JP6850998B2 - Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance - Google Patents

Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance Download PDF

Info

Publication number
JP6850998B2
JP6850998B2 JP2017128981A JP2017128981A JP6850998B2 JP 6850998 B2 JP6850998 B2 JP 6850998B2 JP 2017128981 A JP2017128981 A JP 2017128981A JP 2017128981 A JP2017128981 A JP 2017128981A JP 6850998 B2 JP6850998 B2 JP 6850998B2
Authority
JP
Japan
Prior art keywords
layer
average
composite
hard coating
nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017128981A
Other languages
Japanese (ja)
Other versions
JP2019010707A (en
Inventor
翔 龍岡
翔 龍岡
佐藤 賢一
佐藤  賢一
西田 真
西田  真
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2017128981A priority Critical patent/JP6850998B2/en
Publication of JP2019010707A publication Critical patent/JP2019010707A/en
Application granted granted Critical
Publication of JP6850998B2 publication Critical patent/JP6850998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、合金鋼等の高熱発生を伴うとともに、切刃に対して衝撃的な負荷が作用する高速断続切削加工で、硬質被覆層が、優れた耐摩耗性や耐チッピング性を備え、さらにはチッピング、欠損、剥離等の発生を抑えることにより、長期の使用にわって優れた切削性能を発揮する表面被覆切削工具(以下、被覆工具ということがある)に関するものである。 The present invention is a high-speed intermittent cutting process in which a shocking load acts on the cutting edge while generating high heat of alloy steel or the like, and the hard coating layer has excellent wear resistance and chipping resistance. Is related to a surface-coated cutting tool (hereinafter, may be referred to as a coated tool) that exhibits excellent cutting performance over a long period of time by suppressing the occurrence of chipping, chipping, peeling, and the like.

従来、一般に、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された工具基体(以下、これらを総称して工具基体ということがある)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着形成した被覆工具が知られており、これらは、優れた耐摩耗性を発揮することが知られている。
ここで、前記従来のTi−Al系の複合窒化物層を蒸着形成した被覆工具は、比較的耐摩耗性に優れるものの、高速断続切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, it is generally composed of tungsten carbide (hereinafter referred to as WC) -based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) -based cermet or cubic boron nitride (hereinafter referred to as cBN) -based ultrahigh-pressure sintered body. As a hard coating layer, a coating tool in which a Ti—Al-based composite nitride layer is vapor-deposited on the surface of a tool substrate (hereinafter, these may be collectively referred to as a tool substrate) is known. Is known to exhibit excellent wear resistance.
Here, the conventional coated tool formed by vapor-depositing a Ti—Al-based composite nitride layer has relatively excellent wear resistance, but is liable to cause abnormal wear such as chipping when used under high-speed intermittent cutting conditions. Therefore, various proposals have been made for improving the hard coating layer.

例えば、特許文献1には、熱CVD法により、硬質被覆層として、立方晶構造の(Ti1−XAl)(C1−Y)層を蒸着形成するとともに、硬質被覆層と工具基体との界面側から、硬質被覆層の表層側に向かうにしたがって、硬質被覆層中のAl含有割合が漸次増加する組成傾斜構造を有することによって、組成に応じた(Ti1−XAl)(C1−Y)の格子定数の違いによる歪を積極的に導入する技術が開示されている。
そして、この技術によれば、例えば、(Ti1−XAl)(C1−Y)層からなる硬質被覆層を合金鋼の高速断続切削等に用いた場合に、チッピング、欠損、剥離等の発生が抑えられるとともに、長期の表面被覆工具の使用にわたって優れた耐摩耗性が発揮されるとされている。
For example, in Patent Document 1, a cubic (Ti 1-X Al X ) ( CY N 1-Y ) layer is vapor-deposited as a hard coating layer by a thermal CVD method, and the hard coating layer and a tool are formed. By having a composition gradient structure in which the Al content ratio in the hard coating layer gradually increases from the interface side with the substrate toward the surface layer side of the hard coating layer, the composition is adjusted (Ti 1-X Al X ). (C Y N 1-Y) technique of actively introducing distortion due to the difference in lattice constant is disclosed.
According to this technique, for example, when a hard coating layer composed of (Ti 1-X Al X ) ( CY N 1-Y ) layers is used for high-speed intermittent cutting of alloy steel, chipping, chipping, It is said that the occurrence of peeling and the like is suppressed, and excellent wear resistance is exhibited over a long period of use of the surface coating tool.

特開2013−212575号公報Japanese Unexamined Patent Publication No. 2013-212575

近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速化、高効率化の傾向にあり、被覆工具には、チッピング、欠損、剥離等の発生を更に抑え、長期の使用にわたって優れた耐摩耗性が求められている。
しかし、前記特許文献1に記載された技術は、硬質被覆層を合金鋼の高速断続切削等に用いた場合における、チッピング、欠損、剥離等の発生の抑制をすべく、格子定数の違いによる歪の積極的な導入に着目されているにすぎず、耐異常損傷性対策とチッピング、欠損、剥離等の発生の抑制の両立については特段の考慮がなされていない。
そこで、本発明は、合金鋼の高速断続切削等に供した場合であっても、優れた耐摩耗性を発揮するとともにチッピング、欠損、剥離等の発生の抑制がなされ、長期の使用にわたって優れた耐摩耗性、耐チッピング性を有する被覆工具を提供することを目的とするものである。
In recent years, there has been a strong demand for labor saving and energy saving in cutting, and along with this, cutting tends to be faster and more efficient, and the occurrence of chipping, chipping, peeling, etc. is further suppressed in the covering tool. , Excellent wear resistance is required for long-term use.
However, the technique described in Patent Document 1 is a strain due to a difference in lattice constant in order to suppress the occurrence of chipping, chipping, peeling, etc. when the hard coating layer is used for high-speed intermittent cutting of alloy steel. No particular consideration has been given to both measures against abnormal damage resistance and suppression of occurrence of chipping, chipping, peeling, etc.
Therefore, the present invention exhibits excellent wear resistance even when used for high-speed intermittent cutting of alloy steel, and suppresses the occurrence of chipping, chipping, peeling, etc., and is excellent over a long period of use. It is an object of the present invention to provide a covering tool having wear resistance and chipping resistance.

本発明者は、上述のとおり、優れた耐摩耗性を発揮するとともにチッピング、欠損、剥離等の発生の抑制がなされ、長期の使用にわたって優れた耐摩耗性を有する被覆工具を提供するとの観点から、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「(Ti1−xAl)(C1−y)」、「TiAlCN」で示すことがある)を含む硬質被覆層を蒸着形成した被覆工具の耐摩耗性を発揮させ、併せてチッピング、欠損、剥離等の発生を抑制すべく、鋭意研究を重ねた結果、次のような全く新規な知見を得た。 As described above, the present inventor provides a covering tool that exhibits excellent wear resistance, suppresses the occurrence of chipping, chipping, peeling, etc., and has excellent wear resistance over a long period of use. the composite nitride of at least Ti and Al or composite carbonitride hard coating layer containing (hereinafter, "(Ti 1-x Al x) (C y N 1-y) ", may be indicated by "TiAlCN") As a result of intensive research in order to exhibit the wear resistance of the coated tool formed by vapor deposition and to suppress the occurrence of chipping, chipping, peeling, etc., the following completely new findings were obtained.

すなわち、この全く新規な知見は、前記(Ti1−xAl)(C1−y)のNaCl型面心立方構造(立方晶構造ともいう)を有する結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面(工具基体の法線方向の断面)から解析し、電子線後方散乱回折による方位マッピングを0.01μm間隔で測定し、各々の測定点の結晶方位を解析し、隣り合う測定点同士の方位差が10度以上である場合を粒界と判定したとき、粒界によって区分された同一結晶粒内における測定点とそれに隣接する測定点との方位差の平均を計算し、各測定点での局所方位差平均値(KAM値)を求めた場合、局所方位差平均値(KAM値)が1度未満の測定点割合が50%以上の層と、局所方位差平均値(KAM値)が1度未満の測定点割合が50%未満の層と、が積層されているときに、被覆工具の耐摩耗性が向上するとともに、チッピング、欠損、剥離等の発生の抑制がなされ、切削性能の改善が図られるというものである。 That is, this completely new finding is that the crystal orientation of the crystal grains having the NaCl-type surface-centered cubic structure (also referred to as cubic crystal structure) of the above (Ti 1-x Al x ) ( Cy N 1-y) can be determined by electron. Analyze from the longitudinal cross section (cross section in the normal direction of the tool substrate) using a line backscattering diffractometer, measure the orientation mapping by electron beam backscattering diffraction at 0.01 μm intervals, and determine the crystal orientation of each measurement point. When the analysis is performed and the case where the orientation difference between adjacent measurement points is 10 degrees or more is determined as the grain boundary, the orientation difference between the measurement points in the same crystal grain classified by the grain boundaries and the measurement points adjacent thereto is When the average is calculated and the local orientation difference average value (KAM value) at each measurement point is obtained, the layer with a measurement point ratio of 50% or more where the local orientation difference average value (KAM value) is less than 1 degree and the local When layers with an azimuth difference average value (KAM value) of less than 1 degree and a measurement point ratio of less than 50% are laminated, the wear resistance of the covering tool is improved, and chipping, chipping, peeling, etc. The occurrence is suppressed and the cutting performance is improved.

したがって、前記のような積層された硬質被覆層を備えた被覆工具を、例えば、合金鋼の高速断続切削等に用いた場合には、硬質被覆層が耐摩耗性を有し、加えてチッピング、欠損、剥離等の発生が抑えられるとともに、長期の使用にわたって優れた切削性能を発揮することができるのである。 Therefore, when a coating tool provided with a laminated hard coating layer as described above is used, for example, for high-speed intermittent cutting of alloy steel, the hard coating layer has wear resistance, and in addition, chipping, The occurrence of chipping, peeling, etc. can be suppressed, and excellent cutting performance can be exhibited over a long period of use.

本発明は、前記知見に基づいてなされたものであり、以下のとおりのものである。
「(1)炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlとの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒を含み、
(c)また、前記NaCl型の面心立方構造を有するTiとAlとの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面から解析し、電子線後方散乱回折による結晶方位マッピングを測定し、各々の測定点の結晶方位を解析し、隣り合う測定点同士の方位差が10度以上である場合を粒界と判定したとき、粒界によって区分された同一結晶粒内において測定点と隣接する測定点との方位差の平均を計算し、各測定点での局所方位差平均値(KAM値)を求めた場合、該局所方位差平均値(KAM値)が1度未満の測定点の割合が50%以上であるA層と、該局所方位差平均値(KAM値)が1度未満の測定点の割合が50%未満であるB層が積層されており、組成式:(Ti1−xAl)(C1−y)で表した場合、A層およびB層のAlのTiとAlとの合量に占める平均含有割合xavgおよびCのCとNとの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足している、
ことを特徴とする表面被覆切削工具。
(2)前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒を有する相の占める割合が70面積%以上であることを特徴とする前記(1)に記載の表面被覆切削工具。
(3)前記A層および前記B層のそれぞれは、平均層厚が0.5μm以上であり、それぞれ2層以上積層したことを特徴とする前記(1)または(2)に記載の表面被覆切削工具。
(4)前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒化酸化物層のうちの1層または2層以上のTi化合物層からなる合計で0.1〜20.0μmの平均層厚を有する下部層が存在することを特徴とする前記(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5)前記硬質被覆層の外表面に少なくとも酸化アルミニウムを含む1層以上の上部層が合計で1.0〜25.0μmの平均層厚で形成されていることを特徴とする前記(1)〜(4)のいずれかに記載の表面被覆切削工具。」
The present invention has been made based on the above findings, and is as follows.
"(1) Surface coating cutting in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body. In the tool
(A) The hard coating layer contains at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm.
(B) The hard coating layer contains crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) Further, the crystal orientation of the crystal grains of the composite nitride or composite carbon nitride of Ti and Al having the NaCl-type surface-centered cubic structure is analyzed from the longitudinal cross section using an electron beam backscattering diffractometer. Then, when the crystal orientation mapping by electron beam backward scattering diffraction is measured, the crystal orientation of each measurement point is analyzed, and the case where the orientation difference between adjacent measurement points is 10 degrees or more is determined as a grain boundary, the grain is determined. When the average of the orientation differences between the measurement points and the adjacent measurement points within the same crystal grain classified by the boundary is calculated and the local orientation difference average value (KAM value) at each measurement point is obtained, the local orientation difference The ratio of measurement points having an average value (KAM value) of less than 1 degree is 50% or more, and the ratio of measurement points having a local orientation difference average value (KAM value) of less than 1 degree is less than 50%. When the B layer is laminated and represented by the composition formula: (Ti 1-x Al x ) ( Cy N 1-y ), the average of the A layer and the B layer Al in the total amount of Ti and Al. The average content ratio y avg of the content ratio x avg and C in the total amount of C and N (however, x avg and y avg are both atomic ratios) are 0.60 ≤ x avg ≤ 0.95, respectively. Satisfying 0 ≤ y avg ≤ 0.005,
A surface coating cutting tool characterized by that.
(2) The hard coating layer is characterized in that the ratio of the phase having crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure is 70 area% or more. The surface coating cutting tool according to (1) above.
(3) The surface coating cutting according to (1) or (2) above, wherein each of the A layer and the B layer has an average layer thickness of 0.5 μm or more, and two or more layers are laminated. tool.
(4) One or two or more Ti compounds among a carbide layer, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbonitride oxide layer of Ti between the tool substrate and the hard coating layer. The surface coating cutting tool according to any one of (1) to (3) above, wherein a lower layer having an average layer thickness of 0.1 to 20.0 μm in total is present.
(5) The above (1), wherein one or more upper layers containing at least aluminum oxide are formed on the outer surface of the hard coating layer with an average layer thickness of 1.0 to 25.0 μm in total. The surface coating cutting tool according to any one of (4). "

本発明は、硬質被覆層における局所方位差平均値(KAM値)が1度未満を示す測定点の割合が50%以上である層、すなわち、微小歪みが少ない層と、同割合が50%未満である層、すなわち、微小歪みが多い層とが積層されているため、微小歪みが少ない層により耐チッピング性が向上し、微小歪みを多く有する層により歪みによる硬さが向上し、耐摩耗性が向上する。その結果、この硬質被覆層を有する被覆工具は、優れた耐摩耗性・耐チッピング性を発揮し、工具として十分な長寿命化を達成する。 In the present invention, the ratio of measurement points indicating that the local orientation difference average value (KAM value) is less than 1 degree in the hard coating layer is 50% or more, that is, the ratio is less than 50% with the layer having less microdistortion. Since the layer is laminated with a layer having a large amount of minute strain, a layer having a small amount of minute strain improves the chipping resistance, and a layer having a large amount of the minute strain improves the hardness due to the strain and wear resistance. Is improved. As a result, the coating tool having this hard coating layer exhibits excellent wear resistance and chipping resistance, and achieves a sufficiently long life as a tool.

本発明の表面被覆切削工具の硬質被覆層である、TiとAlとの複合窒化物または複合炭窒化物のNaCl型面心立方構造を有する結晶粒内における局所方位差平均値(KAM値)の測定方法の概略説明図を示す。The mean value (KAM value) of the local orientation difference in the crystal grains having a NaCl-type face-centered cubic structure of a composite nitride of Ti and Al or a composite carbonitride, which is a hard coating layer of the surface coating cutting tool of the present invention. A schematic explanatory diagram of the measurement method is shown. 本発明の表面被覆切削工具が有する硬質被覆層を構成する、TiとAlとの複合窒化物または複合炭窒化物の縦断面を模式的に表した膜構成模式図である。It is a film composition schematic diagram schematically showing the longitudinal cross section of the composite nitride or composite carbonitride of Ti and Al constituting the hard coating layer of the surface coating cutting tool of the present invention. 本発明被覆工具6の硬質被覆層を構成する複合窒化物または複合炭窒化物の縦断面において、局所方位差平均値(KAM値)が1度未満を示す測定点の割合が50%以上であるA層における立方晶構造を有する個々の測定点の局所方位差平均値(KAM値)の測定点数割合についてのヒストグラムの一例を示すものである。In the longitudinal section of the composite nitride or composite carbonitride constituting the hard coating layer of the coating tool 6 of the present invention, the ratio of measurement points showing a local orientation difference average value (KAM value) of less than 1 degree is 50% or more. It is an example of the histogram about the measurement point ratio of the local orientation difference mean value (KAM value) of the individual measurement points having a cubic structure in the layer A. 本発明被覆工具6の硬質被覆層を構成する複合窒化物または複合炭窒化物の縦断面において、局所方位差平均値(KAM値)が1度未満を示す測定点数の割合が50%未満であるB層における立方晶構造を有する個々の測定点の局所方位差平均値(KAM値)の測定点数割合についてのヒストグラムの一例を示すものである。In the longitudinal section of the composite nitride or composite carbonitride constituting the hard coating layer of the coating tool 6 of the present invention, the ratio of the number of measurement points indicating that the local orientation difference average value (KAM value) is less than 1 degree is less than 50%. It is an example of the histogram about the measurement point ratio of the local orientation difference mean value (KAM value) of each measurement point having a cubic structure in the B layer.

以下、本発明で規定する事項の最適範囲の説明を含め、本発明を詳細に説明する。 Hereinafter, the present invention will be described in detail, including a description of the optimum range of the matters specified in the present invention.

TiとAlの複合窒化物または複合炭窒化物を含む硬質被覆層の平均層厚:
本発明の表面被覆切削工具が有する硬質被覆層は、組成式:(Ti1−xAl)(C1−y)で表されるTiとAlの複合窒化物または複合炭窒化物層を少なくとも含む。この複合窒化物または複合炭窒化物層を含む硬質被覆層は、硬さが高く、優れた耐摩耗性を有するが、特に平均層厚が1.0〜20.0μmのとき、その効果が際立って発揮される。その理由は、平均層厚が1.0μm未満では、平均層厚が薄いため長期の使用にわたっての耐摩耗性を十分確保することができず、一方、その平均層厚が20.0μmを超えると、TiとAlの複合窒化物または複合炭窒化物層の結晶粒が粗大化し易くなり、チッピングを発生しやすくなるからである。したがって、その平均層厚を1〜20μmと定めた。
Average thickness of hard coating layer containing Ti and Al composite nitride or composite carbonitride:
The hard coating layer of the surface coating cutting tool of the present invention is a composite nitride or composite carbonitride layer of Ti and Al represented by the composition formula: (Ti 1-x Al x ) ( Cy N 1-y). At least include. The hard coating layer containing the composite nitride or composite carbonitride layer has high hardness and excellent wear resistance, but the effect is remarkable particularly when the average layer thickness is 1.0 to 20.0 μm. Is demonstrated. The reason is that if the average layer thickness is less than 1.0 μm, the wear resistance over a long period of use cannot be sufficiently ensured because the average layer thickness is thin, while the average layer thickness exceeds 20.0 μm. This is because the crystal grains of the composite nitride or composite carbonitride layer of Ti and Al are likely to be coarsened, and chipping is likely to occur. Therefore, the average layer thickness was set to 1 to 20 μm.

硬質被覆層を構成する複合窒化物または複合炭窒化物層の組成:
本発明の表面被覆切削工具が有する硬質被覆層を構成する複合窒化物または複合炭窒化物層は、AlのTiとAlの合量に占める平均含有割合xavgおよびCのCとNの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足するように制御する。
その理由は、Alの平均含有割合xavgが0.60未満であると、TiとAlの複合窒化物または複合炭窒化物層は硬さに劣るため、合金鋼等の高速断続切削に供した場合には、耐摩耗性が十分でなく、一方、Alの平均含有割合xavgが0.95を超えると、相対的にTiの含有割合が減少するため、脆化を招き、耐チッピング性が低下するからである。したがって、Alの平均含有割合xavgは、0.60≦xavg≦0.95と定めた。
また、Cの平均含有割合yavgは、0≦yavg≦0.005の範囲の微量であるとき、複合窒化物または複合炭窒化物層と工具基体もしくは下部層との密着性が向上し、かつ、潤滑性が向上することによって切削時の衝撃を緩和し、結果として複合窒化物または複合炭窒化物層の耐欠損性および耐チッピング性が向上する。一方、C成分の平均含有割合yavgが0≦yavg≦0.005の範囲を逸脱すると、複合窒化物または複合炭窒化物層の靭性が低下するため耐欠損性および耐チッピング性が逆に低下するため好ましくない。したがって、C成分の平均含有割合yavgは、0≦yavg≦0.005と定めた。
Composition of composite nitride or composite carbonitride layer constituting the hard coating layer:
The composite nitride or composite carbonitride layer constituting the hard coating layer of the surface coating cutting tool of the present invention has an average content ratio of Al to the total amount of Ti and Al x avg and the total amount of C and N of C. The average content ratio y avg (where x avg and y avg are both atomic ratios) is controlled to satisfy 0.60 ≤ x avg ≤ 0.95 and 0 ≤ y avg ≤ 0.005, respectively. To do.
The reason is that when the average content ratio x avg of Al is less than 0.60, the composite nitride or composite carbonitride layer of Ti and Al is inferior in hardness, so that it is used for high-speed intermittent cutting of alloy steel and the like. In some cases, the abrasion resistance is not sufficient, while when the average Al content x avg exceeds 0.95, the Ti content is relatively reduced, resulting in embrittlement and chipping resistance. This is because it decreases. Therefore, the average content ratio x avg of Al was set to 0.60 ≦ x avg ≦ 0.95.
The average content ratio y avg of C is, 0 ≦ when y is avg ≦ 0.005 range trace to improve the adhesion between the composite nitride or composite carbonitride layer and the tool substrate or the lower layer, In addition, the improved lubricity alleviates the impact during cutting, and as a result, the fracture resistance and chipping resistance of the composite nitride or composite carbonitride layer are improved. On the other hand, if the average content ratio y avg of the C component deviates from the range of 0 ≦ y avg ≦ 0.005, the toughness of the composite nitride or composite carbonitride layer is lowered, so that the fracture resistance and chipping resistance are reversed. It is not preferable because it decreases. Therefore, the average content ratio y avg of the C component was set to 0 ≦ y avg ≦ 0.005.

複合窒化物または複合炭窒化物を構成するNaCl型の面心立方晶構造(立方晶構造)である各々の局所方位差平均値(KAM値):
まず、本発明において電子線後方散乱回折装置を用いて縦断面方向から0.01μm間隔で解析し、例えば図1に示すように、立方晶構造を有する結晶粒において測定領域を区分された測定点P(以下、ピクセルという)と隣接するピクセルとの間で10度以上の方位差がある場合、そこを粒界Bと定義する。ここで、縦断面方向とは、縦断面に垂直な方向(工具基体表面に平行な方向)を意味する。縦断面とは、工具基体表面に垂直な工具の断面(工具基体表面の法線方向の断面)を意味する。そして、粒界で囲まれた領域を1つの結晶粒と定義する。ただし、隣接するピクセル全てと10度以上の方位差がある単独に存在するピクセルは結晶粒とせず、2ピクセル以上が連結しているものを結晶粒として取り扱う。
そして、結晶粒内の隣接する2ピクセルの方位差の平均値を求め、これをKAM(Kernel Average Misorientation)値と定義する。なお、本発明における“局所方位差平均値”とは、このKAM値を意味する。一般的にピクセルiにおけるKAM値を数式で表す場合、測定領域を六角形に区分して解析すると、注目点(ピクセル)を取囲む最大6つの測定点間の方位差の平均として下記数1式によって表現できる。なお、数1式中のmは測定点iと同一結晶粒内で隣接するピクセル数、αk、iはピクセルiと隣接するピクセルkとの方位差を表す。つまり、図1に示される注目点UにおけるKAM値を数式で表すと測定対象となるピクセルは1〜6の6点となるため下記数式2で求めることができ、注目点VにおけるKAM値は測定対象となるピクセルは1、2の2点となるため下記数式3で求めることができる。
Each local orientation difference average value (KAM value) which is a NaCl-type face-centered cubic structure (cubic structure) constituting the composite nitride or the composite carbonitride:
First, in the present invention, an electron backscatter diffraction device is used to analyze at intervals of 0.01 μm from the longitudinal direction, and as shown in FIG. 1, for example, measurement points in which measurement regions are divided in crystal grains having a cubic structure. When there is an orientation difference of 10 degrees or more between P (hereinafter referred to as a pixel) and an adjacent pixel, that is defined as a grain boundary B. Here, the vertical cross-sectional direction means a direction perpendicular to the vertical cross section (a direction parallel to the surface of the tool substrate). The vertical cross section means a cross section of a tool perpendicular to the surface of the tool base (cross section in the normal direction of the surface of the tool base). Then, the region surrounded by the grain boundaries is defined as one crystal grain. However, a pixel that exists independently with an orientation difference of 10 degrees or more from all adjacent pixels is not regarded as a crystal grain, and a pixel in which two or more pixels are connected is treated as a crystal grain.
Then, the average value of the orientation difference between two adjacent pixels in the crystal grain is obtained, and this is defined as the KAM (Kernel Average Missionation) value. The "local orientation difference average value" in the present invention means this KAM value. Generally, when the KAM value in pixel i is expressed by a mathematical formula, when the measurement area is divided into hexagons and analyzed, the following equation 1 is used as the average of the orientation differences between up to 6 measurement points surrounding the point of interest (pixel). Can be expressed by. In the equation 1, m represents the number of pixels adjacent to the measurement point i in the same crystal grain, and α k and i represent the orientation difference between the pixel i and the adjacent pixel k. That is, when the KAM value at the point of interest U shown in FIG. 1 is expressed by a mathematical formula, the number of pixels to be measured is 6 points 1 to 6, so that it can be obtained by the following mathematical formula 2, and the KAM value at the point of interest V is measured. Since the target pixels are two points, 1 and 2, it can be calculated by the following mathematical formula 3.

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

ここで、電子線後方散乱回折装置を用いた測定は、例えば、0.01μm間隔で、幅は100μm、縦は膜厚の測定範囲内の任意の5視野で測定を行い、それを解析ソフトとしてTSL社製 OIM analysis 6を用いて、測定領域を六角形に区分して解析を実施するものであり、この測定結果を基に、各ピクセルにおける局所方位差平均値(KAM値)を求めた。
ここで、本発明において局所方位差平均値(KAM値)が1度未満の割合が50%以上の層(図3)と同割合が50%未満の層(図4)が積層されており、各層との境界とは、工具基体の表面の法線方向に、0.1μmごとに区切った各区分における局所方位差平均値(KAM値)が1度未満のピクセル数の割合、すなわち、局所方位差平均値(KAM値)を0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・9度以上10度未満と0〜10度の範囲を1度ごとに区切ったときの0度以上1度未満に属するピクセル数の割合、が50%以上である区分と50%未満である区分が縦断面方向に連続して存在するときの当該両区分の境界である。
このように、本発明の表面被覆切削工具が有するAlとTiの複合窒化物または複合炭窒化物層を構成する硬質被覆層は、局所的な結晶方位のばらつきが小さい、すなわち、微小歪みが少ない層と、局所的な結晶方位のばらつきの大きい、すなわち、微小歪みが多い層とを有するため、前者が耐チッピング性の向上に寄与し、後者が耐摩耗性の向上に寄与する。
Here, in the measurement using the electron backscatter diffraction device, for example, the measurement is performed at intervals of 0.01 μm, the width is 100 μm, and the length is measured in any 5 fields within the measurement range of the film thickness, and this is used as analysis software. An analysis was performed by dividing the measurement area into hexagons using OIM analysis 6 manufactured by TSL, and based on the measurement results, the average local orientation difference (KAM value) at each pixel was obtained.
Here, in the present invention, a layer having a local orientation difference average value (KAM value) of less than 1 degree of 50% or more (FIG. 3) and a layer having the same ratio of less than 50% (FIG. 4) are laminated. The boundary with each layer is the ratio of the number of pixels in which the mean local orientation difference (KAM value) is less than 1 degree in each division divided by 0.1 μm in the normal direction of the surface of the tool substrate, that is, the local orientation. Difference mean value (KAM value) is 0 degrees or more and less than 1 degree, 1 degree or more and less than 2 degrees, 2 degrees or more and less than 3 degrees, 3 degrees or more and less than 4 degrees, ... 9 degrees or more and less than 10 degrees and 0 to 10 degrees When the ratio of the number of pixels belonging to 0 degrees or more and less than 1 degree when the range of is divided by 1 degree is 50% or more and less than 50% is continuously present in the vertical cross-sectional direction. This is the boundary between the two categories.
As described above, the hard coating layer constituting the Al and Ti composite nitride or composite carbonitride layer possessed by the surface coating cutting tool of the present invention has a small variation in local crystal orientation, that is, a small minute strain. Since it has a layer and a layer having a large variation in local crystal orientation, that is, a layer having a large amount of minute strain, the former contributes to the improvement of chipping resistance and the latter contributes to the improvement of wear resistance.

複合窒化物層または複合炭窒化物層内の立方晶構造を有する個々の結晶粒の面積割合:
複合窒化物層または複合炭窒化物層における立方晶構造を有する結晶粒の面積割合が70面積%以上であることが好ましい。これにより、高硬度である立方晶構造を有する結晶粒の面積比率が六方晶結晶粒に比べて相対的に高くなり、硬さが向上するという効果を得ることができる。この面積率は、より好ましくは75面積%以上である。
Area ratio of individual crystal grains having a cubic structure in the composite nitride layer or composite carbonitride layer:
It is preferable that the area ratio of the crystal grains having a cubic structure in the composite nitride layer or the composite carbonitride layer is 70 area% or more. As a result, the area ratio of the crystal grains having a cubic structure with high hardness is relatively higher than that of the hexagonal crystal grains, and the effect of improving the hardness can be obtained. This area ratio is more preferably 75 area% or more.

A層およびB層の平均層厚および積層数:
A層およびB層の平均層厚がともに0.5μm以上、積層数が4層以上となるよう構成することにより、靭性および耐欠損性が向上する効果をより一層発揮させることができる。
すなわち、0.5μm以上としたのは、0.5μm未満であると、積層構造としても各層の持つ特性が十分に発揮できないときがあるためである。したがって、平均層厚を0.5μm以上とすることが好ましい。また、積層数を4層以上とすると、積層構造によるクラックの進展を抑制する効果がより発揮され、耐欠損性を向上させることができる。
Average layer thickness and number of layers of A layer and B layer:
By configuring the layers A and B to have an average layer thickness of 0.5 μm or more and a number of layers of 4 or more, the effect of improving toughness and fracture resistance can be further exhibited.
That is, the reason why it is set to 0.5 μm or more is that if it is less than 0.5 μm, the characteristics of each layer may not be sufficiently exhibited even as a laminated structure. Therefore, it is preferable that the average layer thickness is 0.5 μm or more. Further, when the number of laminated layers is 4 or more, the effect of suppressing the growth of cracks due to the laminated structure is more exhibited, and the fracture resistance can be improved.

下部層および上部層:
本発明の表面被覆切削工具が有する複合窒化物または複合炭窒化物層は、それだけでも十分な効果を奏するが、Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなり、合計で0.1〜20.0μmの平均層厚を有する下部層を設けた場合、および/または、合計で1.0〜25.0μmの平均層厚を有する酸化アルミニウム層を含む上部層を設けた場合には、これらの層が奏する効果と相俟って、一層優れた特性を創出することができる。Tiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうちの1層または2層以上のTi化合物層からなる下部層を設ける場合、下部層の合計の平均層厚が0.1μm未満では、下部層の効果が十分に奏されず、一方、20.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。また、酸化アルミニウム層を含む上部層の合計の平均層厚が1.0μm未満では、上部層の効果が十分に奏されず、一方、25.0μmを超えると結晶粒が粗大化し易くなり、チッピングを発生しやすくなる。
Lower and upper layers:
The composite nitride or composite carbonitride layer of the surface coating cutting tool of the present invention has a sufficient effect by itself, but Ti carbide layer, nitride layer, carbonitride layer, carbon oxide layer and carbonitride oxidation. When a lower layer consisting of one or more Ti compound layers of the material layer and having an average layer thickness of 0.1 to 20.0 μm in total is provided, and / or 1.0 to 1.0 in total. When the upper layer including the aluminum oxide layer having an average layer thickness of 25.0 μm is provided, more excellent characteristics can be created in combination with the effects of these layers. When a lower layer consisting of one or more Ti compound layers of a carbide layer, a nitride layer, a carbonitride layer, a coal oxide layer and a carbon dioxide oxide layer of Ti is provided, the average of the total of the lower layers is provided. If the layer thickness is less than 0.1 μm, the effect of the lower layer is not sufficiently exhibited, while if it exceeds 20.0 μm, the crystal grains are likely to be coarsened and chipping is likely to occur. Further, if the total average layer thickness of the upper layer including the aluminum oxide layer is less than 1.0 μm, the effect of the upper layer is not sufficiently exhibited, while if it exceeds 25.0 μm, the crystal grains tend to be coarsened and chipping. Is likely to occur.

なお、下部層および上部層を有する本発明の硬質被覆層を構成するTiとAlの複合窒化物または複合炭窒化物層の断面を模式的に表した図を図2に示す。 FIG. 2 is a diagram schematically showing a cross section of a composite nitride or composite carbonitride layer of Ti and Al constituting the hard coating layer of the present invention having a lower layer and an upper layer.

次に、本発明の被覆工具を実施例により具体的に説明する。
なお、実施例としては、炭化タングステン基超硬合金、TiCN基サーメットを工具基体とする被覆工具について述べるが、工具基体として立方晶窒化ホウ素基超高圧焼結体を用いた場合も同様である。
Next, the covering tool of the present invention will be specifically described with reference to Examples.
As an example, a coated tool using a tungsten carbide-based cemented carbide and a TiCN-based cermet as a tool base will be described, but the same applies when a cubic boron nitride-based ultrahigh-pressure sintered body is used as the tool base.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、TaC粉末、NbC粉末、Cr32粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもった炭化タングステン基超硬合金製の工具基体A〜Cをそれぞれ製造した。 As raw material powders, WC powder, TiC powder, TaC powder, NbC powder, Cr 3 C 2 powder and Co powder having an average particle size of 1 to 3 μm are prepared, and these raw material powders are blended as shown in Table 1. It was blended into the composition, further added with wax, mixed in a ball mill in acetone for 24 hours, dried under reduced pressure, press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was pressed in a vacuum of 5 Pa at 1370. Vacuum sintered at a predetermined temperature within the range of ~ 1470 ° C. under the condition of holding for 1 hour, and after sintering, tool substrates A to C made of tungsten carbide-based superhard alloy having an insert shape of ISO standard SEEN1203AFSN are respectively. Manufactured.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2C粉末、ZrC粉末、NbC粉末、WC粉末、Co粉末およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったTiCN基サーメット製の工具基体Dを作製した。 Further, as the raw material powder, both (TiC / TiN = 50/50 in mass ratio) TiCN having an average particle diameter of 0.5~2μm powder, Mo 2 C powder, ZrC powder, NbC powder, WC powder, Co powder And Ni powder are prepared, these raw material powders are blended into the compounding composition shown in Table 2, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa. The body was sintered in a nitrogen atmosphere of 1.3 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, a tool base D made of TiCN-based cermet having an insert shape of ISO standard SEEN1203AFSN was prepared.

次に、これらの工具基体A〜Dの表面に、CVD装置を用い、
(a)表4、表5に示される形成条件A〜G、すなわち、NHとHからなるガス群Aと、AlCl、TiCl、N、C、Hからなるガス群Bをそれぞれ供給する。
(b)より具体的には、反応ガス組成(容量%)は、
(形成条件1)A層:局所方位差平均値(KAM値)1度未満が50%以上狙いの層
ガス群A NH:0.7〜1.5%、H:15〜25%
ガス群B AlCl:0.5〜0.9%、TiCl:0.2〜0.3%、N:0〜6%、C:0〜0.5%、H:残部
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:1〜5秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒
(形成条件2)B層:局所方位差平均値(KAM値)1度未満が50%未満狙いの層
ガス群A NH:3.0〜5.0%、N:6〜10%、H:30〜40%
ガス群B AlCl:0.6〜0.9%、TiCl:0.2〜0.3%、N:0〜6%、C:0〜0.5%、H:残部
反応雰囲気圧力:4.5〜5.0kPa
反応雰囲気温度:700〜900℃
供給周期:1〜5秒
1周期当たりのガス供給時間:0.15〜0.25秒
ガス群Aとガス群Bの供給の位相差:0.10〜0.20秒
形成条件1および2を所定回数繰り返すことにより、局所方位差平均値(KAM値)1度未満の測定点割合が50%以上の層と、同割合が50%未満の層が積層され、本発明被覆工具1〜12を製造した。
なお、本発明被覆工具は6〜11は、表3に記載された成膜条件により、表6に示された下部層および/または上部層を形成した。
Next, a CVD device is used on the surfaces of these tool bases A to D.
(A) The formation conditions A to G shown in Tables 4 and 5, that is, the gas group A composed of NH 3 and H 2, and the gas composed of AlCl 3 , TiCl 4 , N 2 , C 2 H 4 , and H 2. Group B is supplied respectively.
More specifically, the reaction gas composition (volume%) is
(Formation condition 1) Layer A: Mean value of local orientation difference (KAM value) 50% or more of less than 1 degree Target layer Gas group A NH 3 : 0.7 to 1.5%, H 2 : 15 to 25%
Gas group B AlCl 3 : 0.5 to 0.9%, TiCl 4 : 0.2 to 0.3%, N 2 : 0 to 6%, C 2 H 4 : 0 to 0.5%, H 2 : Remaining reaction atmosphere pressure: 4.5-5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds (formation condition 2) B layer: local orientation difference average (KAM values) layer gas group is aimed less than 50% less than 1 degree a NH 3: 3.0~5.0%, N 2: 6~10%, H 2: 30~40 %
Gas group B AlCl 3 : 0.6 to 0.9%, TiCl 4 : 0.2 to 0.3%, N 2 : 0 to 6%, C 2 H 4 : 0 to 0.5%, H 2 : Remaining reaction atmosphere pressure: 4.5-5.0 kPa
Reaction atmosphere temperature: 700-900 ° C
Supply cycle: 1 to 5 seconds Gas supply time per cycle: 0.15 to 0.25 seconds Phase difference between supply of gas group A and gas group B: 0.10 to 0.20 seconds Formation conditions 1 and 2 By repeating the process a predetermined number of times, a layer having a measurement point ratio of less than 1 degree and a layer having a measurement point ratio of less than 1 degree and a layer having the same ratio of less than 50% are laminated, and the covering tools 1 to 12 of the present invention can be used. Manufactured.
In the covering tools of the present invention, 6 to 11 formed the lower layer and / or the upper layer shown in Table 6 under the film forming conditions shown in Table 3.

また、比較の目的で、工具基体A〜Dの表面に、表4、表5に示される形成条件A´〜G´で本発明被覆工具1〜12と同様に、少なくともTiとAlの複合窒化物または複合炭窒化物層を含む硬質被覆層を蒸着形成し、比較被覆工具1〜12を製造した。形成条件F´、G´に関しては、比較のため積層構造とせずに、それぞれA層またはB層の単層構造とした。
なお、本発明被覆工具6〜11と同様に、比較被覆工具6〜11については、表3に示される形成条件で、表6に示される下部層および/または上部層を形成した。
Further, for the purpose of comparison, at least Ti and Al composite nitrides are formed on the surfaces of the tool substrates A to D under the formation conditions A'to G'shown in Tables 4 and 5 as in the coated tools 1 to 12 of the present invention. A hard coating layer containing a material or a composite carbonitride layer was formed by vapor deposition to manufacture comparative coating tools 1 to 12. Regarding the formation conditions F'and G', for comparison, a single-layer structure of A layer or B layer was used instead of a laminated structure.
Similar to the covering tools 6 to 11 of the present invention, the comparative covering tools 6 to 11 formed the lower layer and / or the upper layer shown in Table 6 under the formation conditions shown in Table 3.

また、本発明被覆工具1〜12、比較被覆工具1〜12の各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。その結果を表7および表8に示す。 Further, the cross section (vertical cross section) of each constituent layer of the covering tools 1 to 12 and the comparative covering tools 1 to 12 in the direction perpendicular to the tool substrate was measured using a scanning electron microscope (magnification: 5000 times). The average layer thickness was obtained by measuring the layer thicknesses at five points in the observation field and averaging them. The results are shown in Tables 7 and 8.

複合窒化物または複合炭窒化物層のAlの平均含有割合xavgについては、オージェ電子分光法(Auger Electron Spectroscopy:AES)を用い、試料断面を研磨した試料において、電子線を縦断面側から照射し、膜厚方向に線分析を行って得られたオージェ電子の解析結果の5本を用いて各層の平均からAlの平均含有割合xavgを求めた。Cの平均含有割合yavgについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。イオンビームを縦面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合yavgはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただし、Cの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外する。
その結果を表7および表8に示す。
For the average Al content x avg of the composite nitride or composite carbon nitride layer, an electron beam is irradiated from the longitudinal section side of the sample whose sample cross section has been polished by using Auger electron spectroscopy (AES). Then, the average Al content ratio x avg was obtained from the average of each layer using five Auger electron analysis results obtained by performing line analysis in the film thickness direction. The average content ratio of C, y avg , was determined by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). An ion beam was irradiated in a range of 70 μm × 70 μm from the vertical surface side, and the concentration of the component released by the sputtering action was measured in the depth direction. The average content ratio y avg of C indicates the average value in the depth direction for the composite nitride or composite carbonitride layer of Ti and Al. However, the content ratio of C excludes the unavoidable content ratio of C contained even if a gas containing C is not intentionally used as a gas raw material.
The results are shown in Tables 7 and 8.

さらに、電子線後方散乱回折装置を用いてTiとAlの複合窒化物または複合炭窒化物層を構成する立方晶構造を有する個々の結晶粒の結晶方位を縦断面方向から解析し、隣接するピクセル間で10度以上の方位差がある場合、そこを粒界とし、粒界で囲まれた領域を1つの結晶粒とし、前記した測定領域に対して0.01μmの間隔で各ピクセルにおける結晶粒内で隣接するピクセルとの局所方位差平均値(KAM値)を求めた。局所方位差平均値(KAM値)が1度未満の割合が50%以上の層と同割合が50%未満の層との境界は、層厚方向(工具基体の表面の法線方向)に、0.1μmごとに区切って各区分における局所方位差平均値(KAM値)が1度未満のピクセル数の割合、すなわち、局所方位差平均値(KAM値)を0度以上1度未満、1度以上2度未満、2度以上3度未満、3度以上4度未満、・・・9度以上10度未満と0〜10度の範囲を1度ごとに区切ったときの0度以上1度未満に属するピクセル数の割合、が50%以上である区分と50%未満である区分が縦断面方向に連続して存在するとき、当該両区分の境界とした。これによって積層構造を形成する各層のピクセル数の割合(割合)および層厚を求めた。その結果を表7および表8に示す。なお、表8の「各層の局所方位差平均値(KAM値)が1度未満の測定点の割合」の欄において「#」をつけた層は、当該「#」をつけた層を形成しようとした(狙った)ものの、当該割合が()内の値となって、形成しようとした層が形成できなかったことを示している。
図3に、本発明被覆工具6A層について測定した局所方位差平均値(KAM値)の0〜10度の範囲のヒストグラムの一例を示し、また、図4には、本発明被覆工具6B層について測定した局所方位差平均値(KAM値)の同ヒストグラムの一例を示す。
Furthermore, using an electron backscatter diffraction device, the crystal orientation of individual crystal grains having a cubic structure constituting a Ti and Al composite nitride or composite carbon nitride layer is analyzed from the longitudinal cross-sectional direction, and adjacent pixels are analyzed. If there is an orientation difference of 10 degrees or more between them, that is the grain boundary, the area surrounded by the grain boundary is one crystal grain, and the crystal grain at each pixel at an interval of 0.01 μm with respect to the above-mentioned measurement area. The average value (KAM value) of the local orientation difference with the adjacent pixel was obtained. The boundary between a layer having a local orientation difference average value (KAM value) of less than 1 degree of 50% or more and a layer having the same ratio of less than 50% is in the layer thickness direction (normal direction of the surface of the tool substrate). The ratio of the number of pixels whose local orientation difference average value (KAM value) is less than 1 degree in each division by dividing by 0.1 μm, that is, the local orientation difference average value (KAM value) is 0 degrees or more and less than 1 degree, 1 degree. More than 2 degrees less than 2 degrees less than 2 degrees less than 3 degrees 3 degrees or more and less than 4 degrees, ... 9 degrees or more and less than 10 degrees and 0 degrees or more and less than 1 degree when the range of 0 to 10 degrees is divided for each degree When the ratio of the number of pixels belonging to is 50% or more and the division having less than 50% continuously exists in the vertical cross-sectional direction, it is defined as the boundary between the two divisions. From this, the ratio (ratio) of the number of pixels of each layer forming the laminated structure and the layer thickness were obtained. The results are shown in Tables 7 and 8. In addition, the layer with "#" in the column of "ratio of measurement points where the average local orientation difference (KAM value) of each layer is less than 1 degree" in Table 8 will form the layer with the "#". However, the ratio is the value in (), indicating that the layer to be formed could not be formed.
FIG. 3 shows an example of a histogram in the range of 0 to 10 degrees of the local orientation difference average value (KAM value) measured for the coating tool 6A layer of the present invention, and FIG. 4 shows the coating tool 6B layer of the present invention. An example of the same histogram of the measured local orientation difference average value (KAM value) is shown.

また、TiとAlの複合窒化物層または複合炭窒化物層における立方晶構造を有する結晶粒の面積割合は、測定範囲を、縦断面方向に100μm、膜厚の測定範囲で十分な長さの範囲とし、前記硬質被膜層の縦断面を研磨し、電子線後方散乱回折像装置を用いて、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、電子線を0.01μm間隔で照射して得られる電子線後方散乱回折像に基づき個々の結晶粒の結晶構造を解析することにより求めた。その結果を、表7および表8に示す。 Further, the area ratio of the crystal grains having a cubic structure in the composite nitride layer or composite carbon nitride layer of Ti and Al is 100 μm in the longitudinal cross-sectional direction, which is a sufficient length in the measurement range of the film thickness. The vertical cross section of the hard coating layer is polished, and an electron beam with an acceleration voltage of 15 kV is applied to the polished surface at an incident angle of 70 degrees with an irradiation current of 1 nA using an electron backscatter diffraction image device. It was obtained by analyzing the crystal structure of each crystal grain based on the electron backscatter diffraction image obtained by irradiating the rays at intervals of 0.01 μm. The results are shown in Tables 7 and 8.

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

次に、前記各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜12、比較被覆工具1〜12について、以下に示す、合金鋼の高速断続切削の一種である乾式高速正面フライス、センターカット切削加工試験を実施し、切刃の逃げ面摩耗幅を測定した。その結果を表9に示す。 Next, with the various covering tools clamped to the tip of a tool steel cutter having a cutter diameter of 125 mm with a fixing jig, the covering tools 1 to 12 of the present invention and the comparative covering tools 1 to 12 are described below. A dry high-speed face milling cutter, which is a type of high-speed intermittent cutting of alloy steel, and a center-cut cutting process test were carried out, and the flank wear width of the cutting edge was measured. The results are shown in Table 9.

工具基体:炭化タングステン基超硬合金、炭窒化チタン基サーメット
切削試験:乾式フライス、センターカット切削加工
被削材:JIS・SCM445幅100mm、長さ400mmのブロック材
回転速度:764 min−1
切削速度:300 m/min
切り込み:2.0 mm
一刃送り量:0.2 mm/刃
切削時間:8分
(通常の切削速度:150〜200m/min)
Tool Base: Tungsten Carbide Cemented Carbide, Titanium Nitride Cermet Cutting Test: Dry Milling Cutter, Center Cut Cutting Work Material: JIS / SCM445 Width 100 mm, Length 400 mm Block Material Rotation Speed: 764 min -1
Cutting speed: 300 m / min
Notch: 2.0 mm
Single blade feed amount: 0.2 mm / blade cutting time: 8 minutes (normal cutting speed: 150 to 200 m / min)

Figure 0006850998
Figure 0006850998

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、TaC粉末、NbC粉末、Cr32粉末、TiN粉末およびCo粉末を用意し、これら原料粉末を、表10に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した。その後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結した。焼結後、切刃部にR:0.07mmのホーニング加工を施すことによりISO規格CNMG120412のインサート形状をもったWC基超硬合金製の工具基体α〜γをそれぞれ製造した。 As raw material powders, both WC powder having an average particle size of 1 to 3 [mu] m, TiC powder, ZrC powder, TaC powder, NbC powder, Cr 3 C 2 powder, prepared TiN powder and Co powder, these raw material powders, It was blended to the blending composition shown in Table 10, further added with wax, mixed in a ball mill for 24 hours in acetone, and dried under reduced pressure. Then, it was press-molded into a green compact having a predetermined shape at a pressure of 98 MPa, and the green compact was vacuum sintered in a vacuum of 5 Pa at a predetermined temperature in the range of 1370 to 1470 ° C. for 1 hour. After sintering, the cutting edge portion was subjected to a honing process of R: 0.07 mm to produce tool substrates α to γ made of WC-based cemented carbide having an insert shape of ISO standard CNMG120412, respectively.

また、原料粉末として、いずれも0.1〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、NbC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表11に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、98MPaの圧力で圧粉体にプレス成形し、この圧粉体を1.3kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.09mmのホーニング加工を施すことによりISO規格・CNMG120412のインサート形状をもったTiCN基サーメット製の工具基体δを形成した。 Further, as raw material powders, TiCN (TiC / TiN = 50/50 by mass ratio) powder, NbC powder, WC powder, Co powder, and Ni powder, each of which has an average particle size of 0.1 to 2 μm, are prepared. These raw material powders were blended into the compounding composition shown in Table 11, wet-mixed with a ball mill for 24 hours, dried, and then press-molded into a green compact at a pressure of 98 MPa, and the green compact was pressed with 1.3 kPa of nitrogen. TiCN group with insert shape of ISO standard CNMG120412 by sintering in atmosphere under the condition of holding at temperature: 1500 ° C for 1 hour, and after sintering, honing processing of R: 0.09 mm is applied to the cutting edge part. A tool base δ made of cermet was formed.

次に、これらの工具基体α〜δの表面に、実施例1と同様の方法により表4および表5に示される条件で、CVD装置を用いて、TiAlCN層を形成し、表13に示される本発明被覆工具13〜24を得た。
なお、本発明被覆工具は17〜23は、表3に記載された形成条件により、表12に示された下部層および/または上部層を形成した。
Next, a TiAlCN layer is formed on the surfaces of these tool bases α to δ by the same method as in Example 1 under the conditions shown in Tables 4 and 5, using a CVD apparatus, and is shown in Table 13. The covering tools 13 to 24 of the present invention were obtained.
In the covering tools of the present invention, 17 to 23 formed the lower layer and / or the upper layer shown in Table 12 under the formation conditions shown in Table 3.

また、実施例1と同様に、比較の目的で、工具基体α〜δの表面に、表4および5に示される条件によりCVD法を用いることにより、表14に示されるTiAlCN層を含む硬質被覆層を蒸着形成して比較被覆工具13〜24を製造した。
なお、比較被覆工具17〜23については、表3に示される形成条件により、表12に示された下部層および/または上部層を形成した。
Further, as in Example 1, for the purpose of comparison, the surfaces of the tool bases α to δ are hard-coated with the TiAlCN layer shown in Table 14 by using the CVD method under the conditions shown in Tables 4 and 5. Layers were vapor-deposited to produce comparative coating tools 13-24.
For the comparative covering tools 17 to 23, the lower layer and / or the upper layer shown in Table 12 were formed according to the formation conditions shown in Table 3.

実施例1と同様に、本発明被覆工具13〜24、比較被覆工具13〜24の各構成層の工具基体に垂直な方向の断面(縦断面)を、走査型電子顕微鏡(倍率5000倍)を用いて測定し、観察視野内の5点の層厚を測って平均して平均層厚を求めた。 Similar to Example 1, a scanning electron microscope (magnification of 5000 times) is used to obtain a cross section (longitudinal cross section) of each of the constituent layers of the covering tools 13 to 24 of the present invention and the comparative covering tools 13 to 24 in the direction perpendicular to the tool substrate. The average layer thickness was obtained by measuring the layer thicknesses at five points in the observation field and averaging them.

また、実施例1と同様に、前記本発明被覆工具13〜24、比較被覆工具13〜24の硬質被覆層について、A層およびB層の平均Al含有割合xと平均C含有割合yを測定し、さらに、前述の方法で得られたA層およびB層における局所方位差平均値(KAM値)が1度未満となる測定点数の割合、各層の層厚および複合窒化物層または複合炭窒化物層における立方晶結晶粒の面積割合を求めた。これらの結果を表13、表14に示す。 Further, in the same manner as in Example 1, the average Al content ratio x and the average C content ratio y of the A layer and the B layer were measured for the hard coating layers of the covering tools 13 to 24 of the present invention and the comparative covering tools 13 to 24. Furthermore, the ratio of the number of measurement points at which the local orientation difference average value (KAM value) in the A layer and the B layer obtained by the above method is less than 1 degree, the layer thickness of each layer, and the composite nitride layer or composite carbon nitride. The area ratio of cubic crystal grains in the layer was determined. These results are shown in Tables 13 and 14.

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

Figure 0006850998
Figure 0006850998

次に、前記各種の被覆工具をいずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆工具13〜24、比較被覆工具13〜24について、以下に示す、炭素鋼の乾式高速断続切削試験(切削条件1)、鋳鉄の湿式高速断続切削試験(切削条件2)を実施し、いずれも切刃の逃げ面摩耗幅を測定した。その結果を表15に示す。なお、比較被覆工具13〜24については、チッピング発生が原因で寿命に至ったため、寿命に至るまでの時間を表15示す。 Next, with the various covering tools screwed to the tip of the tool steel cutting tool with a fixing jig, the covering tools 13 to 24 of the present invention and the comparative covering tools 13 to 24 are shown below. A dry high-speed intermittent cutting test for carbon steel (cutting condition 1) and a wet high-speed intermittent cutting test for cast iron (cutting condition 2) were carried out, and the flank wear width of the cutting edge was measured in both cases. The results are shown in Table 15. Table 15 shows the time required for the comparative covering tools 13 to 24 to reach the end of their life due to the occurrence of chipping.

切削条件1:
被削材:JIS・S55Cの長さ方向等間隔4本縦溝入り丸棒
切削速度:320m/min
切り込み:2.0mm
一刃送り量:0.2mm/刃
切削時間:5分
(通常の切削速度は、220m/min)
Cutting condition 1:
Work material: JIS / S55C with 4 vertical grooves at equal intervals in the length direction Cutting speed: 320 m / min
Notch: 2.0 mm
Single blade feed amount: 0.2 mm / blade cutting time: 5 minutes (normal cutting speed is 220 m / min)

切削条件2:
被削材:JIS・FCD700の長さ方向等間隔4本縦溝入り丸棒
切削速度:320m/min
切り込み:2.0mm
一刃送り量:0.2mm/刃
切削時間:5分
(通常の切削速度は、200m/min)
Cutting condition 2:
Work material: JIS / FCD700 with 4 vertical grooves at equal intervals in the length direction Cutting speed: 320 m / min
Notch: 2.0 mm
Single blade feed amount: 0.2 mm / blade cutting time: 5 minutes (normal cutting speed is 200 m / min)

Figure 0006850998
Figure 0006850998

表9および表15に示される結果から、本発明の被覆工具は、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成するNaCl型の面心立方晶結晶粒内において、局所方位差平均値(KAM値)が1度未満を示すピクセル数の割合が全体の50%以上の層と同割合が50%未満の層との積層構造を有するため、優れた耐摩耗性・耐チッピング性を発揮し、高い耐摩耗性を保ちつつ、靱性が向上し、切れ刃に断続的・衝撃的負荷が作用する高速断続切削加工に用いた場合でも、耐チッピング性、耐欠損性に優れ、その結果、長期の使用にわたって優れた切削性能を発揮している。 From the results shown in Tables 9 and 15, the coating tool of the present invention has a NaCl-type face-centered cubic crystal grain that constitutes an Al and Ti composite nitride or composite carbon nitride layer that constitutes a hard coating layer. In the above, since it has a laminated structure in which the ratio of the number of pixels indicating that the local orientation difference average value (KAM value) is less than 1 degree is 50% or more of the whole and the layer having the same ratio is less than 50%, it has excellent wear resistance. Demonstrates resistance and chipping resistance, maintains high wear resistance, improves toughness, and even when used for high-speed intermittent cutting where intermittent and impact loads act on the cutting edge, chipping resistance and chipping resistance It has excellent properties, and as a result, it exhibits excellent cutting performance over a long period of use.

これに対して、硬質被覆層を構成するAlとTiの複合窒化物または複合炭窒化物層を構成する立方晶結晶粒内において、本発明で規定するような局所方位差平均値(KAM値)が1度未満を示すピクセル数の割合が50%以上の層と同割合が50%未満の層との積層構造を有しない比較被覆工具1〜24については、高熱発生を伴い、しかも、切れ刃に断続的・衝撃的高負荷が作用する高速断続切削加工に用いた場合、耐摩耗性・耐チッピング性が劣り、チッピング、欠損等の発生により短時間で寿命にいたっている。 On the other hand, in the composite nitride of Al and Ti constituting the hard coating layer or the cubic crystal grains constituting the composite carbonitride layer, the local orientation difference average value (KAM value) as defined in the present invention. Comparative covering tools 1 to 24, which do not have a laminated structure of a layer having a pixel count of less than 1 degree and a layer having the same ratio of less than 50%, are accompanied by high heat generation and have a cutting edge. When used for high-speed intermittent cutting in which an intermittent / shocking high load acts, the wear resistance and chipping resistance are inferior, and the life is reached in a short time due to the occurrence of chipping, chipping, and the like.

前述のように、本発明の被覆工具は、合金鋼の高速断続切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。 As described above, the covering tool of the present invention can be used not only for high-speed intermittent cutting of alloy steel but also as a covering tool for various work materials, and has excellent chipping resistance and chipping resistance over a long period of use. Since it exhibits abrasion resistance, it can sufficiently and satisfactorily cope with high performance of cutting equipment, labor saving and energy saving of cutting processing, and cost reduction.

P 測定点(ピクセル)
B 粒界
P measurement point (pixel)
B grain boundary

Claims (5)

炭化タングステン基超硬合金、炭窒化チタン基サーメットまたは立方晶窒化ホウ素基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層が設けられた表面被覆切削工具において、
(a)前記硬質被覆層は、平均層厚1.0〜20.0μmのTiとAlとの複合窒化物層または複合炭窒化物層を少なくとも含み、
(b)前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒を含み、
(c)また、前記NaCl型の面心立方構造を有するTiとAlとの複合窒化物または複合炭窒化物の結晶粒の結晶方位を、電子線後方散乱回折装置を用いて縦方向断面から解析し、電子線後方散乱回折による結晶方位マッピングを測定し、各々の測定点の結晶方位を解析し、隣り合う測定点同士の方位差が10度以上である場合を粒界と判定したとき、粒界によって区分された同一結晶粒内において測定点と隣接する測定点との方位差の平均を計算し、各測定点での局所方位差平均値(KAM値)を求めた場合、該局所方位差平均値(KAM値)が1度未満の測定点の割合が50%以上であるA層と、該局所方位差平均値(KAM値)が1度未満の測定点の割合が50%未満であるB層が積層されており、組成式:(Ti1−xAl)(C1−y)で表した場合、A層およびB層のAlのTiとAlとの合量に占める平均含有割合xavgおよびCのCとNとの合量に占める平均含有割合yavg(但し、xavg、yavgはいずれも原子比)が、それぞれ、0.60≦xavg≦0.95、0≦yavg≦0.005を満足している、
ことを特徴とする表面被覆切削工具。
In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool substrate composed of either a tungsten carbide-based cemented carbide, a titanium nitride-based cermet, or a cubic boron nitride-based ultrahigh-pressure sintered body.
(A) The hard coating layer contains at least a composite nitride layer or a composite carbonitride layer of Ti and Al having an average layer thickness of 1.0 to 20.0 μm.
(B) The hard coating layer contains crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure.
(C) Further, the crystal orientation of the crystal grains of the composite nitride or composite carbon nitride of Ti and Al having the NaCl-type surface-centered cubic structure is analyzed from the longitudinal cross section using an electron beam backscattering diffractometer. Then, when the crystal orientation mapping by electron beam backward scattering diffraction is measured, the crystal orientation of each measurement point is analyzed, and the case where the orientation difference between adjacent measurement points is 10 degrees or more is determined as a grain boundary, the grain is determined. When the average of the orientation differences between the measurement points and the adjacent measurement points within the same crystal grain classified by the boundary is calculated and the local orientation difference average value (KAM value) at each measurement point is obtained, the local orientation difference The ratio of measurement points having an average value (KAM value) of less than 1 degree is 50% or more, and the ratio of measurement points having a local orientation difference average value (KAM value) of less than 1 degree is less than 50%. When the B layer is laminated and represented by the composition formula: (Ti 1-x Al x ) ( Cy N 1-y ), the average of the A layer and the B layer Al in the total amount of Ti and Al. The average content ratio y avg of the content ratio x avg and C in the total amount of C and N (however, x avg and y avg are both atomic ratios) are 0.60 ≤ x avg ≤ 0.95, respectively. Satisfying 0 ≤ y avg ≤ 0.005,
A surface coating cutting tool characterized by that.
前記硬質被覆層は、NaCl型の面心立方構造を有するTiとAl複合窒化物または複合炭窒化物の結晶粒を有する相の占める割合が70面積%以上であることを特徴とする請求項1に記載の表面被覆切削工具。 The hard coating layer is characterized in that the ratio of the phase having the crystal grains of Ti and Al composite nitride or composite carbonitride having a NaCl-type face-centered cubic structure is 70 area% or more. Surface coating cutting tool described in. 前記A層および前記B層のそれぞれは、平均層厚が0.5μm以上であり、それぞれ2層以上積層したことを特徴とする請求項1または2に記載の表面被覆切削工具。 The surface coating cutting tool according to claim 1 or 2, wherein each of the A layer and the B layer has an average layer thickness of 0.5 μm or more, and two or more layers are laminated. 前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒化酸化物層のうちの1層または2層以上のTi化合物層からなる合計で0.1〜20.0μmの平均層厚を有する下部層が存在することを特徴とする請求項1〜3のいずれか一項に記載の表面被覆切削工具。 Between the tool substrate and the hard coating layer, it is composed of one or more Ti compound layers of a carbide layer of Ti, a nitride layer, a carbonitride layer, a carbon oxide layer and a carbonitride oxide layer. The surface coating cutting tool according to any one of claims 1 to 3, wherein a lower layer having an average layer thickness of 0.1 to 20.0 μm in total is present. 前記硬質被覆層の外表面に少なくとも酸化アルミニウムを含む1層以上の上部層が合計で1.0〜25.0μmの平均層厚で形成されていることを特徴とする請求項1〜4のいずれか一項に記載の表面被覆切削工具。 Any of claims 1 to 4, wherein one or more upper layers containing at least aluminum oxide are formed on the outer surface of the hard coating layer with an average layer thickness of 1.0 to 25.0 μm in total. The surface coating cutting tool described in item 1.
JP2017128981A 2017-06-30 2017-06-30 Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance Active JP6850998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017128981A JP6850998B2 (en) 2017-06-30 2017-06-30 Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017128981A JP6850998B2 (en) 2017-06-30 2017-06-30 Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance

Publications (2)

Publication Number Publication Date
JP2019010707A JP2019010707A (en) 2019-01-24
JP6850998B2 true JP6850998B2 (en) 2021-03-31

Family

ID=65226243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017128981A Active JP6850998B2 (en) 2017-06-30 2017-06-30 Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance

Country Status (1)

Country Link
JP (1) JP6850998B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7029106B2 (en) * 2017-12-18 2022-03-03 株式会社タンガロイ Cover cutting tool
JP6977746B2 (en) * 2019-07-24 2021-12-08 株式会社タンガロイ Cover cutting tool
JP7051052B2 (en) * 2020-03-31 2022-04-11 株式会社タンガロイ Cover cutting tool

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6638571B2 (en) * 2000-05-31 2003-10-28 Mitsubishi Materials Corporation Coated cemented carbide cutting tool member and process for producing the same
JP6284034B2 (en) * 2014-09-25 2018-02-28 三菱マテリアル株式会社 Surface coated cutting tool with excellent chipping resistance due to hard coating layer
EP3000913B1 (en) * 2014-09-26 2020-07-29 Walter Ag Coated cutting tool insert with MT-CVD TiCN on TiAI(C,N)
US10837104B2 (en) * 2015-08-29 2020-11-17 Kyocera Corporation Coated tool
WO2017038840A1 (en) * 2015-08-31 2017-03-09 三菱マテリアル株式会社 Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance
JP6604138B2 (en) * 2015-10-22 2019-11-13 三菱マテリアル株式会社 Surface-coated cutting tool having excellent chipping resistance and wear resistance with a hard coating layer and method for producing the same
JP6931454B2 (en) * 2015-10-30 2021-09-08 三菱マテリアル株式会社 Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer

Also Published As

Publication number Publication date
JP2019010707A (en) 2019-01-24

Similar Documents

Publication Publication Date Title
JP5924507B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6478100B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548071B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
WO2014163081A1 (en) Surface-coated cutting tool
JP7063206B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6590255B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6284034B2 (en) Surface coated cutting tool with excellent chipping resistance due to hard coating layer
JP6548073B2 (en) Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer
JP2018114611A (en) Surface coated cutting tool with hard coating layer exhibiting excellent chipping resistance and wear resistance
JP6850998B2 (en) Surface coating cutting tool with a hard coating layer that exhibits excellent wear resistance and chipping resistance
KR20170072897A (en) Surface-coated cutting tool
JP6857298B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
JP6931454B2 (en) Surface coating cutting tool with excellent wear resistance and chipping resistance for the hard coating layer
JP6709536B2 (en) Surface coated cutting tool with excellent hard coating layer and chipping resistance
JP2020196128A (en) Surface-coated cutting tool having hard coating layer exerting excellent chipping resistance and wear resistance
JP6650108B2 (en) Surface coated cutting tool with excellent chipping and wear resistance
JP6850997B2 (en) Surface-coated cutting tool with excellent chipping resistance, heat-resistant crack resistance, and oxidation resistance with a hard film layer
JP7025727B2 (en) Surface cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
JP6858346B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
KR20170086045A (en) Surface-coated cutting tool
JP6774649B2 (en) Surface coating cutting tool with excellent chipping resistance and peeling resistance with a hard coating layer
JP6761597B2 (en) Surface coating cutting tool with excellent chipping resistance due to the hard coating layer
WO2018135513A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance and wear resistance
JP6857299B2 (en) Surface coating cutting tool with excellent chipping resistance and wear resistance with a hard coating layer
US20210402486A1 (en) Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200325

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6850998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150