JP2021126718A - Hard film cutting tool - Google Patents

Hard film cutting tool Download PDF

Info

Publication number
JP2021126718A
JP2021126718A JP2020021538A JP2020021538A JP2021126718A JP 2021126718 A JP2021126718 A JP 2021126718A JP 2020021538 A JP2020021538 A JP 2020021538A JP 2020021538 A JP2020021538 A JP 2020021538A JP 2021126718 A JP2021126718 A JP 2021126718A
Authority
JP
Japan
Prior art keywords
tool
cutting
hard film
average
tool substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2020021538A
Other languages
Japanese (ja)
Inventor
英利 淺沼
Hidetoshi Asanuma
英利 淺沼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2020021538A priority Critical patent/JP2021126718A/en
Publication of JP2021126718A publication Critical patent/JP2021126718A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

To provide a cutting tool exhibiting excellent cutting performance over a long-term use even when being used in high speed cutting of carbon steel, alloy steel, stainless steel, cast iron and the like.SOLUTION: A surface-coated cutting tool has a hard film layer 4 including a hard film 3 having average layer thickness of 0.5-10.0 μm (Me1-x-yAlxMy)Nz(0.35≤x≤0.80, 0.00≤y≤0.20, 0.20≤(1-x-y)≤0.65, and 0.90≤z≤1.10), on a surface of a tool substrate 1, in the expressions, Me is Ti or Cr; x, y and z are atomic ratios; M is an atom of groups 4 to 6 of the periodic table of IUPAC, and at least one of Y, Si, La and Ce. In an interface region 2 of a hard film layer 4 with an average thickness of 5-100 nm from the surface of the tool substrate 1 toward the tool surface, a content ratio of N to the total of Ti, Al, M and N on the surface side of the tool substrate 1 is 10-30 atom%, and increases from the surface of the tool substrate 1 toward the tool surface.SELECTED DRAWING: Figure 1

Description

本発明は、表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention relates to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool).

一般に、被覆工具には、各種の鋼(炭素鋼、合金鋼)や鋳鉄などの被削材の旋削加工や平削り加工のためにバイトの先端部に着脱自在に取り付けて用いられるインサート、同被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、また、同被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、さらに、インサートを着脱自在に取り付けてソリッドタイプのエンドミルと同様に切削加工を行うインサート式エンドミルなどが知られている。 In general, covering tools include inserts and covers that are detachably attached to the tip of a cutting tool for turning and planing of various types of steel (carbon steel, alloy steel) and cast iron. There are drills and miniature drills used for drilling and cutting of cutting materials, solid type end mills used for surface cutting, grooving, shoulder processing, etc. of the same work material, and inserts can be attached and detached freely. There are known insert-type end mills that can be attached and cut in the same way as solid-type end mills.

そして、従来から、被覆工具としては、例えば、WC基超硬合金、TiCN基サーメット、cBN焼結体等を工具基体とし、これに硬質皮膜層を形成した被覆工具が知られており、切削性能の改善を目的として種々の提案がなされている。 Conventionally, as a covering tool, for example, a covering tool in which a WC-based cemented carbide, a TiCN-based cermet, a cBN sintered body or the like is used as a tool base and a hard film layer is formed on the tool base has been known, and cutting performance has been obtained. Various proposals have been made for the purpose of improving.

例えば、特許文献1には、工具基体上に下層、中間層および上層を形成した硬質皮膜被覆工具であって、
(a)前記下層は、IV、VおよびVI族の元素、AlおよびSiからなる群から選ばれた少なくとも一種の金属元素と、N、CおよびBからなる群から選ばれた少なくとも一種の非金属元素とを含有し、
(b)前記上層は、(AlCr(x=0.1〜0.40、x+y=1、c=1.86〜2.14、d=2.79〜3.21)で、α型結晶構造を有し、等価X線回折強度比TC(110)が1.3以上であるとともにTC(110)がTC(104)より大きく、かつTC(006)が0である酸化物からなり、
(c)前記中間層は、金属元素としてAlとCrを必須とする酸窒化物からなり、酸素濃度が前記下層側から前記上層側にかけて増加するとともに窒素濃度が前記下層側から前記上層側にかけて減少する傾斜組成を有し、その平均組成(AlCr(Nが、s=0.1〜0.6、s+t=1、v=0.1〜0.8、v+w=1、a=0.35〜0.6、a+b=1を満たす、
ことを特徴とする硬質皮膜被覆工具
が記載されている。
For example, Patent Document 1 describes a hard film-coated tool in which a lower layer, an intermediate layer, and an upper layer are formed on a tool substrate.
(A) The lower layer is composed of at least one metal element selected from the group consisting of IV, V and VI elements, Al and Si, and at least one non-metal selected from the group consisting of N, C and B. Contains elements,
(B) the upper layer, (Al x Cr y) c O d (x = 0.1~0.40, x + y = 1, c = 1.86~2.14, d = 2.79~3.21 ), The equivalent X-ray diffraction intensity ratio TC (110) is 1.3 or more, TC (110) is larger than TC (104), and TC (006) is 0. Consists of oxides
(C) The intermediate layer is composed of an oxynitride that requires Al and Cr as metal elements, and the oxygen concentration increases from the lower layer side to the upper layer side and the nitrogen concentration decreases from the lower layer side to the upper layer side. The average composition (Al s C t ) a (N v O w ) b is s = 0.1-0.6, s + t = 1, v = 0.1-0.8, Satisfy v + w = 1, a = 0.35-0.6, a + b = 1.
A hard film coating tool characterized by this is described.

また、特許文献2には、工具基体の表面に順に、第1層目のTiAl窒化物、第2層目のTiAl窒化物の合計2層からなり、Ti:Al:N=α:β:γとするとき、
(1)第1層目のTiAl窒化物は、0<α/β≦3、0.2≦(α+β)/γ≦2を満たし、
(2)第2層目のTiAl窒化物は、0<α/β≦3を満たすとともに、T=(α+β)/γ、基体部側から表面部側に連続的または断続的にT1 2 3 4 ・・・Tn (nは任意)とすると、2≧T1 >T2 >T3 >T4 >・・・>Tn ≧0.1を満たす超多層の硬質膜である、
硬質皮膜を有する切削工具
が記載されている。
Further, in Patent Document 2, a total of two layers of TiAl nitride in the first layer and TiAl nitride in the second layer are formed on the surface of the tool substrate in order, and Ti: Al: N = α: β: γ. When
(1) The TiAl nitride in the first layer satisfies 0 <α / β ≦ 3, 0.2 ≦ (α + β) / γ ≦ 2.
(2) The TiAl nitride in the second layer satisfies 0 <α / β ≦ 3 and T = (α + β) / γ, T 1 T 2 continuously or intermittently from the base portion side to the surface portion side. If T 3 T 4 ... T n (n is arbitrary), it is a super-multilayer hard film satisfying 2 ≧ T 1 > T 2 > T 3 > T 4 > ・ ・ ・ > T n ≧ 0.1. ,
Cutting tools with a hard coating are described.

さらに、特許文献3には、耐摩耗性基材上に、Al(MはTi、Ta、V、Cr、Zr、Nb、Mo、Hf、W、Fe、Co、Ni、Cu及びMnよりなる群から選ばれた少なくとも1種。60at%≦a≦98.5at%、1.5at%≦b≦40at%)の組成を有する蒸発源材料を用い、窒素、酸素又は炭素を含む反応ガスの供給量をその分圧が連続的または段階的に変化するように制御しながら、非晶質膜中の反応ガス成分の濃度が膜表面に向って増大する高い硬度を有する非晶質硬質膜が記載され、この硬質膜は電気電子材料、高強度材料、耐摩耗材料、耐高温材料などとして使用できることが示されている。 Further, Patent Document 3 describes that Al a M b (M is Ti, Ta, V, Cr, Zr, Nb, Mo, Hf, W, Fe, Co, Ni, Cu and Mn) on an wear-resistant base material. A reaction gas containing nitrogen, oxygen or carbon using an evaporation source material having a composition of at least one selected from the group consisting of 60 at% ≤ a ≤ 98.5 at%, 1.5 at% ≤ b ≤ 40 at%). An amorphous hard film having a high hardness in which the concentration of the reaction gas component in the amorphous film increases toward the film surface while controlling the supply amount of the reaction gas component so that the partial pressure changes continuously or stepwise. Is described, and it is shown that this hard film can be used as an electric / electronic material, a high-strength material, an abrasion-resistant material, a high-temperature resistant material, and the like.

加えて、特許文献4には、基板上に2のコーティング層を有し、該コーティング層の組成をMeNxとすると、内側のコーティング層では0.5<x<0.9で、外側のコーティング層では0.9<x≦1.0であり、前記Meが周期表のIII〜IV族に属する金属であることを特徴とする耐摩耗性表面層でコーティングされた複合体が記載され、この複合体は切削工具として使用できることが示されている。 In addition, Patent Document 4 has 2 coating layers on the substrate, and when the composition of the coating layer is MeNx, the inner coating layer has 0.5 <x <0.9, and the outer coating layer. Described a composite coated with an abrasion-resistant surface layer, wherein 0.9 <x ≦ 1.0, and the Me is a metal belonging to Groups III to IV of the periodic table. The body has been shown to be usable as a cutting tool.

特許第5617933号公報Japanese Patent No. 5617933 特開平10−237629号公報Japanese Unexamined Patent Publication No. 10-237629 特開平6−322517号公報Japanese Unexamined Patent Publication No. 6-322517 特開昭59−159983号公報Japanese Unexamined Patent Publication No. 59-159983

特許文献1〜4に記載された硬質皮膜層(耐摩耗層)を有する被覆工具は、炭素鋼、合金鋼、ステンレス鋼、鋳鉄等の高速切削時には刃先が高温となるため、早期に硬質皮膜層の組成変化が進行して、硬質皮膜層がもろくなり、短時間で寿命に至ってしまい満足する切削性能を得ることは困難である。なお、本明細書では、高速切削とは、特に加工時に発熱の多いステンレス鋼では通常の切削速度よりも15%以上、また、炭素鋼、合金鋼、鋳鉄では従来の切削速度よりも30%以上の高速加工をいう。 The coating tool having the hard coating layer (wear resistant layer) described in Patent Documents 1 to 4 has a hard coating layer at an early stage because the cutting edge becomes hot during high-speed cutting of carbon steel, alloy steel, stainless steel, cast iron and the like. As the composition of the steel changes, the hard film layer becomes brittle and reaches the end of its life in a short time, making it difficult to obtain satisfactory cutting performance. In this specification, high-speed cutting means 15% or more of the normal cutting speed for stainless steel, which generates a lot of heat during machining, and 30% or more of the conventional cutting speed for carbon steel, alloy steel, and cast iron. High-speed machining.

そこで、本発明は、炭素鋼、合金鋼、ステンレス鋼、鋳鉄等の高速切削加工に用いても、硬質皮膜層が優れた耐チッピングを備えることにより、長期の使用にわたって優れた切削性能を発揮する切削工具を提供することを目的とする。 Therefore, the present invention exhibits excellent cutting performance over a long period of time because the hard film layer has excellent chipping resistance even when used for high-speed cutting of carbon steel, alloy steel, stainless steel, cast iron, etc. The purpose is to provide cutting tools.

本発明の一実施形態に係る表面被覆切削工具は、次の(1)および(2)である。
(1)工具基体と、該工具基体の表面に、少なくとも、平均層厚が0.5〜10.0μmの複合窒化物皮膜を含む硬質皮膜層を有し、
前記複合窒化物皮膜は、組成式:(Ti1−x―yAl)Nで表した場合、0.35≦x≦0.80、0.00≦y≦0.20、0.20≦(1−x−y)≦0.65、0.90≦z≦1.10(但し、x、y、zは原子比、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つ)を満足する平均組成を有し、
前記工具基体の表面から工具表面に向かって平均厚さが5〜100nmの範囲にある前記硬質皮膜層の界面領域において、TiとAlとMとNの合量に対するNの含有割合は、その前記工具基体の表面側が10〜30原子%であり、かつ、該界面領域において前記工具基体の表面から前記工具表面に向かって増加している。
The surface coating cutting tools according to the embodiment of the present invention are the following (1) and (2).
(1) The tool substrate and a hard film layer containing a composite nitride film having an average layer thickness of 0.5 to 10.0 μm are provided on the surface of the tool substrate.
It said composite nitride film is expressed by the formula when expressed in (Ti 1-x-y Al x M y) N z, 0.35 ≦ x ≦ 0.80,0.00 ≦ y ≦ 0.20,0 .20 ≦ (1-xy) ≦ 0.65, 0.90 ≦ z ≦ 1.10 (where x, y, z are atomic ratios, M is atoms of groups 4 to 6 of the periodic table of IUPAC, It has an average composition that satisfies at least one of Y, Si, La, and Ce), and has an average composition.
In the interface region of the hard coating layer having an average thickness in the range of 5 to 100 nm from the surface of the tool substrate to the tool surface, the content ratio of N to the total amount of Ti, Al, M and N is the above. The surface side of the tool substrate is 10 to 30 atomic%, and increases from the surface of the tool substrate toward the tool surface in the interface region.

(2)工具基体と、該工具基体の表面に、少なくとも、平均層厚が0.5〜10.0μmの複合窒化物皮膜を含む硬質皮膜層を有し、
前記複合窒化物皮膜は、組成式:(Cr1−x―yAl)Nで表した場合、0.35≦x≦0.80、0.00≦y≦0.20、0.20≦(1−x−y)≦0.65、0.90≦z≦1.10(但し、x、y、zは原子比、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つ)を満足する平均組成を有し、
前記工具基体の表面から工具表面に向かって平均厚さが5〜100nmの範囲にある前記硬質皮膜層の界面領域において、CrとAlとMとNの合量に対するNの含有割合は、その前記工具基体の表面側が10〜30原子%であり、かつ、該界面領域において前記工具基体の表面から前記工具表面に向かって増加している。
(2) The tool substrate and a hard film layer containing at least a composite nitride film having an average layer thickness of 0.5 to 10.0 μm are provided on the surface of the tool substrate.
It said composite nitride film is expressed by the formula when expressed in (Cr 1-x-y Al x M y) N z, 0.35 ≦ x ≦ 0.80,0.00 ≦ y ≦ 0.20,0 .20 ≦ (1-xy) ≦ 0.65, 0.90 ≦ z ≦ 1.10 (where x, y, z are atomic ratios, M is atoms of groups 4 to 6 of the periodic table of IUPAC, It has an average composition that satisfies at least one of Y, Si, La, and Ce), and has an average composition.
In the interface region of the hard coating layer having an average thickness in the range of 5 to 100 nm from the surface of the tool substrate to the tool surface, the content ratio of N to the total amount of Cr, Al, M and N is the above. The surface side of the tool substrate is 10 to 30 atomic%, and increases from the surface of the tool substrate toward the tool surface in the interface region.

硬質皮膜層にAlとTiとMを含む複合窒化物皮膜を有する表面被覆切削工具は合金鋼、鋳鉄等の高速切削加工に、また、硬質皮膜層にAlとCrとMを含む複合窒化物皮膜を有する表面被覆切削工具は炭素鋼、ステンレス鋼等の高速切削加工に、それぞれ、用いても、硬質皮膜層が優れた耐チッピングを備えることにより、長期の使用にわたって優れた切削性能を発揮する。 Surface-coated cutting tools that have a composite nitride film containing Al, Ti, and M in the hard film layer are suitable for high-speed cutting of alloy steel, cast iron, etc., and a composite nitride film containing Al, Cr, and M in the hard film layer. Even if the surface-coated cutting tool is used for high-speed cutting of carbon steel, stainless steel, etc., the hard film layer has excellent chipping resistance, so that it exhibits excellent cutting performance over a long period of use.

本発明の一実施形態の表面被覆切削工具における硬質皮膜層の縦断面の模式図である。It is a schematic diagram of the vertical cross section of the hard film layer in the surface coating cutting tool of one Embodiment of this invention.

本発明者は、AlとTiとMを含む複合窒化物皮膜、および、AlとCrとMを含む複合窒化物皮膜(ただし、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つであり、以下、それぞれ、(TiAlM)N皮膜、(CrAlM)N皮膜ということがある)を有する硬質皮膜層の物性について鋭意検討した。その結果、次のような知見を得た。 The present inventor has a composite nitride film containing Al, Ti and M, and a composite nitride film containing Al, Cr and M (where M is an atom of groups 4 to 6 of the periodic table of IUPAC, Y, Si). , La, and Ce, and the physical properties of the hard film layer having (TiAlM) N film and (CrAlM) N film, respectively) were studied diligently. As a result, the following findings were obtained.

(1)N量の少ない(TiAlM)N皮膜および(CrAlM)N皮膜を含む硬質皮膜層は、高速切削加工時にも優れた耐摩耗性を有する。その理由は、これら皮膜の熱安定性が高いためと推定される。
(2)工具基体と界面領域(工具基体の表面近傍にある前記硬質皮膜層の所定範囲)において、Nの含有量(含有割合)を工具基体の表面から工具表面に向かって増加させると、切削性能が向上する。その理由は、N含有割合を増加させることにより、前記硬質皮膜層の分解が生じにくくなるため、界面付近に発生するクラックを抑制することができ、前記硬質皮膜層の密着力が向上するためと推定している。
なお、前記特許文献1〜4には、N含有量が変化する膜についての記載があるが、いずれも前記(1)および(2)の知見を示唆すらしないものである。
(1) The hard film layer containing the (TiAlM) N film and the (CrAlM) N film having a small amount of N has excellent wear resistance even during high-speed cutting. The reason is presumed to be the high thermal stability of these films.
(2) When the N content (content ratio) is increased from the surface of the tool substrate toward the tool surface in the interface region between the tool substrate and the tool substrate (a predetermined range of the hard film layer near the surface of the tool substrate), cutting is performed. Performance is improved. The reason is that by increasing the N content ratio, decomposition of the hard film layer is less likely to occur, cracks generated near the interface can be suppressed, and the adhesion of the hard film layer is improved. I'm estimating.
Although Patent Documents 1 to 4 describe a film whose N content changes, none of them even suggests the findings of (1) and (2).

以下、本発明の一実施形態の被覆工具について、より詳細に説明する。なお、本明細書、特許請求の範囲の記載において、数値範囲を「A〜B」(A、Bはともに数値)を用いて表現する場合、その範囲は上限(B)および下限(A)の数値を含むものである。また、上限(B)と下限(A)の単位は同じである。なお、数値は、すべて、測定上の公差を許容するものである。 Hereinafter, the covering tool according to the embodiment of the present invention will be described in more detail. In the description of the scope of claims in this specification, when the numerical range is expressed using "A to B" (both A and B are numerical values), the range is the upper limit (B) and the lower limit (A). It includes numerical values. Moreover, the unit of the upper limit (B) and the lower limit (A) is the same. All numerical values allow measurement tolerances.

硬質皮膜層:
図1に示すように、本実施形態の被覆工具における硬質皮膜層4は、工具基体1の上に設けられた硬質皮膜3に含まれる、(TiAlM)N皮膜、または、(CrAlM)N皮膜を有するものであり、その工具基体1の表面近傍に所定範囲の界面領域2を有している。
Hard film layer:
As shown in FIG. 1, the hard film layer 4 in the coating tool of the present embodiment is formed by forming a (TiAlM) N film or a (CrAlM) N film contained in the hard film 3 provided on the tool substrate 1. It has an interface region 2 in a predetermined range in the vicinity of the surface of the tool base 1.

硬質皮膜層の平均層厚は、0.5〜10.0μmが好ましい。この範囲とした理由は、平均層厚が0.5μm未満であると、長期の使用にわたって優れた耐摩耗性を発揮することができず、一方、平均層厚が10.0μmを超えると、結晶粒が粗大化しやすくなり、耐チッピング性の向上効果が得られなくなるからである。 The average thickness of the hard film layer is preferably 0.5 to 10.0 μm. The reason for this range is that if the average layer thickness is less than 0.5 μm, excellent wear resistance cannot be exhibited over a long period of use, while if the average layer thickness exceeds 10.0 μm, crystals will not be exhibited. This is because the grains tend to become coarse and the effect of improving the chipping resistance cannot be obtained.

(TiAlM)N皮膜および(CrAlM)N皮膜:
本実施形態の被覆工具における硬質皮膜層に含まれる(TiAlM)N皮膜は、その平均組成を、組成式:(Ti1−x−yAl)Nで表した場合、また、同(CrAlM)N皮膜は、その平均組成を、組成式:(Cr1−x−yAl)Nで表した場合、共に、0.35≦x≦0.80、0.00≦y≦0.20、0.20≦(1−x−y)≦0.65、0.90≦z≦1.10(但し、x、y、zは原子比、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つ)を満足する平均組成を有している。
(TiAlM) N film and (CrAlM) N film:
Contained in the hard coating layer in the coated tool of the present embodiment (TiAlM) N coating, the average composition, composition formula: if expressed in (Ti 1-x-y Al x M y) N z, also, the same (CrAlM) N coating, the average composition, composition formula: when expressed in (Cr 1-x-y Al x M y) N z, together, 0.35 ≦ x ≦ 0.80,0.00 ≦ y ≦ 0.20, 0.20 ≦ (1-xy) ≦ 0.65, 0.90 ≦ z ≦ 1.10 (where x, y, z are atomic ratios and M is the periodic table of IUPAC. It has an average composition that satisfies at least one of groups 4 to 6 atoms, Y, Si, La, and Ce).

このように、x、y、1−x−y、zの範囲を決定した理由は、次のとおりである。
xの値が0.35未満になると、高硬度が得られないばかりか結晶粒が粗大化しやすくなり、一方、0.80を超えると、一部の結晶の結晶構造がNaCl型の面心立方構造から六方晶構造に変化し、硬さが低下する。より好ましい範囲としては0.45≦x≦0.70である。
The reason for determining the range of x, y, 1-xy, and z in this way is as follows.
If the value of x is less than 0.35, not only high hardness cannot be obtained, but also the crystal grains tend to be coarsened. On the other hand, if it exceeds 0.80, the crystal structure of some crystals is a NaCl-type face-centered cubic. The structure changes to a hexagonal structure, and the hardness decreases. A more preferable range is 0.45 ≦ x ≦ 0.70.

また、必要に応じて添加するMの平均含有割合yが0.20を超えると、靭性が低下し、チッピング、欠損を発生しやすくなる。
さらに、(1−x−y)の値が0.20を未満になると、相対的なTi、Cr含有割合の減少により、靭性が低下し、チッピング、欠損を発生しやすくなり、0.65を超えると高硬度が得られない。
Further, when the average content ratio y of M added as needed exceeds 0.20, the toughness is lowered and chipping and chipping are likely to occur.
Further, when the value of (1-xy) is less than 0.20, the toughness is lowered due to the relative decrease in the Ti and Cr content ratios, and chipping and chipping are likely to occur, and 0.65 is set. If it exceeds, high hardness cannot be obtained.

加えて、zの値を0.90以上にすることにより、耐熱性がより向上し、優れた耐摩耗性を示す。また、zの値が1.10を超えて大きくなると、硬質皮膜層の残留応力が大きくなり過ぎて、耐欠損性が低下してしまう。 In addition, by setting the value of z to 0.90 or more, the heat resistance is further improved and excellent wear resistance is exhibited. Further, when the value of z exceeds 1.10 and becomes large, the residual stress of the hard film layer becomes too large and the fracture resistance is lowered.

なお、(TiAlM)N皮膜および(CrAlM)N皮膜の平均組成、平均層厚については、走査型電子顕微鏡(Scanning Electron Microscopy:SEM)、透過型電子顕微鏡(Transmission Electron Microscope:TEM)、エネルギー分散型X線分光法(Energy Dispersive X−ray Spectroscopy:EDS)を用いた断面(工具基体の表面に垂直な縦断面)の観察により求めることができる。 Regarding the average composition and average layer thickness of the (TiAlM) N film and the (CrAlM) N film, the scanning electron microscope (SEM), the transmission electron microscope (TEM), and the energy dispersive type It can be obtained by observing a cross section (longitudinal cross section perpendicular to the surface of the tool substrate) using X-ray spectroscopy (Energy Dispersive X-ray Spectroscope: EDS).

硬質皮膜層の界面領域:
本実施形態の被覆工具において、工具基体の表面から工具表面に向かって平均厚さが5〜100nmの範囲(厚さ)にある硬質皮膜層の界面領域において、TiとAlとMとNの合量に対してNの含有割合、および、CrとAlとMとNの合量に対してNの含有割合は、共に、その工具基体の表面側(該界面領域において工具基体の表面側から工具表面側に向かって、それぞれ、皮膜組成の(Ti、Al、M、N)、または、(Cr、Al、M、N)の皮膜に関する原子のみが検出され始めた点)の値が10〜30原子%であって、Nの含有割合(TiとAlとMとNの合量に対するNの含有割合、および、CrとAlとMとNの合量に対するNの含有割合)が工具基体の表面から工具表面に向かって増加していることが好ましい。
Interface area of hard film layer:
In the coated tool of the present embodiment, the combination of Ti, Al, M, and N in the interface region of the hard coating layer having an average thickness in the range (thickness) of 5 to 100 nm from the surface of the tool substrate to the tool surface. The content ratio of N with respect to the amount and the content ratio of N with respect to the total amount of Cr, Al, M, and N are both the tool from the surface side of the tool substrate (in the interface region, from the surface side of the tool substrate). Toward the surface side, the value of the film composition (Ti, Al, M, N) or (the point at which only atoms related to the film of (Cr, Al, M, N) began to be detected) was 10 to 30 respectively. In atomic%, the content ratio of N (the content ratio of N to the total amount of Ti, Al, M and N, and the content ratio of N to the total amount of Cr, Al, M and N) is the surface of the tool substrate. It is preferable that the amount increases from the surface toward the tool surface.

これにより、(TiAlM)N皮膜および(CrAlM)N皮膜の組成変化(分解)の生じやすい工具基体との界面領域において、(TiAlM)N皮膜および(CrAlM)N皮膜の分解が生じにくくなり、前記界面領域付近に発生するクラックを抑制することができ、その結果、工具基体と硬質皮膜層との密着力が向上し、切削性能が向上すると考えられる。界面領域の平均厚さは、より好ましくは、20〜80nmの範囲である。なお、この界面領域におけるNの含有割合は、TEM−EDSによって求めることができる。 As a result, the (TiAlM) N film and the (CrAlM) N film are less likely to be decomposed in the interface region with the tool substrate where the composition change (decomposition) of the (TiAlM) N film and the (CrAlM) N film is likely to occur. It is considered that cracks generated in the vicinity of the interface region can be suppressed, and as a result, the adhesion between the tool substrate and the hard film layer is improved, and the cutting performance is improved. The average thickness of the interface region is more preferably in the range of 20-80 nm. The N content ratio in this interface region can be determined by TEM-EDS.

工具基体:
工具基体は、この種の工具基体として従来公知の基材であれば、本発明の目的を達成することを阻害するものでない限り、いずれのものも使用可能である。一例を挙げるならば、超硬合金(WC基超硬合金、WCの他、Coを含み、さらに、Ti、Ta、Nb等の炭窒化物を添加したものも含むもの等)、サーメット(TiC、TiN、TiCN等を主成分とするもの等)、高速度鋼、セラミックス(炭化チタン、炭化珪素、窒化珪素、窒化アルミニウム、酸化アルミニウムなど)、cBN焼結体、またはダイヤモンド焼結体のいずれかであることが好ましい。
Tool base:
As the tool substrate, any substrate conventionally known as this type of tool substrate can be used as long as it does not hinder the achievement of the object of the present invention. For example, cemented carbide (WC-based cemented carbide, WC, as well as those containing Co and further added with carbonitrides such as Ti, Ta, Nb, etc.), cermet (TiC, TiN, TiCN, etc. as the main component), high-speed steel, ceramics (titanium carbide, silicon carbide, silicon nitride, aluminum nitride, aluminum oxide, etc.), cBN sintered body, or diamond sintered body It is preferable to have.

製造方法:
本実施形態の被覆工具における(TiAlM)N皮膜および(CrAlM)N皮膜は、PVDの一種であるアークイオンプレーティング(Arc Ion Plating:AIP)装置を用いて製造することができる。工具基体の表面から工具表面に向かって5〜100nmの範囲の平均厚さとなる界面領域は、雰囲気ガスである窒素ガス分圧を成膜開始から徐々に増加(例えば線形に増加)させることにより形成することができる。
Production method:
The (TiAlM) N film and the (CrAlM) N film in the coating tool of the present embodiment can be produced by using an arc ion plating (AIP) device which is a kind of PVD. The interface region having an average thickness in the range of 5 to 100 nm from the surface of the tool substrate to the tool surface is formed by gradually increasing (for example, linearly increasing) the partial pressure of nitrogen gas, which is an atmospheric gas, from the start of film formation. can do.

次に、実施例について説明する。本発明は、実施例に限定されるものではない。工具基体としてWC基超硬合金を用いたインサート切削工具に適用した実施例について述べるが、工具基体として、前述したTiCN基サーメット等を用いた場合であっても、また、工具としてドリル、エンドミル等に適用した場合も同様である。 Next, an example will be described. The present invention is not limited to the examples. An example applied to an insert cutting tool using a WC-based cemented carbide as a tool base will be described. Even when the above-mentioned TiCN-based cermet or the like is used as the tool base, a drill, an end mill or the like can be used as the tool. The same applies when applied to.

まず、原料粉末として、Co粉末、VC粉末、Cr粉末、TiC粉末、TaC粉末、NbC粉末、WC粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてボールミルで72時間湿式混合し、減圧乾燥した後、100MPaの圧力でプレス成形した。次に、これらの圧粉成形体を焼結し、所定寸法となるように加工して、ISO規格SEEN1203AFTN1のインサート形状をもったWC基超硬合金製の工具基体1〜3を作製した。 First, as raw material powders, Co powder, VC powder, Cr 3 C 2 powder, TiC powder, TaC powder, NbC powder, and WC powder are prepared, and these raw material powders are blended into the blending composition shown in Table 1, and further. Wax was added, wet-mixed in a ball mill for 72 hours, dried under reduced pressure, and press-molded at a pressure of 100 MPa. Next, these powder compacts were sintered and processed to have a predetermined size to prepare tool bases 1 to 3 made of WC-based cemented carbide having an insert shape of ISO standard SEEN1203AFTN1.

次に、AIP装置を用いて硬質皮膜層を形成すべく、工具基体1〜3をアセトン中で超音波洗浄し、乾燥させ、AIP装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着した。また、カソード電極(蒸発源)として、所定組成のTi−Al−M合金ターゲット、所定組成のCr−Al−M合金ターゲットを配置した。所定組成のTi−Al−M合金ターゲットおよびCr−Al−M合金ターゲットとは、それそれ、目標とする(TiAlM)N皮膜、(CrAlM)N皮膜の平均組成に対応した組成のターゲットである。 Next, in order to form a hard film layer using the AIP device, the tool substrates 1 to 3 are ultrasonically cleaned in acetone, dried, and separated from the central axis on the rotary table in the AIP device by a predetermined distance in the radial direction. It was attached to the position along the outer circumference. Further, as the cathode electrode (evaporation source), a Ti—Al—M alloy target having a predetermined composition and a Cr—Al—M alloy target having a predetermined composition were arranged. The Ti—Al—M alloy target and the Cr—Al—M alloy target having a predetermined composition are targets having a composition corresponding to the average composition of the target (TiAlM) N film and (CrAlM) N film, respectively.

続いて、AIP装置内を排気して10−2Pa以下の真空に保持しながら、ヒーターを使ってAIP装置内を500℃に加熱した。その後、0.5〜2.0Paのアルゴンガス雰囲気に設定し、前記回転テーブル上で自転しながら回転する工具基体に−200〜−1000Vの直流バイアス電圧を印加した。これにより、工具基体の表面をアルゴンイオン、または、金属イオンによって、5〜120分間のボンバード処理をした。ここで、金属イオンとは、金属ターゲットからなるカソード電極(蒸発源)とアノード電極との間に80〜240Aの範囲内の所定の電流を流してアーク放電させ、発生させたものである。 Subsequently, the inside of the AIP device was heated to 500 ° C. using a heater while keeping the inside of the AIP device in a vacuum of 10-2 Pa or less. Then, an argon gas atmosphere of 0.5 to 2.0 Pa was set, and a DC bias voltage of −200 to −1000 V was applied to the tool substrate rotating while rotating on the rotary table. As a result, the surface of the tool substrate was bombarded with argon ions or metal ions for 5 to 120 minutes. Here, the metal ion is generated by passing a predetermined current in the range of 80 to 240 A between the cathode electrode (evaporation source) made of the metal target and the anode electrode to cause arc discharge.

AIP装置内に反応ガスとして、表2、表3に示す分圧が0.1〜5.0Paの範囲内の窒素ガスとArガスを所定時間導入する。そして、同じく表2、表3に示す炉内温度に維持し、前記回転テーブル上で自転しながら回転する工具基体に表2、表3に示す−30〜−150Vの範囲内の所定の直流バイアス電圧を印加し、かつ、Ti−Al−M合金ターゲットまたはCr−Al−M合金ターゲットからなるカソード電極(蒸発源)とアノード電極との間に表2、表3に示す80〜240Aの範囲内の所定の電流を流してアーク放電を発生させて、表4、表5に示す本発明の被覆工具(以下、「実施例工具」という)1〜9および11〜19(10は欠番である)を作製した。 Nitrogen gas and Ar gas having a partial pressure in the range of 0.1 to 5.0 Pa shown in Tables 2 and 3 are introduced into the AIP apparatus for a predetermined time as reaction gases. Then, the tool substrate, which is also maintained at the furnace temperature shown in Tables 2 and 3 and rotates while rotating on the rotary table, has a predetermined DC bias within the range of -30 to -150 V shown in Tables 2 and 3. Within the range of 80 to 240A shown in Tables 2 and 3 between the cathode electrode (evaporation source) and the anode electrode, which are made of a Ti—Al—M alloy target or a Cr—Al—M alloy target and a voltage is applied. 1 to 9 and 11 to 19 (10 is a missing number) of the covering tools of the present invention (hereinafter referred to as "example tools") shown in Tables 4 and 5 by passing a predetermined current of the above to generate an arc discharge. Was produced.

なお、表2、表3でいう「界面領域Nガス供給時間(分)」とは、「界面領域形成時のNガス供給時間(分)」のことである。初期値の圧力、NおよびAr体積%から「界面領域Nガス供給時間(分)」の時間をかけて、終了値の圧力、NおよびAr体積%に直線的に変化させ、その後、この終了値のままで成膜を完了させた。 The "interface region N 2 gas supply time (minutes)" in Tables 2 and 3 means the "N 2 gas supply time (minutes) when the interface region is formed". From the initial pressure, N 2 and Ar volume% , over the time of "interface region N 2 gas supply time (minutes)", the pressure is linearly changed to the end value pressure, N 2 and Ar volume%, and then. The film formation was completed with this end value.

一方、比較のため、前記工具基体1〜3に対して、前記と同じAIP装置を用いて、表2に示す条件で(TiAlM)N皮膜、表3に示す条件で(CrAlM)N皮膜を蒸着形成し、表6、表7に示す比較例の皮膜工具(以下、「比較例工具」という)1〜3および11〜13(4〜10は欠番である)を作製した。 On the other hand, for comparison, the (TiAlM) N film was deposited on the tool substrates 1 to 3 using the same AIP device as described above, and the (CrAlM) N film was deposited under the conditions shown in Table 3. The film tools of Comparative Examples shown in Tables 6 and 7 (hereinafter referred to as "Comparative Example Tools") 1 to 3 and 11 to 13 (4 to 10 are missing numbers) were prepared.

(TiAlM)N皮膜、(CrAlM)N皮膜を有する硬質被覆層の平均層厚、平均組成および界面領域のNの含有割合は、走査型電子顕微鏡(SEM)、透過型電子顕微鏡(TEM)、エネルギー分散型X線分光法(EDS)を用いた断面観察により求めた。なお、観察断面は、工具基体の表面に垂直な硬質皮膜層の縦断面で、工具基体の表面に平行な方向の幅が10μmであり、硬質皮膜層の厚み領域が全て含まれるよう設定されたものであった。 The average layer thickness, average composition, and N content of the interface region of the hard coating layer having (TiAlM) N film and (CrAlM) N film are determined by scanning electron microscope (SEM), transmission electron microscope (TEM), and energy. It was determined by cross-sectional observation using distributed X-ray spectroscopy (EDS). The observation cross section is a vertical cross section of the hard film layer perpendicular to the surface of the tool substrate, has a width of 10 μm in the direction parallel to the surface of the tool substrate, and is set to include the entire thickness region of the hard film layer. It was a thing.

具体的には、平均層厚は観察断面を5000倍に拡大して、5点の層厚を求めて平均層厚を算出した。平均組成、界面領域のN含有量については、層厚方向に等間隔で5本のEDS線分析を行って求めた。すなわち、工具基体側から工具表面側へTEM−EDS線分析を100μmの等間隔で5本行った。 Specifically, as for the average layer thickness, the observed cross section was enlarged 5000 times, and the layer thickness at 5 points was obtained to calculate the average layer thickness. The average composition and the N content in the interface region were determined by performing five EDS line analyzes at equal intervals in the layer thickness direction. That is, five TEM-EDS line analyzes were performed from the tool base side to the tool surface side at equal intervals of 100 μm.

そして、(Ti、Al、M、N)または(Cr、Al、M、N)の硬質皮膜層を構成する原子のみが検出され始め、N含有量が10〜30原子%である工具基体の表面に最も近い点から工具基体表面側へ0.5nmの点を工具基体側の位置とし、また、Nの含有割合がこれ以上増加しない点よりも工具基体側へ0.5nmの点を工具表面側の位置とした。なお、これらの点の位置は工具基体の表面から測定した。 表4〜表7では、この工具基体側の位置および工具表面側の位置におけるNの含有量を、それぞれ前記5個の分析の平均値として記載している。なお、界面領域の平均層厚は、この工具基体側の位置および工具表面側の位置の距離に1nmを加えたものである。 Then, only the atoms constituting the hard coating layer of (Ti, Al, M, N) or (Cr, Al, M, N) begin to be detected, and the surface of the tool substrate having an N content of 10 to 30 atomic%. The point 0.5 nm from the point closest to the tool base surface side is the position on the tool base side, and the point 0.5 nm toward the tool base side is the tool surface side rather than the point where the N content does not increase any more. The position was set to. The positions of these points were measured from the surface of the tool substrate. In Tables 4 to 7, the contents of N at the position on the tool base side and the position on the tool surface side are shown as average values of the five analyzes, respectively. The average layer thickness of the interface region is the distance between the position on the tool substrate side and the position on the tool surface side plus 1 nm.

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

次いで、実施例工具1〜9、11〜19および比較例工具1〜3、11〜13について、以下の条件で、合金鋼、鋳鉄、炭素鋼、および、ステンレス鋼、についての高速切削加工試験を実施した。 Next, high-speed cutting tests on alloy steel, cast iron, carbon steel, and stainless steel were performed on Examples Tools 1 to 9, 11 to 19 and Comparative Examples Tools 1 to 3 to 11 to 13 under the following conditions. carried out.

切削試験A:(本実施例工具1〜9、比較例工具1〜3)
被削材:JIS・SCM430(HB250)の丸棒
切削速度: 220m/min.
切り込み: 0.3mm
送り: 0.25mm/rev.
切削時間: 5分
の条件での合金鋼の高速削加工試験(通常の切削速度および送りは、それぞれ、165m/min.、0.20 mm/rev.)
切削試験Aの結果を表8に示す。
Cutting test A: (Tools 1 to 9 of this example, Tools 1 to 3 of Comparative Example)
Work material: JIS / SCM430 (HB250) round bar Cutting speed: 220 m / min.
Notch: 0.3 mm
Feed: 0.25 mm / rev.
Cutting time: High-speed cutting test of alloy steel under the condition of 5 minutes (normal cutting speed and feed are 165 m / min. And 0.20 mm / rev, respectively).
The results of cutting test A are shown in Table 8.

切削試験B:(本実施例工具1〜9、比較例工具1〜3)
被削材:JIS・FCD600の丸棒
切削速度: 220m/min.
切り込み: 0.25mm
送り: 0.21mm/rev.
切削時間: 5分
の条件での鋳鉄の高速切削加工試験(通常の切削速度および送りは、それぞれ、145 m/min.、0.2 mm/rev.)
切削試験Bの結果を表9に示す。
Cutting test B: (Tools 1 to 9 of this example, Tools 1 to 3 of Comparative Example)
Work material: JIS / FCD600 round bar Cutting speed: 220 m / min.
Notch: 0.25 mm
Feed: 0.21 mm / rev.
Cutting time: High-speed cutting test of cast iron under the condition of 5 minutes (normal cutting speed and feed are 145 m / min. And 0.2 mm / rev, respectively).
The results of cutting test B are shown in Table 9.

切削試験C:(本実施例工具11〜19、比較例工具11〜13)
被削材:JIS・S55C(HB250)の丸棒
切削速度: 220 m/min.
切り込み: 0.2 mm
送り: 0.24mm/rev.
切削時間: 5分、
の条件での炭素鋼の連続高速高送り切削加工試験(通常の切削速度および送りは、それぞれ、145 m/min.、0.25 mm/rev.)
切削試験Cの結果を表10に示す。
Cutting test C: (Tools 11 to 19 of this example, tools 11 to 13 of comparative example)
Work material: JIS / S55C (HB250) round bar Cutting speed: 220 m / min.
Notch: 0.2 mm
Feed: 0.24 mm / rev.
Cutting time: 5 minutes,
Continuous high-speed high-feed cutting machining test of carbon steel under the conditions of (normal cutting speed and feed are 145 m / min. And 0.25 mm / rev, respectively).
The results of cutting test C are shown in Table 10.

切削試験D:(本実施例工具11〜19、比較例工具11〜13)
被削材:JIS・SUS304(HB180)の丸棒
切削速度: 140m/min.
切り込み: 2.0mm
送り: 0.33mm/rev.
切削時間: 9 分
の条件(切削条件B)でのステンレス鋼の湿式連続高送り切削加工試験(通常の切削速度および送りは、それぞれ、120 m/min.、0.3 mm/rev.)
切削試験Dの結果を表11に示す。
Cutting test D: (Tools 11 to 19 of this example, tools 11 to 13 of comparative example)
Work material: JIS / SUS304 (HB180) round bar Cutting speed: 140 m / min.
Notch: 2.0 mm
Feed: 0.33 mm / rev.
Cutting time: Wet continuous high feed cutting test of stainless steel under the condition of 9 minutes (cutting condition B) (normal cutting speed and feed are 120 m / min. And 0.3 mm / rev, respectively).
The results of the cutting test D are shown in Table 11.

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

Figure 2021126718
Figure 2021126718

表8〜11の結果によれば、実施例工具1〜9については、切削試験A、Bのいずれでも、実施例工具11〜19については、切削試験C、Dのいずれでもチッピング、剥離等の異常損傷の発生はなく、耐チッピング性、耐摩耗性のいずれにも優れていることがわかる。これに対して、比較例工具1〜3については、切削試験A、Bのいずれでも、比較例工具11〜13については、切削試験C、Dのいずれでも、チッピングの発生、あるいは、逃げ面摩耗の進行により、短時間で寿命に至ることは明らかである。 According to the results of Tables 8 to 11, for the tools 1 to 9, any of the cutting tests A and B, and for the tools 11 to 19, any of the cutting tests C and D, chipping, peeling, etc. It can be seen that no abnormal damage occurs and that both chipping resistance and wear resistance are excellent. On the other hand, for Comparative Examples Tools 1 to 3, chipping occurred or flank wear occurred in any of the cutting tests A and B, and for Comparative Examples Tools 11 to 13 in any of the cutting tests C and D. It is clear that the life of the product reaches the end of its life in a short time.

前記開示した実施の形態はすべての点で例示にすぎず、制限的なものではない。本発明の範囲は前記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。 The disclosed embodiments are merely exemplary in all respects and are not restrictive. The scope of the present invention is indicated by the scope of claims rather than the embodiment described above, and is intended to include meaning equivalent to the scope of claims and all modifications within the scope.

1:工具基体
2:界面領域
3:硬質皮膜
4:硬質皮膜層
1: Tool base 2: Interface region 3: Hard film 4: Hard film layer

Claims (2)

工具基体の表面に、少なくとも、平均層厚が0.5〜10.0μmの複合窒化物皮膜を含む硬質皮膜層を有する表面被覆切削工具であって、
前記複合窒化物皮膜は、組成式:(Ti1−x―yAl)Nで表した場合、0.35≦x≦0.80、0.00≦y≦0.20、0.20≦(1−x−y)≦0.65、0.90≦z≦1.10(但し、x、y、zは原子比、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つ)を満足する平均組成を有し、
前記工具基体の表面から工具表面に向かって平均厚さが5〜100nmの範囲にある前記硬質皮膜層の界面領域において、TiとAlとMとNの合量に対するNの含有割合は、その前記工具基体の表面側が10〜30原子%であり、かつ、該界面領域において前記工具基体の表面から前記工具表面に向かって増加していること、
を特徴とする表面被覆切削工具。
A surface-coated cutting tool having a hard film layer containing a composite nitride film having an average layer thickness of 0.5 to 10.0 μm on the surface of the tool substrate.
It said composite nitride film is expressed by the formula when expressed in (Ti 1-x-y Al x M y) N z, 0.35 ≦ x ≦ 0.80,0.00 ≦ y ≦ 0.20,0 .20 ≦ (1-xy) ≦ 0.65, 0.90 ≦ z ≦ 1.10 (where x, y, z are atomic ratios, M is atoms of groups 4 to 6 of the periodic table of IUPAC, It has an average composition that satisfies at least one of Y, Si, La, and Ce), and has an average composition.
In the interface region of the hard coating layer having an average thickness in the range of 5 to 100 nm from the surface of the tool substrate to the tool surface, the content ratio of N to the total amount of Ti, Al, M and N is the above. The surface side of the tool substrate is 10 to 30 atomic%, and the amount increases from the surface of the tool substrate toward the tool surface in the interface region.
A surface coating cutting tool characterized by.
工具基体の表面に、少なくとも、平均層厚が0.5〜10.0μmの複合窒化物皮膜を含む硬質皮膜層を有する表面被覆切削工具であって、
前記複合窒化物皮膜は、組成式:(Cr1−x―yAl)Nで表した場合、0.35≦x≦0.80、0.00≦y≦0.20、0.20≦(1−x−y)≦0.65、0.90≦z≦1.10(但し、x、y、zは原子比、MはIUPACの周期表の4〜6族の原子、Y、Si、La、Ceの少なくとも一つ)を満足する平均組成を有し、
前記工具基体の表面から工具表面に向かって平均厚さが5〜100nmの範囲にある前記硬質皮膜層の界面領域において、CrとAlとMとNの合量に対するNの含有割合は、その前記工具基体の表面側が10〜30原子%であり、かつ、該界面領域において前記工具基体の表面から前記工具表面に向かって増加していること、
を特徴とする表面被覆切削工具。
A surface-coated cutting tool having a hard film layer containing a composite nitride film having an average layer thickness of 0.5 to 10.0 μm on the surface of the tool substrate.
It said composite nitride film is expressed by the formula when expressed in (Cr 1-x-y Al x M y) N z, 0.35 ≦ x ≦ 0.80,0.00 ≦ y ≦ 0.20,0 .20 ≦ (1-xy) ≦ 0.65, 0.90 ≦ z ≦ 1.10 (where x, y, z are atomic ratios, M is atoms of groups 4 to 6 of the periodic table of IUPAC, It has an average composition that satisfies at least one of Y, Si, La, and Ce), and has an average composition.
In the interface region of the hard coating layer having an average thickness in the range of 5 to 100 nm from the surface of the tool substrate to the tool surface, the content ratio of N to the total amount of Cr, Al, M and N is the above. The surface side of the tool substrate is 10 to 30 atomic%, and the amount increases from the surface of the tool substrate toward the tool surface in the interface region.
A surface coating cutting tool characterized by.
JP2020021538A 2020-02-12 2020-02-12 Hard film cutting tool Withdrawn JP2021126718A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020021538A JP2021126718A (en) 2020-02-12 2020-02-12 Hard film cutting tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020021538A JP2021126718A (en) 2020-02-12 2020-02-12 Hard film cutting tool

Publications (1)

Publication Number Publication Date
JP2021126718A true JP2021126718A (en) 2021-09-02

Family

ID=77487503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020021538A Withdrawn JP2021126718A (en) 2020-02-12 2020-02-12 Hard film cutting tool

Country Status (1)

Country Link
JP (1) JP2021126718A (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122959A (en) * 1992-09-16 1994-05-06 Takeshi Masumoto Wear resistant hard film of al-ti or al-ta system and its production
JP2010228032A (en) * 2009-03-26 2010-10-14 Mitsubishi Materials Corp Surface-coated cutting tool formed of cubic boron nitride-based ultra high-pressure sintered material
JP2010284759A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface coated cutting tool
JP2012233262A (en) * 2012-07-17 2012-11-29 Kobe Steel Ltd Hard film, method for forming the same, and member coated with hard film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122959A (en) * 1992-09-16 1994-05-06 Takeshi Masumoto Wear resistant hard film of al-ti or al-ta system and its production
JP2010228032A (en) * 2009-03-26 2010-10-14 Mitsubishi Materials Corp Surface-coated cutting tool formed of cubic boron nitride-based ultra high-pressure sintered material
JP2010284759A (en) * 2009-06-12 2010-12-24 Mitsubishi Materials Corp Surface coated cutting tool
JP2012233262A (en) * 2012-07-17 2012-11-29 Kobe Steel Ltd Hard film, method for forming the same, and member coated with hard film

Similar Documents

Publication Publication Date Title
JP5052666B2 (en) Surface coating tool
KR102523236B1 (en) surface coating cutting tools
JP2013233652A (en) Surface-coated cutting tool
JP2017064845A (en) Surface coating cutting tool excellent in chipping resistance and abrasion resistance
JP2017109254A (en) Surface-coated cutting tool excellent in chipping resistance and wear resistance
JP7354933B2 (en) Cutting tools
KR102498224B1 (en) surface coating cutting tools
JP2020131425A (en) Surface coated cutting tool
WO2020166466A1 (en) Hard coating cutting tool
JP2020142312A (en) Surface-coated cutting tool
JP2018051714A (en) Surface-coated cutting tool having excellent chipping resistance and wear resistance
JPWO2019188967A1 (en) Surface coating cutting tool
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP2019084671A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP7541279B2 (en) Surface-coated cutting tools
JP7492683B2 (en) Surface-coated cutting tools
JP2021126718A (en) Hard film cutting tool
JP7190111B2 (en) surface coated cutting tools
JP6270131B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN116867590A (en) Surface-coated cutting tool
JP2018058148A (en) Surface-coated cutting tool excellent in chipping resistance and wear resistance
JP2020131426A (en) Surface coated cutting tool
JP2019171482A (en) Surface-coated cutting tool
JP2019171483A (en) Surface-coated cutting tool
JP7375592B2 (en) surface coated cutting tools

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20221227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230926

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20231003