JP6761597B2 - Surface coating cutting tool with excellent chipping resistance due to the hard coating layer - Google Patents

Surface coating cutting tool with excellent chipping resistance due to the hard coating layer Download PDF

Info

Publication number
JP6761597B2
JP6761597B2 JP2016171400A JP2016171400A JP6761597B2 JP 6761597 B2 JP6761597 B2 JP 6761597B2 JP 2016171400 A JP2016171400 A JP 2016171400A JP 2016171400 A JP2016171400 A JP 2016171400A JP 6761597 B2 JP6761597 B2 JP 6761597B2
Authority
JP
Japan
Prior art keywords
layer
avg
average
composite
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016171400A
Other languages
Japanese (ja)
Other versions
JP2018034277A (en
Inventor
卓也 石垣
卓也 石垣
光亮 柳澤
光亮 柳澤
佐藤 賢一
佐藤  賢一
翔 龍岡
翔 龍岡
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2016171400A priority Critical patent/JP6761597B2/en
Publication of JP2018034277A publication Critical patent/JP2018034277A/en
Application granted granted Critical
Publication of JP6761597B2 publication Critical patent/JP6761597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Chemical Vapour Deposition (AREA)

Description

本発明は、高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する炭素鋼、合金鋼、鋳鉄等の高速断続切削加工において、硬質被覆層がすぐれた耐チッピング性を備えることにより、長期の使用に亘ってすぐれた切削性能を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 According to the present invention, the hard coating layer has excellent chipping resistance in high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., which is accompanied by high heat generation and exerts a shocking load on the cutting edge. The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent cutting performance over a long period of use.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体という)の表面に、硬質被覆層として、Cr−Al系の複合窒化物層を物理蒸着法により被覆形成した被覆工具が知られており、これらは、すぐれた耐摩耗性を発揮することが知られている。
ただ、前記従来のCr−Al系の複合窒化物層を被覆形成した被覆工具は、比較的高温強度にすぐれるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) -based cermet or cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. A coated tool in which a Cr-Al-based composite nitride layer is coated and formed as a hard coating layer on the surface of a tool substrate (hereinafter, collectively referred to as a tool substrate) by a physical vapor deposition method is known. These are known to exhibit excellent wear resistance.
However, although the conventional coating tool coated with the Cr-Al-based composite nitride layer has excellent high-temperature strength, it is liable to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made for improving the hard coating layer.

特許文献1には、硬質皮膜層がTi化合物層からなる下部層と、Al層からなる上部層とで構成された被覆工具において、上部層のAl層中に、孔径2〜50nmであって、孔径分布がバイモーダルな分布をとる微小空孔を形成し、切削加工時に上部層に作用する衝撃の緩和を図るとともに熱遮蔽効果を発揮させることによって、高速断続切削加工における耐チッピング性、耐欠損性を改善することが提案されている。 Patent Document 1, a lower layer hard coating layer is made of a Ti compound layer, the coated tool made up of an upper layer of Al 2 O 3 layer, in the Al 2 O 3 layer in the upper layer, pore diameter 2 In high-speed intermittent cutting, by forming minute pores with a pore diameter distribution of ~ 50 nm and a bimodal distribution, the impact acting on the upper layer during cutting is mitigated and the heat shielding effect is exerted. It has been proposed to improve chipping resistance and fracture resistance.

例えば、特許文献2には、硬質被覆層が下部層、中間層および上部層からなる被覆工具において、(a)下部層を、Ti1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層(但し、Xは、TiとAlの合量に占めるAlの含有割合を示し、原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTiとAlの窒化物、炭化物あるいは炭窒化物で構成し、(b)中間層を、Cr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層(但し、Yは、CrとAlの合量に占めるAlの含
有割合を示し、原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる
立方晶結晶構造を有するCrとAlの窒化物、炭化物あるいは炭窒化物で構成し、(c)上部層を、孔径が2〜30nmで空孔密度が100〜500個/μmの微小空孔を有するAlで構成することによって、例えば、析出硬化系ステンレス鋼やインコネル等の耐熱合金を高速切削加工した場合の耐チッピング性と耐摩耗性を改善することが提案されている。
For example, in Patent Document 2, in a coating tool in which the hard coating layer is composed of a lower layer, an intermediate layer, and an upper layer, (a) the lower layer is a Ti 1-X Al X N layer and a Ti 1-X Al X C layer. , Ti 1-X Al X CN layer (where X indicates the content ratio of Al in the total amount of Ti and Al, and the atomic ratio is 0.65 ≦ X ≦ 0.95), or 1 layer or 2 It is composed of Ti and Al nitrides, carbides or carbon nitrides having a cubic crystal structure composed of layers or more, and (b) the intermediate layer is a Cr 1-Y Al Y N layer or a Cr 1-Y Al Y C layer. , Cr 1-Y Al Y CN layer (where Y indicates the content ratio of Al in the total amount of Cr and Al, and the atomic ratio is 0.60 ≦ Y ≦ 0.90), or 1 layer or 2 It is composed of Cr and Al nitrides, carbides or carbon nitrides having a cubic crystal structure composed of layers or more, and (c) the upper layer has a pore diameter of 2 to 30 nm and a pore density of 100 to 500 cells / μm 2. It has been proposed to improve chipping resistance and abrasion resistance when high-speed cutting of heat-resistant alloys such as precipitation-hardened stainless steel and inconel, for example, by constructing Al 2 O 3 having the fine pores of. ing.

また、特許文献3には、硬質被覆層が下部層、中間層および上部層からなる被覆工具において、(a)下部層を、Ti1−XAlN層、Ti1−XAlC層、Ti1−XAlCN層(但し、Xは、TiとAlの合量に占めるAlの含有割合を示し、原子比で、0.65≦X≦0.95)のうち1層または2層以上からなる立方晶結晶構造を有するTiとAlの窒化物、炭化物あるいは炭窒化物で構成し、(b)中間層を、Cr1−YAlN層、Cr1−YAlC層、Cr1−YAlCN層(但し、Yは、CrとAlの合量に占めるAlの含
有割合を示し、原子比で、0.60≦Y≦0.90)のうち1層または2層以上からなる
立方晶結晶構造を有するCrとAlの窒化物、炭化物あるいは炭窒化物で構成し、(c)上部層を、Alあるいは微量のZrを含有するAlで構成することによって、例えば、ステンレス鋼やTi合金などの難削材を高速切削加工した場合の耐チッピング性と耐摩耗性を改善することが提案されている。
Further, in Patent Document 3, in a coating tool in which the hard coating layer is composed of a lower layer, an intermediate layer and an upper layer, (a) the lower layer is a Ti 1-X Al X N layer and a Ti 1-X Al X C layer. , Ti 1-X Al X CN layer (where X indicates the content ratio of Al in the total amount of Ti and Al, and the atomic ratio is 0.65 ≦ X ≦ 0.95), or 1 layer or 2 It is composed of Ti and Al nitrides, carbides or carbonitrides having a cubic crystal structure composed of layers or more, and (b) the intermediate layer is a Cr 1-Y Al Y N layer or a Cr 1-Y Al Y C layer. , Cr 1-Y Al Y CN layer (where Y indicates the content ratio of Al in the total amount of Cr and Al, and the atomic ratio is 0.60 ≦ Y ≦ 0.90), or 1 layer or 2 nitride of Cr and Al having a cubic crystal structure having the above layers, composed of a carbide or carbonitride, composed of Al 2 O 3 containing Zr of (c) an upper layer, Al 2 O 3 or trace It has been proposed to improve the chipping resistance and abrasion resistance when a difficult-to-cut material such as stainless steel or Ti alloy is machined at high speed.

特許文献4には、工具基体の表面に、組成式:(CrAl1−X)Nで表したときに、0.3≦X≦0.6(ただし、Xは原子比を示す)を満足するAlとCrの複合窒化物層からなる硬質被覆層を形成した被覆工具において、前記表面研磨面の法線に対して、立方晶結晶格子を有する結晶粒の結晶面である{100}面の法線がなす傾斜角を測定し、その傾斜角度数分布グラフを求めた時、30〜40度の範囲内に存在する度数の合計が、傾斜角度数分布グラフにおける度数全体の60%以上の割合を占める傾斜角度数分布を形成すること、あるいは、さらに、構成原子共有格子点分布グラフにおいて、Σ3に最高ピークが存在し、かつΣ3のΣN+1全体に占める分布割合が50%以上である構成原子共有格子点分布グラを形成することによって、切刃に対して大きな機械的負荷がかかる鋼や鋳鉄の重切削加工における耐欠損性を向上させることが提案されている。 In Patent Document 4, 0.3 ≦ X ≦ 0.6 (where X indicates an atomic ratio) is expressed on the surface of the tool substrate by the composition formula: (Cr X Al 1-X ) N. In a coating tool forming a hard coating layer composed of a satisfying composite nitride layer of Al and Cr, the {100} plane which is a crystal plane of crystal grains having a cubic crystal lattice with respect to the normal of the surface polishing surface. When the inclination angle formed by the normals of the above is measured and the inclination angle number distribution graph is obtained, the total number of degrees existing in the range of 30 to 40 degrees is 60% or more of the total degree in the inclination angle number distribution graph. Forming a tilt angle number distribution that occupies a ratio, or further, in the constituent atom shared lattice point distribution graph, the constituent atoms that have the highest peak in Σ3 and the distribution ratio of Σ3 to the entire ΣN + 1 is 50% or more. It has been proposed to improve the fracture resistance in heavy cutting of steel or cast iron, which applies a large mechanical load to the cutting edge, by forming a shared lattice point distribution graph.

特開2012−161847号公報Japanese Unexamined Patent Publication No. 2012-161847 特開2014−198362号公報Japanese Unexamined Patent Publication No. 2014-198362 特開2014−208394号公報Japanese Unexamined Patent Publication No. 2014-208394 特開2009−56539号公報JP-A-2009-56539

前記特許文献1で提案されている被覆工具は、上部層のAl層中に微小空孔が形成されていることによって、切削加工時の衝撃がある程度緩和されるものの、切削条件が厳しくなり、切れ刃により一段と高負荷が作用するような場合には、耐熱衝撃性および耐チッピング性が十分であるとはいえない。
また、前記特許文献2、3で提案されている被覆工具は、硬質被覆層の中間層として、CrとAlの窒化物、炭化物あるいは炭窒化物を介在形成することにより、下部層と上部層の密着強度を向上させ、耐チッピング性の改善を図っているものの、CrとAlの窒化物、炭化物あるいは炭窒化物自体の強度・硬さが十分でないため、高速断続切削加工に供した場合には、耐チッピング性、耐摩耗性が十分であるとはいえない。
前記特許文献4で提案されている被覆工具においては、(CrAl1−X)Nからなる硬質被覆層のCr含有割合を調整し、また、結晶配向性と構成原子共有格子点分布形態を制御することにより、硬質被覆層の強度を向上させることができ、その結果、耐チッピング性、耐欠損性を高めることはできるものの、やはり(CrAl1−X)N層の強度・硬さが十分でないため、長期の使用にわたってすぐれた耐チッピング性、耐摩耗性を発揮することはできず、合金鋼の高速断続切削においては工具寿命が短命であるという問題があった。
そこで、炭素鋼、合金鋼、鋳鉄等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層がすぐれた耐チッピング性、すぐれた耐摩耗性を相兼ね備える被覆工具が求められている。
In the covering tool proposed in Patent Document 1, the impact during cutting is alleviated to some extent by forming micropores in the Al 2 O 3 layer of the upper layer, but the cutting conditions are strict. Therefore, when a higher load is applied by the cutting edge, it cannot be said that the heat impact resistance and the chipping resistance are sufficient.
Further, in the coating tools proposed in Patent Documents 2 and 3, the lower layer and the upper layer are formed by interposing Cr and Al nitrides, carbides or carbonitrides as an intermediate layer of the hard coating layer. Although the adhesion strength is improved and the chipping resistance is improved, the strength and hardness of Cr and Al nitrides, carbides or carbonitrides themselves are not sufficient, so when they are used for high-speed intermittent cutting. , Chipping resistance and abrasion resistance are not sufficient.
In the coating tool proposed in Patent Document 4, the Cr content ratio of the hard coating layer composed of (Cr X Al 1-X ) N is adjusted, and the crystal orientation and the constitutive atom shared lattice point distribution form are adjusted. By controlling, the strength of the hard coating layer can be improved, and as a result, the chipping resistance and the fracture resistance can be improved, but the strength and hardness of the (Cr X Al 1-X ) N layer are also improved. However, excellent chipping resistance and abrasion resistance cannot be exhibited over a long period of use, and there is a problem that the tool life is short in high-speed intermittent cutting of alloy steel.
Therefore, in high-speed intermittent cutting, which is accompanied by high heat generation of carbon steel, alloy steel, cast iron, etc. and an impact load acts on the cutting edge, the hard coating layer has excellent chipping resistance and excellent wear resistance. There is a demand for a covering tool that combines the above.

本発明者らは、前述の観点から、少なくともCrとAlの複合窒化物または複合炭窒化物(以下、「CrAlCN」で示すことがある)層を含む硬質被覆層を化学蒸着で蒸着形成した被覆工具において、耐チッピング性の改善をはかるべく、鋭意研究を重ねた結果、
限定された条件で、CrAlCNを成膜することにより、CrAlCN層中にポアを形成することができ、さらに、層中に形成されるポアの平均面積割合と平均孔径の適正化を図ることにより、クラックの進行を抑制し得るようになること、そしてその結果として、刃先に高負荷が作用する炭素鋼、合金鋼、鋳鉄等の高速断続切削加工で、すぐれた耐チッピング性を発揮するようになることを見出した。
From the above viewpoint, the present inventors have formed a coating obtained by vapor deposition of a hard coating layer containing at least a composite nitride of Cr and Al or a composite carbonitride (hereinafter, may be referred to as “CrAlCN”) layer by chemical vapor deposition. As a result of intensive research to improve chipping resistance in tools,
By forming CrAlCN under limited conditions, pores can be formed in the CrAlCN layer, and further, by optimizing the average area ratio and average pore size of the pores formed in the layer, It will be possible to suppress the progress of cracks, and as a result, it will exhibit excellent chipping resistance in high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., where a high load acts on the cutting edge. I found that.

本発明は、前記知見に基づいてなされたものであって、
「(1) 炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのCrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層は、
組成式:(Cr1−xAl)(C1−y
で表した場合、AlのCrとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.70≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(d)前記複合窒化物または複合炭窒化物層にはポアが存在しており、前記複合窒化物または複合炭窒化物層の平均層厚をLavg(μm)とした場合、該平均層厚Lavg(μm)を層厚方向に[Lavg/2]+1分割した各区間の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡によって倍率50000倍で観察し、各区間のそれぞれ観察領域面積においてポアが占める面積割合Aと観察領域におけるポアの孔径Dを求め、前記各区間におけるポアの平均面積割合Aavgと平均孔径Davgを算出した時、0.1面積%≦Aavg≦10面積%、4nm≦Davg≦50nmであり、
(e)前記複合窒化物または複合炭窒化物層の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡によって倍率50000倍で5視野以上観察し、平均ポア数密度N avg と標準偏差σを求め、標準偏差σ/平均数密度N avg から変動係数を算出した時、変動係数が1以下であることを特徴とする表面被覆切削工具。
(2) 前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するCrとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする(1)に記載の表面被覆切削工具。
(3) 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4) 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする(1)乃至(3)のいずれかに記載の表面被覆切削工具。」
に特徴を有するものである。
The present invention has been made based on the above findings.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based cemented carbide. In the tool
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 μm.
(B) The composite nitride or composite carbonitride layer contains at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure.
(C) The composite nitride or composite carbonitride layer is
Composition formula: (Cr 1-x Al x ) ( Cy N 1-y )
When represented by, the average content ratio X avg in the total amount of Cr and Al of Al and the average content ratio Y avg in the total amount of C and N of C (however, both X avg and Y avg are atomic ratios). Satisfy 0.70 ≤ X avg ≤ 0.95 and 0 ≤ Y avg ≤ 0.005, respectively.
(D) Pore is present in the composite nitride or composite carbonic nitride layer, and when the average layer thickness of the composite nitride or composite carbonitride layer is Lavg (μm), the average layer thickness The range of 1 μm × 1 μm of the vertical cross section of each section obtained by dividing Lavg (μm) by [ Lavg / 2] + 1 in the layer thickness direction was observed with a scanning electron microscope at a magnification of 50,000 times, and each observation area of each section was observed. When the area ratio A occupied by the pores in the area and the pore diameter D in the observation area were obtained and the average area ratio A avg and the average pore diameter D avg of the pores in each section were calculated, 0.1 area% ≤ A avg ≤ 10 Area%, 4 nm ≤ D avg ≤ 50 nm ,
(E) The range of 1 μm × 1 μm of the longitudinal cross section of the composite nitride or composite carbonic nitride layer is observed with a scanning electron microscope at a magnification of 50,000 times for 5 fields or more, and the average pore number density Navg and the standard deviation σ are obtained. A surface coating cutting tool characterized in that the coefficient of variation is 1 or less when the coefficient of variation is calculated from the standard deviation σ / average number density Navg .
(2) The composite nitride or composite carbonitride layer is characterized by being composed of a single phase of a composite nitride or composite carbonitride of Cr and Al having a NaCl-type face-centered cubic structure (1). Described surface coating cutting tool.
(3) Between the tool substrate and the composite nitride or composite carbonitride layer, one layer of Ti carbide layer, nitride layer, carbonitride layer, coal oxide layer and carbonitride oxide layer or The surface coating cutting tool according to (1) or (2), wherein a lower layer composed of two or more Ti compound layers and having a total average layer thickness of 0.1 to 20 μm is present.
(4) The above-mentioned composite nitride or composite carbonitride layer is characterized in that an upper layer containing at least an aluminum oxide layer is present with a total average layer thickness of 1 to 25 μm (1) to (3). The surface coating cutting tool described in either. "
It has the characteristics of.

本発明について、以下に詳細に説明する。 The present invention will be described in detail below.

CrAlCN層の平均層厚:
本発明の硬質被覆層は、組成式:(Cr1−xAl)(C1−y)で表されるCrとAlの複合窒化物または複合炭窒化物(CrAlCN)層を少なくとも含む。このCrAlCN層におけるCr成分は高温強度の維持、Al成分は高温硬さと耐熱性の向上に寄与することから、CrAlCN層は、所定の高温強度、高温硬さおよび耐熱性を具備するが、特に平均層厚が1〜20μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1μm未満では、層厚が薄いため長期の使用に亘っての耐摩耗性を十分確保することができず、一方、その平均層厚が20μmを越えると、CrAlCN層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。したがって、その平均層厚を1〜20μmと定めた。
Average thickness of CrAlCN layer:
Hard layer of the present invention, the composition formula: comprising at least a (Cr 1-x Al x) (C y N 1-y) composite nitride of Cr and Al represented by or composite carbonitride (CrAlCN) layer .. Since the Cr component in the CrAlCN layer contributes to maintaining high-temperature strength and the Al component contributes to improving high-temperature hardness and heat resistance, the CrAlCN layer has predetermined high-temperature strength, high-temperature hardness and heat resistance, but is particularly average. When the layer thickness is 1 to 20 μm, the effect is remarkably exhibited. The reason is that if the average layer thickness is less than 1 μm, sufficient wear resistance cannot be ensured over a long period of time because the layer thickness is thin, while if the average layer thickness exceeds 20 μm, the CrAlCN layer The crystal grains of the above are likely to be coarsened, and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.

CrAlCN層の組成:
本発明のCrAlCN層は、その成分組成を、
組成式:(Cr1−xAl)(C1−y
で表した場合、AlのCrとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.70≦Xavg≦0.95、0≦Yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合Xavgが0.70未満であると、CrAlCN層は耐酸化性に劣るため、炭素鋼、合金鋼、鋳鉄等の高速断続切削に供した場合には、耐摩耗性が十分でない。一方、Alの平均含有割合Xavgが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。したがって、Alの平均含有割合Xavgは、0.70≦Xavg≦0.95と定めた。
また、CrAlCN層に含まれるC成分の平均含有割合Yavgは、0≦Yavg≦0.005の範囲の微量であるとき、CrAlCN層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果としてCrAlCN層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合Yavgが0≦Yavg≦0.005の範囲を外れると、CrAlCN層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、Cの平均含有割合Yavgは、0≦Yavg≦0.005と定めた。ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のCrAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるCrAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
Composition of CrAlCN layer:
The CrAlCN layer of the present invention has a component composition thereof.
Composition formula: (Cr 1-x Al x ) ( Cy N 1-y )
When represented by, the average content ratio X avg in the total amount of Cr and Al of Al and the average content ratio Y avg in the total amount of C and N of C (however, both X avg and Y avg are atomic ratios). Are controlled so as to satisfy 0.70 ≦ X avg ≦ 0.95 and 0 ≦ Y avg ≦ 0.005, respectively.
The reason is that if the average Al content ratio X avg is less than 0.70, the CrAlCN layer is inferior in oxidation resistance, so that it is resistant to high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc. Insufficient wear resistance. On the other hand, when the average content ratio X avg of Al exceeds 0.95, the precipitation amount of hexagonal crystals inferior in hardness increases and the hardness decreases, so that the wear resistance decreases. Therefore, the average content ratio X avg of Al was set to 0.70 ≦ X avg ≦ 0.95.
Further, when the average content ratio Y avg of the C component contained in the CrAlCN layer is a small amount in the range of 0 ≦ Y avg ≦ 0.005, the adhesion between the CrAlCN layer and the tool substrate or the lower layer is improved, and the adhesion is improved. By improving the lubricity, the impact at the time of cutting is alleviated, and as a result, the fracture resistance and chipping resistance of the CrAlCN layer are improved. On the other hand, if the average content ratio Y avg of the C component is out of the range of 0 ≦ Y avg ≦ 0.005, the toughness of the CrAlCN layer is lowered and the fracture resistance and chipping resistance are lowered, which is not preferable. Therefore, the average content ratio Y avg of C was set to 0 ≦ Y avg ≦ 0.005. However, the content ratio of C excludes the unavoidable content ratio of C contained even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the CrAlCN layer when the supply amount of C 2 H 4 is 0 is obtained as the unavoidable C content ratio, and C 2 H 4 is intentionally used. the value obtained by subtracting the content of the unavoidable C from the content of the C component contained in CrAlCN layer obtained when supplied (atomic ratio) was calculated as Y avg.

CrAlCN層中に存在するポア:
図1に、本発明のCrAlCN層の部分拡大図を示す。
図1に示されるように、本発明のCrAlCN層は、層中に所定の平均面積割合および所定の平均孔径のポアが形成されており、切削加工時の高負荷によって層中にクラックが発生した場合であっても、このようなポアの存在によって、クラックの進展が抑制され、その結果、刃先に高負荷が作用する合金鋼等の高速断続切削加工条件においてもすぐれた耐チッピング性を発揮するようになる。
なお、ポアは、結晶粒界に存在することが望ましいが、結晶粒内にわずかに存在しても切削性能を大きく損なうことはない。
前記ポアの平均孔径Davgは、4nm未満であるとクラック進展抑制効果が十分でなく、一方、平均孔径Davgが50nmより大きいと、CrAlCN層の硬さが局所的に低下し、クラックの起点となりやすく、耐チッピング性、耐欠損性が低下する。
したがって、CrAlCN層中に形成されるポアの平均孔径Davgは4nm以上50nm以下とする。
また、前記ポアの平均面積割合Aavgが0.1%未満となるとクラックの進展抑制の効果を十分に引き出すことができず、一方、平均面積割合Aavg10%を超えるとCrAlCN層全体においてポアによる硬さの低下が生じ、クラック起点の増加および耐摩耗性の低下による耐チッピング性および耐欠損性の低下を招くため、ポアの平均面積割合Aavgは0.1面積%以上10面積%以下とした。
また、ポアの形成箇所が結晶粒界ではなく、結晶粒内に主として存在する膜では、結晶粒そのものの強度低下により、切削時に刃先に作用する負荷によって粒内破壊を起こし、耐チッピング性低下の原因となる。このため、結晶粒内に存在するポアの面積はポアの全面積に対して、10面積%以下であることが好ましい。
Pore present in the CrAlCN layer:
FIG. 1 shows a partially enlarged view of the CrAlCN layer of the present invention.
As shown in FIG. 1, in the CrAlCN layer of the present invention, pores having a predetermined average area ratio and a predetermined average pore diameter are formed in the layer, and cracks are generated in the layer due to a high load during cutting. Even in such a case, the presence of such pores suppresses the growth of cracks, and as a result, exhibits excellent chipping resistance even under high-speed intermittent cutting conditions such as alloy steel in which a high load acts on the cutting edge. Will be.
It is desirable that the pores are present at the grain boundaries, but even if they are present in a small amount in the crystal grains, the cutting performance is not significantly impaired.
The average pore diameter D avg of the pores, crack development suppression effect is less than 4nm is insufficient, whereas, a 50nm greater than the average pore diameter D avg is the hardness of CrAlCN layer is locally reduced, crack origin of The chipping resistance and fracture resistance are reduced.
Thus, the average pore diameter D avg pores formed in the CrAlCN layer to 4nm or 50nm or less.
Further, when the average area ratio Avg of the pores is less than 0.1%, the effect of suppressing the growth of cracks cannot be sufficiently brought out, while when the average area ratio Avg exceeds 10% , the entire CrAlCN layer The average area ratio Avg of the pores is 0.1 area% or more and 10 area% because the hardness decreases due to the pores, which increases the crack origin and reduces the chipping resistance and fracture resistance due to the decrease in wear resistance. It was as follows.
Further, in a film in which the pores are formed mainly in the grain boundaries instead of the grain boundaries, the strength of the crystal grains themselves is reduced, and the load acting on the cutting edge during cutting causes intragranular fracture, resulting in a decrease in chipping resistance. It causes. Therefore, the area of the pores existing in the crystal grains is preferably 10 area% or less with respect to the total area of the pores.

ここで、ポアの平均面積割合Aavg、ポアの平均孔径Davgは、次のような方法で測定・算出することができる。
まず、走査型電子顕微鏡(倍率5000倍)を用いて硬質被覆層の縦断面を観察し、CrAlCN層の平均層厚Lavg(μm)を測定する。
ついで、該平均層厚Lavg(μm)を層厚方向に[Lavg/2]+1分割した各区間の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡によって倍率50000倍で観察し、得られた画像に関して画像処理ソフト、例えばアドビ(登録商標)社のフォトショップ(登録商標)やその他公知のものによって、ポアとポアでない領域を特定し、色をつける。
そして、測定した区間において色が付けられた総面積を測定することで、測定した区間におけるポアの面積割合Aを求めることができる。
また、ポアと同定された円もしくは楕円をカウントし、その総数でポアの総面積を割ることで、その区間におけるポア1個あたりの平均面積を算出し、その面積を有するような円の直径を算出し、その値をその区間におけるポアの孔径Dとして求めることができる。
そして、上記で求めたポアの面積割合Aとポアの孔径Dを、[Lavg/2]+1分割した各区間で求め、これを平均することによって、CrAlCN層におけるポアが占める平均面積割合Aavgとポアの平均孔径Davgを求めることができる。
ここで、[Lavg/2]はガウス記号を表し、[Lavg/2]はLavg/2を超えない最大の整数を表す数学記号である。言い換えれば、[Lavg/2]は、n≦Lavg/2<n+1で定義される数値n(ただし、nは整数)を意味する。
例えば、CrAlCN層の平均層厚Lavg(μm)=1.5(μm)の場合、『[Laあればvg/2]+1分割』は、[1.5/2]+1=1分割であり、また、平均層厚Lavg(μm)=15(μm)の場合、『[Lavg/2]+1分割』は、[15/2]+1=8分割ということになる。
Here, the average area ratio A avg pore, average pore size D avg pore can be measured and calculated by the following method.
First, observing the vertical section of the hard coating layer with a scanning electron microscope (5000 magnification), measuring the average layer thickness L avg of CrAlCN layer ([mu] m).
Then, the range of 1 μm × 1 μm of the vertical cross section of each section obtained by dividing the average layer thickness Lavg (μm) into [ Lavg / 2] + 1 in the layer thickness direction was observed with a scanning electron microscope at a magnification of 50,000 times. With respect to the obtained image, image processing software, for example, Photoshop (registered trademark) of Adobe (registered trademark) or other known ones, identifies pores and non-pore areas and colors them.
Then, by measuring the total colored area in the measured section, the area ratio A of the pores in the measured section can be obtained.
Also, by counting the circles or ellipses identified as pores and dividing the total area of the pores by the total area, the average area per pore in that section is calculated, and the diameter of the circle having that area is calculated. It can be calculated and the value can be obtained as the pore diameter D in the section.
Then, the pore area ratio A and the pore pore diameter D obtained above are obtained in each section divided by [ Lavg / 2] + 1, and by averaging these, the average area ratio Avg occupied by the pores in the CrAlCN layer is obtained. And the average pore diameter Davg can be obtained.
Here, [ Lavg / 2] is a Gaussian symbol, and [ Lavg / 2] is a mathematical symbol representing the maximum integer that does not exceed Lavg / 2. In other words, [ Lavg / 2] means a numerical value n (where n is an integer) defined by n≤Lavg / 2 <n + 1.
For example, if the average layer thickness L avg of CrAlCN layer (μm) = 1.5 (μm) , "[if L a vg / 2] +1 resolution" [1.5 / 2] + 1 = 1 divided by There, and when the average layer thickness L avg (μm) = 15 ( μm), "[L avg / 2] +1 resolution", it comes to [15/2] + 1 = 8 division.

本発明では、CrAlCN層中におけるポアの平均面積割合Aavgとポアの平均孔径Davgを前記のとおり定めたが、局所的にポアが偏在するような場合には、ポア密度の高い個所が破壊起点となりやすいことから、層中のポアは均一に分散していること、即ち、ポアの平均数密度と標準偏差から求められる変動係数が1以下であることが好ましい。
変動係数は次のようにして求めることができる。
前記CrAlCN層の縦断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察してポアの数密度(個/μm)を測定し、5視野以上で測定することによってポアの平均数密度Navg(個/μm)と標準偏差σを算出し、標準偏差σ/平均数密度Navgから求められる変動係数が1以下であることが好ましい。
In the present invention, the average pore diameter D avg average area ratio A avg and pores of pore in CrAlCN layer defined as above, locally if pores are such as unevenly distributed, high pore density points destruction Since it tends to be a starting point, it is preferable that the pores in the layer are uniformly dispersed, that is, the coefficient of variation obtained from the average number density and standard deviation of the pores is 1 or less.
The coefficient of variation can be obtained as follows.
The vertical cross section of the CrAlCN layer is observed with a scanning electron microscope in a range of 1 μm × 1 μm at a magnification of 50,000 times, the number density of pores (pieces / μm 2 ) is measured, and the pores are measured in 5 or more visual fields. It is preferable that the coefficient of variation obtained from the standard deviation σ / average number density Navg by calculating the average number density N avg (pieces / μm 2 ) and the standard deviation σ is 1 or less.

CrAlCN層を構成する相:
本発明のCrAlCN層では、該層を構成するCrAlCN結晶粒は、NaCl型の面心立方構造を有する結晶粒からなることが好ましいが、縦断面に占める面積割合が5面積%以下の六方晶構造の微粒結晶粒の含有は、切削性能に大きな影響を及ぼすことがないので含有されていても良い。
Phases constituting the CrAlCN layer:
In the CrAlCN layer of the present invention, the CrAlCN crystal grains constituting the layer are preferably composed of crystal grains having a NaCl-type face-centered cubic structure, but have a hexagonal structure in which the area ratio to the vertical cross section is 5 area% or less. The content of the fine crystal grains may be contained because it does not significantly affect the cutting performance.

本発明で規定する成分組成、ポアの平均面積割合Aavg、ポアの平均孔径Davgを有するCrAlCN層、さらには、ポアの好ましい変動係数を有するCrAlCN層は、例えば、以下に示す条件の化学蒸着法によって成膜することができる。
成膜条件:
反応ガス組成(容量%):ガス群A:NH 1.0〜2.0%、H 65〜75%、
ガス群B:AlCl 0.2〜0.4%、CrCl 0.08〜0.1%、N:0.0〜10.0%,C 0.0〜0.05%、H:残、
反応雰囲気圧力:4.0〜5.0kPa、
反応雰囲気温度:700〜900℃
供給周期:10〜30秒、
1周期当たりのガス供給時間:0.5〜2.0秒、
ガス群Aの供給とガス群Bの供給の位相差:0.5〜1.5秒、
上記化学蒸着条件において、原料ガスの供給量および供給速度によって膜中でのポアの形成密度や大きさが変化する。これを利用して、ポアの平均面積割合Aavgおよびポアの平均孔径Davgを、金属原料ガスの割合および供給周期を変化させることによって、制御することができる。
Component composition defined in the present invention, the average area ratio A avg pore, CrAlCN layer having an average pore diameter D avg pore, furthermore, CrAlCN layer having a preferred variation coefficient of pores, for example, chemical vapor deposition conditions shown below It can be formed by the method.
Film formation conditions:
Reaction gas composition (volume%): Gas group A: NH 3 1.0 to 2.0%, H 2 65 to 75%,
Gas group B: AlCl 3 0.2 to 0.4%, CrCl 3 0.08 to 0.1%, N 2 : 0.0 to 10.0%, C 2 H 4 0.0 to 0.05% , H 2 : Remaining,
Reaction atmosphere pressure: 4.0-5.0 kPa,
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 10 to 30 seconds,
Gas supply time per cycle: 0.5-2.0 seconds,
Phase difference between the supply of gas group A and the supply of gas group B: 0.5 to 1.5 seconds,
Under the above chemical vapor deposition conditions, the pore formation density and size in the film change depending on the supply amount and supply rate of the raw material gas. Using this, the average area ratio A avg and an average pore diameter D avg pore pores, by varying the proportions and the supply period of the metal source gas can be controlled.

下部層および上部層:
本発明のCrAlCN層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層を設けた場合、および/または、少なくとも酸化アルミニウム層を含む上部層を1〜25μmの合計平均層厚で設けた場合には、これらの層が奏する効果と相俟って、一層すぐれた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、少なくとも酸化アルミニウム層を含む上部層の合計平均層厚が1μm未満では、上部層の効果が十分に奏されず、一方、25μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower and upper layers:
The CrAlCN layer of the present invention exerts a sufficient effect by itself, but one or more Ti of the carbide layer, nitride layer, carbon nitride layer, carbon oxide layer and carbon dioxide oxide layer of Ti. When a lower layer composed of a compound layer and having a total average layer thickness of 0.1 to 20 μm is provided, and / or when an upper layer including at least an aluminum oxide layer is provided with a total average layer thickness of 1 to 25 μm. Can create even better characteristics in combination with the effects of these layers. When a lower layer composed of one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a coal oxide layer and a carbon dioxide oxide layer of Ti is provided, the total average layer of the lower layers is provided. If the thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including at least the aluminum oxide layer is less than 1 μm, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Become.

本発明は、工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、硬質被覆層が、CrAlCN層を少なくとも含み、該CrAlCNを組成式:(Cr1−xAl)(C1−y)で表した場合、AlのCrとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavgは、それぞれ、0.70≦Xavg≦0.95、0≦Yavg≦0.005(但し、Xavg、Yavgはいずれも原子比)を満足し、該CrAlCN層を構成する結晶粒中にNaCl型の面心立方構造を有するCrAlCN結晶粒が存在し、また、該CrAlCN層中には所定の平均面積割合Aavgと平均孔径Davgのポアが存在することによって、層中におけるクラックの伝播・進展が抑制されるため、刃先に高負荷が作用する炭素鋼、合金鋼、鋳鉄等の高速断続切削加工で、すぐれた耐チッピング性を発揮する。 The present invention, the surface of the tool substrate, the surface-coated cutting tool having a hard coating layer, the hard coating layer includes at least a CrAlCN layer, the CrAlCN formula: (Cr 1-x Al x ) (C y When represented by N 1-y ), the average content ratio X avg of Al in the total amount of Cr and Al and the average content ratio Y avg of C in the total amount of C and N are 0.70 ≦ X, respectively. Satisfying avg ≤ 0.95 and 0 ≤ Y avg ≤ 0.005 (however, X avg and Y avg are both atomic ratios), a NaCl-type face-centered cubic structure is formed in the crystal grains constituting the CrAlCN layer. Since the CrAlCN crystal grains having CrAlCN crystals are present and the pores having a predetermined average area ratio A avg and average pore size D avg are present in the CrAlCN layer, the propagation and propagation of cracks in the layer are suppressed. Demonstrates excellent chipping resistance in high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., where a high load acts on the cutting edge.

本発明のCrAlCN層の縦断面を模式的に表した層構造の概略模式図である。It is a schematic schematic diagram of the layer structure which schematically represented the longitudinal section of the CrAlCN layer of this invention.

つぎに、本発明の被覆工具を実施例により具体的に説明する。
なお、実施例では、WC基超硬合金、TiCN基サーメットを工具基体として用いた場合について説明するが、立方晶窒化ホウ素基超高圧焼結体を工具基体とした場合にも、同様の効果が得られる。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
In the examples, a case where a WC-based cemented carbide and a TiCN-based cermet are used as a tool substrate will be described, but the same effect can be obtained when a cubic boron nitride-based ultrahigh-pressure sintered body is used as a tool substrate. can get.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, manufacture tool bases A to C made of WC-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN. did.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was prepared.

つぎに、これらの工具基体A〜Dの表面に、化学蒸着装置を用い、
表4に示される形成条件A〜H、すなわち、NHとHからなるガス群Aと、AlCl、CrCl、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.0〜2.0%、H:65〜75%、ガス群BとしてAlCl 0.2〜0.4%、CrCl 0.08〜0.1%、N:0.0〜10.0%,C 0.0〜0.05%、H:残、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜2.0秒、ガス群Aの供給とガス群Bの供給の位相差0.5〜1.5秒として、所定時間、熱CVD法を行い、表6に示されるCrAlCN層を成膜することにより本発明被覆工具1〜12を製造した。
なお、本発明被覆工具5〜12については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Next, a chemical vapor deposition apparatus was used on the surfaces of these tool bases A to D.
The formation conditions A to H shown in Table 4, that is, the gas group A consisting of NH 3 and H 2 , the gas group B consisting of AlCl 3 , CrCl 3 , N 2 , C 2 H 4 , and H 2 , and each of them. As a gas supply method, the reaction gas composition (volume% of the total of the gas group A and the gas group B) is adjusted to NH 3 : 1.0 to 2.0% and H 2 : 65 to 75% as the gas group A. As gas group B, AlCl 3 0.2 to 0.4%, CrCl 3 0.08 to 0.1%, N 2 : 0.0 to 10.0%, C 2 H 4 0.0 to 0.05 %, H 2 : Residual, reaction atmosphere pressure: 4.0 to 5.0 kPa, reaction atmosphere temperature: 700 to 900 ° C., supply cycle 10 to 30 seconds, gas supply time per cycle 0.5 to 2.0 seconds The thermal CVD method was performed for a predetermined time with a phase difference of 0.5 to 1.5 seconds between the supply of the gas group A and the supply of the gas group B, and the CrAlCN layer shown in Table 6 was formed to form the coating of the present invention. Tools 1-12 were manufactured.
For the covering tools 5 to 12 of the present invention, the lower layer and the upper layer shown in Table 5 were formed under the formation conditions shown in Table 3.

また、比較の目的で、工具基体A〜Dの表面に、表3および表4に示される比較成膜工程の条件で、表7に示される目標平均層厚(μm)で本発明被覆工具1〜12と同様に、少なくともCrAlCN層を含む硬質被覆層を蒸着形成し比較被覆工具1〜12を製造した。この時には、CrAlCN層の成膜工程中に、工具基体表面における反応ガス組成が時間的に変化しない様に硬質被覆層を形成することにより比較被覆工具5〜12を製造した。
なお、本発明被覆工具5〜12と同様に、比較被覆工具10〜12については、表3に示される形成条件で、表5に示される下部層、上部層を形成した。
Further, for the purpose of comparison, the covering tool 1 of the present invention has a target average layer thickness (μm) shown in Table 7 under the conditions of the comparative film forming process shown in Tables 3 and 4 on the surfaces of the tool substrates A to D. In the same manner as in ~ 12, a hard coating layer containing at least a CrAlCN layer was vapor-deposited to form comparative coating tools 1 to 12. At this time, comparative coating tools 5 to 12 were manufactured by forming a hard coating layer so that the reaction gas composition on the surface of the tool substrate did not change with time during the film formation step of the CrAlCN layer.
Similar to the covering tools 5 to 12 of the present invention, the comparative covering tools 10 to 12 were formed with the lower layer and the upper layer shown in Table 5 under the formation conditions shown in Table 3.

ついで、本発明被覆工具1〜12、比較被覆工具1〜12の各構成層の工具基体表面に垂直な方向の縦断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ目標平均層厚を示した。なお、CrAlCN層の平均層厚はLavg(μm)で示す。
また、CrAlCN層の平均Al含有割合Xavgについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合Xavgを求めた。
平均C含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合YavgはTiAlCN層についての深さ方向の平均値を示す。
ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のCrAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるCrAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
表6および表7に、XavgおよびYavgの値を示す。
Then, the vertical cross section of each of the constituent layers of the covering tools 1 to 12 and the comparative covering tools 1 to 12 in the direction perpendicular to the surface of the tool substrate is measured using a scanning electron microscope (magnification: 5000 times), and the observation field is observed. When the average layer thickness was obtained by measuring the layer thicknesses of the five points and averaging them, all of them showed substantially the same target average layer thickness as the target layer thicknesses shown in Tables 6 and 7. The average layer thickness of CrAlCN layer are indicated by L avg (μm).
The average Al content ratio X- avg of the CrAlCN layer was obtained by irradiating the sample with an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) from the sample surface side. The average Al content ratio X avg of Al was obtained from the 10-point average of the analysis results of the characteristic X-rays obtained.
The average C content ratio Yavg was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). An ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration of the components released by the sputtering action was measured in the depth direction. Average C content Y avg represents the average value of the depth direction for TiAlCN layer.
However, the content ratio of C excludes the unavoidable content ratio of C contained even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the CrAlCN layer when the supply amount of C 2 H 4 is 0 is obtained as the unavoidable C content ratio, and C 2 H 4 is intentionally used. the value obtained by subtracting the content of the unavoidable C from the content of the C component contained in CrAlCN layer obtained when supplied (atomic ratio) was calculated as Y avg.
Tables 6 and 7 show the values of X avg and Y avg .

ついで、本発明被覆工具1〜12、比較被覆工具1〜12について、それぞれ、CrAlCN層中に存在するポアの平均面積割合Aavgと平均孔径Davgを、次のような手順で求めた。
まず、走査型電子顕微鏡(倍率5000倍)を用いて硬質被覆層の縦断面を観察し、CrAlCN層の平均層厚Lavg(μm)を測定し、ついで、該平均層厚Lavg(μm)を層厚方向に[Lavg/2]+1分割した各区間の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡(倍率50000倍)で観察し、得られた画像に関して画像処理ソフト、例えばアドビ(登録商標)社のフォトショップ(登録商標)やその他公知のものによって、ポアとポアでない領域を特定し、色をつける。
そして、測定した区間において色が付けられた総面積を測定することで、測定した区間におけるポアの面積割合Aを求める。
また、ポアと同定された円もしくは楕円の個数をカウントし、その総数でポアの総面積を割ることで、その区間におけるポア1個あたりの平均面積を算出し、その面積を有するような円の直径を算出し、その値をその区間におけるポアの孔径Dとして求める。
ついで、上記で求めたポアの面積割合Aとポアの孔径Dを、[Lavg/2]+1分割した各区間で求め、これを平均することによって、CrAlCN層におけるポアが占める平均面積割合Aavgとポアの平均孔径Davgを求める。
なお、[Lavg/2]+1分割とは、既に述べたように、n≦Lavg/2<n+1で定義される数値n(ただし、nは整数)によって、CrAlCN層の平均層厚Lavg(μm)をn分割することを意味する。
また、CrAlCN層の結晶粒内に存在するポア(即ち、結晶粒界に存在するポアを除く)の面積比率は、各区間において、一つの結晶粒に内包されるポアの面積をポアの総面積で除すことで、その区間における結晶粒内に存在するポアの面積比率を求め、ついで、各区間における粒内に存在するポアの面積比率を平均することによって求めた。
表6および表7に、その結果を示す。
Then, the present invention coated tool 12, the comparative coated tool 12, respectively, the average area ratio A avg and average pore size D avg pore present in CrAlCN layer was determined by the following procedure.
First, a scanning electron microscope (5000 magnification) was used to observe a longitudinal section of the hard coating layer, and measuring the average layer thickness L avg of CrAlCN layer ([mu] m), then, the average layer thickness L avg ([mu] m) The range of 1 μm × 1 μm of the vertical cross section of each section divided into [ Lavg / 2] + 1 in the layer thickness direction was observed with a scanning electron microscope (magnification 50,000 times), and image processing software, for example, was used for the obtained image. Identify and color pores and non-pore areas with a microscope (registered trademark) from Adobe® and other known sources.
Then, by measuring the total area colored in the measured section, the area ratio A of the pores in the measured section is obtained.
Also, by counting the number of circles or ellipses identified as pores and dividing the total area of the pores by the total area, the average area per pore in that section is calculated, and the circle having that area is calculated. The diameter is calculated, and the value is obtained as the pore diameter D in the section.
Next, the pore area ratio A and the pore diameter D obtained above were obtained in each section divided by [ Lavg / 2] + 1, and by averaging these, the average area ratio Avg occupied by the pores in the CrAlCN layer was obtained. And the average pore diameter Davg .
In addition, [L avg / 2] + 1 division means, as already described, the average layer thickness of the CrAlCN layer according to the numerical value n (where n is an integer) defined by n ≦ L avg / 2 <n + 1. It means to divide Lavg (μm) into n.
Further, the area ratio of the pores existing in the crystal grains of the CrAlCN layer (that is, excluding the pores existing at the grain boundaries) is the total area of the pores included in one crystal grain in each section. By dividing by, the area ratio of the pores existing in the crystal grains in the section was obtained, and then the area ratio of the pores existing in the grains in each section was averaged.
The results are shown in Tables 6 and 7.

また、CrAlCN層中に存在するポアの分散性について、次の方法で測定した。
先述の方法でCrAlCN層の平均層厚Lavg(μm)をn分割した各区間で、CrAlCN層の縦断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察してポアの数密度(個/μm)を測定した。5視野以上で測定することによってポアの平均数密度Navg(個/μm)と標準偏差σを算出し、標準偏差σ/平均数密度Navgから求められる変動係数を評価した。n<5の場合は、5視野以上となるように各区間において層厚方向に対して90度の方向に視野が重ならないように移動し、同様にポアの平均数密度を算出し、5視野以上の観察を行う。
表6および表7に、その結果を示す。
Moreover, the dispersibility of the pores existing in the CrAlCN layer was measured by the following method.
The average layer thickness L avg of CrAlCN layer foregoing method ([mu] m) on each section divided into n, a longitudinal section of CrAlCN layer, scanning the electron microscope to observe the range of 1 [mu] m × 1 [mu] m at a magnification 50,000 times the pore The number density (pieces / μm 2 ) was measured. The average number density Navg (pieces / μm 2 ) and standard deviation σ of the pores were calculated by measuring in 5 or more fields, and the coefficient of variation obtained from the standard deviation σ / average number density Navg was evaluated. When n <5, move so that the visual fields do not overlap in the direction of 90 degrees with respect to the layer thickness direction in each section so that the visual fields are 5 or more, and similarly calculate the average number density of pores and 5 visual fields. Make the above observations.
The results are shown in Tables 6 and 7.

前記本発明被覆工具1〜12、比較被覆工具1〜12の硬質被覆層を構成するCrAlCN層について、透過型電子顕微鏡を用いて複数視野に亘って観察し、CrAlCN結晶粒がNaCl型の立方晶構造単相からなるか、六方晶構造の結晶粒が存在するかを、透過型電子顕微鏡を用いて電子線回折図形を解析することにより確認した。
表6および表7に、その結果を示す。
The CrAlCN layer constituting the hard coating layer of the coating tools 1 to 12 of the present invention and the comparative coating tools 1 to 12 was observed over a plurality of fields using a transmission electron microscope, and the CrAlCN crystal grains were NaCl-type cubic crystals. It was confirmed by analyzing the electron diffraction pattern using a transmission electron microscope whether the structure consisted of a single phase or the presence of hexagonal crystal grains.
The results are shown in Tables 6 and 7.








つぎに、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜12、比較被覆工具1〜12について、以下に示す、合金向の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。 Next, with the various covering tools of the present invention clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig, the covering tools 1 to 12 of the present invention and the comparative covering tools 1 to 12 are described below. The dry high-speed face milling cutter, which is a type of high-speed intermittent cutting for alloys, and the center-cut cutting process test were carried out, and the flank wear width of the cutting edge was measured in each case.

<切削試験:乾式高速正面フライス、センターカット切削加工>
工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット、
切削試験: 乾式高速正面フライス、センターカット切削加工、
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材、
回転速度: 866 min−1
切削速度: 340 m/min、
切り込み: 2.5 mm、
一刃送り量: 0.3 mm/刃、
切削時間: 8分、
(通常の切削速度は、220m/min)
表8に、前記切削試験の結果を示す。
<Cutting test: Dry high-speed face milling cutter, center cut cutting process>
Tool Base: Tungsten Carbide Cemented Carbide, Titanium Nitride Cermet,
Cutting test: Dry high-speed face milling cutter, center cut cutting,
Work material: JIS / SCM440 Block material with a width of 100 mm and a length of 400 mm,
Rotation speed: 866 min -1 ,
Cutting speed: 340 m / min,
Notch: 2.5 mm,
Single blade feed amount: 0.3 mm / blade,
Cutting time: 8 minutes,
(Normal cutting speed is 220 m / min)
Table 8 shows the results of the cutting test.


原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表9に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, prepared TiN powder and Co powder, these raw material powders, It was blended to the blending composition shown in Table 9, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, and then press-molded into a green compact having a predetermined shape at a pressure of 98 MPa to obtain this green compact. In a vacuum of 5 Pa, vacuum sintering is performed under the condition of holding at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour, and after sintering, the cutting edge is honed with R: 0.07 mm to ISO standard. Tool bases α to γ made of WC-based superhard alloy having an insert shape of CNMG120412 were manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder, each having an average particle size of 0.5 to 2 μm, were prepared. These raw material powders were blended into the compounding composition shown in Table 10, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa, and the green compact was pressed with 1.3 kPa of nitrogen. TiCN group with insert shape of ISO standard CNMG120412 by sintering in atmosphere under the condition of holding at temperature: 1500 ° C for 1 hour, and then applying honing processing of R: 0.09 mm to the cutting edge part. A tool substrate δ made of cermet was formed.

つぎに、これらの工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表4に示される形成条件A〜H、すなわち、NHとHからなるガス群Aと、AlCl、CrCl、N、C、Hからなるガス群B、および、おのおのガスの供給方法として、反応ガス組成(ガス群Aおよびガス群Bを合わせた全体に対する容量%)を、ガス群AとしてNH:1.0〜2.0%、H:65〜75%、ガス群BとしてAlCl 0.2〜0.4%、CrCl 0.08〜0.1%、N:0.0〜10.0%,C 0.0〜0.05%、H:残、反応雰囲気圧力:4.0〜5.0kPa、反応雰囲気温度:700〜900℃、供給周期10〜30秒、1周期当たりのガス供給時間0.5〜2.0秒、ガス群Aの供給とガス群Bの供給の位相差0.5〜1.5秒として、所定時間、熱CVD法を行い、表12に示されるCrAlCN層を成膜することによりことにより本発明被覆工具13〜24を製造した。
なお、本発明被覆工具16〜24については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
Next, on the surfaces of these tool bases α to γ and the tool base δ, a normal chemical vapor deposition apparatus was used, and the formation conditions A to H shown in Table 4, that is, the gas group A composed of NH 3 and H 2 were formed. , AlCl 3 , CrCl 3 , N 2 , C 2 H 4 , H 2 , and as a method of supplying each gas, the reaction gas composition (volume% of the total of gas group A and gas group B). ) As the gas group A: NH 3 : 1.0 to 2.0%, H 2 : 65 to 75%, and as the gas group B, AlCl 3 0.2 to 0.4%, CrCl 3 0.08 to 0. 1%, N 2 : 0.0 to 10.0%, C 2 H 4 0.0 to 0.05%, H 2 : Residual, reaction atmosphere pressure: 4.0 to 5.0 kPa, reaction atmosphere temperature: 700 ~ 900 ° C., supply cycle 10 to 30 seconds, gas supply time per cycle 0.5 to 2.0 seconds, phase difference between gas group A supply and gas group B supply 0.5 to 1.5 seconds , The thermal CVD method was carried out for a predetermined time, and the CrAlCN layer shown in Table 12 was formed to form the coating tools 13 to 24 of the present invention.
For the covering tools 16 to 24 of the present invention, the lower layer and the upper layer shown in Table 11 were formed under the formation conditions shown in Table 3.

また、比較の目的で、同じく工具基体α〜γおよび工具基体δの表面に、通常の化学蒸着装置を用い、表3および表4に示される条件かつ表13に示される目標平均層厚で本発明被覆工具と同様に硬質被覆層を蒸着形成することにより、表13に示される比較被覆工具13〜24を製造した。
なお、本発明被覆工具16〜24と同様に、比較被覆工具16〜24については、表3に示される形成条件で、表11に示される下部層、上部層を形成した。
Further, for the purpose of comparison, the same chemical vapor deposition apparatus is used on the surfaces of the tool substrates α to γ and the tool substrate δ, and the conditions shown in Tables 3 and 4 and the target average layer thickness shown in Table 13 are used. Comparative coating tools 13 to 24 shown in Table 13 were manufactured by vapor-depositing a hard coating layer in the same manner as the coating tool of the present invention.
Similar to the covering tools 16 to 24 of the present invention, the comparative covering tools 16 to 24 formed the lower layer and the upper layer shown in Table 11 under the formation conditions shown in Table 3.

ついで、本発明被覆工具13〜24、比較被覆工具13〜24の各構成層の工具基体表面に垂直な方向の縦断面を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めたところ、いずれも表6および表7に示される目標層厚と実質的に同じ目標平均層厚を示した。なお、CrAlCN層の平均層厚はLavg(μm)で示す。
また、CrAlCN層の平均Al含有割合Xavgについては、電子線マイクロアナライザ(EPMA,Electron−Probe−Micro−Analyser)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均からAlの平均Al含有割合Xavgを求めた。
平均C含有割合Yavgについては、二次イオン質量分析(SIMS,Secondary−Ion−Mass−Spectroscopy)により求めた。イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。平均C含有割合YavgはTiAlCN層についての深さ方向の平均値を示す。
ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはCの供給量を0とした場合のCrAlCN層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Cを意図的に供給した場合に得られるCrAlCN層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をYavgとして求めた。
表12および表13に、XavgおよびYavgの値を示す。
Next, the vertical cross section of each of the constituent layers of the covering tools 13 to 24 and the comparative covering tools 13 to 24 of the present invention in the direction perpendicular to the surface of the tool substrate is measured using a scanning electron microscope (magnification of 5000 times), and the observation field of view is measured. When the average layer thickness was obtained by measuring the layer thicknesses of the five points and averaging them, all of them showed substantially the same target average layer thickness as the target layer thicknesses shown in Tables 6 and 7. The average layer thickness of CrAlCN layer are indicated by L avg (μm).
The average Al content ratio X- avg of the CrAlCN layer was obtained by irradiating the sample with an electron beam microanalyzer (EPMA, Electron-Probe-Micro-Analyzer) from the sample surface side. The average Al content ratio X avg of Al was obtained from the 10-point average of the analysis results of the characteristic X-rays obtained.
The average C content ratio Yavg was determined by secondary ion mass spectrometry (SIMS, Secondary-Ion-Mass-Spectroscopy). An ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration of the components released by the sputtering action was measured in the depth direction. Average C content Y avg represents the average value of the depth direction for TiAlCN layer.
However, the content ratio of C excludes the unavoidable content ratio of C contained even if a gas containing C is not intentionally used as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the CrAlCN layer when the supply amount of C 2 H 4 is 0 is obtained as the unavoidable C content ratio, and C 2 H 4 is intentionally used. the value obtained by subtracting the content of the unavoidable C from the content of the C component contained in CrAlCN layer obtained when supplied (atomic ratio) was calculated as Y avg.
Tables 12 and 13 show the values of X avg and Y avg .

ついで、本発明被覆工具13〜24、比較被覆工具13〜24について、それぞれ、CrAlCN層中に存在するポアの平均面積割合Aavgと平均孔径Davgを、次のような手順で求めた。
まず、走査型電子顕微鏡(倍率5000倍)を用いて硬質被覆層の縦断面を観察し、CrAlCN層の平均層厚Lavg(μm)を測定し、ついで、該平均層厚Lavg(μm)を層厚方向に[Lavg/2]+1分割した各区間の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡(倍率50000倍)で観察し、得られた画像に関して画像処理ソフト、例えばアドビ(登録商標)社のフォトショップ(登録商標)やその他公知のものによって、ポアとポアでない領域を特定し、色をつける。
そして、測定した区間において色が付けられた総面積を測定することで、測定した区間におけるポアの面積割合Aを求める。
また、ポアと同定された円もしくは楕円の個数をカウントし、その総数でポアの総面積を割ることで、その区間におけるポア1個あたりの平均面積を算出し、その面積を有するような円の直径を算出し、その値をその区間におけるポアの孔径Dとして求める。
ついで、上記で求めたポアの面積割合Aとポアの孔径Dを、[Lavg/2]+1分割した各区間で求め、これを平均することによって、CrAlCN層におけるポアが占める平均面積割合Aavgとポアの平均孔径Davgを求める。
なお、[Lavg/2]+1分割とは、既に述べたように、n≦Lavg/2<n+1で定義される数値n(ただし、nは整数)によって、CrAlCN層の平均層厚Lavg(μm)をn分割することを意味する。
また、CrAlCN層の結晶粒内に存在するポア(即ち、結晶粒界に存在するポアを除く)の面積比率は、各区間において、一つの結晶粒に内包されるポアの面積をポアの総面積で除すことで、その区間における結晶粒内に存在するポアの面積比率を求め、ついで、各区間における粒内に存在するポアの面積比率を平均することによって求めた。
表12および表13に、その結果を示す。
Then, the present invention coated tool 13-24 and Comparative coated tool 13-24, respectively, the average area ratio A avg and average pore size D avg pore present in CrAlCN layer was determined by the following procedure.
First, a scanning electron microscope (5000 magnification) was used to observe a longitudinal section of the hard coating layer, and measuring the average layer thickness L avg of CrAlCN layer ([mu] m), then, the average layer thickness L avg ([mu] m) The range of 1 μm × 1 μm of the vertical cross section of each section divided into [ Lavg / 2] + 1 in the layer thickness direction was observed with a scanning electron microscope (magnification 50,000 times), and image processing software, for example, was used for the obtained image. Identify and color pores and non-pore areas with a microscope (registered trademark) from Adobe® and other known sources.
Then, by measuring the total area colored in the measured section, the area ratio A of the pores in the measured section is obtained.
Also, by counting the number of circles or ellipses identified as pores and dividing the total area of the pores by the total area, the average area per pore in that section is calculated, and the circle having that area is calculated. The diameter is calculated, and the value is obtained as the pore diameter D in the section.
Next, the pore area ratio A and the pore diameter D obtained above were obtained in each section divided by [ Lavg / 2] + 1, and by averaging these, the average area ratio Avg occupied by the pores in the CrAlCN layer was obtained. And the average pore diameter Davg .
In addition, [L avg / 2] + 1 division means, as already described, the average layer thickness of the CrAlCN layer according to the numerical value n (where n is an integer) defined by n ≦ L avg / 2 <n + 1. It means to divide Lavg (μm) into n.
Further, the area ratio of the pores existing in the crystal grains of the CrAlCN layer (that is, excluding the pores existing at the grain boundaries) is the total area of the pores included in one crystal grain in each section. By dividing by, the area ratio of the pores existing in the crystal grains in the section was obtained, and then the area ratio of the pores existing in the grains in each section was averaged.
The results are shown in Tables 12 and 13.

先述の方法でCrAlCN層の平均層厚Lavg(μm)をn分割した各区間で、CrAlCN層の縦断面を、走査型電子顕微鏡によって倍率50000倍で1μm×1μmの範囲を観察してポアの数密度(個/μm)を測定した。5視野以上で測定することによってポアの平均数密度Navg(個/μm)と標準偏差σを算出し、標準偏差σ/平均数密度Navgから求められる変動係数を評価した。n<5の場合は、5視野以上となるように各区間において層厚方向に対して90度の方向に視野が重ならないように移動し、同様にポアの平均数密度を算出し、5視野以上の観察を行う。
表12および表13に、その結果を示す。
The average layer thickness L avg of CrAlCN layer foregoing method ([mu] m) on each section divided into n, a longitudinal section of CrAlCN layer, scanning the electron microscope to observe the range of 1 [mu] m × 1 [mu] m at a magnification 50,000 times the pore The number density (pieces / μm 2 ) was measured. The average number density Navg (pieces / μm 2 ) and standard deviation σ of the pores were calculated by measuring in 5 or more fields, and the coefficient of variation obtained from the standard deviation σ / average number density Navg was evaluated. When n <5, move so that the visual fields do not overlap in the direction of 90 degrees with respect to the layer thickness direction in each section so that the visual fields are 5 or more, and similarly calculate the average number density of pores and 5 visual fields. Make the above observations.
The results are shown in Tables 12 and 13.

前記本発明被覆工具13〜24、比較被覆工具13〜24の硬質被覆層を構成するCrAlCN層について、透過型電子顕微鏡を用いて複数視野に亘って観察し、CrAlCN結晶粒がNaCl型の立方晶構造単相からなるか、六方晶構造の結晶粒が存在するかを、透過型電子顕微鏡を用いて電子線回折図形を解析することにより確認した。
表12および表13に、その結果を示す。
The CrAlCN layer constituting the hard coating layer of the coating tools 13 to 24 of the present invention and the comparative coating tools 13 to 24 was observed over a plurality of fields using a transmission electron microscope, and the CrAlCN crystal grains were NaCl-type cubic crystals. It was confirmed by analyzing the electron diffraction pattern using a transmission electron microscope whether the structure consisted of a single phase or the presence of hexagonal crystal grains.
The results are shown in Tables 12 and 13.




つぎに、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具13〜24、比較被覆工具13〜24について、以下に示す、炭素鋼・鋳鉄の湿式高速断続切削試験を実施し、いずれも切刃の逃げ面摩耗幅を測定した。
切削条件1:
被削材:JIS・S15Cの長さ方向等間隔4本縦溝入り丸棒、
切削速度:280 m/min、
切り込み:2.5 mm、
送り:0.32 mm/rev、
切削時間:5 分、
(通常の切削速度は、200m/min)、
切削条件2:
被削材:JIS・FCD450の長さ方向等間隔4本縦溝入り丸棒、
切削速度:270 m/min、
切り込み:2.2 mm、
送り:0.32 mm/rev、
切削時間:5 分、
(通常の切削速度は、200m/min)、
表14に、前記切削試験の結果を示す。
Next, the covering tools 13 to 24 of the present invention and the comparative covering tools 13 to 24 are shown below in a state where all of the various covering tools are screwed to the tip of the tool steel cutting tool with a fixing jig. Wet high-speed intermittent cutting tests of carbon steel and cast iron were carried out, and the flank wear width of the cutting edge was measured in both cases.
Cutting condition 1:
Work material: JIS / S15C round bar with 4 vertical grooves at equal intervals in the length direction,
Cutting speed: 280 m / min,
Notch: 2.5 mm,
Feed: 0.32 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200m / min),
Cutting condition 2:
Work material: JIS / FCD450 round bar with four vertical grooves at equal intervals in the length direction,
Cutting speed: 270 m / min,
Notch: 2.2 mm,
Feed: 0.32 mm / rev,
Cutting time: 5 minutes,
(Normal cutting speed is 200m / min),
Table 14 shows the results of the cutting test.

表8、表14に示される結果から、本発明の被覆工具は、CrAlCN層に所定の平均面積割合と所定の平均孔径を有するポアが存在することで、層中のクラックの伝播・進展が抑制され、刃先に高負荷が作用する炭素鋼、合金鋼、鋳鉄等の高速断続切削加工で、すぐれた耐チッピング性、耐摩耗性を発揮する。
これに対して、CrAlCN層に本発明で規定するポアの平均面積割合、平均孔径を有するポアが存在しない比較被覆工具については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、チッピング、欠損等の発生により短時間で寿命にいたることが明らかである。
From the results shown in Tables 8 and 14, in the coating tool of the present invention, the presence of pores having a predetermined average area ratio and a predetermined average pore size in the CrAlCN layer suppresses the propagation and propagation of cracks in the layer. It exhibits excellent chipping resistance and wear resistance in high-speed intermittent cutting of carbon steel, alloy steel, cast iron, etc., which exerts a high load on the cutting edge.
On the other hand, in the comparative covering tool in which the CrAlCN layer does not have the pores having the average area ratio and the average pore diameter specified in the present invention, high heat is generated and the cutting edge is intermittently and impactfully loaded. It is clear that when it is used for high-speed intermittent cutting, it reaches the end of its life in a short time due to the occurrence of chipping, chipping, etc.

本発明の被覆工具は、炭素鋼、合金鋼、鋳鉄の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用に亘ってすぐれた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。

The coating tool of the present invention can be used not only for high-speed intermittent cutting of carbon steel, alloy steel, and cast iron, but also as a coating tool for various work materials, and has excellent chipping resistance over a long period of use. Since it exhibits abrasion resistance, it can sufficiently satisfactorily cope with high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction.

Claims (4)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1〜20μmのCrとAlの複合窒化物または複合炭窒化物層を少なくとも含み、
(b)前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有する複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記複合窒化物または複合炭窒化物層は、
組成式:(Cr1−xAl)(C1−y
で表した場合、AlのCrとAlの合量に占める平均含有割合XavgおよびCのCとNの合量に占める平均含有割合Yavg(但し、Xavg、Yavgはいずれも原子比)が、それぞれ、0.70≦Xavg≦0.95、0≦Yavg≦0.005を満足し、
(d)前記複合窒化物または複合炭窒化物層にはポアが存在しており、前記複合窒化物または複合炭窒化物層の平均層厚をLavg(μm)とした場合、該平均層厚Lavg(μm)を層厚方向に[Lavg/2]+1分割した各区間の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡によって倍率50000倍で観察し、各区間のそれぞれ観察領域面積においてポアが占める面積割合Aと観察領域におけるポアの孔径Dを求め、前記各区間におけるポアの平均面積割合Aavgと平均孔径Davgを算出した時、0.1面積%≦Aavg≦10面積%、4nm≦Davg≦50nmであり、
(e)前記複合窒化物または複合炭窒化物層の縦断面の1μm×1μmの範囲を、走査型電子顕微鏡によって倍率50000倍で5視野以上観察し、平均ポア数密度N avg と標準偏差σを求め、標準偏差σ/平均数密度N avg から変動係数を算出した時、変動係数が1以下であることを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite nitride or composite carbonitride layer of Cr and Al having an average layer thickness of 1 to 20 μm.
(B) The composite nitride or composite carbonitride layer contains at least a composite nitride or composite carbonitride phase having a NaCl-type face-centered cubic structure.
(C) The composite nitride or composite carbonitride layer is
Composition formula: (Cr 1-x Al x ) ( Cy N 1-y )
When represented by, the average content ratio X avg in the total amount of Cr and Al of Al and the average content ratio Y avg in the total amount of C and N of C (however, both X avg and Y avg are atomic ratios). Satisfy 0.70 ≤ X avg ≤ 0.95 and 0 ≤ Y avg ≤ 0.005, respectively.
(D) Pore is present in the composite nitride or composite carbonic nitride layer, and when the average layer thickness of the composite nitride or composite carbonitride layer is Lavg (μm), the average layer thickness The range of 1 μm × 1 μm of the vertical cross section of each section obtained by dividing Lavg (μm) by [ Lavg / 2] + 1 in the layer thickness direction was observed with a scanning electron microscope at a magnification of 50,000 times, and each observation area of each section was observed. When the area ratio A occupied by the pores in the area and the pore diameter D in the observation area were obtained and the average area ratio A avg and the average pore diameter D avg of the pores in each section were calculated, 0.1 area% ≤ A avg ≤ 10 Area%, 4 nm ≤ D avg ≤ 50 nm ,
(E) The range of 1 μm × 1 μm of the longitudinal cross section of the composite nitride or composite carbonic nitride layer is observed with a scanning electron microscope at a magnification of 50,000 times for 5 fields or more, and the average pore number density Navg and the standard deviation σ are obtained. A surface coating cutting tool characterized in that the coefficient of variation is 1 or less when the coefficient of variation is calculated from the standard deviation σ / average number density Navg .
前記複合窒化物または複合炭窒化物層は、NaCl型の面心立方構造を有するCrとAlの複合窒化物または複合炭窒化物の単相からなることを特徴とする請求項1に記載の表面被覆切削工具。 The surface according to claim 1, wherein the composite nitride or composite carbonitride layer is composed of a single phase of a Cr and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure. Coated cutting tool. 前記工具基体と前記複合窒化物または複合炭窒化物層の間に、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする請求項1または2に記載の表面被覆切削工具。 One or more of a carbide layer, a nitride layer, a carbonitride layer, a coal oxide layer and a carbonitride oxide layer of Ti between the tool substrate and the composite nitride or composite carbonitride layer. The surface coating cutting tool according to claim 1 or 2, wherein there is a lower layer composed of the Ti compound layer of the above and having a total average layer thickness of 0.1 to 20 μm. 前記複合窒化物または複合炭窒化物層の上部に、少なくとも酸化アルミニウム層を含む上部層が1〜25μmの合計平均層厚で存在することを特徴とする請求項1乃至3のいずれか一項に記載の表面被覆切削工具。 The present invention according to any one of claims 1 to 3, wherein an upper layer including at least an aluminum oxide layer is present above the composite nitride or composite carbonitride layer with a total average layer thickness of 1 to 25 μm. The surface coating cutting tool described.
JP2016171400A 2016-09-02 2016-09-02 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer Active JP6761597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016171400A JP6761597B2 (en) 2016-09-02 2016-09-02 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016171400A JP6761597B2 (en) 2016-09-02 2016-09-02 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Publications (2)

Publication Number Publication Date
JP2018034277A JP2018034277A (en) 2018-03-08
JP6761597B2 true JP6761597B2 (en) 2020-09-30

Family

ID=61566795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016171400A Active JP6761597B2 (en) 2016-09-02 2016-09-02 Surface coating cutting tool with excellent chipping resistance due to the hard coating layer

Country Status (1)

Country Link
JP (1) JP6761597B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142097B2 (en) * 2018-09-05 2022-09-26 京セラ株式会社 coated tools and cutting tools
CN110144562B (en) * 2019-06-24 2020-05-19 北京师范大学 Preparation method of super-thick energy-absorbing coating

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005153072A (en) * 2003-11-26 2005-06-16 Nachi Fujikoshi Corp Coating tool suitable for mist machining
SE526857C2 (en) * 2003-12-22 2005-11-08 Seco Tools Ab Ways of coating a cutting tool using reactive magnetron sputtering
JP2008126334A (en) * 2006-11-17 2008-06-05 Mitsubishi Heavy Ind Ltd Wear resistant film and tool having the same
JP2009034766A (en) * 2007-08-01 2009-02-19 Mitsubishi Materials Corp Surface coated cutting tool with hard coat layer having improved chipping resistance and wear resistance
JP5152690B2 (en) * 2007-08-31 2013-02-27 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance with hard coating layer in heavy cutting
JP5035479B2 (en) * 2011-01-27 2012-09-26 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and wear resistance
JP5590329B2 (en) * 2011-02-03 2014-09-17 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance and chipping resistance with excellent hard coating layer
JP5257535B2 (en) * 2011-08-31 2013-08-07 三菱マテリアル株式会社 Surface coated cutting tool
JP6245432B2 (en) * 2013-03-29 2017-12-13 三菱マテリアル株式会社 Surface coated cutting tool
JP2014198362A (en) * 2013-03-29 2014-10-23 三菱マテリアル株式会社 Surface coated cutting tool
JP6519952B2 (en) * 2015-07-30 2019-05-29 三菱マテリアル株式会社 Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer

Also Published As

Publication number Publication date
JP2018034277A (en) 2018-03-08

Similar Documents

Publication Publication Date Title
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
CN107405695B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6578935B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6519952B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
WO2016148056A1 (en) Surface-coated cutting tool with rigid coating layers exhibiting excellent chipping resistance
JP7021607B2 (en) Surface-coated cutting tools with excellent chipping resistance and chipping resistance due to the hard coating layer
JP7121234B2 (en) A surface cutting tool with a hard coating that exhibits excellent chipping resistance
CN112770858B (en) Surface-coated cutting tool with hard coating layer exhibiting excellent chipping resistance
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP4474643B2 (en) Surface-coated cermet cutting tool whose hard coating layer exhibits excellent chipping resistance in high-speed intermittent cutting
JP6935058B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6774649B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP6573171B2 (en) Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer
US11998992B2 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6957824B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6796257B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP4730656B2 (en) Surface coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high speed heavy cutting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190315

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200128

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200807

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200820

R150 Certificate of patent or registration of utility model

Ref document number: 6761597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150