WO2014157688A1 - Coated cutting tool and method for producing same - Google Patents

Coated cutting tool and method for producing same Download PDF

Info

Publication number
WO2014157688A1
WO2014157688A1 PCT/JP2014/059331 JP2014059331W WO2014157688A1 WO 2014157688 A1 WO2014157688 A1 WO 2014157688A1 JP 2014059331 W JP2014059331 W JP 2014059331W WO 2014157688 A1 WO2014157688 A1 WO 2014157688A1
Authority
WO
WIPO (PCT)
Prior art keywords
plane
cutting tool
coated cutting
film
aln
Prior art date
Application number
PCT/JP2014/059331
Other languages
French (fr)
Japanese (ja)
Inventor
佳奈 森下
亮太郎 府玻
秀峰 小関
福永 有三
久保田 和幸
謙一 井上
Original Assignee
日立ツール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ツール株式会社 filed Critical 日立ツール株式会社
Priority to JP2014541449A priority Critical patent/JP5673904B1/en
Publication of WO2014157688A1 publication Critical patent/WO2014157688A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0635Carbides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/0641Nitrides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/044Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material coatings specially adapted for cutting tools or wear applications

Definitions

  • the present invention relates to a coated cutting tool suitable for application to, for example, cutting of steel, cast iron, heat-resistant alloy, and the like, and a manufacturing method thereof.
  • Patent Document 1 discloses that the hardness of AlTiN starts to decrease when the Al content ratio (atomic%) of metal (including metalloid) elements is 60% or more. When the content ratio (atomic%) is 70%, the hcp structure is confirmed as part of the crystal structure.
  • Patent Document 2 proposes a coating method of an AlTi nitride film in which the fcc structure is easily maintained even when the Al content is large.
  • a cathode in which a permanent magnet is disposed laterally or in front is used, and a magnetic field line that diverges forward or travels substantially in front of the target evaporation surface is formed, thereby forming a film forming gas in the vicinity of the object to be processed.
  • the plasma density is significantly higher than that of a conventional cathode.
  • An object of this invention is to provide the coated cutting tool excellent in durability, and its manufacturing method.
  • the inventors of the present invention have used AlN having a hexagonal close-packed (hcp; hereinafter simply abbreviated as “hcp”) structure contained in the microstructure of a hard film made of an AlTi-based nitride or carbonitride. We found the optimal tissue morphology that was reduced. And, by providing a special intermediate film between the base material and the hard film, it was confirmed that the effect of the hard film was sufficiently exhibited, and excellent durability was exhibited even at high speed processing of high hardness materials. The present invention has been reached.
  • hcp hexagonal close-packed
  • this invention is a coated cutting tool which coat
  • a base material an intermediate film disposed on the base material and made of carbide containing tungsten (W) and titanium (Ti) and having a thickness of 1 nm or more and 10 nm or less, and on the intermediate film
  • the crystal structure arranged and specified by X-ray diffraction is a face-centered cubic lattice (fcc; hereinafter simply abbreviated as “fcc”) structure, and is based on the total amount of metal (including metalloid) elements
  • a hard film made of an AlTi-based nitride or carbonitride having an Al content ratio (atomic%) of 60% or more and a Ti content ratio (atomic%) of 20% or more,
  • the hard coating is a coated cutting tool that satisfies a relationship of “Ih ⁇ 100 / Is ⁇ 20” in an intensity profile obtained from a limited field diffraction pattern of
  • Ih peak intensity due to AlN (010) plane of hcp structure
  • Is fcc structure of AlN (111) plane, TiN (111) plane, AlN (002) plane, TiN (002) plane, AlN (022) plane
  • the hard coating has an Al content ratio (atomic%) of 62% to 70% and a Ti content ratio (atomic%) of 25% or more with respect to the total amount of metal (including metalloid) elements.
  • the total content ratio (atomic%) of Al and Ti is 90% or more with respect to the total amount of metal (including metalloid) elements.
  • the film thickness of the intermediate film is preferably 1 nm or more and less than 6 nm. Furthermore, it is preferable that the half width of the (200) plane of the fcc structure specified by X-ray diffraction is 1.8 ° or less. Moreover, it is preferable that in the intensity
  • the peak intensity attributed to the same crystal plane is more preferably the peak intensity attributed to the AlN (002) plane and TiN (002) plane of the fcc structure.
  • the hard coating preferably contains tungsten (W), and the content ratio (atomic%) of W is 1% or more and 10% or less with respect to the total amount of metal (including metalloid) elements. preferable. Further, the W content (atomic%) is preferably 2% or more and 6% or less.
  • the film thickness of the hard coating is preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the cutting tool serving as the substrate is preferably a radius end mill or a square end mill.
  • the coated cutting tool of this invention is suitably manufactured with the manufacturing method of the coated cutting tool of this invention shown below.
  • the surface of the base material is subjected to metal bombardment to form an intermediate film having a thickness of 1 nm to 10 nm made of carbide containing tungsten (W) and titanium (Ti) on the surface of the base material;
  • a cathode having a magnetic flux density of 18 mT or more applying a bias voltage of ⁇ 200 V or more and ⁇ 70 V or less to the base material, and with respect to the total amount of metal (including metalloid) elements on the intermediate film, Forms a hard coating made of AlTi nitride or carbonitride with aluminum (Al) content (atomic%) of 60% or more and titanium (Ti) content (atomic%) of 20% or more
  • a method of manufacturing a coated cutting tool is suitably manufactured with the manufacturing method of the coated cutting tool of this invention shown below.
  • the surface of the base material is subjected to metal bombardment to form an intermediate film having
  • the hard film is formed at a substrate temperature of 450 ° C. or higher and 580 ° C. or lower.
  • the heating temperature of the base material before the metal bombardment treatment is preferably 500 ° C. or less.
  • the hard film further contains tungsten (W).
  • the hard coating preferably has a tungsten (W) content ratio (atomic%) of 1% or more and 10 or less% with respect to the total amount of metal (including metalloid) elements.
  • the content ratio (atomic%) of the tungsten (W) is 2% or more and 6% or less.
  • the manufacturing method of the said coated tool is applied to a radius end mill or a square end mill.
  • the coated cutting tool excellent in durability and its manufacturing method are provided. That is, according to the present invention, in addition to high-speed machining of a high-hardness material, excellent durability is exhibited also in cutting of high-carbon steel, Ni-base superalloy, and the like.
  • FIG. 1 is a cross-sectional observation photograph of a hard film with a transmission electron microscope (the circumferential portion in the figure is an electron beam irradiation position when a limited field diffraction pattern is photographed).
  • FIG. 2 is a diagram showing a limited field diffraction pattern when an electron beam is irradiated within the lower circumference of FIG.
  • FIG. 3 is a diagram showing an intensity profile of the limited field diffraction pattern shown in FIG.
  • FIG. 4 is a cross-sectional observation photograph of the sample tool of Example 1 of the present invention using a transmission electron microscope.
  • FIG. 5 is a diagram showing a nanobeam diffraction pattern at a point indicated by an arrow 1 in FIG. FIG.
  • FIG. 6 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 1 in FIG.
  • FIG. 7 is a diagram showing a nanobeam diffraction pattern at a point indicated by an arrow 2 in FIG.
  • FIG. 8 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 2 in FIG.
  • FIG. 9 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 3 in FIG.
  • FIG. 10 is an observation photograph of the cutting edge of the sample tool of Examples 1 to 5 of the present invention after cutting 25 m with an electron microscope.
  • FIG. 11 is an observation photograph of the tool edge of the sample tools of Examples 6 to 8 of the present invention after 25 m cutting with an electron microscope.
  • FIG. 12 is an observation photograph of the tool edge of the sample tools of Comparative Examples 1 to 6 after 25 m cutting with an electron microscope.
  • FIG. 13 is an observation photograph of the tool edge of the sample tools of Comparative Examples 7 to 10 after 25 m cutting with an electron microscope.
  • FIG. 14 is an observation photograph of the tool cutting edge of the sample tools of Invention Examples 20 to 23 and Comparative Example 20 after 4 m cutting with an electron microscope.
  • the inventors of the present invention can analyze only the peak intensity of the fcc structure (face-centered cubic lattice structure) in X-ray diffraction, even if it is a nitride or carbonitride containing Al and Ti, and is analyzed with a transmission electron microscope. It was confirmed that the microstructure contained AlN having an hcp structure. And it turned out that a favorable characteristic as a hard film is acquired by reducing AlN of the hcp structure (hexagonal close-packed structure) contained in a microstructure. Furthermore, it has been found that the durability of the coated cutting tool can be improved by providing an intermediate film having a specific composition and film thickness between the substrate and the hard film.
  • the coated cutting tool of the present invention and the manufacturing method thereof will be described in detail.
  • the hard film is a nitride or carbonitride which is a film type having excellent heat resistance and wear resistance. More preferred is nitride.
  • Al is an element that imparts heat resistance to the hard coating. By containing the most Al content (atomic%) among metal (including metalloid) elements, it exhibits excellent heat resistance and is coated. The durability of the cutting tool is improved.
  • the Al content (atomic%) of the metal (including metalloid) elements is set to 60% or more.
  • a more preferable Al content ratio (atomic%) is 62% or more, and further 65% or more with respect to the total amount of metal (including metalloid) elements.
  • the Al content ratio (atomic%) is preferably 75% or less with respect to the total amount of metal (including metalloid) elements.
  • a more preferable Al content ratio (atomic%) is 70% or less with respect to the total amount of metal (including metalloid) elements.
  • Ti is an important element in that it imparts wear resistance to the hard coating and has a fcc structure crystal structure with excellent durability as a coated cutting tool.
  • the Ti content decreases, the wear resistance of the hard coating decreases, and the hcp structure AlN increases as the peak intensity of the hcp structure is confirmed by X-ray diffraction.
  • the Ti content is set to the total amount of metal (including metalloid) elements. 20% or more.
  • the Ti content ratio (atomic%) is more preferably 25% or more.
  • the nitride or carbonitride containing Al and Ti has a total content ratio (atomic%) of Al and Ti of metal (including metalloid) from the viewpoint of heat resistance and wear resistance. It is preferable to set it as 90% or more with respect to the total amount of an element.
  • the crystal structure specified by X-ray diffraction is an fcc structure, for example, when measured using a commercially available X-ray diffractometer (RINT2500V-PSRC / MDG manufactured by Rigaku Corporation). It means that the peak intensity due to the hcp structure is not confirmed.
  • TEM transmission electron microscope
  • FIG. 1 the cross-sectional TEM observation photograph (40,000 times) of a hard film is shown.
  • FIG. 2 is a limited field diffraction pattern of the lower circle part of FIG. Then, the intensity of the limited field diffraction pattern of FIG. 3 was obtained by converting the luminance of the limited field diffraction pattern of FIG.
  • the horizontal axis represents the distance (radius r) from the center of the (000) plane spot, and the vertical axis represents the integrated intensity (arbitrary unit) for one circle around each radius r.
  • an arrow 1 is a peak due to the AlN (010) plane of the hcp structure, and is the maximum intensity of AlN of the hcp structure.
  • Arrow 2 is a peak due to the AlN (011) plane of the hcp structure, the AlN (111) plane of the fcc structure, and the TiN (111) plane.
  • Arrow 3 is a peak due to the AlN (002) plane and TiN (002) plane of the fcc structure.
  • the arrow 4 is a peak due to the AlN (110) plane of the hcp structure.
  • An arrow 5 is a peak due to the AlN (022) plane and TiN (022) plane of the fcc structure.
  • the inventors of the present invention have made a ratio (%) between the sum of peak intensities (Is) indicated by arrows 1 to 5 in FIG. 3 and the peak intensity (Ih) attributed to the AlN (010) plane, which is the maximum intensity of the hcp structure. It has been found that by calculating Ih ⁇ 100 / Is), AlN having an hcp structure contained in the hard coating can be quantitatively evaluated.
  • the peak intensity due to the AlN (010) plane of the hcp structure is Ih, and the AlN (111) plane, TiN (111) plane, AlN (002) plane, TiN (002) plane of the fcc structure,
  • the sum of the peak intensity attributed to the AlN (022) plane and the TiN (022) plane and the peak intensity attributed to the AlN (010) plane, (011) plane, and (110) plane of the hcp structure is defined as Is.
  • Is the relationship “Ih ⁇ 100 / Is ⁇ 20” is satisfied. When this relationship was satisfied, it was confirmed that the hcp-structured AlN contained in the hard film was small and the durability of the coated cutting tool was excellent.
  • the case where the relationship of “Ih ⁇ 100 / Is ⁇ 15” is satisfied and still more preferably, the case where the relationship of “Ih ⁇ 100 / Is ⁇ 13” is satisfied.
  • the background value was evaluated without removing it.
  • the (002) plane and the (200) plane are equivalent, and the (022) plane and the (220) plane are equivalent.
  • the (111) plane, (002) plane, and (022) plane are shown as representative of the equivalent crystal plane of the fcc structure.
  • the peak intensity due to the same crystal plane on the substrate side and the surface side shows the maximum intensity of the hard film in the present invention.
  • the entire hard film is continuous and uniform by making the crystal face showing the maximum strength the same on the substrate side and the surface side of the hard film.
  • the durability of the coated cutting tool is improved.
  • the peak strength due to the AlN (002) surface and TiN (002) surface of the fcc structure is maximized on the base material side and the surface side of the hard coating, which is preferable because durability tends to be improved. .
  • the thickness of the hard coating an appropriate value may be selected from a range of 0.5 ⁇ m to 10 ⁇ m, for example.
  • the thickness of the hard film is more preferably 1 ⁇ m or more.
  • the thickness of the hard coating is more preferably 2 ⁇ m or more.
  • the thickness of the hard film is more preferably 5 ⁇ m or less.
  • the intermediate film will be described.
  • the present inventors have intensively studied, and by providing an intermediate film made of carbide containing W and Ti on the base material, not only the adhesion between the base material and the hard film is improved, but also included in the hard film. It was confirmed that the AlN having a hcp structure was reduced and the durability of the coated cutting tool was improved.
  • the intermediate film immediately above the base material is a carbide containing W, it is considered that the affinity with the cemented carbide, which is the base material, becomes strong and the adhesiveness is excellent.
  • the carbide of Ti has an fcc structure, the hard film immediately above the intermediate film grows starting from the carbide of Ti, so that the AlN having an hcp structure included in the hard film. Is considered to be reduced.
  • the film thickness of the intermediate film is in the range of 1 nm to 10 nm.
  • the lower limit of the thickness of the intermediate film is preferably 2 nm or more, and more preferably 3 nm or more.
  • the upper limit of the film thickness of the intermediate film is preferably less than 6 nm.
  • the intermediate film may contain a film component and a base material component in addition to W and Ti.
  • the intermediate film can contain Co on the base material side and Al or N on the hard film side, but the effect of the present invention is exhibited by using carbide containing W and Ti.
  • the presence of the intermediate film can be confirmed by cross-sectional observation by transmission electron microscope observation, composition analysis, and nanobeam diffraction pattern.
  • the half width of the (200) plane of the fcc structure specified by X-ray diffraction is 1.8 ° or less.
  • the hard coating in the present invention is one or more selected from the group consisting of metal elements of Group 4a (excluding Ti), Group 5a, Group 6a (excluding Cr), Si and B of the periodic table.
  • the element can be contained in a content ratio (atomic%) of metal (including metalloid) elements of 0% or more and 15% or less. These elements are generally elements added to the hard coating, and do not reduce the durability of the coated cutting tool of the present invention as long as the content ratio is not excessive. Further, according to the study by the present inventors, it has been confirmed that depending on the work material and the processing conditions, the hard coating may further contain the above-described elements, thereby exhibiting superior durability.
  • AlTi-based nitrides or carbonitrides contain other metal (semi-metal) elements to improve heat resistance and toughness.
  • the content of the additive element is too large, the wear resistance and heat resistance of the hard coating tend to be lowered. Therefore, even when added, the content ratio (atomic%) of metal (including metalloid) elements is preferably less than 15%.
  • the hard film in the present invention contains W (tungsten), so that the compressive residual stress of the film can be reduced while maintaining high hardness.
  • W tungsten
  • the hard coating when the hard coating contains W, superior durability is easily exhibited not only in high-hardness materials but also in cutting of high-carbon steel and Ni-base superalloys. .
  • the hard coating has a W content (atomic%) of 1% relative to the total amount of metal (including metalloid) elements. It is more preferably 10% or less and more preferably 2% or more and 6% or less.
  • the composition of the hard film after coating may be different from the target composition.
  • the composition of the hard film in the present invention can be confirmed, for example, by using a wavelength dispersion type electron probe microanalysis (WDS-EPMA).
  • WDS-EPMA wavelength dispersion type electron probe microanalysis
  • another layer may be coated on the hard film made of an AlTi-based nitride or carbonitride in order to exhibit the effects of the present invention. Therefore, in the present invention, the film structure having the intermediate film made of carbide containing W and Ti and the hard film made of AlTi nitride or carbonitride is made of AlTi nitride or carbonitride.
  • another layer may be coated.
  • another hard film made of nitride or carbonitride having excellent heat resistance and wear resistance is coated on the hard film made of AlTi nitride or carbonitride as a protective film.
  • the protective film is a layer made of nitride.
  • the coating method of the hard film of this invention is demonstrated.
  • the inventors of the present invention have confirmed that the magnetic field of the cathode used for coating the hard film affects the amount of AlN of the hcp structure contained in the microstructure of the AlTi nitride or carbonitride. Then, for example, by arranging permanent magnets on the outer periphery and back surface of the target, and covering the hard film with a cathode having a magnetic flux density of 18 mT or more near the center of the target, the AlN having an hcp structure contained in the microstructure It was confirmed that the amount decreased and the durability of the coated cutting tool improved. More preferably, the magnetic flux density near the center of the target is 20 mT or more.
  • the negative bias voltage applied to the base material during the coating of the hard film is larger than ⁇ 70 V (positive side with respect to ⁇ 70 V), the amount of AlN in the hcp structure tends to increase. Therefore, the negative bias voltage applied to the base material during the coating of the hard film is preferably in the range of ⁇ 200 V to ⁇ 70 V, more preferably in the range of ⁇ 150 V to ⁇ 100 V.
  • the film structure tends to be coarse when the film formation temperature is low. However, if the film forming temperature of the hard film becomes too low, the compressive residual stress of the film becomes too high and the film tends to be self-destructed. Therefore, it is preferable that the hard film is formed at a substrate temperature of 450 ° C. or higher. On the other hand, when the film formation temperature of the hard film increases, the film structure tends to become finer. However, if the film formation temperature of the hard film becomes too high, the residual stress applied to the hard film is lowered, the hard film is softened, and the wear resistance is likely to be lowered. Therefore, it is preferable to form the hard film at a substrate temperature of 580 ° C. or lower.
  • the heating temperature of the base material before the bombarding process is preferably 500 ° C. or less.
  • membrane by adjusting the nitrogen gas flow rate introduce
  • a cathode having a magnetic field configuration in which a coil magnet is arranged on the outer periphery of the target to confine the arc spot inside the target, and Ti is used as a metal bombardment. It is preferred to perform bombardment.
  • Ti which is an element species that easily forms carbides
  • the oxide on the substrate surface is removed and cleaned, and the bombarded Ti ions are removed from the substrate surface.
  • Carbides containing W and Ti are easily formed by diffusing into WC.
  • the negative bias voltage applied to the substrate is preferably ⁇ 1000 V or more and ⁇ 700 V or less.
  • the current supplied to the target is preferably 80 A or more and 150 A or less.
  • carbonized_material containing W and Ti will become difficult to be formed when the heating temperature of the base material before a bombard process becomes low, it exists in the tendency for the adhesiveness of a base material and a hard film to fall. Therefore, it is preferable that the heating temperature of the substrate is set to 450 ° C. or higher and the subsequent bombardment treatment is performed.
  • Ti bombardment may be carried out while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon-based gas, etc., but it can be performed by carrying out the furnace atmosphere under a vacuum of 1.0 ⁇ 10 ⁇ 2 Pa or less.
  • the material surface is preferably cleaned and the diffusion layer is easily formed.
  • the coated cutting tool of the present invention is particularly effective when applied to a radius end mill or a square end mill that mainly uses an outer peripheral blade.
  • the composition is WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%).
  • An insert type radius end mill made of cemented carbide having a hardness of 6 ⁇ m and a hardness of 93.4 HRA was prepared. Note that WC represents tungsten carbide, Co represents a cobalt atom, and TaC represents tantalum carbide.
  • ⁇ Deposition system> For film formation, an arc ion plating type film forming apparatus was used.
  • the inside of the vacuum vessel provided in the film forming apparatus is evacuated by a vacuum pump, and then gas is introduced from a supply port.
  • Each base material installed in the vacuum vessel is electrically connected to a bias power source, and a negative DC bias voltage can be independently applied to each base material.
  • a base material rotating mechanism for rotating the base material is provided in the vacuum vessel.
  • This base material rotating mechanism includes a planetary, a plate-like jig arranged on the planetary, and a pipe-like jig arranged on the plate-like jig, and the planetary rotates at a speed of 3 revolutions per minute. And the plate-like jig and the pipe-like jig revolve each other.
  • a permanent magnet was provided on the outer periphery and the rear surface of the target, and a cathode (hereinafter referred to as C1) that generates an average magnetic flux density of 20.2 mT was used.
  • a permanent magnet was provided on the back surface, and a cathode (hereinafter referred to as C2) having an average magnetic flux density of 15.1 mT was used.
  • the cathode (henceforth C3) which provided the coil magnet on the outer periphery of the target was used.
  • ⁇ Film formation process> The inside of the vacuum vessel was evacuated to 8 ⁇ 10 ⁇ 3 Pa or less. Then, the base material was heated with the heater installed in the vacuum vessel, and evacuation was performed. The heating temperature of the base material was changed for each sample tool. The pressure inside the vacuum vessel was set to 8 ⁇ 10 ⁇ 3 Pa or less. Thereafter, cleaning with Ar plasma was performed, and subsequently, Ti bombarding was performed as metal bombarding to form an intermediate film. Next, the gas in the vacuum vessel was replaced with nitrogen, and the pressure in the vacuum vessel was set to 5 Pa. The film forming temperature and the bias voltage were changed, a current of 150 A was supplied to the cathode, and a hard film having a thickness of about 2 ⁇ m was coated on the surface of the base material.
  • a coated cutting tool in which the surface of the base material was coated with the intermediate film and the hard film was produced. Except for Comparative Example 1, before the hard coating was applied, vacuum evacuation was performed to 8 ⁇ 10 ⁇ 3 Pa or less, an arc current of 150 A was supplied to C3, and Ti bombarding was performed.
  • the hard coating was applied without metal bombardment after cleaning with Ar plasma.
  • TiN was coated as an intermediate film without performing metal bombardment.
  • CrN was coated as an intermediate film without performing metal bombardment after cleaning with Ar plasma.
  • composition analysis> The composition of the hard film of the sample tool was measured by wavelength dispersive electron probe microanalysis (WDS-EPMA) using an electronic probe microanalyzer device (model number: JXA-8500F) manufactured by JEOL Ltd. The composition was determined by measuring five points and averaging the measured values. The measurement conditions were acceleration voltage: 10 kV, irradiation current: 5 ⁇ 10 ⁇ 8 A, capture time: 10 seconds, analysis area diameter: 1 ⁇ m, analysis depth: approximately 1 ⁇ m.
  • the hardness of the hard coating of the sample tool was measured using a nanoindentation device (model number: ENT-1100a) manufactured by Elionix Co., Ltd.
  • the insert was tilted by 5 degrees, and after mirror polishing, a region where the maximum indentation depth was less than about 1/10 of the layer thickness within the polishing surface of the coating was selected. At this time, there was no influence of the base material even at about 1/5.
  • the hardness was measured at 10 points, and the average value of the measured values was determined as the hardness.
  • the measurement conditions were indentation load: 49 mN, maximum load holding time: 1 second, and removal speed after load application: 0.49 mN / second. Prior to the measurement, single crystal Si as a standard sample was measured, and it was confirmed that its hardness was 12 GPa.
  • TEM observation> The cross section was observed with a transmission electron microscope (TEM), and the intermediate film or hard film of the sample tool was evaluated. Specifically, using a field emission transmission electron microscope (model number: JEM-2010F type) manufactured by JEOL Ltd., TEM analysis was performed under the conditions of acceleration voltage: 120 V and incident electron quantity: 5.0 pA / cm 2. Carried out. The TEM analysis was performed by observing the cut surface when the intermediate film or the hard film was cut along a plane perpendicular to the film surface. The limited field diffraction pattern was implemented with a camera length of 100 cm and a limited field region of ⁇ 750 nm.
  • the peak intensities of the hcp structure and the fcc structure were obtained from the intensity profile obtained from the limited field diffraction pattern.
  • the limited field diffraction pattern was measured at two locations on the substrate side and the surface side of the hard coating.
  • the composition of the intermediate film was analyzed with a beam diameter of 1 nm using an attached UTW type Si (Li) semiconductor detector. Nanobeam diffraction was analyzed with a camera length of 50 cm and a beam diameter of 2 nm or less.
  • the sample tool of the comparative example 3 since the Al content is a hard film with little Al, the TEM analysis of a hard film is not implemented.
  • FIG. 4 shows a transmission electron micrograph (2,000,000 times) of the sample tool of Example 1 of the present invention.
  • the point indicated by the arrow 1 is the base material
  • the point indicated by the arrow 2 is the intermediate film
  • the point indicated by the arrow 3 is the hard film.
  • the arrow 1 in FIG. 4 is WC.
  • the arrow 3 in FIG. 4 is a hard film.
  • the intermediate film contains W and Ti. Further, it was possible to index the WC crystal structure from the nanobeam diffraction pattern of FIG.
  • the intermediate film was a carbide containing W and Ti.
  • the intermediate film contained the largest amount of W in the content ratio (atomic%) of metal (including metalloid) elements, and then contained a large amount of Ti.
  • W and Ti Al and N, which are hard film components, were contained.
  • Co which is a base material component, was also slightly contained.
  • ⁇ Cutting test> A cutting test was performed with the work material as SKD11. Cutting conditions are as follows. ⁇ Conditions for cutting test> ⁇ Tool: Insert type radius end mill for machining hard materials ⁇ 12 ⁇ R2 ⁇ 3 flute (manufactured by Hitachi Tool Co., Ltd.) ⁇ Cutter model number: ASRM-1012R-3-M6 -Insert model number: EPHN0402TN-2 ⁇ Cutting method: Bottom cutting ⁇ Work material: SKD11 (60HRC) ⁇ Incision: axial direction 0.15mm, radial direction 6mm ⁇ Number of teeth: 1 ⁇ Spindle speed: 1856min -1 ⁇ Table feed: 742 mm / min ⁇ Single blade feed rate: 0.4mm / tooth ⁇ Cutting oil: Air blow ⁇ Cutting distance: 25 m
  • FIG. 10 shows an observation photograph (100 times) of the cutting edge after the cutting test performed on the sample tools of Examples 1 to 5 of the present invention.
  • FIG. 11 shows an observation photograph (100 times) of the cutting edge after the cutting test performed on the sample tools of Examples 6 to 8 of the present invention.
  • the sample tools of Examples 1 to 8 of the present invention had a higher Al content than the sample tool of Comparative Example 2, but it was confirmed that there was less hcp structure of AlN on the base material side and the surface side of the hard coating. All of the sample tools of the examples of the present invention were in a damaged state at a level that enables cutting following the cutting test.
  • the film thickness of the intermediate film is more excellent than the thickness of 2 nm among the preferable ranges of the film thickness of the intermediate film. It was confirmed that it showed high durability. From the comparison of the sample tool of the present invention example 1 and the sample tool of the present invention example 5, even in the sample tool of the present invention example in which the film thickness of the intermediate coating film is in the preferred range, the same on the substrate side and the surface side of the hard coating film It was confirmed that the peak intensity resulting from the crystal plane showed the maximum strength with less film damage and better durability.
  • FIG. 12 shows an observation photograph (100 times) of the cutting edge after a 25 m cutting test performed on the sample tools of Comparative Examples 1 to 6.
  • FIG. 13 shows an observation photograph (100 times) of the cutting edge after a 25 m cutting test performed on the sample tools of Comparative Examples 7 to 10.
  • the sample tool of Comparative Example 1 has a small value of “Ih ⁇ 100 / Is” of the hard coating, but since the intermediate coating is not formed, the adhesion between the base material and the hard coating is not sufficient, and the tool damage is large. became.
  • the sample tool of Comparative Example 2 was coated with a hard film using a cathode having a smaller magnetic flux density near the target surface than the sample tool of the present invention example, the hcp structure AlN contained in the hard film increased. , Tool damage increased. Since the sample tool of Comparative Example 3 has a small Al content contained in the hard coating, the tool damage was large. In the sample tool of Comparative Example 4, since the bias voltage applied to the base material was small when the hard film was coated, the peak intensity due to the hcp-structured AlN was confirmed even by X-ray diffraction. As a result, tool damage increased. In the sample tool of Comparative Example 5, since the AlCr-based nitride was formed on the hard coating, the tool damage increased.
  • Example 2 In Example 1, except that the film forming conditions in the film forming process were changed as shown in Table 3, the coated cutting in which the intermediate film and the hard film were coated on the surface of the substrate in the same manner as in Example 1 A tool (sample tool) was produced. A cutting test was performed on the sample tools of Examples 20 to 23 of the present invention and Comparative Example 20 in order to confirm the effect of the additive element with S50C as the work material. Cutting conditions are as follows. The film formation conditions are shown in Table 3, and the physical properties of the sample tool thus produced are shown in Table 4, respectively.
  • FIG. 14 the electron microscope observation photograph (40 times) which observed the damage state of the rake face after a cutting test is shown.
  • the part that looks white in the figure shows the worn part. It can be confirmed that crater wear is suppressed when the hard coating contains W. It was confirmed that all of the sample tools of the present invention showed excellent cutting performance in the high hardness steel and high carbon steel of Example 1.
  • Table 5 shows the results of measuring the area ratio of a worn white portion by image analysis software. Among the sample tools of the present invention example, it was confirmed that crater wear was significantly suppressed in the sample tools of Invention Examples 22 and 23 containing a certain amount of W.
  • Example 3 The sample tools of Examples 20 to 23 of the present invention used in Example 2 and the sample tool of Comparative Example 20 are prepared, and the condition that the tool load is larger than that in Example 1 is selected with the work material as SKD11 (60HRC). Then, a cutting test was performed and evaluated. The cutting conditions are shown below. The results of the cutting test are shown in Table 6.
  • the distance to reach the tool life in the high-efficiency machining of high hardness steel was more than twice that of the sample tool of the comparative example.
  • the sample tools of Invention Examples 21 and 22 containing W in a more preferable range resulted in a longer distance for reaching the tool life and excellent durability.
  • Example 4 In Example 1, using the coated cutting tools (sample tools of Invention Examples 1 to 8, 21 to 23, and Comparative Examples 1 to 9) coated with a hard film under the conditions of Tables 1 and 3, the following: A cutting test was conducted on Ni-base superalloys under the conditions and evaluated. The results of the cutting test are shown in Table 7.
  • ⁇ Conditions for cutting test> ⁇ Tool: Solid end mill ⁇ 10 ⁇ 2 flute (HES2100 manufactured by Hitachi Tool Co., Ltd.) Base material: WC (bal.)-Co (11 mass%)-TaC (0.4 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 ⁇ m, hardness 92.4HRA Cemented Carbide / Cutting Method: Side Cutting / Working Material: Ni-19% Cr-18.7% Fe-3.0% Mo-5.0% (Nd + Ta) -0.8% Ti Ni-base alloy with a composition of -0.5% Al-0.03% C (age-hardened) ⁇ Infeed: axial direction 6mm, radial direction 0.3mm ⁇ Cutting speed: 40 m / min ⁇ Single-blade feed amount: 0.04 mm / tooth ⁇ Cutting oil: Water-soluble cutting oil ⁇ Cutting distance: 0.2 m
  • a sample tool showing durability superior to that of the comparative example was obtained in the cutting of the Ni-base superalloy.
  • the sample tools of Invention Examples 21 and 22 containing W in a preferable range tend to have a small wear width. It was confirmed that the hard film in the present invention contains W, so that it exhibits superior durability in a wide range of work materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

The present invention provides a coated cutting tool that has: a substrate; an intermediate coating film comprising a carbide containing tungsten (W) and titanium (Ti) and having a film thickness of 1-10 nm; and a hard coating film comprising an AlTi-based nitride or carbonitride having a crystal structure that is a face-centered cubic lattice structure, and having an Al content (atom%) of at least 60% and a Ti content (atom%) of at least 20%. Of the hard coating film, in a strength profile according to a selected area diffraction pattern in a transmission electron microscope, when the peak strength caused by the AlN (010) plane of a hexagonal closest packing structure is Ih, and the total of the peak strength caused by the AlN (111) plane, the TiN (111) plane, the AlN (002) plane, the TiN (002) plane, the AlN (022) plane and the TiN (022) plane in the face-centered cubic lattice structure and the peak strength caused by the AlN (010) plane, the AlN (011) plane, and the AlN (110) plane in the hexagonal closest packing structure is Is, Ih×100/Is ≤ 20.

Description

被覆切削工具及びその製造方法Coated cutting tool and manufacturing method thereof
 本発明は、例えば鋼や鋳鉄、耐熱合金等の切削加工への適用に好適な被覆切削工具及びその製造方法に関する。 The present invention relates to a coated cutting tool suitable for application to, for example, cutting of steel, cast iron, heat-resistant alloy, and the like, and a manufacturing method thereof.
 従来、切削工具の耐久性を向上させることを目的に、工具表面に硬質皮膜を被覆する表面処理が実施されている。硬質皮膜の中でもAlとTiの複合窒化物皮膜(以下、AlTiNと記載する。)は優れた耐摩耗性を有することから広く適用されている。通常、AlTiNは、Al含有量が多いと耐熱性がより高まる傾向にある。しかし、Al含有量が多くなりすぎると脆弱なhcp構造のAlNが析出して硬度が低下することが知られている。例えば、特許文献1には、金属(半金属を含む)元素のうちAlの含有比率(原子%)が60%以上となることでAlTiNの硬度が低下し始めることが開示されており、Alの含有比率(原子%)が70%の場合、結晶構造の一部にhcp構造が確認されている。 Conventionally, for the purpose of improving the durability of a cutting tool, a surface treatment for coating the surface of the tool with a hard film has been performed. Among hard coatings, a composite nitride coating of Al and Ti (hereinafter referred to as AlTiN) is widely applied because of its excellent wear resistance. Usually, AlTiN tends to have higher heat resistance when the Al content is high. However, it is known that when the Al content is too high, brittle hcp-structured AlN precipitates and the hardness decreases. For example, Patent Document 1 discloses that the hardness of AlTiN starts to decrease when the Al content ratio (atomic%) of metal (including metalloid) elements is 60% or more. When the content ratio (atomic%) is 70%, the hcp structure is confirmed as part of the crystal structure.
 一方、特許文献2には、Al含有量が多くてもfcc構造が維持され易いAlTi系の窒化物皮膜の被覆方法が提案されている。特許文献2には、永久磁石を横または前方に配置したカソードを用い、ターゲット蒸発面にほぼ直交して前方に発散ないし平行に進行する磁力線を形成することで、被処理体付近における成膜ガスプラズマ密度が従来のカソードに比べて格段に高くなることが開示されている。このようなカソードを用いて被覆することで、金属(半金属を含む)元素のうちAlの含有比率(原子%)が70%を超えるAlTi系の窒化物皮膜であっても、fcc構造が主体となることが開示されている。 On the other hand, Patent Document 2 proposes a coating method of an AlTi nitride film in which the fcc structure is easily maintained even when the Al content is large. In Patent Document 2, a cathode in which a permanent magnet is disposed laterally or in front is used, and a magnetic field line that diverges forward or travels substantially in front of the target evaporation surface is formed, thereby forming a film forming gas in the vicinity of the object to be processed. It is disclosed that the plasma density is significantly higher than that of a conventional cathode. By covering with such a cathode, even if it is an AlTi-based nitride film in which the Al content (atomic%) of metal (including metalloid) elements exceeds 70%, the fcc structure is mainly used. Is disclosed.
特開平8-209333号公報JP-A-8-209333 特開2003-71610号公報JP 2003-71610 A
 近年、被加工材の高硬度化および高速加工化により、切削工具の使用環境はより過酷なものとなっている。例えば、調質された冷間工具鋼のような高硬度材を加工する場合、荒取り加工のような過酷な環境下では、工具の皮膜剥離や工具摩耗の進行が早期に生じ易く、上記した特許文献のような被覆切削工具を適用しても満足する耐久性が得られ難いことを確認した。 In recent years, the working environment of cutting tools has become more severe due to the high hardness and high speed machining of workpieces. For example, when machining a high hardness material such as tempered cold tool steel, in severe environments such as roughing, film peeling of the tool and progress of tool wear are likely to occur at an early stage. It was confirmed that satisfactory durability could not be obtained even when a coated cutting tool such as that disclosed in Patent Literature was applied.
 本発明は、上記のような事情に鑑みて行われたものである。本発明は、耐久性に優れた被覆切削工具及びその製造方法を提供することを目的とする。 The present invention has been made in view of the above circumstances. An object of this invention is to provide the coated cutting tool excellent in durability, and its manufacturing method.
 本発明者等は、AlTi系の窒化物または炭窒化物からなる硬質皮膜のミクロ組織に含有される六方最密充填(hcp;以下、単に「hcp」と略記することがある)構造のAlNを低減した最適な組織形態を見出した。そして、基材と硬質皮膜との間に特別な中間皮膜を設けることで、硬質皮膜の効果が十分に発揮され、高硬度材の高速加工でも、優れた耐久性が発揮されることを確認し、本発明に到達した。 The inventors of the present invention have used AlN having a hexagonal close-packed (hcp; hereinafter simply abbreviated as “hcp”) structure contained in the microstructure of a hard film made of an AlTi-based nitride or carbonitride. We found the optimal tissue morphology that was reduced. And, by providing a special intermediate film between the base material and the hard film, it was confirmed that the effect of the hard film was sufficiently exhibited, and excellent durability was exhibited even at high speed processing of high hardness materials. The present invention has been reached.
 すなわち、本発明は、基材(切削工具)の表面に硬質皮膜を被覆した被覆切削工具である。具体的には、基材と、 前記基材の上に配置され、タングステン(W)およびチタン(Ti)を含む炭化物からなる膜厚が1nm以上10nm以下の中間皮膜と、前記中間皮膜の上に配置され、X線回折で特定される結晶構造が面心立方格子(fcc;以下、単に「fcc」と略記することがある)構造であって、金属(半金属を含む)元素の総量に対し、Alの含有比率(原子%)が60%以上であり、Tiの含有比率(原子%)が20%以上であるAlTi系の窒化物または炭窒化物からなる硬質皮膜と、を有し、
 前記硬質皮膜は、透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルにおいて、「Ih×100/Is≦20」の関係を満たす被覆切削工具である。好ましくは、「Ih×100/Is≦15」である。
  Ih= hcp構造のAlN(010)面に起因するピーク強度
  Is= fcc構造の、AlN(111)面、TiN(111)面、AlN(002)面、TiN(002)面、AlN(022)面、およびTiN(022)面に起因するピーク強度と、hcp構造の、AlN(010)面、AlN(011)面、およびAlN(110)面に起因するピーク強度と、の合計
 また、本発明における硬質皮膜は、金属(半金属を含む)元素の総量に対して、Alの含有比率(原子%)が62%以上70%以下で、かつTiの含有比率(原子%)が25%以上であるとともに、Al及びTiの合計の含有比率(原子%)が、金属(半金属を含む)元素の総量に対して90%以上である場合が好ましい。
That is, this invention is a coated cutting tool which coat | covered the hard film | membrane on the surface of the base material (cutting tool). Specifically, a base material, an intermediate film disposed on the base material and made of carbide containing tungsten (W) and titanium (Ti) and having a thickness of 1 nm or more and 10 nm or less, and on the intermediate film The crystal structure arranged and specified by X-ray diffraction is a face-centered cubic lattice (fcc; hereinafter simply abbreviated as “fcc”) structure, and is based on the total amount of metal (including metalloid) elements A hard film made of an AlTi-based nitride or carbonitride having an Al content ratio (atomic%) of 60% or more and a Ti content ratio (atomic%) of 20% or more,
The hard coating is a coated cutting tool that satisfies a relationship of “Ih × 100 / Is ≦ 20” in an intensity profile obtained from a limited field diffraction pattern of a transmission electron microscope. Preferably, “Ih × 100 / Is ≦ 15”.
Ih = peak intensity due to AlN (010) plane of hcp structure Is = fcc structure of AlN (111) plane, TiN (111) plane, AlN (002) plane, TiN (002) plane, AlN (022) plane And the peak intensity due to the TiN (022) plane and the peak intensity due to the AlN (010) plane, the AlN (011) plane, and the AlN (110) plane of the hcp structure The hard coating has an Al content ratio (atomic%) of 62% to 70% and a Ti content ratio (atomic%) of 25% or more with respect to the total amount of metal (including metalloid) elements. In addition, it is preferable that the total content ratio (atomic%) of Al and Ti is 90% or more with respect to the total amount of metal (including metalloid) elements.
 更に、中間皮膜の膜厚が、1nm以上6nm未満であることが好ましい。更には、硬質皮膜は、X線回折で特定されるfcc構造の(200)面の半価幅が、1.8°以下であることが好ましい。
 また、硬質皮膜は、透過型電子顕微鏡による膜断面の制限視野回折パターンから求められる強度プロファイルにおいて、基材側および表面側で同一の結晶面に起因するピーク強度が最大強度を示すことが好ましい。前記制限視野回折パターンから求められる強度プロファイルにおいて、前記同一の結晶面に起因するピーク強度は、fcc構造のAlN(002)面およびTiN(002)面に起因するピーク強度であることがより好ましい。
 更に、硬質皮膜は、タングステン(W)を含むことが好ましく、金属(半金属を含む)元素の総量に対して、Wの含有比率(原子%)が1%以上10%以下であることがより好ましい。更には、Wの含有比率(原子%)が2%以上6%以下であることが好ましい。
 硬質皮膜の膜厚は、1μm以上5μm以下であることが好ましい。
 基材となる切削工具としては、ラジアスエンドミルまたはスクエアエンドミルであることが好ましい。
Furthermore, the film thickness of the intermediate film is preferably 1 nm or more and less than 6 nm. Furthermore, it is preferable that the half width of the (200) plane of the fcc structure specified by X-ray diffraction is 1.8 ° or less.
Moreover, it is preferable that in the intensity | strength profile calculated | required from the restriction | limiting field-of-view diffraction pattern of the film | membrane cross section by a transmission electron microscope, the hard film shows the peak intensity | strength resulting from the same crystal plane on the base material side and the surface side. In the intensity profile obtained from the limited field diffraction pattern, the peak intensity attributed to the same crystal plane is more preferably the peak intensity attributed to the AlN (002) plane and TiN (002) plane of the fcc structure.
Furthermore, the hard coating preferably contains tungsten (W), and the content ratio (atomic%) of W is 1% or more and 10% or less with respect to the total amount of metal (including metalloid) elements. preferable. Further, the W content (atomic%) is preferably 2% or more and 6% or less.
The film thickness of the hard coating is preferably 1 μm or more and 5 μm or less.
The cutting tool serving as the substrate is preferably a radius end mill or a square end mill.
 また、本発明の被覆切削工具は、以下に示す本発明の被覆切削工具の製造方法により好適に製造される。具体的には、
 基材の表面をメタルボンバード処理して、前記基材の表面にタングステン(W)およびチタン(Ti)を含む炭化物からなる膜厚が1nm以上10nm以下の中間皮膜を形成することと、ターゲット中心付近の磁束密度が18mT以上となるカソードを用い、前記基材に-200V以上-70V以下のバイアス電圧を印加して、前記中間皮膜の上に、金属(半金属を含む)元素の総量に対し、アルミニウム(Al)の含有比率(原子%)が60%以上であり、チタン(Ti)の含有比率(原子%)が20%以上であるAlTi系の窒化物または炭窒化物からなる硬質皮膜を形成することと、を有する被覆切削工具の製造方法である。
 更に、前記硬質皮膜は、基材温度を450℃以上580℃以下として形成することが好ましい。更に、前記メタルボンバード処理前の基材の加熱温度は500℃以下であることが好ましい。
 更に、前記硬質皮膜は、更に、タングステン(W)を含むことが好ましい。更に、前記硬質皮膜は、金属(半金属を含む)元素の総量に対し、タングステン(W)の含有比率(原子%)が1%以上10以下%であることが好ましい。更に、前記タングステン(W)の含有比率(原子%)が、2%以上6%以下であることが好ましい。
 更に、前記被覆工具の製造方法はラジアスエンドミルまたはスクエアエンドミルに適用することが好ましい。
Moreover, the coated cutting tool of this invention is suitably manufactured with the manufacturing method of the coated cutting tool of this invention shown below. In particular,
The surface of the base material is subjected to metal bombardment to form an intermediate film having a thickness of 1 nm to 10 nm made of carbide containing tungsten (W) and titanium (Ti) on the surface of the base material; Using a cathode having a magnetic flux density of 18 mT or more, applying a bias voltage of −200 V or more and −70 V or less to the base material, and with respect to the total amount of metal (including metalloid) elements on the intermediate film, Forms a hard coating made of AlTi nitride or carbonitride with aluminum (Al) content (atomic%) of 60% or more and titanium (Ti) content (atomic%) of 20% or more And a method of manufacturing a coated cutting tool.
Furthermore, it is preferable that the hard film is formed at a substrate temperature of 450 ° C. or higher and 580 ° C. or lower. Furthermore, the heating temperature of the base material before the metal bombardment treatment is preferably 500 ° C. or less.
Furthermore, it is preferable that the hard film further contains tungsten (W). Further, the hard coating preferably has a tungsten (W) content ratio (atomic%) of 1% or more and 10 or less% with respect to the total amount of metal (including metalloid) elements. Furthermore, it is preferable that the content ratio (atomic%) of the tungsten (W) is 2% or more and 6% or less.
Furthermore, it is preferable that the manufacturing method of the said coated tool is applied to a radius end mill or a square end mill.
 本発明によれば、耐久性に優れた被覆切削工具及びその製造方法が提供される。
 即ち、本発明によれば、高硬度材の高速加工に加え、更には、高炭素鋼やNi基超耐熱合金等の切削加工においても優れた耐久性が発揮される。
ADVANTAGE OF THE INVENTION According to this invention, the coated cutting tool excellent in durability and its manufacturing method are provided.
That is, according to the present invention, in addition to high-speed machining of a high-hardness material, excellent durability is exhibited also in cutting of high-carbon steel, Ni-base superalloy, and the like.
図1は、透過型電子顕微鏡による硬質皮膜の断面観察写真である(図中の円周部は、制限視野回折パターンを撮影したときの電子線照射位置である)。FIG. 1 is a cross-sectional observation photograph of a hard film with a transmission electron microscope (the circumferential portion in the figure is an electron beam irradiation position when a limited field diffraction pattern is photographed). 図2は、図1の下部円周内に電子線を照射したときの制限視野回折パターンを示す図である。FIG. 2 is a diagram showing a limited field diffraction pattern when an electron beam is irradiated within the lower circumference of FIG. 図3は、図2に示す制限視野回折パターンの強度プロファイルを示す図である。FIG. 3 is a diagram showing an intensity profile of the limited field diffraction pattern shown in FIG. 図4は、透過型電子顕微鏡による本発明例1のサンプル工具の断面観察写真である。FIG. 4 is a cross-sectional observation photograph of the sample tool of Example 1 of the present invention using a transmission electron microscope. 図5は、図4における矢印1が示すポイントのナノビーム回折パターンを示す図である。FIG. 5 is a diagram showing a nanobeam diffraction pattern at a point indicated by an arrow 1 in FIG. 図6は、図4における矢印1が示すポイントのEDSスペクトル分析結果を示す図である。FIG. 6 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 1 in FIG. 図7は、図4における矢印2が示すポイントのナノビーム回折パターンを示す図である。FIG. 7 is a diagram showing a nanobeam diffraction pattern at a point indicated by an arrow 2 in FIG. 図8は、図4における矢印2が示すポイントのEDSスペクトル分析結果を示す図である。FIG. 8 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 2 in FIG. 図9は、図4における矢印3が示すポイントのEDSスペクトル分析結果を示す図である。FIG. 9 is a diagram showing an EDS spectrum analysis result at a point indicated by an arrow 3 in FIG. 図10は、本発明例1~5のサンプル工具の、電子顕微鏡による25m切削後の工具刃先の観察写真である。FIG. 10 is an observation photograph of the cutting edge of the sample tool of Examples 1 to 5 of the present invention after cutting 25 m with an electron microscope. 図11は、本発明例6~8のサンプル工具の、電子顕微鏡による25m切削後の工具刃先の観察写真である。FIG. 11 is an observation photograph of the tool edge of the sample tools of Examples 6 to 8 of the present invention after 25 m cutting with an electron microscope. 図12は、比較例1~6のサンプル工具の、電子顕微鏡による25m切削後の工具刃先の観察写真である。FIG. 12 is an observation photograph of the tool edge of the sample tools of Comparative Examples 1 to 6 after 25 m cutting with an electron microscope. 図13は、比較例7~10のサンプル工具の、電子顕微鏡による25m切削後の工具刃先の観察写真である。FIG. 13 is an observation photograph of the tool edge of the sample tools of Comparative Examples 7 to 10 after 25 m cutting with an electron microscope. 図14は、本発明例20~23および比較例20のサンプル工具の、電子顕微鏡による4m切削後の工具刃先の観察写真である。FIG. 14 is an observation photograph of the tool cutting edge of the sample tools of Invention Examples 20 to 23 and Comparative Example 20 after 4 m cutting with an electron microscope.
 本発明者等は、X線回折においてfcc構造(面心立方格子構造)のピーク強度しか測定されない、AlとTiを含む窒化物又は炭窒化物であっても、透過型電子顕微鏡による解析をすると、ミクロ組織にはhcp構造のAlNが含まれていることを確認した。そして、ミクロ組織に含まれるhcp構造(六方最密充填構造)のAlNを低減することにより、硬質皮膜として良好な特性が得られることが分かった。
 更に、基材と硬質皮膜との間に、特定の組成及び膜厚の中間皮膜を設けることで、被覆切削工具の耐久性を向上できることを見出した。
 以下、本発明の被覆切削工具及びその製造方法について詳細に説明する。
The inventors of the present invention can analyze only the peak intensity of the fcc structure (face-centered cubic lattice structure) in X-ray diffraction, even if it is a nitride or carbonitride containing Al and Ti, and is analyzed with a transmission electron microscope. It was confirmed that the microstructure contained AlN having an hcp structure. And it turned out that a favorable characteristic as a hard film is acquired by reducing AlN of the hcp structure (hexagonal close-packed structure) contained in a microstructure.
Furthermore, it has been found that the durability of the coated cutting tool can be improved by providing an intermediate film having a specific composition and film thickness between the substrate and the hard film.
Hereinafter, the coated cutting tool of the present invention and the manufacturing method thereof will be described in detail.
 まず、本発明の硬質皮膜について説明する。
 硬質皮膜は、耐熱性と耐摩耗性が優れる皮膜種である窒化物又は炭窒化物とする。より好ましくは窒化物である。
 Alは、硬質皮膜に耐熱性を付与する元素であり、金属(半金属を含む)元素のうちAlの含有比率(原子%)を最も多く含有することで、優れた耐熱性を発現し、被覆切削工具の耐久性が向上する。硬質皮膜により優れた耐熱性を付与するために、金属(半金属を含む)元素のうちAlの含有比率(原子%)は60%以上とする。より好ましいAlの含有比率(原子%)は、金属(半金属を含む)元素の総量に対して62%以上であり、更には65%以上である。
 被覆切削工具により高い耐久性を付与するためには、Alの含有比率(原子%)を、金属(半金属を含む)元素の総量に対して75%以下とすることが好ましい。より好ましいAlの含有比率(原子%)は、金属(半金属を含む)元素の総量に対して70%以下である。
First, the hard film of the present invention will be described.
The hard film is a nitride or carbonitride which is a film type having excellent heat resistance and wear resistance. More preferred is nitride.
Al is an element that imparts heat resistance to the hard coating. By containing the most Al content (atomic%) among metal (including metalloid) elements, it exhibits excellent heat resistance and is coated. The durability of the cutting tool is improved. In order to impart excellent heat resistance to the hard coating, the Al content (atomic%) of the metal (including metalloid) elements is set to 60% or more. A more preferable Al content ratio (atomic%) is 62% or more, and further 65% or more with respect to the total amount of metal (including metalloid) elements.
In order to impart high durability to the coated cutting tool, the Al content ratio (atomic%) is preferably 75% or less with respect to the total amount of metal (including metalloid) elements. A more preferable Al content ratio (atomic%) is 70% or less with respect to the total amount of metal (including metalloid) elements.
 Tiは、硬質皮膜に耐摩耗性を付与すると共に、被覆切削工具として耐久性に優れたfcc構造の結晶構造とする点で、重要な元素である。Tiの含有量が少なくなると、硬質皮膜の耐摩耗性が低下すると共に、X線回折でもhcp構造のピーク強度が確認される程にhcp構造のAlNが多くなる。耐摩耗性を付与してfccの結晶構造とするためには、Al含有量を規定することに加えて、Tiの含有比率(原子%)を、金属(半金属を含む)元素の総量に対して20%以上とする。更には、Tiの含有比率(原子%)は25%以上とすることがより好ましい。
 本発明において、AlとTiとを含む窒化物または炭窒化物は、耐熱性および耐摩耗性の観点から、AlとTiとの合計の含有比率(原子%)を、金属(半金属を含む)元素の総量に対して90%以上とすることが好ましい。
Ti is an important element in that it imparts wear resistance to the hard coating and has a fcc structure crystal structure with excellent durability as a coated cutting tool. When the Ti content decreases, the wear resistance of the hard coating decreases, and the hcp structure AlN increases as the peak intensity of the hcp structure is confirmed by X-ray diffraction. In order to provide wear resistance and an fcc crystal structure, in addition to defining the Al content, the Ti content (atomic%) is set to the total amount of metal (including metalloid) elements. 20% or more. Furthermore, the Ti content ratio (atomic%) is more preferably 25% or more.
In the present invention, the nitride or carbonitride containing Al and Ti has a total content ratio (atomic%) of Al and Ti of metal (including metalloid) from the viewpoint of heat resistance and wear resistance. It is preferable to set it as 90% or more with respect to the total amount of an element.
 本発明において、X線回折で特定される結晶構造がfcc構造であるとは、例えば、市販のX線回折装置(株式会社リガク製 RINT2500V-PSRC/MDG)を用いて測定した場合に、AlNのhcp構造に起因するピーク強度が確認されないことをいう。 In the present invention, the crystal structure specified by X-ray diffraction is an fcc structure, for example, when measured using a commercially available X-ray diffractometer (RINT2500V-PSRC / MDG manufactured by Rigaku Corporation). It means that the peak intensity due to the hcp structure is not confirmed.
 本発明では、硬質皮膜のミクロ組織に含まれるhcp構造のAlN量を定量化するため、透過型電子顕微鏡(以下、TEMと記載する。)観察の制限視野回折パターンから求められる強度プロファイルを用いた。その測定方法について以下説明する。なお、測定条件を統一するため、加速電圧:120V、制限視野領域:φ750nm、カメラ長:100cm、入射電子量:5.0pA/cm(蛍光板上)として、各試料の基材側と表面側で制限視野回折パターンを求めた。 In the present invention, in order to quantify the AlN content of the hcp structure contained in the microstructure of the hard film, an intensity profile obtained from a limited field diffraction pattern of a transmission electron microscope (hereinafter referred to as TEM) was used. . The measurement method will be described below. In order to unify the measurement conditions, the acceleration voltage: 120 V, the limited visual field region: φ750 nm, the camera length: 100 cm, the incident electron quantity: 5.0 pA / cm 2 (on the fluorescent plate), the substrate side and the surface side of each sample The limited field diffraction pattern was obtained.
 図1に、硬質皮膜の断面TEM観察写真(40,000倍)を示す。図2は、図1の下円部の制限視野回折パターンである。そして、図2の制限視野回折パターンの輝度を変換して、図3の制限視野回折パターンの強度プロファイルを求めた。図3において、横軸は(000)面スポット中心からの距離(半径r)を、縦軸は各半径rにおける円一周分の積算強度(任意単位)を、それぞれ示したプロファイルである。
 図3において、矢印1は、hcp構造のAlN(010)面に起因するピークであり、hcp構造のAlNの最大強度である。矢印2は、hcp構造のAlN(011)面およびfcc構造のAlN(111)面、TiN(111)面に起因するピークである。矢印3は、fcc構造のAlN(002)面、TiN(002)面に起因するピークである。矢印4は、hcp構造のAlN(110)面に起因するピークである。矢印5は、fcc構造のAlN(022)面、TiN(022)面に起因するピークである。
In FIG. 1, the cross-sectional TEM observation photograph (40,000 times) of a hard film is shown. FIG. 2 is a limited field diffraction pattern of the lower circle part of FIG. Then, the intensity of the limited field diffraction pattern of FIG. 3 was obtained by converting the luminance of the limited field diffraction pattern of FIG. In FIG. 3, the horizontal axis represents the distance (radius r) from the center of the (000) plane spot, and the vertical axis represents the integrated intensity (arbitrary unit) for one circle around each radius r.
In FIG. 3, an arrow 1 is a peak due to the AlN (010) plane of the hcp structure, and is the maximum intensity of AlN of the hcp structure. Arrow 2 is a peak due to the AlN (011) plane of the hcp structure, the AlN (111) plane of the fcc structure, and the TiN (111) plane. Arrow 3 is a peak due to the AlN (002) plane and TiN (002) plane of the fcc structure. The arrow 4 is a peak due to the AlN (110) plane of the hcp structure. An arrow 5 is a peak due to the AlN (022) plane and TiN (022) plane of the fcc structure.
 本発明者等は、図3における矢印1~5のピーク強度の合計(Is)と、hcp構造の最大強度であるAlN(010)面に起因するピーク強度(Ih)と、の比(%;Ih×100/Is)を求めることで、硬質皮膜に含まれるhcp構造のAlNを定量的に評価することができることを見出した。
 したがって、本発明では、hcp構造のAlN(010)面に起因するピーク強度をIhとし、fcc構造のAlN(111)面、TiN(111)面、AlN(002)面、TiN(002)面、AlN(022)面、およびTiN(022)面に起因するピーク強度と、hcp構造のAlN(010)面、(011)面、(110)面に起因するピーク強度と、の合計をIsとした場合に、「Ih×100/Is≦20」の関係を満たすものとする。この関係を満たす場合、硬質皮膜に含まれるhcp構造のAlNが少なく、被覆切削工具の耐久性が優れることを確認した。中でも、より好ましくは、「Ih×100/Is≦15」の関係を満たす場合であり、更に好ましくは、「Ih×100/Is≦13」の関係を満たす場合である
 本発明では、バックグラウンドの設定の仕方による誤差を排除するため、バックグラウンドの値は除去せず評価した。
 なお、fcc構造では、(002)面と(200)面は等価であり、(022)面と(220)面は等価である。本発明のTEM解析においては、fcc構造の等価な結晶面を代表して、(111)面、(002)面、(022)面と示している。
The inventors of the present invention have made a ratio (%) between the sum of peak intensities (Is) indicated by arrows 1 to 5 in FIG. 3 and the peak intensity (Ih) attributed to the AlN (010) plane, which is the maximum intensity of the hcp structure. It has been found that by calculating Ih × 100 / Is), AlN having an hcp structure contained in the hard coating can be quantitatively evaluated.
Therefore, in the present invention, the peak intensity due to the AlN (010) plane of the hcp structure is Ih, and the AlN (111) plane, TiN (111) plane, AlN (002) plane, TiN (002) plane of the fcc structure, The sum of the peak intensity attributed to the AlN (022) plane and the TiN (022) plane and the peak intensity attributed to the AlN (010) plane, (011) plane, and (110) plane of the hcp structure is defined as Is. In this case, it is assumed that the relationship “Ih × 100 / Is ≦ 20” is satisfied. When this relationship was satisfied, it was confirmed that the hcp-structured AlN contained in the hard film was small and the durability of the coated cutting tool was excellent. Among them, more preferably, the case where the relationship of “Ih × 100 / Is ≦ 15” is satisfied, and still more preferably, the case where the relationship of “Ih × 100 / Is ≦ 13” is satisfied. In order to eliminate the error due to the setting method, the background value was evaluated without removing it.
In the fcc structure, the (002) plane and the (200) plane are equivalent, and the (022) plane and the (220) plane are equivalent. In the TEM analysis of the present invention, the (111) plane, (002) plane, and (022) plane are shown as representative of the equivalent crystal plane of the fcc structure.
 本発明における硬質皮膜は、透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルにおいて、基材側および表面側で同一の結晶面に起因するピーク強度が最大強度を示すことが好ましい。「Ih×100/Is」を一定に制御することに加えて、硬質皮膜の基材側と表面側で最大強度を示す結晶面が同とすることで、硬質皮膜の全体が連続性のある均一な組織となり被覆切削工具の耐久性が向上する。特に、硬質皮膜の基材側と表面側とで、fcc構造のAlN(002)面、TiN(002)面に起因するピーク強度が最大となることで、耐久性が向上する傾向にあるので好ましい。 In the intensity profile obtained from the limited field diffraction pattern of the transmission electron microscope, it is preferable that the peak intensity due to the same crystal plane on the substrate side and the surface side shows the maximum intensity of the hard film in the present invention. In addition to controlling “Ih × 100 / Is” to be constant, the entire hard film is continuous and uniform by making the crystal face showing the maximum strength the same on the substrate side and the surface side of the hard film. And the durability of the coated cutting tool is improved. In particular, the peak strength due to the AlN (002) surface and TiN (002) surface of the fcc structure is maximized on the base material side and the surface side of the hard coating, which is preferable because durability tends to be improved. .
 硬質皮膜が薄くなり過ぎると、優れた耐久性が十分に発揮されない場合がある。また、硬質皮膜が厚くなり過ぎると、皮膜剥離が発生する場合がある。硬質皮膜の厚さは、例えば、0.5μm以上10μm以下の範囲から適当な値を選択すればよい。硬質皮膜の厚さは、より好ましくは1μm以上である。更には、硬質皮膜の厚さは2μm以上であることがより好ましい。また、硬質皮膜の厚さは、より好ましくは5μm以下である。 If the hard coating becomes too thin, the excellent durability may not be fully exhibited. In addition, when the hard film becomes too thick, film peeling may occur. For the thickness of the hard coating, an appropriate value may be selected from a range of 0.5 μm to 10 μm, for example. The thickness of the hard film is more preferably 1 μm or more. Furthermore, the thickness of the hard coating is more preferably 2 μm or more. Further, the thickness of the hard film is more preferably 5 μm or less.
 続いて、中間皮膜について説明する。
 既述のように、ミクロ組織に含まれるhcp構造のAlNを低減させたAlTi系の窒化物または炭窒化物を適用した硬質皮膜の効果を、最大限に発揮するためには、基材と硬質皮膜との間に特別な中間皮膜を設けることが重要である。本発明者等は鋭意研究し、WおよびTiを含む炭化物からなる中間皮膜を基材の上に設けることで、基材と硬質皮膜との密着性が改善されるだけでなく、硬質皮膜に含まれるhcp構造のAlNが低減して被覆切削工具の耐久性が向上することを確認した。
Next, the intermediate film will be described.
As described above, in order to maximize the effect of the hard coating using AlTi nitride or carbonitride with reduced hcp-structured AlN contained in the microstructure, It is important to provide a special intermediate film between the film. The present inventors have intensively studied, and by providing an intermediate film made of carbide containing W and Ti on the base material, not only the adhesion between the base material and the hard film is improved, but also included in the hard film. It was confirmed that the AlN having a hcp structure was reduced and the durability of the coated cutting tool was improved.
 基材の直上の中間皮膜がWを含む炭化物であると、基材である超硬合金との親和性が強くなり、密着性に優れたものになると考えられる。また、中間皮膜にTiを含ませると、Tiの炭化物はfcc構造であるため、中間皮膜の直上にある硬質皮膜がTiの炭化物を起点として成長することで、硬質皮膜に含まれるhcp構造のAlNが低減すると考えられる。
 また、中間皮膜の膜厚は、薄厚になり過ぎても厚膜になり過ぎても、基材との密着性を向上させるのに好ましくない。よって、中間皮膜の膜厚は、1nm以上10nm以下の範囲とする。中間皮膜の膜厚の下限については、好ましくは2nm以上であり、更には3nm以上が好ましい。また、中間皮膜の膜厚の上限については、好ましくは6nm未満である。
If the intermediate film immediately above the base material is a carbide containing W, it is considered that the affinity with the cemented carbide, which is the base material, becomes strong and the adhesiveness is excellent. In addition, when Ti is included in the intermediate film, since the carbide of Ti has an fcc structure, the hard film immediately above the intermediate film grows starting from the carbide of Ti, so that the AlN having an hcp structure included in the hard film. Is considered to be reduced.
Moreover, even if the film thickness of the intermediate film is too thin or too thick, it is not preferable for improving the adhesion to the substrate. Therefore, the film thickness of the intermediate film is in the range of 1 nm to 10 nm. The lower limit of the thickness of the intermediate film is preferably 2 nm or more, and more preferably 3 nm or more. Further, the upper limit of the film thickness of the intermediate film is preferably less than 6 nm.
 中間皮膜は、WおよびTi以外に皮膜成分および母材成分を含有してもよい。中間皮膜は、基材側のCoや硬質皮膜側のAlやNが含まれ得るが、WおよびTiを含む炭化物とすることで、本発明の効果は発揮される。中間皮膜の存在は、透過型電子顕微鏡観察による断面観察、組成分析、ナノビーム回折パターンより確認することができる。 The intermediate film may contain a film component and a base material component in addition to W and Ti. The intermediate film can contain Co on the base material side and Al or N on the hard film side, but the effect of the present invention is exhibited by using carbide containing W and Ti. The presence of the intermediate film can be confirmed by cross-sectional observation by transmission electron microscope observation, composition analysis, and nanobeam diffraction pattern.
 硬質皮膜の組織が微細になり過ぎると、クレータ摩耗が増加する傾向にある。硬質皮膜の組織の微細化は、半価幅(単位:°;full width at half maximum)に反映される。したがって、半価幅の値が大きくなると、皮膜組織が微細となり、半価幅の値が小さくなると、皮膜組織が粗大となる傾向にある。本発明における硬質皮膜の耐クレータ摩耗を向上させるには、X線回折で特定されるfcc構造の(200)面の半価幅を1.8°以下とすることが好ましい。半価幅の値が1.8°よりも大きくなると、皮膜組織が微細になり過ぎて、耐クレータ摩耗が低下する場合がある。 If the structure of the hard coating becomes too fine, crater wear tends to increase. The refinement of the structure of the hard coating is reflected in the half width (unit: °; full width at half maximum). Therefore, when the value of the half width increases, the film structure tends to become fine, and when the value of the half width decreases, the film structure tends to become coarse. In order to improve the crater wear resistance of the hard coating in the present invention, it is preferable that the half width of the (200) plane of the fcc structure specified by X-ray diffraction is 1.8 ° or less. When the half width value is larger than 1.8 °, the film structure becomes too fine, and the crater wear resistance may decrease.
 本発明における硬質皮膜は、周期律表の4a族(Tiを除く)、5a族、6a族(Crを除く)の金属元素、SiおよびBからなる群より選択される1種または2種以上の元素を、金属(半金属を含む)元素の含有比率(原子%)で0%以上15%以下含有することができる。これらの元素は、一般的に硬質皮膜に添加される元素であり、含有比率が多過にならない範囲では、本発明の被覆切削工具の耐久性を低下させない。
 また、本発明者等の検討によれば、被加工材や加工条件によっては、硬質皮膜が上述した元素を更に含有することで、より優れた耐久性を示す場合があることが確認された。これは、AlTi系の窒化物または炭窒化物が、他の金属(半金属)元素を含有することで、耐熱性や靱性等が改善されるためと推定される。但し、添加元素の含有量が多くなり過ぎると、硬質皮膜の耐摩耗性及び耐熱性を低下させる傾向にある。そのため、添加する場合でも、金属(半金属を含む)元素の含有比率(原子%)で15%未満とするのが好ましい。
The hard coating in the present invention is one or more selected from the group consisting of metal elements of Group 4a (excluding Ti), Group 5a, Group 6a (excluding Cr), Si and B of the periodic table. The element can be contained in a content ratio (atomic%) of metal (including metalloid) elements of 0% or more and 15% or less. These elements are generally elements added to the hard coating, and do not reduce the durability of the coated cutting tool of the present invention as long as the content ratio is not excessive.
Further, according to the study by the present inventors, it has been confirmed that depending on the work material and the processing conditions, the hard coating may further contain the above-described elements, thereby exhibiting superior durability. This is presumably because AlTi-based nitrides or carbonitrides contain other metal (semi-metal) elements to improve heat resistance and toughness. However, if the content of the additive element is too large, the wear resistance and heat resistance of the hard coating tend to be lowered. Therefore, even when added, the content ratio (atomic%) of metal (including metalloid) elements is preferably less than 15%.
 本発明における硬質皮膜は、W(タングステン)を含有することで、高硬度を維持した上で、皮膜の圧縮残留応力を低下することができる。本発明者等の検討よれば、硬質皮膜がWを含有することで、高硬度材だけでなく、高炭素鋼やNi基超耐熱合金の切削加工においてもより優れた耐久性が発揮され易くなる。幅広い被削材に対してより優れた耐久性が発揮されるためには、硬質皮膜は、Wの含有比率(原子%)は、金属(半金属を含む)元素の総量に対して、1%以上10%以下であることがより好ましく、2%以上6%以下であることがより好ましい。 The hard film in the present invention contains W (tungsten), so that the compressive residual stress of the film can be reduced while maintaining high hardness. According to the study by the present inventors, when the hard coating contains W, superior durability is easily exhibited not only in high-hardness materials but also in cutting of high-carbon steel and Ni-base superalloys. . In order to achieve better durability for a wide range of work materials, the hard coating has a W content (atomic%) of 1% relative to the total amount of metal (including metalloid) elements. It is more preferably 10% or less and more preferably 2% or more and 6% or less.
 被覆後の硬質皮膜の組成は、ターゲット組成と異なる場合がある。本発明における硬質皮膜の組成は、例えば、被覆後の硬質皮膜を波長分散型電子プローブ微小分析(WDS-EPMA)を用いて確認することができる。 The composition of the hard film after coating may be different from the target composition. The composition of the hard film in the present invention can be confirmed, for example, by using a wavelength dispersion type electron probe microanalysis (WDS-EPMA).
 本発明においては、本発明の効果を発揮する点で、AlTi系の窒化物または炭窒化物からなる硬質皮膜の上に、更に別の層を被覆してもよい。そのため、本発明において、WおよびTiを含む炭化物からなる中間皮膜と、AlTi系の窒化物または炭窒化物からなる硬質皮膜と、を有する皮膜構造は、AlTi系の窒化物または炭窒化物からなる硬質皮膜を工具の最表面とすること以外に、別の層を被覆してもよい。この場合、AlTi系の窒化物または炭窒化物からなる硬質皮膜の上には、保護皮膜として、耐熱性と耐摩耗性に優れた窒化物又は炭窒化物からなる別の硬質皮膜が被覆されていることが好ましい。保護皮膜としてより好ましくは、窒化物からなる層である。 In the present invention, another layer may be coated on the hard film made of an AlTi-based nitride or carbonitride in order to exhibit the effects of the present invention. Therefore, in the present invention, the film structure having the intermediate film made of carbide containing W and Ti and the hard film made of AlTi nitride or carbonitride is made of AlTi nitride or carbonitride. In addition to the hard film being the outermost surface of the tool, another layer may be coated. In this case, another hard film made of nitride or carbonitride having excellent heat resistance and wear resistance is coated on the hard film made of AlTi nitride or carbonitride as a protective film. Preferably it is. More preferably, the protective film is a layer made of nitride.
 次に、本発明の硬質皮膜の被覆方法について説明する。
 本発明者等は、AlTi系の窒化物または炭窒化物の、ミクロ組織に含有されるhcp構造のAlN量は、硬質皮膜の被覆に用いるカソードの磁場が影響していることを確認した。そして、例えばターゲットの外周と背面に永久磁石を配置することで、ターゲット中心付近の磁束密度が18mT以上となるカソードを用いて硬質皮膜を被覆することで、ミクロ組織に含有されるhcp構造のAlN量が低下し、被覆切削工具の耐久性が向上することを確認した。より好ましくは、ターゲット中心付近の磁束密度は、20mT以上である。
 但し、硬質皮膜の被覆時に基材に印加する負圧のバイアス電圧が-70Vよりも大きくなる(-70Vよりもプラス側である)と、hcp構造のAlN量が増加しやすくなる。そのため、硬質皮膜の被覆時に基材に印加する負圧のバイアス電圧は、-200V以上-70V以下の範囲とすることが望ましく、-150V以上-100V以下の範囲がより好ましい。
Next, the coating method of the hard film of this invention is demonstrated.
The inventors of the present invention have confirmed that the magnetic field of the cathode used for coating the hard film affects the amount of AlN of the hcp structure contained in the microstructure of the AlTi nitride or carbonitride. Then, for example, by arranging permanent magnets on the outer periphery and back surface of the target, and covering the hard film with a cathode having a magnetic flux density of 18 mT or more near the center of the target, the AlN having an hcp structure contained in the microstructure It was confirmed that the amount decreased and the durability of the coated cutting tool improved. More preferably, the magnetic flux density near the center of the target is 20 mT or more.
However, if the negative bias voltage applied to the base material during the coating of the hard film is larger than −70 V (positive side with respect to −70 V), the amount of AlN in the hcp structure tends to increase. Therefore, the negative bias voltage applied to the base material during the coating of the hard film is preferably in the range of −200 V to −70 V, more preferably in the range of −150 V to −100 V.
 硬質皮膜の成膜にあたり、成膜温度が低いと皮膜組織が粗大になる傾向にある。但し、硬質皮膜の成膜温度が低くなり過ぎると、皮膜の圧縮残留応力が高くなり過ぎて、皮膜が自己破壊を起しやすくなる。そのため、硬質皮膜は、基材温度が450℃以上で成膜することが好ましい。一方、硬質皮膜の成膜温度が高くなると、皮膜組織が微細になる傾向になる。但し、硬質皮膜の成膜温度が高くなり過ぎると、硬質皮膜に付与される残留応力が低下し、硬質皮膜が軟化して耐摩耗性が低下しやすくなる。そのため、硬質皮膜は、基材温度が580℃以下で成膜することが好ましい。
 但し、硬質皮膜の成膜温度を好ましい範囲に制御しても、ボンバード処理前の基材の加熱温度が高い場合には、硬質皮膜の基材側と表面側とで異なる結晶面に起因するピーク強度が最大強度を示すことがある。そのため、ボンバード処理前の基材の加熱温度は500℃以下とすることが好ましい。また、硬質皮膜の被覆時に炉内に導入する窒素ガス流量を調整して、炉内圧力を4Pa以上6Pa以下で硬質皮膜を被覆することが好ましい。
When forming a hard film, the film structure tends to be coarse when the film formation temperature is low. However, if the film forming temperature of the hard film becomes too low, the compressive residual stress of the film becomes too high and the film tends to be self-destructed. Therefore, it is preferable that the hard film is formed at a substrate temperature of 450 ° C. or higher. On the other hand, when the film formation temperature of the hard film increases, the film structure tends to become finer. However, if the film formation temperature of the hard film becomes too high, the residual stress applied to the hard film is lowered, the hard film is softened, and the wear resistance is likely to be lowered. Therefore, it is preferable to form the hard film at a substrate temperature of 580 ° C. or lower.
However, even if the film forming temperature of the hard film is controlled within a preferable range, if the heating temperature of the base material before the bombarding process is high, the peak due to the different crystal planes on the base side and the surface side of the hard film Intensity may indicate maximum intensity. For this reason, the heating temperature of the base material before the bombardment treatment is preferably 500 ° C. or less. Moreover, it is preferable to coat | cover a hard film | membrane by adjusting the nitrogen gas flow rate introduce | transduced in a furnace at the time of coating | coated of a hard film | membrane, and the pressure in a furnace 4 Pa or less 6 Pa.
 続いて、中間皮膜の製造方法について説明する。
 基材の上に、WおよびTiを含む炭化物を形成するためには、ターゲットの外周にコイル磁石を配備してアークスポットをターゲット内部に閉じ込めるような磁場構成としたカソードを用い、メタルボンバードとしてTiボンバードを実施することが好ましい。このようなカソードを用いて炭化物を形成し易い元素種であるTiでボンバード処理することで、基材表面の酸化物が除去されて清浄化されると共に、ボンバードされたTiイオンが基材表面のWCに拡散してWおよびTiを含む炭化物が形成され易くなる。
 また、Tiボンバードの際に、基材に印加する負圧のバイアス電圧およびターゲットへ投入する電流が低いと、WおよびTiを含む炭化物が形成され難い。そのため、基材に印加する負圧のバイアス電圧は-1000V以上-700V以下とすることが好ましい。また、ターゲットへ投入する電流は、80A以上150A以下とすることが好ましい。また、ボンバード処理前の基材の加熱温度が低くなると、WおよびTiを含む炭化物が形成され難くなるため、基材と硬質皮膜の密着性が低下する傾向にある。そのため、基材の加熱温度を450℃以上として、その後のボンバード処理をすることが好ましい。
 Tiボンバードはアルゴンガス、窒素ガス、水素ガス、炭化水素系ガス等を導入しながら実施してもよいが、炉内雰囲気を1.0×10-2Pa以下の真空下で実施することで基材表面の清浄化および拡散層の形成が容易になり好ましい。
Then, the manufacturing method of an intermediate film is demonstrated.
In order to form a carbide containing W and Ti on the substrate, a cathode having a magnetic field configuration in which a coil magnet is arranged on the outer periphery of the target to confine the arc spot inside the target, and Ti is used as a metal bombardment. It is preferred to perform bombardment. By bombarding with Ti, which is an element species that easily forms carbides, using such a cathode, the oxide on the substrate surface is removed and cleaned, and the bombarded Ti ions are removed from the substrate surface. Carbides containing W and Ti are easily formed by diffusing into WC.
Further, when Ti bombardment is performed, if a negative bias voltage applied to the substrate and a current applied to the target are low, carbides containing W and Ti are difficult to be formed. Therefore, the negative bias voltage applied to the substrate is preferably −1000 V or more and −700 V or less. Further, the current supplied to the target is preferably 80 A or more and 150 A or less. Moreover, since the carbide | carbonized_material containing W and Ti will become difficult to be formed when the heating temperature of the base material before a bombard process becomes low, it exists in the tendency for the adhesiveness of a base material and a hard film to fall. Therefore, it is preferable that the heating temperature of the substrate is set to 450 ° C. or higher and the subsequent bombardment treatment is performed.
Ti bombardment may be carried out while introducing argon gas, nitrogen gas, hydrogen gas, hydrocarbon-based gas, etc., but it can be performed by carrying out the furnace atmosphere under a vacuum of 1.0 × 10 −2 Pa or less. The material surface is preferably cleaned and the diffusion layer is easily formed.
 本発明の被覆切削工具は、外周刃を主に使用するラジアスエンドミルまたはスクエアエンドミルに適用するのが特に有効である。 The coated cutting tool of the present invention is particularly effective when applied to a radius end mill or a square end mill that mainly uses an outer peripheral blade.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
(実施例1)
 <基材>
 基材として、組成がWC(bal.)-Co(8質量%)-TaC(0.25質量%)-Cr(0.9質量%)であり、WCの平均粒径:0.6μm、硬度:93.4HRAである超硬合金製のインサート式ラジアスエンドミルを準備した。
 なお、WCは炭化タングステンを、Coはコバルト原子を、TaCは炭化タンタルを、それぞれ表す。
(Example 1)
<Base material>
As a base material, the composition is WC (bal.)-Co (8 mass%)-TaC (0.25 mass%)-Cr 3 C 2 (0.9 mass%). An insert type radius end mill made of cemented carbide having a hardness of 6 μm and a hardness of 93.4 HRA was prepared.
Note that WC represents tungsten carbide, Co represents a cobalt atom, and TaC represents tantalum carbide.
 <成膜装置>
 成膜には、アークイオンプレーティング方式の成膜装置を用いた。
 成膜装置に設けられた真空容器の内部は、真空ポンプにより排気され、その後、供給ポートよりガスが導入されるようになっている。真空容器内に設置された各基材は、バイアス電源と電気的に接続されており、独立して各基材に負圧のDCバイアス電圧を印加することができる。
 真空容器内には基材を回転させるための基材回転機構が設けられている。この基材回転機構は、プラネタリー、プラネタリー上に配置されたプレート状治具、プレート状治具上に配置されたパイプ状治具を備えており、プラネタリーが毎分3回転の速さで回転するとともに、プレート状治具およびパイプ状治具はそれぞれ自公転する。
<Deposition system>
For film formation, an arc ion plating type film forming apparatus was used.
The inside of the vacuum vessel provided in the film forming apparatus is evacuated by a vacuum pump, and then gas is introduced from a supply port. Each base material installed in the vacuum vessel is electrically connected to a bias power source, and a negative DC bias voltage can be independently applied to each base material.
A base material rotating mechanism for rotating the base material is provided in the vacuum vessel. This base material rotating mechanism includes a planetary, a plate-like jig arranged on the planetary, and a pipe-like jig arranged on the plate-like jig, and the planetary rotates at a speed of 3 revolutions per minute. And the plate-like jig and the pipe-like jig revolve each other.
 硬質皮膜で基材を被覆する場合、ターゲットの外周および背面に永久磁石を配備し、20.2mTの平均磁束密度を発生するカソード(以下、C1と記載する。)を用いた。
 ここで、比較例2では、背面に永久磁石を配備し、15.1mTの平均磁束密度のカソード(以下、C2と記載する。)を用いた。
 また、メタルボンバード処理を行う場合、ターゲットの外周にコイル磁石を配備したカソード(以下、C3と記載する。)を用いた。
When the substrate was coated with a hard film, a permanent magnet was provided on the outer periphery and the rear surface of the target, and a cathode (hereinafter referred to as C1) that generates an average magnetic flux density of 20.2 mT was used.
Here, in Comparative Example 2, a permanent magnet was provided on the back surface, and a cathode (hereinafter referred to as C2) having an average magnetic flux density of 15.1 mT was used.
Moreover, when performing metal bombardment processing, the cathode (henceforth C3) which provided the coil magnet on the outer periphery of the target was used.
 <成膜工程>
 真空容器内を8×10-3Pa以下に真空排気した。その後、真空容器内に設置したヒーターにより基材を加熱し、真空排気を行った。基材の加熱温度は、サンプル工具ごとに変化させた。そして、真空容器内の圧力を8×10-3Pa以下とした。その後、Arプラズマによるクリーニングを行い、引き続いてメタルボンバード処理として、Tiボンバード処理を行って中間皮膜を形成した。次に、真空容器内のガスを窒素に置き換え、真空容器内の圧力を5Paとした。成膜温度とバイアス電圧とを変化させて、カソードに150Aの電流を供給し、基材の表面に膜厚が約2μmの硬質皮膜を被覆した。
 以上のようにして、基材の表面に中間皮膜と硬質皮膜とを被覆した被覆切削工具(サンプル工具)を作製した。
 なお、比較例1以外は、硬質皮膜の被覆前に、8×10-3Pa以下になるように真空排気して、C3に150Aのアーク電流を供給し、Tiボンバード処理を実施した。
 なお、比較例1、8、9では、以下のように被膜形成した。
 ・比較例1では、Arプラズマによるクリーニングの後、メタルボンバード処理をせずに、硬質皮膜を被覆した。
 ・比較例8では、Arプラズマによるクリーニングの後、メタルボンバード処理をせずに、中間皮膜としてTiNを被覆した。
 ・比較例9では、Arプラズマによるクリーニングの後、メタルボンバード処理をせずに、中間皮膜としてCrNを被覆した。
<Film formation process>
The inside of the vacuum vessel was evacuated to 8 × 10 −3 Pa or less. Then, the base material was heated with the heater installed in the vacuum vessel, and evacuation was performed. The heating temperature of the base material was changed for each sample tool. The pressure inside the vacuum vessel was set to 8 × 10 −3 Pa or less. Thereafter, cleaning with Ar plasma was performed, and subsequently, Ti bombarding was performed as metal bombarding to form an intermediate film. Next, the gas in the vacuum vessel was replaced with nitrogen, and the pressure in the vacuum vessel was set to 5 Pa. The film forming temperature and the bias voltage were changed, a current of 150 A was supplied to the cathode, and a hard film having a thickness of about 2 μm was coated on the surface of the base material.
As described above, a coated cutting tool (sample tool) in which the surface of the base material was coated with the intermediate film and the hard film was produced.
Except for Comparative Example 1, before the hard coating was applied, vacuum evacuation was performed to 8 × 10 −3 Pa or less, an arc current of 150 A was supplied to C3, and Ti bombarding was performed.
In Comparative Examples 1, 8, and 9, films were formed as follows.
In Comparative Example 1, the hard coating was applied without metal bombardment after cleaning with Ar plasma.
In Comparative Example 8, after cleaning with Ar plasma, TiN was coated as an intermediate film without performing metal bombardment.
In Comparative Example 9, CrN was coated as an intermediate film without performing metal bombardment after cleaning with Ar plasma.
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
 <組成分析>
 株式会社日本電子製の電子プローブマイクロアナライザー装置(型番:JXA-8500F)を用いて、サンプル工具の硬質皮膜の組成を、波長分散型電子プローブ微小分析(WDS-EPMA)により測定した。組成は、5点を測定し、測定値を平均して求めた。
 測定条件は、加速電圧:10kV、照射電流:5×10-8A、取り込み時間:10秒、分析領域直径:1μm、分析深さ:略1μmとした。
<Composition analysis>
The composition of the hard film of the sample tool was measured by wavelength dispersive electron probe microanalysis (WDS-EPMA) using an electronic probe microanalyzer device (model number: JXA-8500F) manufactured by JEOL Ltd. The composition was determined by measuring five points and averaging the measured values.
The measurement conditions were acceleration voltage: 10 kV, irradiation current: 5 × 10 −8 A, capture time: 10 seconds, analysis area diameter: 1 μm, analysis depth: approximately 1 μm.
 <硬度測定>
 株式会社エリオニクス製のナノインデンテーション装置(型番:ENT-1100a)を用いて、サンプル工具の硬質皮膜の硬度を測定した。硬質皮膜の硬度を測定するために、インサートを5度傾けて鏡面研磨後、皮膜の研磨面内で最大押し込み深さが層厚の略1/10未満となる領域を選定した。このとき、略1/5程度でも、基材の影響はなかった。
 硬度は、10点を測定し、測定値の平均値を求めて硬度とした。
 測定条件は、押込み荷重:49mN、最大荷重保持時間:1秒、荷重負荷後の除去速度:0.49mN/秒とした。また、測定前には、標準試料である単結晶Siを測定し、その硬さが12GPaであることを確認した。
<Hardness measurement>
The hardness of the hard coating of the sample tool was measured using a nanoindentation device (model number: ENT-1100a) manufactured by Elionix Co., Ltd. In order to measure the hardness of the hard coating, the insert was tilted by 5 degrees, and after mirror polishing, a region where the maximum indentation depth was less than about 1/10 of the layer thickness within the polishing surface of the coating was selected. At this time, there was no influence of the base material even at about 1/5.
The hardness was measured at 10 points, and the average value of the measured values was determined as the hardness.
The measurement conditions were indentation load: 49 mN, maximum load holding time: 1 second, and removal speed after load application: 0.49 mN / second. Prior to the measurement, single crystal Si as a standard sample was measured, and it was confirmed that its hardness was 12 GPa.
 <X線回折>
 X線回折を用い、サンプル工具の硬質皮膜の結晶構造を評価した。具体的には、株式会社リガク製のX線回折装置(型番:RINT2500V-PSRC/MDG)を用い、管電圧:40kV、管電流:300mA、X線源:Cukα(λ=0.15418nm)、2θ:30°~70°の測定条件にて実施した。そして、(200)面のピーク強度から半価幅を測定した。
<X-ray diffraction>
The crystal structure of the hard film of the sample tool was evaluated using X-ray diffraction. Specifically, using an X-ray diffractometer (model number: RINT2500V-PSRC / MDG) manufactured by Rigaku Corporation, tube voltage: 40 kV, tube current: 300 mA, X-ray source: Cukα (λ = 0.15418 nm), 2θ : It was carried out under measurement conditions of 30 ° to 70 °. And the half width was measured from the peak intensity of the (200) plane.
 <TEM観察>
 透過型電子顕微鏡(TEM)による断面観察を行い、サンプル工具の中間皮膜又は硬質皮膜を評価した。具体的には、日本電子株式会社製の電界放出型透過電子顕微鏡(型番:JEM-2010F型)を用い、加速電圧:120V、入射電子量:5.0pA/cmの条件下、TEM解析を実施した。TEM解析は、中間皮膜又は硬質皮膜をそれぞれ、膜面に垂直な面で切断した場合の切断面を観察することにより行った。
 制限視野回折パターンは、カメラ長:100cm、制限視野領域:φ750nmで実施した。制限視野回折パターンから求められる強度プロファイルからhcp構造及びfcc構造のピーク強度を求めた。各試料について硬質皮膜の基材側と表面側の2カ所で制限視野回折パターンを測定した。
 中間皮膜の組成は、付属のUTW型Si(Li)半導体検出器を用いてビーム径1nmで分析した。ナノビーム回折は、カメラ長を50cmとし、ビーム径を2nm以下として分析した。
 なお、比較例3のサンプル工具については、Al含有量が少ない硬質皮膜のため、硬質皮膜のTEM解析は実施していない。比較例4、10のサンプル工具については、X線回折でもhcp構造のピーク強度が確認されているため、硬質皮膜のTEM解析は実施していない。比較例5のサンプル工具については、本願発明の硬質皮膜とは膜種が異なるAlCrNであるため、硬質皮膜のTEM解析は実施していない。
<TEM observation>
The cross section was observed with a transmission electron microscope (TEM), and the intermediate film or hard film of the sample tool was evaluated. Specifically, using a field emission transmission electron microscope (model number: JEM-2010F type) manufactured by JEOL Ltd., TEM analysis was performed under the conditions of acceleration voltage: 120 V and incident electron quantity: 5.0 pA / cm 2. Carried out. The TEM analysis was performed by observing the cut surface when the intermediate film or the hard film was cut along a plane perpendicular to the film surface.
The limited field diffraction pattern was implemented with a camera length of 100 cm and a limited field region of φ750 nm. The peak intensities of the hcp structure and the fcc structure were obtained from the intensity profile obtained from the limited field diffraction pattern. For each sample, the limited field diffraction pattern was measured at two locations on the substrate side and the surface side of the hard coating.
The composition of the intermediate film was analyzed with a beam diameter of 1 nm using an attached UTW type Si (Li) semiconductor detector. Nanobeam diffraction was analyzed with a camera length of 50 cm and a beam diameter of 2 nm or less.
In addition, about the sample tool of the comparative example 3, since the Al content is a hard film with little Al, the TEM analysis of a hard film is not implemented. For the sample tools of Comparative Examples 4 and 10, since the peak intensity of the hcp structure is confirmed even by X-ray diffraction, the TEM analysis of the hard coating is not performed. About the sample tool of the comparative example 5, since the film | membrane type differs from the hard film of this invention, the TEM analysis of a hard film is not implemented.
 図4に、本発明例1のサンプル工具の透過電子顕微鏡写真(2,000,000倍)を示す。図中の矢印1が示すポイントが基材、矢印2が示すポイントが中間皮膜、矢印3が示すポイントが硬質皮膜である。
 図6のEDSスペクトル分析結果および図5のナノビーム回折パターンから、図4の矢印1は、WCであることが確認された。図9のEDSスペクトル分析結果から、図4の矢印3は硬質皮膜であることが確認された。図8のEDSスペクトル分析結果から、中間皮膜は、WとTiが含まれていることが確認された。また、図7のナノビーム回折パターンからWCの結晶構造に指数付けが可能であった。EDSスペクトル分析およびナノビーム回折パターンから、中間皮膜はWおよびTiを含有した炭化物であることが確認された。
 中間皮膜は、金属(半金属を含む)元素の含有比率(原子%)でWを最も多く含有し、次いでTiを多く含有していた。なお、WおよびTi以外には硬質皮膜の成分であるAl、Nを含有していた。また、母材成分であるCoも僅かに含有していた。
FIG. 4 shows a transmission electron micrograph (2,000,000 times) of the sample tool of Example 1 of the present invention. In the figure, the point indicated by the arrow 1 is the base material, the point indicated by the arrow 2 is the intermediate film, and the point indicated by the arrow 3 is the hard film.
From the EDS spectrum analysis result of FIG. 6 and the nanobeam diffraction pattern of FIG. 5, it was confirmed that the arrow 1 in FIG. 4 is WC. From the EDS spectrum analysis result of FIG. 9, it was confirmed that the arrow 3 in FIG. 4 is a hard film. From the EDS spectrum analysis result of FIG. 8, it was confirmed that the intermediate film contains W and Ti. Further, it was possible to index the WC crystal structure from the nanobeam diffraction pattern of FIG. From the EDS spectrum analysis and the nanobeam diffraction pattern, it was confirmed that the intermediate film was a carbide containing W and Ti.
The intermediate film contained the largest amount of W in the content ratio (atomic%) of metal (including metalloid) elements, and then contained a large amount of Ti. In addition to W and Ti, Al and N, which are hard film components, were contained. Further, Co, which is a base material component, was also slightly contained.
 <切削試験>
 被削材をSKD11として切削試験を行った。切削条件は以下の通りである。
 <切削試験の条件>
・工具:高硬度材加工用インサート式ラジアスエンドミル
    φ12×R2×3枚刃(日立ツール株式会社製)
・カッター型番:ASRM-1012R-3-M6
・インサート型番:EPHN0402TN-2
・切削方法:底面切削
・被削材:SKD11(60HRC)
・切込み:軸方向0.15mm、径方向6mm
・刃数:1
・主軸回転数:1856min-1
・テーブル送り:742mm/min
・一刃送り量:0.4mm/tooth
・切削油:エアーブロー
・切削距離:25m
<Cutting test>
A cutting test was performed with the work material as SKD11. Cutting conditions are as follows.
<Conditions for cutting test>
・ Tool: Insert type radius end mill for machining hard materials φ12 × R2 × 3 flute (manufactured by Hitachi Tool Co., Ltd.)
・ Cutter model number: ASRM-1012R-3-M6
-Insert model number: EPHN0402TN-2
・ Cutting method: Bottom cutting ・ Work material: SKD11 (60HRC)
・ Incision: axial direction 0.15mm, radial direction 6mm
・ Number of teeth: 1
・ Spindle speed: 1856min -1
・ Table feed: 742 mm / min
・ Single blade feed rate: 0.4mm / tooth
・ Cutting oil: Air blow ・ Cutting distance: 25 m
Figure JPOXMLDOC01-appb-T000002

 
 
Figure JPOXMLDOC01-appb-T000002

 
 
 表2に皮膜の特性結果を示す。
 図10に、本発明例1~5のサンプル工具に対して行った切削試験後の刃先の観察写真(100倍)を示す。また、図11に、本発明例6~8のサンプル工具に対して行った切削試験後の刃先の観察写真(100倍)を示す。
 本発明例1~8のサンプル工具は、比較例2のサンプル工具よりも、Al含有量が多いが、硬質皮膜の母材側及び表面側でAlNのhcp構造が少ないことが確認された。本発明例のサンプル工具はいずれも、切削試験に引き続いて切削加工が可能なレベルの損傷状態であった。
Table 2 shows the results of film characteristics.
FIG. 10 shows an observation photograph (100 times) of the cutting edge after the cutting test performed on the sample tools of Examples 1 to 5 of the present invention. FIG. 11 shows an observation photograph (100 times) of the cutting edge after the cutting test performed on the sample tools of Examples 6 to 8 of the present invention.
The sample tools of Examples 1 to 8 of the present invention had a higher Al content than the sample tool of Comparative Example 2, but it was confirmed that there was less hcp structure of AlN on the base material side and the surface side of the hard coating. All of the sample tools of the examples of the present invention were in a damaged state at a level that enables cutting following the cutting test.
 本発明例1のサンプル工具と本発明例4、8のサンプル工具との比較から、中間皮膜の膜厚が好ましい範囲の中でも、中間皮膜の膜厚が2nmよりも厚膜の方が、より優れた耐久性を示すことが確認された。
 本発明例1のサンプル工具と本発明例5のサンプル工具との比較から、中間皮膜の膜厚が好ましい範囲にある本発明例のサンプル工具中でも、硬質皮膜の基材側および表面側で同一の結晶面に起因するピーク強度が最大強度を示す方が、皮膜損傷が少なく、より優れた耐久性を示すことが確認された。
 本発明例1のサンプル工具と本発明例6のサンプル工具の比較から、「Ih×100/Is」の値がより小さい方が、優れた耐久性を示すことが確認された。本発明例1のサンプル工具と本発明例7のサンプル工具との比較から、(200)面の半価幅が小さい方が、優れた耐久性を示すことが確認された。
From a comparison between the sample tool of Invention Example 1 and the sample tools of Invention Examples 4 and 8, the film thickness of the intermediate film is more excellent than the thickness of 2 nm among the preferable ranges of the film thickness of the intermediate film. It was confirmed that it showed high durability.
From the comparison of the sample tool of the present invention example 1 and the sample tool of the present invention example 5, even in the sample tool of the present invention example in which the film thickness of the intermediate coating film is in the preferred range, the same on the substrate side and the surface side of the hard coating film It was confirmed that the peak intensity resulting from the crystal plane showed the maximum strength with less film damage and better durability.
From a comparison between the sample tool of Invention Example 1 and the sample tool of Invention Example 6, it was confirmed that the smaller the value of “Ih × 100 / Is”, the better the durability. From a comparison between the sample tool of Invention Example 1 and the sample tool of Invention Example 7, it was confirmed that the smaller half width of the (200) plane shows superior durability.
 比較例は、いずれも工具損傷が大きくなり、引き続いて切削加工を行うことは不可能であった。図12に、比較例1~6のサンプル工具に対して行った25m切削試験後の刃先の観察写真(100倍)を示す。また、図13に、比較例7~10のサンプル工具に対して行った25m切削試験後の刃先の観察写真(100倍)を示す。
 比較例1のサンプル工具は、硬質皮膜の「Ih×100/Is」の値は小さいが、中間皮膜が形成されていないため、基材と硬質皮膜との密着性が十分なく、工具損傷が大きくなった。
 比較例2のサンプル工具は、本発明例のサンプル工具よりも、ターゲット表面付近の磁束密度が小さいカソードを用いて硬質皮膜を被覆したので、硬質皮膜に含まれているhcp構造のAlNが多くなり、工具損傷が大きくなった。
 比較例3のサンプル工具は、硬質皮膜に含まれるAl含有量が少ないため、工具損傷が大きくなった。
 比較例4のサンプル工具は、硬質皮膜を被覆する際に基材に印加するバイアス電圧が小さいため、X線回折でもhcp構造のAlNに起因するピーク強度が確認された。そのため、工具損傷が大きくなった。
 比較例5のサンプル工具は、硬質皮膜にAlCr系の窒化物を形成したので、工具損傷が大きくなった。
 比較例6のサンプル工具は、基材のクリーニングを目的として短時間のTiボンバード処理を実施したため、本発明例のサンプル工具のような中間皮膜は確認されなかった。そのため、基材と硬質皮膜との密着性が十分なく、工具損傷が大きくなった。
 比較例7のサンプル工具は、中間皮膜の膜厚が厚くなり過ぎて、基材と硬質皮膜の密着性が十分なく、工具損傷が大きくなった。
 比較例8のサンプル工具と比較例9のサンプル工具は、窒化物の中間皮膜を設けたため、基材と硬質皮膜の密着性が十分なく、工具損傷が大きくなった。
 比較例10のサンプル工具は、硬質皮膜のTiの含有量が少ないため、X線回折でもhcp構造のAlNに起因するピーク強度が確認された。そのため、工具損傷が大きくなった。
In all of the comparative examples, the tool damage was large, and it was impossible to carry out subsequent cutting. FIG. 12 shows an observation photograph (100 times) of the cutting edge after a 25 m cutting test performed on the sample tools of Comparative Examples 1 to 6. FIG. 13 shows an observation photograph (100 times) of the cutting edge after a 25 m cutting test performed on the sample tools of Comparative Examples 7 to 10.
The sample tool of Comparative Example 1 has a small value of “Ih × 100 / Is” of the hard coating, but since the intermediate coating is not formed, the adhesion between the base material and the hard coating is not sufficient, and the tool damage is large. became.
Since the sample tool of Comparative Example 2 was coated with a hard film using a cathode having a smaller magnetic flux density near the target surface than the sample tool of the present invention example, the hcp structure AlN contained in the hard film increased. , Tool damage increased.
Since the sample tool of Comparative Example 3 has a small Al content contained in the hard coating, the tool damage was large.
In the sample tool of Comparative Example 4, since the bias voltage applied to the base material was small when the hard film was coated, the peak intensity due to the hcp-structured AlN was confirmed even by X-ray diffraction. As a result, tool damage increased.
In the sample tool of Comparative Example 5, since the AlCr-based nitride was formed on the hard coating, the tool damage increased.
Since the sample tool of Comparative Example 6 was subjected to a Ti bombardment process for a short time for the purpose of cleaning the base material, an intermediate film like the sample tool of the present invention example was not confirmed. For this reason, the adhesion between the base material and the hard film was insufficient, and the tool damage was increased.
In the sample tool of Comparative Example 7, the film thickness of the intermediate film became too thick, the adhesion between the base material and the hard film was not sufficient, and the tool damage increased.
Since the sample tool of Comparative Example 8 and the sample tool of Comparative Example 9 were provided with an intermediate film of nitride, the adhesion between the base material and the hard film was not sufficient, and the tool damage increased.
Since the sample tool of Comparative Example 10 has a small Ti content in the hard coating, the peak intensity due to AlN having the hcp structure was confirmed even by X-ray diffraction. As a result, tool damage increased.
(実施例2)
 実施例1において、成膜工程での成膜条件を表3に示すように変更したこと以外は、実施例1と同様にして、基材の表面に中間皮膜と硬質皮膜とを被覆した被覆切削工具(サンプル工具)を作製した。
 被削材をS50Cとして添加元素の効果を確認するため、本発明例20~23及び比較例20のサンプル工具に対して、切削試験を行った。切削条件は以下の通りである。成膜条件を表3に、作製したサンプル工具の物性を表4に、それぞれ示す。
(Example 2)
In Example 1, except that the film forming conditions in the film forming process were changed as shown in Table 3, the coated cutting in which the intermediate film and the hard film were coated on the surface of the substrate in the same manner as in Example 1 A tool (sample tool) was produced.
A cutting test was performed on the sample tools of Examples 20 to 23 of the present invention and Comparative Example 20 in order to confirm the effect of the additive element with S50C as the work material. Cutting conditions are as follows. The film formation conditions are shown in Table 3, and the physical properties of the sample tool thus produced are shown in Table 4, respectively.
 <切削試験の条件>
・工具:高送りラジアスミル
    φ63×4枚刃(日立ツール株式会社製)
・カッター型番:ASRT5063R4
・インサート型番:WDNW140520 
・切削方法:底面切削
・被削材:S50C(220HB)
・切込み:軸方向1.0mm、径方向42mm
・刃数:1
・主軸回転数:1516min-1
・テーブル送り:2274mm/min
・一刃送り量:1.5mm/tooth
・切削油:エアーブロー
・切削距離:4m
<Conditions for cutting test>
・ Tool: High feed radius mill φ63 × 4 blades (Hitachi Tool Co., Ltd.)
・ Cutter model number: ASRT5063R4
-Insert model number: WDNW140520
-Cutting method: Bottom cutting-Work material: S50C (220HB)
・ Incision: 1.0mm in the axial direction, 42mm in the radial direction
・ Number of teeth: 1
・ Spindle speed: 1516min -1
・ Table feed: 2274 mm / min
・ Single blade feed: 1.5mm / tooth
・ Cutting oil: Air blow ・ Cutting distance: 4 m
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000003

 
Figure JPOXMLDOC01-appb-T000004

 
Figure JPOXMLDOC01-appb-T000004

 
 図14に、切削試験後のすくい面の損傷状態を観察した電子顕微鏡観察写真(40倍)を示す。図中の白く見える部分が摩耗した箇所を示す。硬質皮膜がWを含有することにより、クレータ摩耗が抑制されることが確認できる。本発明例のサンプル工具はいずれも、実施例1の高硬度鋼および高炭素鋼において、優れた切削性能を示すことが確認された。また、画像解析ソフトにより、摩耗した白く見える部分の面積率を測定した結果を表5に示す。
 本発明例のサンプル工具の中でも、Wを一定量含有した本発明例22、23のサンプル工具は、クレータ摩耗が顕著に抑制されることが確認された。
In FIG. 14, the electron microscope observation photograph (40 times) which observed the damage state of the rake face after a cutting test is shown. The part that looks white in the figure shows the worn part. It can be confirmed that crater wear is suppressed when the hard coating contains W. It was confirmed that all of the sample tools of the present invention showed excellent cutting performance in the high hardness steel and high carbon steel of Example 1. In addition, Table 5 shows the results of measuring the area ratio of a worn white portion by image analysis software.
Among the sample tools of the present invention example, it was confirmed that crater wear was significantly suppressed in the sample tools of Invention Examples 22 and 23 containing a certain amount of W.
Figure JPOXMLDOC01-appb-T000005

 
Figure JPOXMLDOC01-appb-T000005

 
(実施例3)
 実施例2で使用した本発明例20~23のサンプル工具、比較例20のサンプル工具を用意し、被削材をSKD11(60HRC)として、実施例1よりも工具負荷がより大きくなる条件を選定して切削試験を行い、評価した。切削条件を以下に示す。切削試験の結果は、表6に示す。
(Example 3)
The sample tools of Examples 20 to 23 of the present invention used in Example 2 and the sample tool of Comparative Example 20 are prepared, and the condition that the tool load is larger than that in Example 1 is selected with the work material as SKD11 (60HRC). Then, a cutting test was performed and evaluated. The cutting conditions are shown below. The results of the cutting test are shown in Table 6.
 <切削試験の条件> 
・工具:高送りラジアスミル
    φ32×5枚刃(日立ツール株式会社製)
・カッター型番:ASRS2032R-5
・インサート型番:EPMT0603TN-8
・切削方法:底面切削
・被削材:SKD11(60HRC)
・切込み:軸方向0.5mm、径方向22mm
・刃数:1
・主軸回転数:796min-1
・テーブル送り:159mm/min
・一刃送り量:0.2mm/tooth
・切削油:エアーブロー
・逃げ面摩耗幅が0.25mmに到達したときを工具寿命とした。
<Conditions for cutting test>
・ Tool: High feed radius mill φ32 × 5 blades (Hitachi Tool Co., Ltd.)
・ Cutter model number: ASRS2032R-5
-Insert model number: EPMT0603TN-8
・ Cutting method: Bottom cutting ・ Work material: SKD11 (60HRC)
・ Incision: 0.5mm in the axial direction, 22mm in the radial direction
・ Number of teeth: 1
・ Spindle speed: 796min -1
・ Table feed: 159mm / min
・ Single blade feed rate: 0.2mm / tooth
Cutting oil: When the air blow / flank wear width reached 0.25 mm, the tool life was determined.
Figure JPOXMLDOC01-appb-T000006

 
Figure JPOXMLDOC01-appb-T000006

 
 本発明例のサンプル工具は、高硬度鋼の高能率加工において、工具寿命に達する距離が比較例のサンプル工具に比べて2倍以上となった。特に、より好ましい範囲でWを含有する本発明例21、22のサンプル工具は、工具寿命に達する距離が長くなり耐久性が優れる結果となった。 In the sample tool of the present invention example, the distance to reach the tool life in the high-efficiency machining of high hardness steel was more than twice that of the sample tool of the comparative example. In particular, the sample tools of Invention Examples 21 and 22 containing W in a more preferable range resulted in a longer distance for reaching the tool life and excellent durability.
(実施例4)
 実施例1において、表1、表3の条件にて硬質皮膜が被覆された被覆切削工具(本発明例1~8、21~23、及び比較例1~9のサンプル工具)を用い、以下の条件でNi基超耐熱合金に対して切削試験を行ない評価した。切削試験の結果は、表7に示す。
Example 4
In Example 1, using the coated cutting tools (sample tools of Invention Examples 1 to 8, 21 to 23, and Comparative Examples 1 to 9) coated with a hard film under the conditions of Tables 1 and 3, the following: A cutting test was conducted on Ni-base superalloys under the conditions and evaluated. The results of the cutting test are shown in Table 7.
 <切削試験の条件> 
・工具:ソリッドエンドミル
    φ10×2枚刃(日立ツール株式会社製 HES2100)
・基材:WC(bal.)-Co(11質量%)-TaC(0.4質量%)-Cr(0.9質量%)、WC平均粒径0.6μm、硬度92.4HRAの超硬合金
・切削方法:側面切削
・被削材:重量%で、Ni-19%Cr-18.7%Fe-3.0%Mo-5.0%(Nd+Ta)-0.8%Ti-0.5%Al-0.03%Cの組成を有するNi基合金(時効硬化処理済み)
・切込み:軸方向6mm、径方向0.3mm
・切削速度:40m/min
・一刃送り量:0.04mm/tooth
・切削油:水溶性切削油
・切削距離:0.2m
<Conditions for cutting test>
・ Tool: Solid end mill φ10 × 2 flute (HES2100 manufactured by Hitachi Tool Co., Ltd.)
Base material: WC (bal.)-Co (11 mass%)-TaC (0.4 mass%)-Cr 3 C 2 (0.9 mass%), WC average particle diameter 0.6 μm, hardness 92.4HRA Cemented Carbide / Cutting Method: Side Cutting / Working Material: Ni-19% Cr-18.7% Fe-3.0% Mo-5.0% (Nd + Ta) -0.8% Ti Ni-base alloy with a composition of -0.5% Al-0.03% C (age-hardened)
・ Infeed: axial direction 6mm, radial direction 0.3mm
・ Cutting speed: 40 m / min
・ Single-blade feed amount: 0.04 mm / tooth
・ Cutting oil: Water-soluble cutting oil ・ Cutting distance: 0.2 m
Figure JPOXMLDOC01-appb-T000007

 
Figure JPOXMLDOC01-appb-T000007

 
 本発明例では、Ni基超耐熱合金の切削加工において、比較例よりも優れた耐久性を示すサンプル工具が得られた。特に、Wを好ましい範囲で含有した本発明例21、22のサンプル工具は、摩耗幅が少ない傾向にあった。本発明における硬質皮膜がWを含有することで、幅広い被削材において、より優れた耐久性を示すことが確認された。 In the example of the present invention, a sample tool showing durability superior to that of the comparative example was obtained in the cutting of the Ni-base superalloy. In particular, the sample tools of Invention Examples 21 and 22 containing W in a preferable range tend to have a small wear width. It was confirmed that the hard film in the present invention contains W, so that it exhibits superior durability in a wide range of work materials.
 日本出願2013-068602の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。
The disclosure of Japanese application 2013-068602 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (19)

  1.  基材と、
     前記基材の上に配置され、タングステン(W)およびチタン(Ti)を含む炭化物からなる膜厚が1nm以上10nm以下の中間皮膜と、
     前記中間皮膜の上に配置され、X線回折で特定される結晶構造が面心立方格子構造であって、金属(半金属を含む)元素の総量に対し、Alの含有比率(原子%)が60%以上であり、Tiの含有比率(原子%)が20%以上であるAlTi系の窒化物または炭窒化物からなる硬質皮膜と、
     を有し、
     前記硬質皮膜は、透過型電子顕微鏡の制限視野回折パターンから求められる強度プロファイルにおいて、六方最密充填構造のAlN(010)面に起因するピーク強度をIhとし、面心立方格子構造のAlN(111)面、TiN(111)面、AlN(002)面、TiN(002)面、AlN(022)面、およびTiN(022)面に起因するピーク強度と、六方最密充填構造のAlN(010)面、AlN(011)面、およびAlN(110)面に起因するピーク強度と、の合計をIsとした場合、Ih及びIsは、Ih×100/Is≦20の関係を満たす被覆切削工具。
    A substrate;
    An intermediate film having a thickness of 1 nm or more and 10 nm or less made of a carbide containing tungsten (W) and titanium (Ti), disposed on the substrate;
    The crystal structure disposed on the intermediate film and specified by X-ray diffraction is a face-centered cubic lattice structure, and the Al content ratio (atomic%) is based on the total amount of metal (including metalloid) elements. A hard film made of an AlTi-based nitride or carbonitride having a Ti content ratio (atomic%) of 20% or more, which is 60% or more;
    Have
    In the intensity profile obtained from the limited field diffraction pattern of the transmission electron microscope, the hard coating has a peak intensity due to the AlN (010) plane of the hexagonal close-packed structure as Ih, and AlN (111 of the face-centered cubic lattice structure. ) Plane, TiN (111) plane, AlN (002) plane, TiN (002) plane, AlN (022) plane, and TiN (022) plane peak intensity, and hexagonal close-packed AlN (010) structure Coated cutting tool that satisfies the relationship of Ih × 100 / Is ≦ 20, where Is is the sum of the peak intensity due to the plane, the AlN (011) plane, and the AlN (110) plane.
  2.  前記Ih及び前記Isは、Ih×100/Is≦15の関係を満たす請求項1に記載の被覆切削工具。 The coated cutting tool according to claim 1, wherein the Ih and the Is satisfy a relationship of Ih × 100 / Is ≦ 15.
  3.  前記中間皮膜の膜厚が、1nm以上6nm未満である請求項1または請求項2に記載の被覆切削工具。 The coated cutting tool according to claim 1 or 2, wherein the film thickness of the intermediate film is 1 nm or more and less than 6 nm.
  4.  前記硬質皮膜は、X線回折で特定される面心立方格子構造の(200)面の半価幅が1.8°以下である請求項1~請求項3のいずれか1項に記載の被覆切削工具。 The coating according to any one of claims 1 to 3, wherein the hard film has a half width of (200) plane of a face-centered cubic lattice structure specified by X-ray diffraction of 1.8 ° or less. Cutting tools.
  5.  前記硬質皮膜は、透過型電子顕微鏡による膜断面の制限視野回折パターンから求められる強度プロファイルにおいて、基材側および表面側で同一の結晶面に起因するピーク強度が最大強度を示す請求項1~請求項4のいずれか1項に記載の被覆切削工具。 In the intensity profile obtained from the limited field diffraction pattern of the film cross-section obtained by a transmission electron microscope, the hard film has a peak intensity due to the same crystal plane on the substrate side and the surface side showing the maximum intensity. 5. The coated cutting tool according to any one of items 4.
  6.  前記制限視野回折パターンから求められる強度プロファイルにおいて、前記表面側の結晶面に起因する最大強度を示すピーク強度は、面心立方格子構造のAlN(002)面およびTiN(002)面に起因するピーク強度である請求項5に記載の被覆切削工具。 In the intensity profile obtained from the limited field diffraction pattern, the peak intensity indicating the maximum intensity attributed to the crystal plane on the surface side is a peak attributed to the AlN (002) plane and TiN (002) plane of the face-centered cubic lattice structure. The coated cutting tool according to claim 5 which is strength.
  7.  前記硬質皮膜は、更に、タングステン(W)を含む請求項1~請求項6のいずれか1項に記載の被覆切削工具。 The coated cutting tool according to any one of claims 1 to 6, wherein the hard coating further contains tungsten (W).
  8.  前記硬質皮膜は、金属(半金属を含む)元素の総量に対し、タングステン(W)の含有比率(原子%)が1%以上10以下%である請求項7に記載の被覆切削工具。 The coated cutting tool according to claim 7, wherein the hard coating has a tungsten (W) content ratio (atomic%) of 1% to 10% with respect to a total amount of metal (including semimetal) elements.
  9.  前記タングステン(W)の含有比率(原子%)が、2%以上6%以下である請求項8に記載の被覆切削工具。 The coated cutting tool according to claim 8, wherein a content ratio (atomic%) of the tungsten (W) is 2% or more and 6% or less.
  10.  硬質皮膜の膜厚が、1μm以上5μm以下である請求項1~請求項9のいずれか1項に記載の被覆切削工具。 The coated cutting tool according to any one of claims 1 to 9, wherein the film thickness of the hard coating is 1 µm or more and 5 µm or less.
  11.  前記硬質皮膜は、金属(半金属を含む)元素の総量に対して、Alの含有比率(原子%)が62%以上70%以下であり、Tiの含有比率(原子%)が25%以上であるとともに、Al及びTiの合計の含有比率(原子%)が、金属(半金属を含む)元素の総量に対して90%以上である請求項1~請求項10のいずれか1項に記載の被覆切削工具。 The hard coating has an Al content ratio (atomic%) of 62% to 70% and a Ti content ratio (atomic%) of 25% or more with respect to the total amount of metal (including metalloid) elements. The total content ratio (atomic%) of Al and Ti is 90% or more with respect to the total amount of metal (including metalloid) elements according to any one of claims 1 to 10. Coated cutting tool.
  12.  前記被覆切削工具は、ラジアスエンドミルまたはスクエアエンドミルである請求項1~請求項11のいずれか1項に記載の被覆切削工具。 The coated cutting tool according to any one of claims 1 to 11, wherein the coated cutting tool is a radius end mill or a square end mill.
  13.  基材の表面をメタルボンバード処理して、前記基材の表面にタングステン(W)およびチタン(Ti)を含む炭化物からなる膜厚が1nm以上10nm以下の中間皮膜を形成することと、
     ターゲット中心付近の磁束密度が18mT以上となるカソードを用い、前記基材に-200V以上-70V以下のバイアス電圧を印加して、前記中間皮膜の上に、金属(半金属を含む)元素の総量に対し、アルミニウム(Al)の含有比率(原子%)が60%以上であり、チタン(Ti)の含有比率(原子%)が20%以上であるAlTi系の窒化物または炭窒化物からなる硬質皮膜を形成することと、
     を有する被覆切削工具の製造方法。
    Forming an intermediate film having a thickness of 1 nm or more and 10 nm or less made of a carbide containing tungsten (W) and titanium (Ti) on the surface of the substrate by performing metal bombardment on the surface of the substrate;
    Using a cathode with a magnetic flux density of 18 mT or more near the center of the target, applying a bias voltage of −200 V or more and −70 V or less to the base material, the total amount of metal (including metalloid) elements on the intermediate film On the other hand, the aluminum (Al) content ratio (atomic%) is 60% or more, and the titanium (Ti) content ratio (atomic%) is 20% or more. Forming a film,
    The manufacturing method of the coated cutting tool which has this.
  14.  前記硬質皮膜を、基材温度を450℃以上580℃以下として形成する請求項13に記載の被覆切削工具の製造方法。 The method for producing a coated cutting tool according to claim 13, wherein the hard film is formed at a base material temperature of 450 ° C or higher and 580 ° C or lower.
  15.  前記メタルボンバード処理前の基材の加熱温度は500℃以下である請求項13または請求項14に記載の被覆切削工具の製造方法。 The method for manufacturing a coated cutting tool according to claim 13 or 14, wherein a heating temperature of the base material before the metal bombardment treatment is 500 ° C or lower.
  16.  前記硬質皮膜は、更に、タングステン(W)を含む請求項13~請求項15のいずれか1項に記載の被覆切削工具の製造方法。 The method for manufacturing a coated cutting tool according to any one of claims 13 to 15, wherein the hard coating further contains tungsten (W).
  17.  前記硬質皮膜は、金属(半金属を含む)元素の総量に対して、タングステン(W)の含有比率(原子%)が1%以上10以下%である請求項16に記載の被覆切削工具の製造方法。 17. The coated cutting tool according to claim 16, wherein the hard coating has a tungsten (W) content ratio (atomic%) of 1% to 10% with respect to a total amount of metal (including metalloid) elements. Method.
  18.  前記タングステン(W)の含有比率(原子%)が、2%以上6%以下である請求項17に記載の被覆切削工具の製造方法。 The method for producing a coated cutting tool according to claim 17, wherein a content ratio (atomic%) of the tungsten (W) is 2% or more and 6% or less.
  19.  前記被覆切削工具は、ラジアスエンドミルまたはスクエアエンドミルである請求項13~請求項18のいずれか1項に記載の被覆切削工具の製造方法。 The method for manufacturing a coated cutting tool according to any one of claims 13 to 18, wherein the coated cutting tool is a radius end mill or a square end mill.
PCT/JP2014/059331 2013-03-28 2014-03-28 Coated cutting tool and method for producing same WO2014157688A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014541449A JP5673904B1 (en) 2013-03-28 2014-03-28 Coated cutting tool and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013068602 2013-03-28
JP2013-068602 2013-03-28

Publications (1)

Publication Number Publication Date
WO2014157688A1 true WO2014157688A1 (en) 2014-10-02

Family

ID=51624644

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/059331 WO2014157688A1 (en) 2013-03-28 2014-03-28 Coated cutting tool and method for producing same

Country Status (2)

Country Link
JP (1) JP5673904B1 (en)
WO (1) WO2014157688A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016035854A1 (en) * 2014-09-03 2016-03-10 三菱マテリアル株式会社 Surface-coated cutting tool and manufacturing method thereof
CN111511490A (en) * 2017-11-20 2020-08-07 三菱日立工具株式会社 Coated cutting tool
CN112055632A (en) * 2018-05-30 2020-12-08 株式会社Moldino Coated cutting tool and method for manufacturing same
EP3670042A4 (en) * 2017-08-15 2021-03-24 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
WO2021167087A1 (en) 2020-02-21 2021-08-26 株式会社Moldino Coated tool
CN113365768A (en) * 2019-03-18 2021-09-07 株式会社Moldino Coated cutting tool
CN113613817A (en) * 2019-03-18 2021-11-05 株式会社Moldino Coated cutting tool
CN113874143A (en) * 2019-05-09 2021-12-31 株式会社Moldino Coated cutting tool
EP4082699A4 (en) * 2019-12-24 2022-12-14 MOLDINO Tool Engineering, Ltd. Coated cutting tool

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6555796B2 (en) * 2014-09-26 2019-08-07 日立金属株式会社 Coated cutting tool
JP7389948B2 (en) * 2019-03-01 2023-12-01 三菱マテリアル株式会社 A surface-coated cutting tool with a hard coating layer that exhibits excellent chipping resistance.
JP7410383B2 (en) 2019-12-27 2024-01-10 株式会社Moldino coated cutting tools

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310173A (en) * 1994-05-13 1995-11-28 Kobe Steel Ltd Hard film coated tool and hard film coated member excellent in adhesion
JPH10130821A (en) * 1996-10-28 1998-05-19 Shinko Kobelco Tool Kk Hard-film-coated small-diameter shank tool made of high speed steel, excellent in wear resistance, and its production
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
US20040110039A1 (en) * 2002-09-03 2004-06-10 Seco Tools Ab Precipitation hardened wear resistant coating
US20040115484A1 (en) * 2002-09-03 2004-06-17 Seco Tools Ab Composite structured wear resistant coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310173A (en) * 1994-05-13 1995-11-28 Kobe Steel Ltd Hard film coated tool and hard film coated member excellent in adhesion
JPH10130821A (en) * 1996-10-28 1998-05-19 Shinko Kobelco Tool Kk Hard-film-coated small-diameter shank tool made of high speed steel, excellent in wear resistance, and its production
JP2003071610A (en) * 2000-12-28 2003-03-12 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor and target for forming hard coating
US20040110039A1 (en) * 2002-09-03 2004-06-10 Seco Tools Ab Precipitation hardened wear resistant coating
US20040115484A1 (en) * 2002-09-03 2004-06-17 Seco Tools Ab Composite structured wear resistant coating

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
A. ESCUDEIRO SANTANA ET AL.: "The role of hcp-AlN on hardness behavior of Ti1-xAlxN nanocomposite during annealing", THIN SOLID FILMS, vol. 469 -470, pages 339 - 344 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6037155B2 (en) * 2014-09-03 2016-11-30 三菱マテリアル株式会社 Surface-coated cutting tool and manufacturing method thereof
US10358712B2 (en) 2014-09-03 2019-07-23 Mitsubishi Materials Corporation Surface-coated cutting tool and method of manufacturing the same
WO2016035854A1 (en) * 2014-09-03 2016-03-10 三菱マテリアル株式会社 Surface-coated cutting tool and manufacturing method thereof
EP3670042A4 (en) * 2017-08-15 2021-03-24 Mitsubishi Hitachi Tool Engineering, Ltd. Coated cutting tool
US10974323B2 (en) 2017-08-15 2021-04-13 Moldino Tool Engineering, Ltd. Coated cutting tool
CN111511490A (en) * 2017-11-20 2020-08-07 三菱日立工具株式会社 Coated cutting tool
US11511352B2 (en) 2018-05-30 2022-11-29 Moldino Tool Engineering, Ltd. Coated cutting tool and production method therefor
CN112055632A (en) * 2018-05-30 2020-12-08 株式会社Moldino Coated cutting tool and method for manufacturing same
CN112055632B (en) * 2018-05-30 2023-06-30 株式会社Moldino Coated cutting tool and method for manufacturing same
CN113365768A (en) * 2019-03-18 2021-09-07 株式会社Moldino Coated cutting tool
EP3943223A4 (en) * 2019-03-18 2022-07-13 MOLDINO Tool Engineering, Ltd. Coated cutting tool
CN113613817A (en) * 2019-03-18 2021-11-05 株式会社Moldino Coated cutting tool
CN113613817B (en) * 2019-03-18 2024-04-05 株式会社Moldino Coated cutting tool
CN113874143A (en) * 2019-05-09 2021-12-31 株式会社Moldino Coated cutting tool
EP3967430A4 (en) * 2019-05-09 2022-08-31 MOLDINO Tool Engineering, Ltd. Coated cutting tool
US11965235B2 (en) 2019-05-09 2024-04-23 Moldino Tool Engineering, Ltd. Coated cutting tool
EP4082699A4 (en) * 2019-12-24 2022-12-14 MOLDINO Tool Engineering, Ltd. Coated cutting tool
WO2021167087A1 (en) 2020-02-21 2021-08-26 株式会社Moldino Coated tool

Also Published As

Publication number Publication date
JP5673904B1 (en) 2015-02-18
JPWO2014157688A1 (en) 2017-02-16

Similar Documents

Publication Publication Date Title
JP5673904B1 (en) Coated cutting tool and manufacturing method thereof
JP6410797B2 (en) Coated cutting tool and manufacturing method thereof
US11465214B2 (en) Coated cutting tool
JP6658983B2 (en) Coated cutting tool
JP6525310B2 (en) Coated tools
JP6555796B2 (en) Coated cutting tool
JP6844705B2 (en) Cover cutting tool
JP2017001147A (en) Coated cutting tool
WO2019098363A1 (en) Coated cutting tool
WO2022172954A1 (en) Coated tool
WO2014156699A1 (en) Coated cutting tool
JP2016078131A (en) Coated cutting tool
JP6844704B2 (en) Cover cutting tool
WO2022202729A1 (en) Coated cutting tool
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
WO2020075356A1 (en) Cutting tool and manufacturing method therefor
JP7164828B2 (en) coated cutting tools
WO2023181927A1 (en) Coated member
JP7375592B2 (en) surface coated cutting tools
WO2023022230A1 (en) Coated tool
WO2024048306A1 (en) Coated tool
JP2024027836A (en) Coated tool
JP2016064488A (en) Coated cutting tool
JP2014069239A (en) Method of producing coated tool having excellent durability

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014541449

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14775530

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 14775530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE