JP7375592B2 - surface coated cutting tools - Google Patents

surface coated cutting tools Download PDF

Info

Publication number
JP7375592B2
JP7375592B2 JP2020021536A JP2020021536A JP7375592B2 JP 7375592 B2 JP7375592 B2 JP 7375592B2 JP 2020021536 A JP2020021536 A JP 2020021536A JP 2020021536 A JP2020021536 A JP 2020021536A JP 7375592 B2 JP7375592 B2 JP 7375592B2
Authority
JP
Japan
Prior art keywords
hard coating
film
composition
cutting
tool base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020021536A
Other languages
Japanese (ja)
Other versions
JP2021126717A (en
Inventor
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020021536A priority Critical patent/JP7375592B2/en
Publication of JP2021126717A publication Critical patent/JP2021126717A/en
Application granted granted Critical
Publication of JP7375592B2 publication Critical patent/JP7375592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、チタン合金、ニッケル合金等の高速切削加工に用いても、硬質皮膜層が優れた耐溶着性、耐チッピング性を有し、長期の使用にわたって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a surface-coated cutting machine that has a hard coating layer that has excellent adhesion resistance and chipping resistance even when used for high-speed cutting of titanium alloys, nickel alloys, etc., and that exhibits excellent cutting performance over long periods of use. This relates to tools (hereinafter sometimes referred to as coated tools).

被覆工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工のためにバイトの先端部に着脱自在に取り付けて用いられるインサート、被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、またインサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。 Coated tools include inserts that are removably attached to the tip of a cutting tool for turning and planing workpiece materials such as various steels and cast iron, and inserts that are used for drilling and cutting workpiece materials. There are drills, miniature drills, and solid-type end mills that are used for facing, grooving, shoulder machining, etc. of workpiece materials, and inserts can be detachably attached to perform cutting operations in the same way as solid-type end mills. Insert type end mills are known.

従来から、被覆工具としては、例えば、WC基超硬合金等の工具基体に硬質皮膜層を形成したものが知られており、工具基体と硬質皮膜層との界面に注目して、切削性能の改善を目的として種々の提案がなされている。 Conventionally, coated tools have been known that have a hard coating layer formed on a tool base such as WC-based cemented carbide, and the cutting performance has been improved by focusing on the interface between the tool base and the hard coating layer. Various proposals have been made for the purpose of improvement.

例えば、特許文献1には、WC基超硬基体の表面にbcc構造を有するW、Cr、Coを含む改質層を有する被覆工具が記載され、この被覆工具は高硬度鋼、ステンレス鋼、鋳鋼の切削に使用できることが記載されている。 For example, Patent Document 1 describes a coated tool having a modified layer containing W, Cr, and Co having a bcc structure on the surface of a WC-based carbide base, and this coated tool is made of high-hardness steel, stainless steel, cast steel, etc. It is stated that it can be used for cutting.

さらに、例えば、特許文献2および3には、WCの結晶構造に指数付けされ、WとCrを含有する炭化物からなる1~10nmの膜厚の中間皮膜を設けた被覆工具が記載され、この被覆工具は、高炭素鋼、プリハードン鋼等の切削加工でも耐久性を有することが記載されている。 Further, for example, Patent Documents 2 and 3 describe coated tools that are indexed to the crystal structure of WC and provided with an intermediate film having a thickness of 1 to 10 nm made of a carbide containing W and Cr. It is stated that the tool has durability even when cutting high carbon steel, pre-hardened steel, etc.

特開2014-152345号公報Japanese Patent Application Publication No. 2014-152345 特開2016-64487号公報JP2016-64487A 特許第638233号公報Patent No. 638233

特許文献1~3に記載された硬質皮膜層を有する被覆工具は、主に鋼を加工するものであって、チタン合金、ニッケル合金のように熱伝導度が低く、硬く、靭性を有し切削工具との親和性の高い材料の高速切削時には、硬質皮膜層に早期に溶着剥離が発生し、短時間で寿命に至ってしまい満足する切削性能を得ることは困難である。 The coated tools having a hard coating layer described in Patent Documents 1 to 3 are mainly used for machining steel, and have low thermal conductivity, hardness, and toughness, such as titanium alloys and nickel alloys, and are difficult to cut. During high-speed cutting of materials that are highly compatible with tools, welding and peeling occur in the hard coating layer at an early stage, and the tool life reaches its end in a short period of time, making it difficult to obtain satisfactory cutting performance.

そこで、本発明は、このような状況を鑑みてなされたものであって、チタン合金、ニッケル合金等の熱伝導度が低く、硬く、靱性の高い材料の切削に供しても、硬質皮膜層が優れた耐溶着性、耐チッピング性を示し、特に、通常の切削速度の2倍以上の高速切削であっても長期の使用にわたって優れた切削性能を発揮する切削工具を提供することを目的とする。 Therefore, the present invention was made in view of this situation, and even when cutting materials with low thermal conductivity, hardness, and high toughness such as titanium alloys and nickel alloys, the hard coating layer remains intact. The purpose of the present invention is to provide a cutting tool that exhibits excellent adhesion resistance and chipping resistance, and in particular, exhibits excellent cutting performance over long periods of use even at high-speed cutting that is more than twice the normal cutting speed. .

本発明者は、前記課題を解決すべく、硬質皮膜と工具基体との界面領域の組成・構造について鋭意検討したところ、工具基体と硬質皮膜との界面領域に、工具基体直上にW膜、このW膜の直上に硬質皮膜に接し、硬質皮膜よりもTiを多く含み、かつ、硬質皮膜に向かってTi含有量が減少しAl含有量が増加する組成傾斜膜を設けると、硬質皮膜と工具基体との密着性が向上し、たとえ、硬質被覆層の溶着剥離が生じかけても、この界面領域の膜がチッピングを抑制し、工具基体を構成する粒子(WC粒子)の脱落が防止できるという新規な知見を得た。 In order to solve the above-mentioned problem, the inventors of the present invention conducted intensive studies on the composition and structure of the interface area between the hard coating and the tool base, and found that the W film was added directly onto the tool base in the interface area between the tool base and the hard coating. If a compositionally graded film is provided directly above the W film in contact with the hard coating, contains more Ti than the hard coating, and has a composition gradient in which the Ti content decreases and the Al content increases toward the hard coating, the hard coating and tool substrate This is a novel technology that improves adhesion with the tool base, and even if the hard coating layer is about to peel off, the film in this interface area suppresses chipping and prevents the particles (WC particles) that make up the tool base from falling off. I gained a lot of knowledge.

本発明は、この知見に基づくものであって、次のとおりのものである。
「(1)工具基体と該工具基体上の硬質皮膜層を有する表面被覆切削工具であって、
前記硬質皮膜層は、平均厚さ0.5~10.0μmの硬質皮膜と、前記工具基体と前記硬質皮膜との界面領域の前記工具基体直上に平均厚さ10~500nmのW膜と、該W膜の直上に前記硬質皮膜に接する組成傾斜膜を有し、
前記硬質皮膜は、その組成を組成式:(Ti(1-x-y)Al)Nで表したとき、0.40≦x≦0.90、0.00≦y≦0.20(ただし、x、yは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce、La、Hf、Ndの少なくとも一つ)を満足する平均組成を有し、
前記組成傾斜膜は、その平均厚さが10nm以上、かつ、前記硬質皮膜の平均厚さ1/3以下であって、その組成を組成式:(Ti(1-p-q)Al)Nで表したとき、0.10≦p<0.40、0.00≦q≦0.20(ただし、p、qは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce、La、Hf、Ndの少なくとも一つ)を満足する組成であって、前記pは前記W膜との境界から前記硬質皮膜に向かって増加していることを特徴とする、
表面被覆切削工具。」
The present invention is based on this knowledge and is as follows.
"(1) A surface-coated cutting tool having a tool base and a hard coating layer on the tool base,
The hard coating layer includes a hard coating having an average thickness of 0.5 to 10.0 μm, a W film having an average thickness of 10 to 500 nm immediately above the tool base in an interface area between the tool base and the hard coating, and a W film having an average thickness of 10 to 500 nm. having a composition gradient film in contact with the hard coating directly above the W film,
The composition of the hard coating is expressed by the following formula: (Ti (1-x-y) Al x M y )N: 0.40≦x≦0.90, 0.00≦y≦0.20 (However, x and y are atomic ratios, M is an atom from groups 4 to 6 of the IUPAC periodic table, and has an average composition that satisfies at least one of Si, Ce, La, Hf, and Nd),
The composition gradient film has an average thickness of 10 nm or more and an average thickness of 1/3 or less of the hard coating, and has a composition represented by the composition formula: (Ti (1-p-q) Al p M q ) When expressed as N, 0.10≦p<0.40, 0.00≦q≦0.20 (however, p and q are atomic ratios, M is an atom from groups 4 to 6 of the IUPAC periodic table, at least one of Si, Ce, La, Hf, and Nd), and the p value increases from the boundary with the W film toward the hard coating.
Surface coated cutting tools. ”

本発明の表面被覆切削工具は、組成傾斜層のTi含有量が多いため、靱性が向上し、チタン合金、ニッケル合金等の高速切削加工に用いても、硬質皮膜層が優れた耐溶着性、耐チッピングを備えることにより、長期の使用にわたって優れた切削性能を発揮する。 The surface-coated cutting tool of the present invention has a high Ti content in the composition gradient layer, so the toughness is improved, and even when used for high-speed cutting of titanium alloys, nickel alloys, etc., the hard coating layer has excellent welding resistance. With chipping resistance, it exhibits excellent cutting performance over long periods of use.

本発明の表面被覆切削工具における硬質皮膜層の縦断面の模式図である。FIG. 2 is a schematic diagram of a longitudinal section of a hard coating layer in a surface-coated cutting tool of the present invention.

以下、本発明の被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A~B」(A、Bはともに数値)を用いて表現する場合、その範囲は上限(B)および下限(A)の数値を含むものである。また、上限(B)および下限(A)は同じ単位である。 Hereinafter, the coated tool of the present invention will be explained in more detail. In addition, in this specification and claims, when a numerical range is expressed using "A to B" (A and B are both numerical values), the range is defined by the upper limit (B) and the lower limit (A). Contains numerical values. Further, the upper limit (B) and the lower limit (A) are in the same unit.

図1に、本発明の被覆工具における硬質皮膜層の縦断面の模式図を示す。この図1から明らかなように、工具基体上に硬質皮膜層が形成され、この硬質皮膜層は、工具基体の近傍に界面領域を有している。この界面領域は、工具基体側にW膜、その直上には、硬質皮膜と接する組成傾斜膜を有している。これらについて、以下順に説明する。 FIG. 1 shows a schematic diagram of a longitudinal section of a hard coating layer in a coated tool of the present invention. As is clear from FIG. 1, a hard coating layer is formed on the tool base, and this hard coating layer has an interface region near the tool base. This interface region has a W film on the tool base side and a composition gradient film in contact with the hard coating directly above it. These will be explained in order below.

硬質皮膜の平均膜厚:
本発明の被覆工具における硬質皮膜層を構成する硬質皮膜の平均膜厚は、0.5~10.0μmである。この範囲とした理由は、0.5μm未満であると、長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、10.0μmを超えると、硬質皮膜の結晶粒が粗大化しやすくなり、耐チッピング性向上効果が得られなくなるからである。
Average thickness of hard coating:
The average thickness of the hard coating constituting the hard coating layer in the coated tool of the present invention is 0.5 to 10.0 μm. The reason for this range is that if it is less than 0.5 μm, it will not be possible to exhibit excellent wear resistance over long-term use, while if it exceeds 10.0 μm, the crystal grains of the hard coating will tend to become coarse. This is because the effect of improving chipping resistance cannot be obtained.

硬質皮膜の組成:
本発明の被覆工具における硬質皮膜層を構成する硬質皮膜は、その組成を組成式:(Ti(1-x-y)Al)Nで表したとき、0.40≦x≦0.90、0.00≦y≦0.20(ただし、x、yは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce,La、Hf、Ndの少なくとも一つ)を満足する平均組成を有していることが好ましい。
なお、(Ti(1-x-y)Al)とNは、1:1で化合していなくてもよい。
Composition of hard coating:
The hard coating constituting the hard coating layer in the coated tool of the present invention has a composition of 0.40≦x≦0 when expressed by the composition formula: (Ti (1-x-y) Al x M y )N. 90, 0.00≦y≦0.20 (where x, y are atomic ratios, M is an atom from groups 4 to 6 of the IUPAC periodic table, and at least one of Si, Ce, La, Hf, and Nd) Preferably, it has a satisfactory average composition.
Note that (Ti (1-xy) Al x M y ) and N do not have to be combined in a 1:1 ratio.

x、y、の範囲を前記のように決定した理由は次のとおりである。
xの値が0.40未満になると、高硬度が得られないばかりか結晶粒が粗大化しやすくなり、一方、0.90を超えると、一部の結晶の結晶構造がNaCl型の面心立方構造から六方晶構造に変化し、硬さが低下する。より好ましい範囲としては0.45≦x≦0.70である。
また、必要に応じて添加するMの平均含有割合yが0.20を超えると、靭性が低下し、チッピング、欠損を発生しやすくなる。
The reason for determining the ranges of x and y as described above is as follows.
When the value of x is less than 0.40, not only high hardness cannot be obtained but also crystal grains tend to become coarse.On the other hand, when the value of x exceeds 0.90, the crystal structure of some crystals becomes NaCl type face-centered cubic. The structure changes to a hexagonal structure and the hardness decreases. A more preferable range is 0.45≦x≦0.70.
Furthermore, if the average content ratio y of M, which is added as necessary, exceeds 0.20, the toughness decreases and chipping and defects are likely to occur.

ここで、硬質皮膜の平均組成、平均層厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X-ray Spectroscopy:EDS)を用いた断面観察により求めることができる。 Here, the average composition and average layer thickness of the hard coating can be determined using a scanning electron microscope (SEM), a transmission electron microscope (TEM), or an energy dispersive X-ray spectroscopy (Energy Disperm). sive X It can be determined by cross-sectional observation using -ray spectroscopy (EDS).

界面領域のW膜:
界面領域の工具基体直上には、組成傾斜膜に接するW膜を有し、その平均厚さ、すなわち、工具基体から硬質皮膜に向かってWCではなくWが検出されTiが検出されるまでの平均距離が、10~500nmであることが好ましい。W膜の平均厚さがこの範囲にあるとき、硬質皮膜層が優れた耐溶着性、耐チッピング性を備える。なお、この領域のW膜は後述するようにW原子をスパッタリングすることによって得るものであるから、工具基体から硬質皮膜へ拡散する可能性のあるWによって形成されるものとは明らかに異なるものである。
W film in interface area:
Directly above the tool base in the interface region, there is a W film in contact with the compositionally gradient film, and its average thickness, that is, the average thickness from the tool base to the hard coating until W is detected instead of WC and Ti is detected. Preferably, the distance is 10 to 500 nm. When the average thickness of the W film is within this range, the hard coating layer has excellent welding resistance and chipping resistance. Note that the W film in this region is obtained by sputtering W atoms as described later, so it is clearly different from that formed by W that may diffuse from the tool base to the hard coating. be.

界面領域の組成傾斜膜:
界面領域のW膜の直上には硬質皮膜と接する組成傾斜膜を有する。組成傾斜膜の組成を組成式:(Ti(1-p-q)Al)Nで表したとき、0.10≦p<0.40、0.00≦q≦0.20(ただし、p、qは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce、La、Hf、Ndの少なくとも一つ)を満足する組成を有し、AlのTiとAlとMの合量に占める割合であるpは、W膜との境界から硬質皮膜に向かって増加している傾斜組成が好ましい。ここで、増加の態様に制約はないが、線形が好ましい。
この組成傾斜膜は、硬質皮膜を強固に工具基体に密着させる作用を有し、前述の傾斜組成を有するとき、この作用がより確実に発揮される。
なお、(Ti(1-p-q)Al)とNは、1:1で化合していなくてもよい。
Composition gradient film in interface area:
Directly above the W film in the interface region, there is a compositionally graded film in contact with the hard coating. When the composition of the composition gradient film is expressed by the composition formula: (Ti (1-p-q) Al p M q )N, 0.10≦p<0.40, 0.00≦q≦0.20 (however, , p, q are atomic ratios, M is an atom of groups 4 to 6 of the IUPAC periodic table, and has a composition that satisfies at least one of Si, Ce, La, Hf, and Nd. The ratio p to the total amount of M preferably has a gradient composition in which it increases from the boundary with the W film toward the hard coating. Here, there are no restrictions on the manner of increase, but linear is preferred.
This compositionally graded film has the effect of firmly adhering the hard coating to the tool base, and this effect is more reliably exerted when the composition has the above-mentioned graded composition.
Note that (Ti (1-pq) Al p M q ) and N do not have to be combined in a 1:1 ratio.

この組成傾斜膜の平均厚さ、すなわち、工具基体から硬質皮膜に向かってTiが検出されAlのTiとAlとMの合量に占める割合が0.40以上になるまでの距離が、10nm以上、かつ、前記硬質皮膜の平均厚さの1/3以下であることが好ましい。この範囲の平均厚さであるとき、前記作用がより確実に発揮される。 The average thickness of this compositionally graded film, that is, the distance from the tool base toward the hard coating until Ti is detected and the ratio of Al to the total amount of Ti, Al, and M becomes 0.40 or more is 10 nm or more. , and preferably 1/3 or less of the average thickness of the hard coating. When the average thickness is within this range, the above effects are more reliably exhibited.

工具基体:
工具基体は、この種の工具基体として従来公知のWCを含む基体であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。
Tool base:
As the tool base, any base containing WC, which is conventionally known as this type of tool base, can be used as long as it does not interfere with achieving the object of the present invention.

製造方法:
本発明の被覆工具の硬質皮膜層は、PVDの一種であるアークイオンプレーティング(Arc Ion Plating:AIP)装置を用いて製造することができ、W膜は、Wターゲットをスパッタして形成する。組成傾斜膜は、所定組成のTi-Al-M合金とTiの2種のターゲットを同時にスパッタすることによって形成することができ、Tiの放電量を徐々に減少(例えば線形に減少)させることがより好ましい。また、硬質皮膜は所定組成のTi-Al-M合金とTiの2種のターゲットを用い、所定組成になるようにTiの放電量を制御する。
Production method:
The hard coating layer of the coated tool of the present invention can be manufactured using an arc ion plating (AIP) device, which is a type of PVD, and the W film is formed by sputtering a W target. The compositionally graded film can be formed by simultaneously sputtering two types of targets, Ti-Al-M alloy with a predetermined composition and Ti, and can gradually reduce (for example, linearly decrease) the discharge amount of Ti. More preferred. Further, the hard coating uses two types of targets, a Ti--Al--M alloy with a predetermined composition and Ti, and controls the amount of discharge of Ti so as to have a predetermined composition.

次に、実施例について説明する。
ここでは、本発明の被覆工具の具体例として、工具基体としてWC基超硬合金を用いたインサート切削工具に適用したものについて述べるが、工具基体は前述のとおりWCが含まれていればよく、また、工具としてドリル、エンドミル等に適用した場合も同様である。
Next, examples will be described.
Here, as a specific example of the coated tool of the present invention, a tool applied to an insert cutting tool using WC-based cemented carbide as the tool base will be described, but the tool base only needs to contain WC as described above. The same applies when the present invention is applied to tools such as drills and end mills.

まず、原料粉末として、Co粉末、TiC粉末、VC粉末、TaC粉末、NbC粉末、Cr粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形し、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFTN1のインサート形状をもったWC基超硬合金製の工具基体1~3を作製した。 First, Co powder, TiC powder, VC powder, TaC powder, NbC powder, Cr3C2 powder, and WC powder were prepared as raw material powders, and these raw material powders were blended into the composition shown in Table 1, and then After adding wax and wet-mixing in a ball mill for 72 hours, drying under reduced pressure, press molding at a pressure of 100 MPa, sintering the compacted powder, and processing it to the specified dimensions to meet ISO standard SEEN1203AFTN1. Tool bases 1 to 3 made of WC-based cemented carbide and having an insert shape were produced.

次に、工具基体1~3に直流(DC)スパッタリング蒸着源を持つAIP装置を用いて硬質皮膜層を形成すべく、これらをアセトン中で超音波洗浄し、乾燥した状態で、AIP装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着した。また、カソード電極(蒸発源)として、Wターゲット、Tiターゲット、そして、所定組成の硬質皮膜を得るためのTi-Al―M合金ターゲットを配置した。 Next, in order to form a hard coating layer on the tool bases 1 to 3 using an AIP apparatus having a direct current (DC) sputtering deposition source, these were ultrasonically cleaned in acetone, dried, and placed in the AIP apparatus. It was mounted along the outer periphery of the rotary table at a predetermined distance in the radial direction from the central axis. Further, as a cathode electrode (evaporation source), a W target, a Ti target, and a Ti--Al--M alloy target for obtaining a hard film of a predetermined composition were arranged.

続いて、AIP装置内を排気して10-2Pa以下の真空に保持しながら、ヒーターで装置内を400~1000℃に加熱した後、0.1~2.0PaのArガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に-200~-1500Vの直流バイアス電圧を印加し、アルゴンイオンによって、工具基体表面を10~120分間ボンバード処理した。 Next, while the inside of the AIP device was evacuated and maintained at a vacuum of 10 −2 Pa or less, the inside of the device was heated to 400 to 1000° C. with a heater, and then an Ar gas atmosphere of 0.1 to 2.0 Pa was set. A DC bias voltage of -200 to -1500 V was applied to the tool base rotating while rotating on the rotary table, and the surface of the tool base was bombarded with argon ions for 10 to 120 minutes.

AIP装置内に反応ガスとして、表2に示す分圧が0.1~1.0Paの範囲内のArガスを所定時間導入すると共に、同じく表2に示す炉内温度に維持し、前記回転テーブル上で自転しながら回転する工具基体に、表2に示す-30~-200Vの範囲内の所定の直流バイアス電圧を印加して、Wターゲットのスパッタリング電力を500~1000Wで調整し、W膜を成膜した。 Ar gas having a partial pressure within the range of 0.1 to 1.0 Pa shown in Table 2 is introduced as a reaction gas into the AIP apparatus for a predetermined period of time, and the furnace temperature is maintained at the temperature shown in Table 2, and the rotary table A predetermined DC bias voltage within the range of -30 to -200V shown in Table 2 was applied to the tool base rotating on its own axis, and the sputtering power of the W target was adjusted to 500 to 1000 W to form a W film. A film was formed.

続いて、表2に示す-30~-200Vの範囲内の所定の直流バイアス電圧を印加して、Ti含有量が所定量になるように、TiターゲットとTi-Al―M合金ターゲット(Mは、表3を参照)のアーク電流を80~240Aの範囲内で調整し、Tiターゲットのアーク電流を直線的に減少させる一方で、Ti-Al-M合金ターゲットのアーク電流を一定に保つことで、組成傾斜膜:(Ti(1-p-q)Al)N膜を成膜した。その後、Ti-Al-M合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に、表2に示す80~240Aの範囲内の所定の電流を流してアーク放電を発生させ、硬質皮膜を形成し、表3に示す本発明の被覆工具(以下、「本発明工具」という)1~9を作製した。 Next, by applying a predetermined DC bias voltage within the range of -30 to -200V shown in Table 2, a Ti target and a Ti-Al-M alloy target (M is , see Table 3) within the range of 80 to 240 A to linearly decrease the arc current of the Ti target while keeping the arc current of the Ti-Al-M alloy target constant. , composition gradient film: (Ti (1-pq) Al p M q )N film was formed. After that, a predetermined current within the range of 80 to 240 A shown in Table 2 is caused to flow between the cathode electrode (evaporation source) made of the Ti-Al-M alloy target and the anode electrode to generate an arc discharge, thereby forming a hard coating. Coated tools 1 to 9 of the present invention shown in Table 3 (hereinafter referred to as "tools of the present invention") were prepared.

一方、比較のため、前記工具基体1~3に対して、前記と同じAIP装置を用いて、表2に示す条件で各皮膜を蒸着形成し、表4に示す比較例の皮膜工具(以下、「比較例工具」という)1~3を作製した。 On the other hand, for comparison, each film was vapor-deposited on the tool bases 1 to 3 using the same AIP apparatus as described above under the conditions shown in Table 2. 1 to 3 (referred to as "comparative example tools") were manufactured.

硬質被覆層を構成する各皮膜の平均層厚、硬質皮膜や組成傾斜膜の組成は、前記で作製した本発明工具1~9および比較例工具1~3の工具基体の表面に垂直な硬質皮膜層縦断面(工具基体に垂直な断面)について、工具基体の表面に平行な方向の幅が10μmであり、硬質皮膜層の厚み領域が全て含まれるよう設定された視野について、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、エネルギー分散型X線分光法(EDS)を用いた断面観察により求めた。 The average layer thickness of each coating constituting the hard coating layer and the composition of the hard coating and compositionally gradient coating are as follows: The longitudinal section of the layer (cross section perpendicular to the tool base) was examined using a scanning electron microscope ( It was determined by cross-sectional observation using SEM), transmission electron microscopy (TEM), and energy dispersive X-ray spectroscopy (EDS).

具体的には、平均層厚は観察断面を5000倍に拡大して、5点の層厚を求めて平均層厚を算出した。硬質皮膜の平均組成、組成傾斜膜の組成、Alの含有量の変化については、層厚方向に100μmの等間隔で5本のEDS線分析を行い、平均値を算出した。また、(Ti、Al、M、N)の硬質皮膜層を構成する原子のみが検出され始め、Al含有量が40原子%未満である工具基体の表面に最も近い点から工具基体表面側へ0.5nmの点を工具基体側の位置とし、さらに、Alの含有割合がこれ以上増加しない点よりも工具基体側へ0.5nmの点を工具表面側の位置とした。なお、これらの点の位置は工具基体の表面から測定した。表3、表4では、この工具基体側の位置および工具表面側の位置におけるAlの含有量を、それぞれ前記5個の分析の平均値として記載している。なお、界面領域の平均層厚は、この工具基体側の位置および工具表面側の位置の距離に1nmを加えたものである。
表3および4にこれらの結果を示す。
Specifically, the average layer thickness was calculated by enlarging the observed cross section 5000 times and determining the layer thickness at 5 points. Regarding changes in the average composition of the hard coating, the composition of the compositionally gradient film, and the Al content, five EDS lines were analyzed at equal intervals of 100 μm in the layer thickness direction, and the average values were calculated. In addition, only the atoms constituting the hard coating layer of (Ti, Al, M, N) started to be detected, and from the point closest to the surface of the tool base where the Al content was less than 40 atomic % to the surface of the tool base. A point 0.5 nm was defined as a position on the tool base side, and a point 0.5 nm away from the point where the Al content did not increase any further was defined as a position on the tool surface side. Note that the positions of these points were measured from the surface of the tool base. In Tables 3 and 4, the Al contents at the position on the tool base side and the position on the tool surface side are each described as the average value of the five analyses. Note that the average layer thickness of the interface region is the distance between the position on the tool base side and the position on the tool surface side plus 1 nm.
Tables 3 and 4 show these results.

Figure 0007375592000001
Figure 0007375592000001

Figure 0007375592000002
Figure 0007375592000002

Figure 0007375592000003
Figure 0007375592000003

Figure 0007375592000004
Figure 0007375592000004

次いで、本発明工具1~9および比較例工具1~3について、SE445R0506Eのカッタを用いて、単刃の正面フライス切削加工試験を実施した。以下の切削条件で、ニッケル合金およびチタン合金について高速切削加工試験を実施した。 Next, a single-blade face milling test was performed on the present invention tools 1 to 9 and the comparative example tools 1 to 3 using a cutter of SE445R0506E. High-speed cutting tests were conducted on nickel alloys and titanium alloys under the following cutting conditions.

切削試験A:
被削材:質量%で、Ni-19%Cr-18.5%Fe-5.2%Cd-5%Ta-3%Mo-0.9%Ti-0.5%Al-0.3%Si-0.2%Mn-0.05%Cu-0.04%Cの組成を有するNi基合金の幅60mm×長さ200mmのブロック材
切削速度: 80 m/min.
切り込み: 1.8 mm
送り: 0.11 mm/tooth.
の条件でのNi基合金の湿式高速高送り切削加工試験(通常の切削速度および送りは、25~40 m/min.、0.08mm/tooth)を行った。切削長2.0mまで切削し、逃げ面摩耗幅を測定し、刃先の損耗状態を観察した。
切削試験Aの結果を表5に示す。
Cutting test A:
Work material: mass% Ni-19%Cr-18.5%Fe-5.2%Cd-5%Ta-3%Mo-0.9%Ti-0.5%Al-0.3% Block material of Ni-based alloy having a composition of Si-0.2%Mn-0.05%Cu-0.04%C with a width of 60 mm and a length of 200 mm Cutting speed: 80 m/min.
Cut: 1.8 mm
Feed: 0.11 mm/tooth.
A wet high-speed, high-feed cutting test was conducted on a Ni-based alloy under the following conditions (normal cutting speed and feed: 25 to 40 m/min., 0.08 mm/tooth). Cutting was carried out to a cutting length of 2.0 m, the flank wear width was measured, and the state of wear on the cutting edge was observed.
The results of cutting test A are shown in Table 5.

切削試験B:
被削材:質量%で、Ti-6%Al-4%Vの幅60mm×長さ200mmのブロック材
切削速度: 90 m/min.
切り込み: 1.8 mm
送り: 0.12 mm/tooth.
の条件でのTi基合金の湿式高速高送り切削加工試験( 通常の切削速度および送りは、30~45 m/min.、0.08mm/tooth)を行った。切削長2.0mまで切削し、逃げ面摩耗幅を測定し、刃先の損耗状態を観察した。
切削試験Bの結果を表6に示す。
Cutting test B:
Work material: Ti-6% Al-4% V block material with a width of 60 mm and a length of 200 mm Cutting speed: 90 m/min.
Cut: 1.8 mm
Feed: 0.12 mm/tooth.
A wet high-speed, high-feed cutting test of a Ti-based alloy was conducted under the following conditions (normal cutting speed and feed: 30 to 45 m/min., 0.08 mm/tooth). Cutting was carried out to a cutting length of 2.0 m, the flank wear width was measured, and the state of wear on the cutting edge was observed.
The results of cutting test B are shown in Table 6.

Figure 0007375592000005
Figure 0007375592000005

Figure 0007375592000006
Figure 0007375592000006

表5および表6の結果によれば、本発明工具1~9については、切削条件A、Bのいずれでもチッピング、剥離等の異常損傷の発生はなく、耐溶着性、耐チッピング性のいずれにも優れていることがわかる。
これに対して、比較例工具1~3については、切削条件A、Bのいずれにおいても、チッピングの発生、あるいは、逃げ面摩耗の進行により、短時間で寿命に至ることは明らかである。
According to the results in Tables 5 and 6, for tools 1 to 9 of the present invention, no abnormal damage such as chipping or peeling occurred under cutting conditions A or B, and neither welding resistance nor chipping resistance was observed. It turns out that it is also excellent.
On the other hand, it is clear that Comparative Example Tools 1 to 3 reach the end of their life in a short period of time under both cutting conditions A and B due to occurrence of chipping or progression of flank wear.

本発明の表面被覆切削工具は、各種の鋼などの通常の切削条件での切削加工は勿論のこと、特に高熱発生を伴うとともに、切刃部に対して大きな負荷がかかるチタン合金、ニッケル合金等の高速切削加工において、優れた耐溶着性および耐チッピング性を発揮し、長期にわたってすぐれた切削性能を示すものであるから、切削加工装置の高性能化、並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 The surface-coated cutting tool of the present invention can be used not only for cutting various types of steel under normal cutting conditions, but also for titanium alloys, nickel alloys, etc., which generate high heat and place a large load on the cutting edge. It exhibits excellent adhesion resistance and chipping resistance in high-speed cutting, and exhibits excellent cutting performance over a long period of time, so it can improve the performance of cutting equipment and save labor and energy in cutting. Furthermore, it can satisfactorily respond to cost reduction.

Claims (1)

工具基体と該工具基体上の硬質皮膜層を有する表面被覆切削工具であって、
前記硬質皮膜層は、平均厚さ0.5~10.0μmの硬質皮膜と、前記工具基体と前記硬質皮膜との界面領域の前記工具基体直上に平均厚さ10~500nmのW膜と、該W膜の直上に前記硬質皮膜に接する組成傾斜膜を有し、
前記硬質皮膜は、その組成を組成式:(Ti(1-x-y)Al)Nで表したとき、0.40≦x≦0.90、0.00≦y≦0.20(ただし、x、yは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce、La、Hf、Ndの少なくとも一つ)を満足する平均組成を有し、
前記組成傾斜膜は、その平均厚さが10nm以上、かつ、前記硬質皮膜の平均厚さ1/3以下であって、その組成を組成式:(Ti(1-p-q)Al)Nで表したとき、0.10≦p<0.40、0.00≦q≦0.20(ただし、p、qは原子比、MはIUPACの周期表の4~6族の原子、Si、Ce、La、Hf、Ndの少なくとも一つ)を満足する組成であって、前記pは前記W膜との境界から前記硬質皮膜に向かって増加していることを特徴とする、
表面被覆切削工具。
A surface coated cutting tool having a tool base and a hard coating layer on the tool base,
The hard coating layer includes a hard coating having an average thickness of 0.5 to 10.0 μm, a W film having an average thickness of 10 to 500 nm immediately above the tool base in an interface area between the tool base and the hard coating, and a W film having an average thickness of 10 to 500 nm. having a composition gradient film in contact with the hard coating directly above the W film,
The composition of the hard coating is expressed by the following formula: (Ti (1-x-y) Al x M y )N: 0.40≦x≦0.90, 0.00≦y≦0.20 (However, x and y are atomic ratios, M is an atom from groups 4 to 6 of the IUPAC periodic table, and has an average composition that satisfies at least one of Si, Ce, La, Hf, and Nd),
The composition gradient film has an average thickness of 10 nm or more and an average thickness of 1/3 or less of the hard coating, and has a composition represented by the composition formula: (Ti (1-p-q) Al p M q ) When expressed as N, 0.10≦p<0.40, 0.00≦q≦0.20 (however, p and q are atomic ratios, M is an atom from groups 4 to 6 of the IUPAC periodic table, at least one of Si, Ce, La, Hf, and Nd), and the p value increases from the boundary with the W film toward the hard coating.
Surface coated cutting tools.
JP2020021536A 2020-02-12 2020-02-12 surface coated cutting tools Active JP7375592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021536A JP7375592B2 (en) 2020-02-12 2020-02-12 surface coated cutting tools

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021536A JP7375592B2 (en) 2020-02-12 2020-02-12 surface coated cutting tools

Publications (2)

Publication Number Publication Date
JP2021126717A JP2021126717A (en) 2021-09-02
JP7375592B2 true JP7375592B2 (en) 2023-11-08

Family

ID=77487497

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021536A Active JP7375592B2 (en) 2020-02-12 2020-02-12 surface coated cutting tools

Country Status (1)

Country Link
JP (1) JP7375592B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168669A (en) 2015-03-13 2016-09-23 三菱マテリアル株式会社 Surface coated cutting tool with hard-coated layer exhibiting superior chipping resistance
JP2018118346A (en) 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance
WO2019188967A1 (en) 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016168669A (en) 2015-03-13 2016-09-23 三菱マテリアル株式会社 Surface coated cutting tool with hard-coated layer exhibiting superior chipping resistance
JP2018118346A (en) 2017-01-25 2018-08-02 三菱マテリアル株式会社 Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance
WO2019188967A1 (en) 2018-03-27 2019-10-03 三菱マテリアル株式会社 Surface-coated cutting tool

Also Published As

Publication number Publication date
JP2021126717A (en) 2021-09-02

Similar Documents

Publication Publication Date Title
JP6296295B2 (en) Surface coated cutting tool with excellent wear resistance
JP7415223B2 (en) A surface-coated cutting tool that exhibits excellent chipping and wear resistance during heavy interrupted cutting.
JP6519795B2 (en) Surface coated cutting tool with excellent chipping resistance and wear resistance
JP2008087114A (en) Surface-coated cutting tool having hard coated layer showing excellent chipping resistance and wear resistance in high-speed heavy cutting machining of heat-resistant alloy
JP7375592B2 (en) surface coated cutting tools
JP2020151774A (en) Surface coated cutting tool superior in thermal crack resistance and chipping resistance
WO2020166466A1 (en) Hard coating cutting tool
JP4844884B2 (en) A surface-coated cutting tool that exhibits excellent chipping resistance and wear resistance due to its excellent hard coating layer in high-speed cutting of heat-resistant alloys
JP7121909B2 (en) surface coated cutting tools
JP7227472B2 (en) hard coating cutting tools
JP2008030159A (en) Surface coat cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance in high-speed heavy-cutting of heat-resistant alloy
JP4844879B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP2021088039A (en) Surface coating-cutting tool
JP4697389B2 (en) Surface coated cemented carbide cutting tool with excellent wear resistance with hard coating layer in high speed cutting
JP2019118997A (en) Surface-coated cutting tool
WO2022208654A1 (en) Surface-coated cutting tool
JP2019098502A (en) Surface-coated cutting tool having hard coating layer excellent in thermal cracking resistance
JP2021088038A (en) Surface coating-cutting tool
JP7025693B2 (en) Surface covering cutting tool
JP2012210672A (en) End mill exhibiting excellent wear resistance
JP4697390B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material
JP2021154460A (en) Surface-coated cutting tool
JP4697391B2 (en) Cutting tool made of surface-coated cemented carbide that exhibits excellent wear resistance in high-speed cutting of heat-resistant alloys.
JP2021126718A (en) Hard film cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20231009

R150 Certificate of patent or registration of utility model

Ref document number: 7375592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150