi Materials Corporation Surface-coated cutting tool having hard coating layer that exhibits excellent chipping resistance
JPWO2015178484A1 (en) * 2014-05-23 2017-04-20 株式会社タンガロイ Cemented carbide and coated cemented carbide
WO2015178484A1 (en) * 2014-05-23 2015-11-26 株式会社タンガロイ Cemented carbide alloy and coated cemented carbide alloy
KR20170003627A (en) 2014-06-02 2017-01-09 미츠비시 히타치 쓰루 가부시키가이샤 Rigid coating film, member coated with rigid coating film, production processes therefor, and target for use in producing rigid coating film
US10287672B2 (en) 2014-06-02 2019-05-14 Mitsubishi Hitachi Tool Engineering, Ltd. Hard coating, hard-coated member, their production methods, and target used for producing hard coating
JP2019069514A (en) * 2014-06-06 2019-05-09 住友電工ハードメタル株式会社 Surface-coated tool and method for manufacturing the same
JP2016124086A (en) * 2015-01-07 2016-07-11 日立金属株式会社 Coated tool
WO2019188783A1 (en) * 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool
WO2019188967A1 (en) * 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool
CN111902231A (en) * 2018-03-27 2020-11-06 三菱综合材料株式会社 Surface-coated cutting tool
EP3778080A4 (en) * 2018-03-27 2021-08-18 Mitsubishi Materials Corporation Surface-coated cutting tool
EP3778081A4 (en) * 2018-03-27 2021-08-18 Mitsubishi Materials Corporation Surface-coated cutting tool
WO2021131232A1 (en) * 2019-12-24 2021-07-01 株式会社Moldino Coated cutting tool
JPWO2021131232A1 (en) * 2019-12-24 2021-07-01
CN114829044A (en) * 2019-12-24 2022-07-29 株式会社Moldino Coated cutting tool
JP7164828B2 (en) 2019-12-24 2022-11-02 株式会社Moldino coated cutting tools
CN113134610A (en) * 2021-04-25 2021-07-20 四川德克普数控机床有限公司 Manufacturing method of rough skin milling cutter and five-axis numerical control grinding machine thereof
WO2024018889A1 (en) * 2022-07-21 2024-01-25 京セラ株式会社 Coated tool and cutting tool

Also Published As

Publication number Publication date
JP5098726B2 (en) 2012-12-12

Similar Documents

Publication Publication Date Title
JP5098726B2 (en) Coated tool and method for producing coated tool
EP3225337B1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5111379B2 (en) Cutting tool, manufacturing method thereof and cutting method
JP6428899B2 (en) Method for modifying WC-based cemented carbide substrate
JP4427271B2 (en) Alumina protective film and method for producing the same
JP5967329B2 (en) Hard coating, hard coating covering member, manufacturing method thereof, target used for manufacturing hard coating, and manufacturing method thereof
WO2014157688A1 (en) Coated cutting tool and method for producing same
JP2006281363A (en) Surface coated member and surface coated cutting tool
JP2006152424A (en) Hard film, and hard film-coated cutting tool
JP2011067883A (en) Surface coated cutting tool
CN108136509B (en) Coated cutting tool
JP5555835B2 (en) Surface-coated cutting tool with excellent wear resistance and method for producing the same
JP6555796B2 (en) Coated cutting tool
JP5250706B2 (en) Hard film with excellent wear resistance
JP4253169B2 (en) Hard coating with excellent wear resistance, method for producing the same, cutting tool, and target for forming hard coating
WO2016084939A1 (en) Surface-coated cutting tool with excellent chipping resistance and wear resistance
JP5835308B2 (en) Cemented carbide and surface-coated cutting tool using the same
JP6493800B2 (en) Surface coated cutting tool with excellent wear resistance in high speed cutting
JP4616213B2 (en) Hard coating for cutting tools
JP2009279690A (en) Manufacturing method of coated cutting tool
WO2019035219A1 (en) Coated cutting tool
WO2019188967A1 (en) Surface-coated cutting tool
JP5555834B2 (en) Surface-coated cutting tool for milling with excellent wear resistance and method for producing the same
EP4082699A1 (en) Coated cutting tool
JP2020199589A (en) Coated cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100325

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120803

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5098726

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350