JPWO2013121827A1 - Hard film and hard film forming target - Google Patents

Hard film and hard film forming target Download PDF

Info

Publication number
JPWO2013121827A1
JPWO2013121827A1 JP2013525077A JP2013525077A JPWO2013121827A1 JP WO2013121827 A1 JPWO2013121827 A1 JP WO2013121827A1 JP 2013525077 A JP2013525077 A JP 2013525077A JP 2013525077 A JP2013525077 A JP 2013525077A JP WO2013121827 A1 JPWO2013121827 A1 JP WO2013121827A1
Authority
JP
Japan
Prior art keywords
atomic ratio
hard film
film
target
hard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013525077A
Other languages
Japanese (ja)
Other versions
JP5489110B2 (en
Inventor
優幸 大口
優幸 大口
明宏 青松
明宏 青松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yuken Industry Co Ltd
Original Assignee
Yuken Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yuken Industry Co Ltd filed Critical Yuken Industry Co Ltd
Priority to JP2013525077A priority Critical patent/JP5489110B2/en
Application granted granted Critical
Publication of JP5489110B2 publication Critical patent/JP5489110B2/en
Publication of JPWO2013121827A1 publication Critical patent/JPWO2013121827A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides

Abstract

優れた耐熱酸化性を有する硬質皮膜およびこの硬質皮膜を形成するためのターゲットとして、下記組成を有する硬質皮膜が提供される:
(CrAlTiNb)(C1−e−f
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比、ならびにeはNの原子比およびfはOの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、
a+b+c+d=1.0、
0.0≦e≦1.0、
0.0≦f≦1.0、および
0.0≦e+f≦1.0
を満たす。
As a hard film having excellent thermal oxidation resistance and a target for forming this hard film, a hard film having the following composition is provided:
(Cr a Al b Ti c Nb d) (C 1-e-f N e O f)
Where a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti and d is the atomic ratio of Nb, and e is the atomic ratio of N and f is the atomic ratio of O. 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65,
a + b + c + d = 1.0,
0.0 ≦ e ≦ 1.0,
0.0 ≦ f ≦ 1.0, and 0.0 ≦ e + f ≦ 1.0
Meet.

Description

本発明は、特に耐熱酸化性に優れた硬質皮膜およびこの硬質皮膜を形成するためのターゲットに関する。   The present invention relates to a hard film particularly excellent in thermal oxidation resistance and a target for forming the hard film.

鋼板等の鉄鋼部材、銅板等の非鉄部材などの金属系材料からなる部材は、プレス加工や鍛造加工、鋳造加工などにより様々な形状に加工され、得られた加工部品(抜き加工品、曲げ加工品、鍛造品、鋳造品など)は自動車用部品をはじめ様々な用途に使用されている。
これらの加工のうちプレス加工や鍛造加工などの塑性加工を例として説明すれば、塑性加工を行うための工具における加工面を構成する材料には優れた耐摩耗性が求められ、この要請に応えるべく、金型等の加工用工具における加工面の構成材料として、従来一般的に使用されていたTi系の材料による皮膜に代えて、Ti−Al系材料による皮膜が使用されてきている(例えば特許文献1)。また、TiおよびAlに加えてCrなどの他の元素を含有させることにより皮膜の耐摩耗性をさらに向上させる技術も開示されている(例えば特許文献2)。
Members made of metallic materials such as steel members such as steel plates and non-ferrous members such as copper plates are processed into various shapes by press processing, forging processing, casting processing, etc., and processed parts obtained (punched products, bending processing) Products, forged products, cast products, etc.) are used in various applications including automobile parts.
If we explain plastic processing such as press processing and forging processing among these processing as an example, the material constituting the processing surface in the tool for plastic processing is required to have excellent wear resistance, and this requirement is met. Therefore, as a constituent material of a processing surface in a processing tool such as a mold, a coating film made of a Ti—Al-based material has been used instead of a coating film made of a Ti-based material that has been conventionally used (for example, Patent Document 1). Moreover, the technique which further improves the abrasion resistance of a film | membrane by containing other elements, such as Cr in addition to Ti and Al, is also disclosed (for example, patent document 2).

特開昭62−56565号公報JP-A 62-56565 特許第4062583号公報Japanese Patent No. 4062583

部品加工に関する技術は加工品質の向上と生産性の向上とを両立させるという課題に常に向き合っており、塑性加工もその生産性を高めたり生産コストを低減させたりすることが求められている。このため、一回の塑性加工による加工量(被加工材の変形量や切断長さが例示される。)を増加させたり、潤滑油の使用量を低減(場合によっては無給油)したりする対策が行われるようになってきた。その結果、金型などの加工用工具における加工面に加わる負荷は増加し、たとえ塑性加工が冷間加工であっても、被加工材と加工面との摺動摩擦熱の発生が顕著となる傾向がある。このため、加工用工具における加工面を構成する材料には、高い耐熱性、特に摺動摩擦熱の蓄積により高温となった状態でも耐摩耗性が低下しないこと(本明細書において、「耐熱酸化性」ともいう。)が求められてきている。ここで、加工面を構成する材料に耐摩耗性を付与するための具体的な手法としては複数考えられるが、最も簡便な手法はかかる材料の硬度を高めることであり、具体的には硬質皮膜を加工部材の表面に成膜することである。この硬質皮膜を大気中において加熱した場合でも、加熱後の皮膜が高い硬度を維持したり、加熱前後での皮膜硬度の変化が少なかったりするときには、高温領域下での耐摩耗性が維持されているといえるのでその硬質皮膜は優れた耐熱酸化性を有していると期待される。
本発明はかかる現状を鑑み、耐熱酸化性に優れる硬質皮膜、およびかかる硬質皮膜を形成するためのターゲットを提供することを課題とする。
Technology related to parts processing has always faced the challenge of achieving both improvement in processing quality and improvement in productivity, and plastic processing is also required to increase the productivity and reduce the production cost. For this reason, the amount of processing (a deformation amount and cutting length of the workpiece are exemplified) by one plastic working is increased, or the amount of lubricating oil used is reduced (no lubrication in some cases). Countermeasures have come to be taken. As a result, the load applied to the machining surface of a machining tool such as a mold is increased, and even if the plastic machining is cold machining, the generation of sliding frictional heat between the workpiece and the machining surface tends to be significant. There is. For this reason, the material constituting the machining surface of the machining tool has high heat resistance, in particular, wear resistance does not deteriorate even at a high temperature due to accumulation of sliding frictional heat (in this specification, “heat oxidation resistance” Is also called for.) Here, a plurality of specific methods for imparting wear resistance to the material constituting the processed surface can be considered, but the simplest method is to increase the hardness of such a material, specifically a hard coating. Is formed on the surface of the processed member. Even when this hard film is heated in the atmosphere, when the film after heating maintains a high hardness or there is little change in film hardness before and after heating, the wear resistance under the high temperature region is maintained. Therefore, the hard coating is expected to have excellent heat and oxidation resistance.
This invention makes it a subject to provide the target for forming the hard film which is excellent in heat-resistant oxidation resistance, and this hard film in view of this present condition.

本発明者らが鋭意検討した結果、TiおよびAlに加えて、CrおよびNbを適切に含有させることにより、優れた耐熱酸化性を有する硬質皮膜が得られるとの知見を得た。   As a result of intensive studies by the present inventors, it has been found that a hard film having excellent heat and oxidation resistance can be obtained by appropriately containing Cr and Nb in addition to Ti and Al.

かかる知見に基づき完成された本発明は次のとおりである。
(1)下記組成を有する硬質皮膜:
(CrAlTiNb)(C1−e−f
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比、ならびにeはNの原子比およびfはOの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、
a+b+c+d=1.0、
0.0≦e≦1.0、
0.0≦f≦1.0、および
0.0≦e+f≦1.0
を満たす。
The present invention completed based on this finding is as follows.
(1) Hard coating having the following composition:
(Cr a Al b Ti c Nb d) (C 1-e-f N e O f)
Where a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti and d is the atomic ratio of Nb, and e is the atomic ratio of N and f is the atomic ratio of O. 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65,
a + b + c + d = 1.0,
0.0 ≦ e ≦ 1.0,
0.0 ≦ f ≦ 1.0, and 0.0 ≦ e + f ≦ 1.0
Meet.

なお、上記の発明において、Cr、Al、TiおよびNbからなる金属成分と、C、NおよびOの少なくとも一種からなるガス成分との原子比は特に限定されず、化学量論的範囲外の場合も含む。   In the above invention, the atomic ratio between the metal component composed of Cr, Al, Ti and Nb and the gas component composed of at least one of C, N and O is not particularly limited, and is out of the stoichiometric range. Including.

(2)前記組成がさらに、
d/(c+d)<0.5
を満たす、上記(1)記載の硬質皮膜。
(2) The composition is further
d / (c + d) <0.5
The hard film according to the above (1), which satisfies

(3)前記組成がさらに、
0.1≦d/(c+d)≦0.4
を満たす、上記(1)記載の硬質皮膜。
(3) The composition is further
0.1 ≦ d / (c + d) ≦ 0.4
The hard film according to the above (1), which satisfies

(4)下記組成を有する、硬質皮膜形成用ターゲット:
(CrAlTiNb
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、および
a+b+c+d=1.0
を満たす。
(4) Hard film forming target having the following composition:
(Cr a Al b Ti c Nb d )
Here, a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti, and d is the atomic ratio of Nb, and these are 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65, and a + b + c + d = 1.0
Meet.

(5)前記組成がさらに、
d/(c+d)<0.5
を満たす、上記(4)記載のターゲット。
(5) The composition is further
d / (c + d) <0.5
The target according to (4), wherein

(6)前記組成がさらに、
0.1≦d/(c+d)≦0.4
を満たす、上記(4)記載のターゲット。
(6) The composition is further
0.1 ≦ d / (c + d) ≦ 0.4
The target according to (4), wherein

本発明に係る硬質皮膜は優れた耐熱酸化性を有する。また、本発明により優れた耐熱酸化性を有する硬質皮膜を形成するターゲットが提供される。   The hard film according to the present invention has excellent heat oxidation resistance. Moreover, the target which forms the hard film which has the outstanding heat-resistant oxidation property by this invention is provided.

本実施形態に係る硬質皮膜を製造する装置の一例であるイオンプレーティング装置の構成を概念的に示す図である。It is a figure which shows notionally the structure of the ion plating apparatus which is an example of the apparatus which manufactures the hard film which concerns on this embodiment.

本発明の一実施形態に係る硬質皮膜は、下記組成を有する:
(CrAlTiNb)(C1−e−f
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比、ならびにeはNの原子比およびfはOの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、
a+b+c+d=1.0、
0.0≦e≦1.0、
0.0≦f≦1.0、および
0.0≦e+f≦1.0
を満たす。
A hard coating according to an embodiment of the present invention has the following composition:
(Cr a Al b Ti c Nb d) (C 1-e-f N e O f)
Where a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti and d is the atomic ratio of Nb, and e is the atomic ratio of N and f is the atomic ratio of O. 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65,
a + b + c + d = 1.0,
0.0 ≦ e ≦ 1.0,
0.0 ≦ f ≦ 1.0, and 0.0 ≦ e + f ≦ 1.0
Meet.

本実施形態に係る硬質皮膜は、TiおよびAlに加えてCrを含有する。Crの原子比aが0.01未満の場合には、Crを含有させた効果を得ることが困難となり、特に耐摩耗性の低下が懸念される。Crを含有させたことに基づく特性向上の効果を安定的に得る観点から、Crの原子比aは0.02以上とすることが好ましく、0.03以上とすることがさらに好ましい。
一方、Crの原子比aが0.40超の場合には、他の元素の含有量が相対的に低下するため、耐熱性が低下することが懸念される。優れた耐熱酸化性を安定的に得る観点から、Crの原子比aは0.30以下とすることが好ましく、0.25以下とすることがより好ましく、0.20以下とすることが特に好ましい。
The hard film according to the present embodiment contains Cr in addition to Ti and Al. When the atomic ratio a of Cr is less than 0.01, it is difficult to obtain the effect of containing Cr, and there is a concern that the wear resistance is particularly lowered. From the viewpoint of stably obtaining the effect of improving the characteristics based on the inclusion of Cr, the Cr atomic ratio a is preferably 0.02 or more, and more preferably 0.03 or more.
On the other hand, when the atomic ratio a of Cr is more than 0.40, the content of other elements is relatively lowered, and there is a concern that the heat resistance is lowered. From the viewpoint of stably obtaining excellent thermal oxidation resistance, the atomic ratio a of Cr is preferably 0.30 or less, more preferably 0.25 or less, and particularly preferably 0.20 or less. .

本実施形態に係る硬質皮膜が含有するAlの原子比aが0.25未満の場合には、Alを含有させた効果を得ることが困難となり、耐熱性および耐摩耗性の低下が懸念される。Alを含有させたことに基づく特性向上の効果を安定的に得る観点から、Alの原子比aは0.30以上とすることが好ましく、0.35以上とすることがより好ましく、0.45以上とすることが特に好ましい。
一方、Alの原子比aが0.65超の場合には、他の元素の含有量が相対的に低下するため、やはり特性が低下することが懸念される。優れた耐熱酸化性および耐摩耗性を安定的に得る観点から、Alの原子比aは0.63以下とすることが好ましく、0.61以下とすることがさらに好ましい。
When the atomic ratio a of Al contained in the hard coating according to the present embodiment is less than 0.25, it is difficult to obtain the effect of containing Al, and there is a concern about deterioration in heat resistance and wear resistance. . From the viewpoint of stably obtaining the effect of improving the characteristics based on the inclusion of Al, the atomic ratio a of Al is preferably 0.30 or more, more preferably 0.35 or more, and 0.45 The above is particularly preferable.
On the other hand, when the atomic ratio a of Al is more than 0.65, the content of other elements is relatively lowered, and there is a concern that the characteristics are also lowered. From the viewpoint of stably obtaining excellent thermal oxidation resistance and wear resistance, the atomic ratio a of Al is preferably 0.63 or less, and more preferably 0.61 or less.

本実施形態に係る硬質皮膜は、TiおよびAlに加えて、Nbも含有する。Tiの一部に代えてNbを含有させることにより、皮膜を硬質化させるとともに耐熱性を高め、硬質皮膜に優れた耐熱酸化性を皮膜に付与することができる。Tiの原子比とNbの原子比との総和c+dが0.20未満の場合には、TiおよびNbを含有させた効果を得ることが困難となり、特に耐熱酸化性の低下が懸念される。TiおよびNbを含有させたことに基づく特性向上の効果を安定的に得る観点から、Tiの原子比とNbの原子比との総和c+dは0.25以上とすることが好ましく、0.30以上とすることがより好ましく、0.35以上とすることが特に好ましい。
一方、Tiの原子比とNbの原子比との総和c+dが0.65超の場合には、他の元素の含有量が相対的に低下するため、やはり特性が低下することが懸念される。優れた耐熱酸化性を安定的に得る観点から、Tiの原子比とNbの原子比との総和c+dは0.60以下とすることが好ましく、0.55以下とすることがさらに好ましい。
The hard film according to the present embodiment contains Nb in addition to Ti and Al. By including Nb in place of a part of Ti, the film can be hardened and the heat resistance can be enhanced, and the film can be imparted with heat and oxidation resistance superior to the hard film. When the sum c + d of the atomic ratio of Ti and the atomic ratio of Nb is less than 0.20, it is difficult to obtain the effect of containing Ti and Nb, and there is a concern that the heat-resistant oxidation resistance is particularly lowered. From the viewpoint of stably obtaining the effect of improving characteristics based on the inclusion of Ti and Nb, the total c + d of the atomic ratio of Ti and the atomic ratio of Nb is preferably 0.25 or more, and 0.30 or more More preferably, it is more preferably 0.35 or more.
On the other hand, when the sum c + d of the atomic ratio of Ti and the atomic ratio of Nb is more than 0.65, the content of other elements is relatively decreased, and there is a concern that the characteristics are also deteriorated. From the viewpoint of stably obtaining excellent thermal oxidation resistance, the total c + d of the atomic ratio of Ti and the atomic ratio of Nb is preferably 0.60 or less, and more preferably 0.55 or less.

Tiの原子比cとNbの原子比dとの関係は特に限定されないが、硬度を高め耐摩耗性を安定的に得る観点から、Tiの原子比cをNbの原子比dよりも高くすること、つまり下記式(1)を満たすことが好ましい。
d/(c+d)<0.5 (1)
特に、下記式(2)を満たす場合には、耐摩耗性を高めつつ、優れた耐熱酸化性を得ることができ、好ましい。
0.1≦d/(c+d)≦0.4 (2)
The relationship between the atomic ratio c of Ti and the atomic ratio d of Nb is not particularly limited, but from the viewpoint of obtaining high hardness and stable wear resistance, the atomic ratio c of Ti should be higher than the atomic ratio d of Nb. That is, it is preferable to satisfy the following formula (1).
d / (c + d) <0.5 (1)
In particular, when the following formula (2) is satisfied, it is preferable because excellent thermal oxidation resistance can be obtained while enhancing wear resistance.
0.1 ≦ d / (c + d) ≦ 0.4 (2)

本実施形態に係る硬質皮膜は、上記4種類の金属元素のほかに、他の金属系元素を含有してもよいが、その含有量は原子比として0.01以下とするべきである。また、各元素に係る金属材料の精錬の程度には上限が事実上存在することから、製造方法によっては、上記4種類の元素以外の元素が不純物元素として皮膜中に混入する場合もある。本実施形態に係る硬質皮膜は、そのような不可避的な不純物を含有する場合も含むものとする。そのような不純物の含有量の上限は特に設定されないが、不純物が硬質皮膜に与える影響を少なくする観点から、不純物元素全体の原子比は、上記4種の元素の原子比の合計を1.0とした場合に、0.01以下とするべきである。   The hard coating according to the present embodiment may contain other metal elements in addition to the above four kinds of metal elements, but the content should be 0.01 or less as an atomic ratio. In addition, since there is a practical upper limit to the degree of refining of the metal material related to each element, elements other than the above four types of elements may be mixed in the film as impurity elements depending on the manufacturing method. The hard film according to the present embodiment includes a case where such an unavoidable impurity is contained. The upper limit of the content of such impurities is not particularly set, but from the viewpoint of reducing the influence of impurities on the hard coating, the atomic ratio of the entire impurity elements is 1.0% of the total of the atomic ratios of the above four elements. In this case, it should be 0.01 or less.

本実施形態に係る硬質皮膜は、炭化物、窒化物、酸化物またはこれらの混合物(炭窒化物など)であるから、前述の組成におけるeおよびfはそれぞれ0.0から1.0までの任意の数値を取り、e+fは1.0以下となる。   Since the hard film according to the present embodiment is a carbide, nitride, oxide, or a mixture thereof (carbonitride, etc.), e and f in the above-mentioned composition are each arbitrary from 0.0 to 1.0. Taking a numerical value, e + f is 1.0 or less.

なお、本実施形態に係る硬質皮膜において、Cr、Al、TiおよびNbからなる金属成分と、C、NおよびOの少なくとも一種からなるガス成分との原子比は特に限定されず、化学量論的範囲外の場合も含む。   In the hard coating according to the present embodiment, the atomic ratio between the metal component composed of Cr, Al, Ti and Nb and the gas component composed of at least one of C, N and O is not particularly limited, and is stoichiometric. Including cases outside the range.

本実施形態に係る硬質皮膜の厚さは特に限定されない。用途に応じて適宜設定されるべきものである。ただし、過度に薄い場合には硬質皮膜が所望の特性を発現することができなかったり、その耐久性が低下したりすることが懸念されるため、通常0.1μm以上の厚さとすることが好ましい。また、硬質皮膜の厚さが過度に厚い場合には、皮膜に発生した圧縮応力によって皮膜の被処理部材に対する密着性が低下したり、被処理部材に変形が生じたりすることが懸念されるため、通常20μm以下の厚さとすることが好ましい。   The thickness of the hard film according to the present embodiment is not particularly limited. It should be set appropriately according to the application. However, since it is feared that the hard film cannot express desired characteristics or its durability is lowered when it is excessively thin, it is usually preferable to set the thickness to 0.1 μm or more. . Moreover, when the thickness of the hard coating is excessively thick, there is a concern that the adhesion of the coating to the member to be processed may be reduced or the member to be processed may be deformed by the compressive stress generated in the coating. In general, the thickness is preferably 20 μm or less.

本実施形態に係る硬質皮膜の製造方法は限定されない。後述するターゲットを用いてイオンプレーティングにより製造することが一般的であり、その際に含有させる雰囲気を制御することによって、前述の組成におけるeおよびfを調整することが可能である。イオンプレーティングを行うための装置の構造は任意である。ターゲットを直接加熱してその構成材料を蒸発させてもよいし、成膜ガス雰囲気中でアーク放電を行ってターゲットを構成する材料を蒸発させてもよいし、マグネトロンスパッタリングなどのスパッタリングによってターゲット材料を気化させてもよい。   The manufacturing method of the hard film which concerns on this embodiment is not limited. It is common to manufacture by ion plating using the target mentioned later, and it is possible to adjust e and f in the above-mentioned composition by controlling the atmosphere contained in that case. The structure of the apparatus for performing ion plating is arbitrary. The target material may be directly heated to evaporate the constituent material, or the material constituting the target may be evaporated by performing arc discharge in a film forming gas atmosphere, or the target material may be changed by sputtering such as magnetron sputtering. It may be vaporized.

図1は、本実施形態に係る硬質皮膜を製造する装置の一例であるイオンプレーティング装置の構成を概念的に示す図である。イオンプレーティング装置10は、真空容器1内に、ヒータ2、ターゲットが付設された金属蒸発源(アークイオンプレーティング方式の場合にはアーク式蒸発源)3、ガス供給系に接続されたガス供給口4、図示しない排気ポンプ系に接続された排気口5、バイアス電源6に接続された回転テーブル7、および回転テーブル7に固定され電気的に接続された被処理部材8を備える。排気口5と排気ポンプ系との間を開放して真空容器1内の全圧をひとたび所定の値以下にした後、窒素源(Nガスなど)、炭素源(メタンガスなど)および/または酸素源(Oガスなど)を、作製すべき硬質皮膜の組成に応じて設定された分圧となるように、ガス供給口4から供給する。続いて、金属蒸発源3を動作させて(アーク式蒸発源の場合にはアーク放電を発生させて)、ターゲットを適宜溶融させ、ターゲットに含まれる金属を真空容器内に蒸発・イオン化させる。こうして真空容器内に拡散した金属成分は真空容器内の窒素源、炭素源および/または酸素源と反応し、得られた反応生成物はバイアス電源6により負電圧に印加された被処理部材8へと進行し、金属の窒化物、炭化物および酸化物ならびにこれらの混合物(以下、「金属窒化物等」という。)として被処理部材8上に堆積して、硬質皮膜が形成される。このとき、金属窒化物等の密着力を向上させるなどの目的でヒータ2による被処理部材8の加熱が行われる場合もある。FIG. 1 is a diagram conceptually showing the configuration of an ion plating apparatus which is an example of an apparatus for producing a hard coating according to this embodiment. An ion plating apparatus 10 includes a heater 2, a metal evaporation source (an arc evaporation source in the case of an arc ion plating method) 3 provided with a target, and a gas supply connected to a gas supply system. An outlet 4, an exhaust port 5 connected to an exhaust pump system (not shown), a rotary table 7 connected to a bias power source 6, and a member 8 to be processed fixedly connected to the rotary table 7 and electrically connected thereto. After opening the space between the exhaust port 5 and the exhaust pump system to reduce the total pressure in the vacuum vessel 1 to a predetermined value or less once, a nitrogen source (such as N 2 gas), a carbon source (such as methane gas) and / or oxygen A source (O 2 gas or the like) is supplied from the gas supply port 4 so as to have a partial pressure set according to the composition of the hard film to be produced. Subsequently, the metal evaporation source 3 is operated (in the case of an arc evaporation source, arc discharge is generated), the target is appropriately melted, and the metal contained in the target is evaporated and ionized in the vacuum vessel. The metal component diffused in the vacuum vessel thus reacts with the nitrogen source, carbon source and / or oxygen source in the vacuum vessel, and the obtained reaction product is sent to the member to be treated 8 applied with a negative voltage by the bias power source 6. The metal film is deposited on the member 8 as a metal nitride, carbide and oxide and a mixture thereof (hereinafter referred to as “metal nitride or the like”) to form a hard film. At this time, the member 8 to be processed may be heated by the heater 2 for the purpose of improving the adhesion of metal nitride or the like.

イオンプレーティングにおける成膜条件は任意であり、雰囲気圧力、被処理部材の温度などは適宜制御すればよい。アーク放電によりイオンプレーティングを行う場合を一例として説明すれば、通常、成膜時の圧力を2から8Paの範囲とすることが好ましく、3から6Paとすればさらに好ましい。また、アーク放電のための印加電圧は被処理材へのダメージを少なくすることを考慮すると−300V以下とすることが好ましく、−20から−200Vの範囲とすれば、被処理材へのダメージの発生を抑制しつつ成膜速度を高めることが可能となる場合が多い。アーク放電による放電電流は通常60から200Aの範囲内にて設定される場合が多いところ、アーク電流の電流値が過度に低い場合には成膜速度が低下し、過度に高い場合には装置の安全性の見地から不利益が生じる可能性が高まることから、アーク電流は90から150A程度の範囲とすることが好ましい。   The film forming conditions in ion plating are arbitrary, and the atmospheric pressure, the temperature of the member to be processed, and the like may be appropriately controlled. If the case of performing ion plating by arc discharge is described as an example, the pressure during film formation is usually preferably in the range of 2 to 8 Pa, more preferably 3 to 6 Pa. In addition, the applied voltage for arc discharge is preferably −300 V or less in consideration of reducing damage to the material to be processed, and if it is in the range of −20 to −200 V, damage to the material to be processed is reduced. In many cases, it is possible to increase the deposition rate while suppressing the occurrence. In many cases, the discharge current due to arc discharge is usually set within a range of 60 to 200 A. However, when the current value of the arc current is excessively low, the film formation rate is reduced. The arc current is preferably in the range of about 90 to 150 A because there is a high possibility that a disadvantage will occur from the viewpoint of safety.

ターゲットを構成する材料は、材料を蒸発させる方法が特に問題がない限り、得ようとする硬質皮膜における金属組成とほぼ同一の金属組成を有する金属系材料を用意すればよい。したがって、上記の硬質皮膜を与えるターゲット材料の組成の一例として、
(CrAlTiNb
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、
a+b+c+d=1.0、および
を満たす材料が例示される。
As the material constituting the target, a metal-based material having a metal composition substantially the same as the metal composition of the hard film to be obtained may be prepared as long as the method for evaporating the material is not particularly problematic. Therefore, as an example of the composition of the target material that gives the hard film,
(Cr a Al b Ti c Nb d )
Here, a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti, and d is the atomic ratio of Nb, and these are 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65,
Examples are materials that satisfy a + b + c + d = 1.0.

なお、この場合も、硬質皮膜の場合と同様に、他の含有元素の含有量および不純物元素の含有量はいずれも、上記4種の元素の原子比を1.0とした場合に0.01以下とするべきである。   In this case, as in the case of the hard coating, the contents of other contained elements and the contents of impurity elements are both 0.01 when the atomic ratio of the above four elements is 1.0. Should be:

ターゲットの結晶学的な構造は特に限定されない。各元素についてほぼ純金属の状態にあるタイルを並べてターゲットとしてもよいし、4種の元素のいくつかまたは全部についての合金からなるターゲットとしてもよい。また、ターゲットの気孔率なども任意である。いずれにしても、硬質皮膜の組成がターゲットの組成と著しく変化しないようにするべきである。   The crystallographic structure of the target is not particularly limited. Tiles that are in a substantially pure metal state for each element may be arranged as targets, or a target made of an alloy for some or all of the four elements. The porosity of the target is also arbitrary. In any case, the composition of the hard coating should not change significantly from the composition of the target.

以下、具体的な実験結果により本発明についてさらに詳しく説明するが、これらの実験結果によって本発明の範囲は限定されない。   Hereinafter, although the present invention will be described in more detail with specific experimental results, the scope of the present invention is not limited by these experimental results.

1.試料準備
異なる組成の合金ターゲットを用意し、SKD11からなる被処理部材(直径24mm、高さ5mmの円柱形状を有し、処理面は円形をなす一方の面)上に、PVD装置((株)神戸製鋼所製、AIP−NS40/UBMS)を用いて、アークイオンプレーティングにより厚さ3μmの窒化物からなる(すなわち、上記の組成においてe=1.0およびf=0.0)皮膜を形成して評価用サンプルとした。得られた評価用サンプルにおける皮膜中の金属成分組成の元素分析結果を表1に示す。なお、試験番号4,5,9および10から12に係るサンプルについては、皮膜中に含まれるNb含有量の、NbおよびTiの含有量の総和に対する比率(単位:%)についても示した。
1. Sample preparation Prepare alloy targets with different compositions, and apply a PVD device (Corporation) on a member to be processed (made of SKD11 having a cylindrical shape with a diameter of 24 mm and a height of 5 mm, and the processing surface is circular). A coating made of nitride having a thickness of 3 μm is formed by arc ion plating (ie, e = 1.0 and f = 0.0 in the above composition) using Kobe Steel, AIP-NS40 / UBMS). And used as a sample for evaluation. Table 1 shows the elemental analysis results of the metal component composition in the film in the obtained sample for evaluation. For the samples according to test numbers 4, 5, 9 and 10 to 12, the ratio (unit:%) of the Nb content contained in the film to the total content of Nb and Ti was also shown.

Figure 2013121827
Figure 2013121827

2.評価方法
(1)皮膜硬度
ナノインデンター(アジレント・テクノロジー(株)製 Nano Indenter G200)を用いて、次の条件で評価用サンプルの皮膜硬度を測定した。なお、各評価用サンプルの皮膜につき任意に測定点を20点設定し、これらの測定点の平均値を各皮膜の硬度とした。
圧子:バーコビッチ圧子
加圧力:15mN
最大荷重保持時間:10秒間
最大荷重到達時間:15秒間
2. Evaluation Method (1) Film Hardness Using a nanoindenter (Nano Indenter G200 manufactured by Agilent Technologies), the film hardness of the sample for evaluation was measured under the following conditions. In addition, 20 measurement points were arbitrarily set for the film of each evaluation sample, and the average value of these measurement points was defined as the hardness of each film.
Indenter: Berkovich indenter Pressure: 15mN
Maximum load retention time: 10 seconds Maximum load arrival time: 15 seconds

(2)耐熱酸化性
各評価用サンプルを炉内(炉内雰囲気:大気)で1000℃にて1時間加熱し、炉から評価用サンプルを取り出して大気中(25℃、50%RH)に放置して室温まで冷却させた。冷却後の評価用サンプルの皮膜について、上記の場合と同様にナノインデンターで皮膜硬度を測定した。
(2) Thermal oxidation resistance Each sample for evaluation is heated in a furnace (furnace atmosphere: air) at 1000 ° C. for 1 hour, and the sample for evaluation is taken out from the furnace and left in the air (25 ° C., 50% RH). And allowed to cool to room temperature. About the film | membrane of the sample for evaluation after cooling, film | membrane hardness was measured with the nanoindenter similarly to said case.

3.評価結果
評価結果を表2に示す。試験番号1および13に係るサンプルは、加熱試験によって皮膜が剥離してしまい、加熱試験後の皮膜硬度を測定できなかった。
3. Evaluation results Table 2 shows the evaluation results. In the samples according to Test Nos. 1 and 13, the film peeled off by the heating test, and the film hardness after the heating test could not be measured.

Figure 2013121827
Figure 2013121827

10…イオンプレーティング装置
1…真空容器
2…ヒータ
3…金属蒸発源
4…ガス供給口
5…排気口
6…バイアス電源
7…回転テーブル
8…被処理部材
DESCRIPTION OF SYMBOLS 10 ... Ion plating apparatus 1 ... Vacuum container 2 ... Heater 3 ... Metal evaporation source 4 ... Gas supply port 5 ... Exhaust port 6 ... Bias power supply 7 ... Rotary table 8 ... To-be-processed member

Claims (6)

下記組成を有する硬質皮膜:
(CrAlTiNb)(C1−e−f
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比、ならびにeはNの原子比およびfはOの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、
a+b+c+d=1.0、
0.0≦e≦1.0、
0.0≦f≦1.0、および
0.0≦e+f≦1.0
を満たす。
Hard coating having the following composition:
(Cr a Al b Ti c Nb d) (C 1-e-f N e O f)
Where a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti and d is the atomic ratio of Nb, and e is the atomic ratio of N and f is the atomic ratio of O. 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65,
a + b + c + d = 1.0,
0.0 ≦ e ≦ 1.0,
0.0 ≦ f ≦ 1.0, and 0.0 ≦ e + f ≦ 1.0
Meet.
前記組成がさらに、
d/(c+d)<0.5
を満たす、請求項1記載の硬質皮膜。
The composition further comprises
d / (c + d) <0.5
The hard film according to claim 1, wherein
前記組成がさらに、
0.1≦d/(c+d)≦0.4
を満たす、請求項1記載の硬質皮膜。
The composition further comprises
0.1 ≦ d / (c + d) ≦ 0.4
The hard film according to claim 1, wherein
下記組成を有する、硬質皮膜形成用ターゲット:
(CrAlTiNb
ここで、aはCrの原子比、bはAlの原子比、cはTiの原子比およびdはNbの原子比であって、これらは
0.01<a<0.40、
0.25<b<0.65、
0.0<c、
0.0<d、
0.20<c+d<0.65、および
a+b+c+d=1.0
を満たす。
Hard film forming target having the following composition:
(Cr a Al b Ti c Nb d )
Here, a is the atomic ratio of Cr, b is the atomic ratio of Al, c is the atomic ratio of Ti, and d is the atomic ratio of Nb, and these are 0.01 <a <0.40,
0.25 <b <0.65,
0.0 <c,
0.0 <d,
0.20 <c + d <0.65, and a + b + c + d = 1.0
Meet.
前記組成がさらに、
d/(c+d)<0.5
を満たす、請求項4記載のターゲット。
The composition further comprises
d / (c + d) <0.5
The target of Claim 4 which satisfy | fills.
前記組成がさらに、
0.1≦d/(c+d)≦0.4
を満たす、請求項4記載のターゲット。
The composition further comprises
0.1 ≦ d / (c + d) ≦ 0.4
The target of Claim 4 which satisfy | fills.
JP2013525077A 2012-02-16 2013-01-17 Hard film and hard film forming target Expired - Fee Related JP5489110B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013525077A JP5489110B2 (en) 2012-02-16 2013-01-17 Hard film and hard film forming target

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2012032003 2012-02-16
JP2012032003 2012-02-16
PCT/JP2013/050813 WO2013121827A1 (en) 2012-02-16 2013-01-17 Hard coating film and target for forming hard coating film
JP2013525077A JP5489110B2 (en) 2012-02-16 2013-01-17 Hard film and hard film forming target

Publications (2)

Publication Number Publication Date
JP5489110B2 JP5489110B2 (en) 2014-05-14
JPWO2013121827A1 true JPWO2013121827A1 (en) 2015-05-11

Family

ID=48983952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013525077A Expired - Fee Related JP5489110B2 (en) 2012-02-16 2013-01-17 Hard film and hard film forming target

Country Status (3)

Country Link
JP (1) JP5489110B2 (en)
CN (1) CN104114739A (en)
WO (1) WO2013121827A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP4062583B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10262174B4 (en) * 2001-07-23 2007-03-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.), Kobe Hard wear-resistant layer, method of forming same and use
JP4713413B2 (en) * 2006-06-30 2011-06-29 株式会社神戸製鋼所 Hard coating and method for producing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6256565A (en) * 1985-09-06 1987-03-12 Mitsubishi Metal Corp Surface coated hard member having superior wear resistance
JP4062583B2 (en) * 2001-07-23 2008-03-19 株式会社神戸製鋼所 Hard coating for cutting tool, method for producing the same, and target for forming hard coating
JP2004099966A (en) * 2002-09-09 2004-04-02 Kobe Steel Ltd Hard film having excellent wear resistance, production method therefor, cutting tool and target for forming hard film
JP2009220260A (en) * 2008-02-22 2009-10-01 Hitachi Tool Engineering Ltd Coated cutting tool and method for manufacturing the same

Also Published As

Publication number Publication date
JP5489110B2 (en) 2014-05-14
CN104114739A (en) 2014-10-22
WO2013121827A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
JP6111267B2 (en) piston ring
JP2008001951A (en) Diamond-like carbon film and method for forming the same
CN103370438A (en) Hot metal sheet forming or stamping tools with Cr-Si-N coatings
JP6590213B2 (en) Manufacturing method of cold working mold
CN114829642A (en) Ni-based alloy, heat-resistant/corrosion-resistant member, and member for heat treatment furnace
CN109773368B (en) Repair welding material for mold
JP4357160B2 (en) Sputtering target, hard coating using the same, and hard film coating member
JP5489110B2 (en) Hard film and hard film forming target
JP2007308788A (en) Nitriding/oxidizing treatment method for metal member and reoxidizing method therefor
JP6561275B2 (en) Hard film and hard film forming target
CA2891886C (en) Hard coating having excellent adhesion resistance to soft metal
JP5268771B2 (en) Method for producing sputtering target, method for forming hard film using the same, and hard film coated member
JP2016211052A (en) Hard film and hard film coated member
JP4094017B2 (en) Austenitic heat-resistant materials with excellent high-temperature durability, heat-resistant parts, and heat-resistant parts around the engine
WO2017038556A1 (en) Coating film, hot-forming die, and hot forming method
JP7396018B2 (en) Targets and hard coatings for forming hard coatings
TW201418481A (en) Method of cutting cold working steel and method of producing cold mold material
JP7166594B2 (en) Mo-Si-Ti-C-based alloy and method for producing Mo-Si-Ti-C-based alloy
Gorban’ et al. High-Entropy Superhard Coatings Based on the AlTiCrVNbMo Alloy
JP5053961B2 (en) Sputtering target
JP2008214757A (en) Hard film, and hard film member using the same
JP2002212708A (en) Ti-Si ALLOY BASED TARGET MATERIAL, PRODUCTION METHOD THEREFOR AND FILM COATING METHOD
Bharath Kumar et al. Effect of deposition pressure and annealing temperature on the microstructure and oxidation resistance of FeNbMoTaW films
JP5120698B2 (en) Nitride-containing target
CN114395722A (en) Composite alloy plate and preparation method thereof

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

R150 Certificate of patent or registration of utility model

Ref document number: 5489110

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees